You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Under Ubuntu 22.04, I encountered an error while installing the official command to compile and run CINM, and when converting UPMEM MLIR to UPMEM C, the specific information is as follows:
Under Ubuntu 22.04, I encountered an error while installing the official command to compile and run CINM, and when converting UPMEM MLIR to UPMEM C, the specific information is as follows:
source:https://github.com/tud-ccc/Cinnamon
ubuntu:ubuntu22.04
compiler:gcc/g++11.4
cd Cinnamon //ok
just configure -no-torch-mlir //ok
./compile_benches.sh //err
Setting UPMEM_HOME to /home/test/src/llvm18-cinn/tmp/Cinnamon/upmem and updating PATH/LD_LIBRARY_PATH/PYTHONPATH
ninja -Ccinnamon/build cinm-opt
ninja: Entering directory `cinnamon/build'
ninja: no work to do.
Setting UPMEM_HOME to /home/fengjingge/src/llvm18-cinn/tmp/Cinnamon/upmem and updating PATH/LD_LIBRARY_PATH/PYTHONPATH
rm -rf generated2/va
../build/bin/cinm-opt va.mlir --cinm-tiling --affine-loop-unroll='unroll-full unroll-full-threshold=1' > generated2/va/irs/va.tiled.mlir
../build/bin/cinm-opt generated2/va/irs/va.tiled.mlir --convert-cinm-to-cnm --cnm-hoist-workgroups --canonicalize --cse > generated2/va/irs/va.cnm.mlir
../build/bin/cinm-opt generated2/va/irs/va.cnm.mlir --lower-affine --one-shot-bufferize='bufferize-function-boundaries function-boundary-type-conversion=identity-layout-map'
--convert-linalg-to-affine-loops --lower-affine --buffer-loop-hoisting --buffer-hoisting --canonicalize --cse > generated2/va/irs/va.cnm.bufferized.mlir
../build/bin/cinm-opt generated2/va/irs/va.cnm.bufferized.mlir --convert-cnm-to-upmem --cse --upmem-outline-kernel --upmem-dedup-kernels --cse > generated2/va/irs/va.upmem.mlir
../build/bin/cinm-opt generated2/va/irs/va.upmem.mlir --mlir-print-ir-after-failure --canonicalize
--convert-scf-to-cf --convert-cf-to-llvm --fold-memref-alias-ops --lower-affine --convert-arith-to-llvm
--convert-upmem-to-llvm
--expand-strided-metadata --memref-expand --finalize-memref-to-llvm --lower-affine --convert-arith-to-llvm
--convert-func-to-llvm=use-bare-ptr-memref-call-conv=true --cse --reconcile-unrealized-casts --llvm-legalize-for-export --canonicalize --cse \
va.upmem.mlir:
#map = affine_map<(d0, d1, d2) -> (d0 * 1024 + d1 * 16 + d2)>
2 #map1 = affine_map<(d0, d1, d2) -> (d0 * 512 + d1 * 8 + d2)>
3 module {
4 memref.global "private" constant @__constant_2xi64_0 : memref<2xi64> = dense<[16384, 512]> {alignment = 64 : i 64}
5 memref.global "private" constant @__constant_1xi64_1 : memref<1xi64> = dense<8388608> {alignment = 64 : i64}
6 memref.global "private" constant @__constant_16384x512xi32 : memref<16384x512xi32> = dense<0> {alignment = 64 : i64}
7 memref.global "private" constant @__constant_1xi64_0 : memref<1xi64> = dense<16777216> {alignment = 64 : i64}
8 memref.global "private" constant @__constant_2xi64 : memref<2xi64> = dense<[16384, 256]> {alignment = 64 : i64 }
9 memref.global "private" constant @__constant_1xi64 : memref<1xi64> = dense<4194304> {alignment = 64 : i64}
10 memref.global "private" constant @__constant_16384x256xi32 : memref<16384x256xi32> = dense<0> {alignment = 64 : i64}
......
The text was updated successfully, but these errors were encountered: