-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathdata_loader.py
329 lines (291 loc) · 14.4 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import sys
# import os
from os import path
# import io
# from io import StringIO
# import collections as coll
import random
import numpy as np
import json
import time
import threading
from collections import deque
import logging
class DataLoader:
def __init__(
self,
data_path,
data_file,
batch_size,
sleep_time=1,
max_queue_size = 2,
start_file_id=0,
end_file_id=160
):
# load data
self.queue = deque() #multiprocessing.Queue(maxsize=max_queue_size) # it may change in future if we decide to split data into many small chunks instead of 4
self.batch_size = batch_size
self.data_path = data_path
self.data_file = data_file
self.end_file_id = end_file_id
self.sleep_time = sleep_time
self.max_queue_size = max_queue_size
self.help_count = 0
self.start_file_id = start_file_id
def __iter__(self):
return self
def data_read(self, start_id, total_thread):
sample_id = start_id
logging.debug('help_count={0}'.format(self.help_count))
while (sample_id + self.start_file_id) <= self.end_file_id:
logging.debug('{0} sample id:{1}'.format(self.data_file,sample_id+self.start_file_id))
logging.debug("{0} len queue:{1}".format(self.data_file,len(self.queue)))
if len(self.queue) >= self.max_queue_size:
time.sleep(1)
continue
processed_data_path = self.data_path + self.data_file + "_" + str(sample_id+self.start_file_id) + '_processed.npz'
logging.info('Start loading processed data...' + processed_data_path)
st = time.time()
# try:
data = np.load(processed_data_path)
# except IOError:
# logging.info("read data end!")
# continue
source = data['source_array']
uid_array = np.array(source)[:,0]
item_array = np.array(source)[:,1]
cate_array = np.array(source)[:,2]
shop_array = np.array(source)[:,3]
node_array = np.array(source)[:,4]
product_array = np.array(source)[:,5]
brand_array = np.array(source)[:,6]
target = data['target_array']
history_item = data['history_item_array']
history_cate = data['history_cate_array']
history_shop = data['history_shop_array']
history_node = data['history_node_array']
history_product = data['history_product_array']
history_brand = data['history_brand_array']
neg_history_item = data['neg_history_item_array']
neg_history_cate = data['neg_history_cate_array']
neg_history_shop = data['neg_history_shop_array']
neg_history_node = data['neg_history_node_array']
neg_history_product = data['neg_history_product_array']
neg_history_brand = data['neg_history_brand_array']
logging.debug('Finish loading processed data id '+ str(sample_id+self.start_file_id) + ',Time cost = %.4f' % (time.time()-st))
data_file = (uid_array,item_array,cate_array,shop_array,node_array,product_array,brand_array,\
target, history_item,history_cate,history_shop, history_node,history_product,history_brand,\
neg_history_item,neg_history_cate,neg_history_shop, neg_history_node,neg_history_product,neg_history_brand)
while self.help_count % total_thread != start_id:
logging.debug('waitting help count:{0}'.format(self.help_count))
time.sleep(1)
logging.debug('help_count={0}'.format(self.help_count))
self.queue.append(data_file)
self.help_count += 1
sample_id = sample_id + total_thread
logging.debug('finish data read!')
def _batch_data(self, data, data_slice,args):
uid_array,item_array,cate_array,shop_array,node_array,product_array,brand_array,\
target, history_item,history_cate,history_shop, history_node,history_product,history_brand,\
neg_history_item,neg_history_cate,neg_history_shop, neg_history_node,neg_history_product,neg_history_brand = data
#print("in _batch_data func")
user_id = uid_array[data_slice]
item_id = item_array[data_slice]
cate_id = cate_array[data_slice]
shop_id = shop_array[data_slice]
node_id = node_array[data_slice]
product_id = product_array[data_slice]
brand_id = brand_array[data_slice]
label = target[data_slice, :]
time_id = np.asarray(np.ones_like(item_id)*1024,dtype=np.int32)
# logging.info(hist_item.shape)
# logging.info(cate_id.shape)
# logging.info(hist_item[0])
if args.seq_len > 0:
hist_item = history_item[data_slice, :args.seq_len]
hist_cate = history_cate[data_slice, :args.seq_len]
hist_shop = history_shop[data_slice, :args.seq_len]
hist_node = history_node[data_slice, :args.seq_len]
hist_product = history_product[data_slice, :args.seq_len]
hist_brand = history_brand[data_slice, :args.seq_len]
neg_hist_item = neg_history_item[data_slice, :args.seq_len]
neg_hist_cate = neg_history_cate[data_slice, :args.seq_len]
neg_hist_shop = neg_history_shop[data_slice, :args.seq_len]
neg_hist_node = neg_history_node[data_slice, :args.seq_len]
neg_hist_product = neg_history_product[data_slice, :args.seq_len]
neg_hist_brand = neg_history_brand[data_slice, :args.seq_len]
else:
hist_item = history_item[data_slice, args.seq_len:]
hist_cate = history_cate[data_slice, args.seq_len:]
hist_shop = history_shop[data_slice, args.seq_len:]
hist_node = history_node[data_slice, args.seq_len:]
hist_product = history_product[data_slice, args.seq_len:]
hist_brand = history_brand[data_slice, args.seq_len:]
neg_hist_item = neg_history_item[data_slice, args.seq_len:]
neg_hist_cate = neg_history_cate[data_slice, args.seq_len:]
neg_hist_shop = neg_history_shop[data_slice, args.seq_len:]
neg_hist_node = neg_history_node[data_slice, args.seq_len:]
neg_hist_product = neg_history_product[data_slice, args.seq_len:]
neg_hist_brand = neg_history_brand[data_slice, args.seq_len:]
# logging.info(item_id.shape)
time_his_id = np.asarray([range(hist_item.shape[1]) for i in range(hist_item.shape[0])],dtype=np.int32)
hist_mask = np.greater( hist_item, 0) * 1.0
if args.long_seq_split and args.search_mode == 'cate':
seq_split = [(int(x.split(":")[0]),int(x.split(":")[1])) for x in args.long_seq_split.split(",")]
for idx,(left_idx,right_idx) in enumerate(seq_split):
hist_mask[:,left_idx:right_idx] = ((hist_cate == cate_id[:, None]) & (hist_item > 0))[:,left_idx:right_idx] * 1.0
# if cate_id[0] in hist_cate[0]:
# logging.info(hist_mask[0])
elif args.long_seq_split and args.search_mode == 'all':
seq_split = [(int(x.split(":")[0]),int(x.split(":")[1])) for x in args.long_seq_split.split(",")]
hist_mask = (hist_cate == cate_id[:,None]) & (hist_item > 0)
# hist_mask = hist_mask | (hist_item > 0)
hist_mask = hist_mask | (hist_shop == shop_id[:,None])
hist_mask = hist_mask | (hist_node == node_id[:,None])
hist_mask = hist_mask | (hist_product == product_id[:,None])
hist_mask = hist_mask | (hist_brand == brand_id[:,None])
hist_mask = hist_mask | (hist_item == item_id[:,None])
hist_mask = hist_mask * 1.0
for idx,(left_idx,right_idx) in enumerate(seq_split):
hist_mask[:,:left_idx] = (hist_item > 0)[:,:left_idx]*1.0
hist_mask[:,right_idx:] = (hist_item > 0)[:,right_idx:]*1.0
# cross_item_and_hist_item = hist_item * item_id[:,None] % args.max_item_item_cross_num
# cross_cate_and_hist_cate = hist_cate * cate_id[:,None] % args.max_cate_cate_cross_num
# cross_item_and_hist_cate = hist_cate * item_id[:,None] % args.max_item_cate_cross_num
# neg_hist_item = neg_history_item[data_slice, :]
# neg_hist_cate = neg_history_cate[data_slice, :]
# neg_hist_shop = neg_history_shop[data_slice, :]
# neg_hist_node = neg_history_node[data_slice, :]
# neg_hist_product = neg_history_product[data_slice, :]
# neg_hist_brand = neg_history_brand[data_slice, :]
result = {
# 'cross_item_and_item_id_his_batch_ph':cross_item_and_hist_item,
# 'cross_cate_and_cate_id_his_batch_ph': cross_cate_and_hist_cate,
# 'cross_item_and_cate_id_his_batch_ph': cross_item_and_hist_cate,
'uid_batch_ph':user_id,
'item_id_batch_ph':item_id,
'time_id_batch_ph':time_id,
'cate_id_batch_ph':cate_id,
'shop_id_batch_ph':shop_id,
'node_id_batch_ph':node_id,
'product_id_batch_ph':product_id,
'brand_id_batch_ph':brand_id,
'item_id_his_batch_ph':hist_item,
'cate_his_batch_ph':hist_cate,
'shop_his_batch_ph':hist_shop,
'node_his_batch_ph': hist_node,
'product_his_batch_ph':hist_product,
'brand_his_batch_ph':hist_brand,
'item_id_neg_batch_ph':neg_hist_item,
'cate_neg_batch_ph':neg_hist_cate,
'shop_neg_batch_ph':neg_hist_shop,
'node_neg_batch_ph':neg_hist_node,
'product_neg_batch_ph':neg_hist_product,
'brand_neg_batch_ph':neg_hist_brand,
'mask': hist_mask,
'time_id_his_batch_ph':time_his_id,
'target_ph':label
}
if args.cross_feature:
for item in args.cross_feature.strip().split(","):
cross_name, max_id_num = item.split(":")
target_name, hist_name = cross_name.split("_")
if target_name == 'item':
target = item_id
if target_name == 'cate':
target = cate_id
if hist_name == 'item':
hist = hist_item
if hist_name == 'cate':
hist = hist_cate
result[cross_name] = hist * target[:,None] % int(max_id_num)
# for key in result:
# result[key][result[key] < 0] = 0
return result
# return [user_id, item_id, cate_id,shop_id, node_id, product_id, brand_id,
# label, hist_item, hist_cate, hist_shop, hist_node, hist_product, hist_brand,
# hist_mask, neg_hist_item, neg_hist_cate, neg_hist_shop, neg_hist_node,
# neg_hist_product, neg_hist_brand ]
def next(self,args):
previous_data_out = []
data_file_read = 0
batch_id = 0
#print('in next func')
#import pdb; pdb.set_trace()
previous_line = 0
while len(self.queue) < 2:
logging.debug('waitting queue')
time.sleep(1)
logging.debug('Now the queue has {0} data file loaded in!'.format(len(self.queue)))
total_file_num = self.end_file_id - self.start_file_id + 1
logging.debug("total_file_num:{0}".format(total_file_num))
while data_file_read < total_file_num :
logging.debug("{0} data file read:{1} queue len {2}".format(self.data_file,data_file_read,len(self.queue)))
if len(self.queue) == 0:
logging.debug('len queue:{0}'.format(len(self.queue)))
time.sleep(1)
continue
data = self.queue.popleft()
file_line_num = data[0].shape[0]
start_ind = 0
data_file_read = data_file_read + 1
stime = time.time()
#print('start one file,time=', stime)
while start_ind <= file_line_num - self.batch_size:
if previous_line != 0:
batch_left = self.batch_size - previous_line
else:
batch_left = self.batch_size
data_slice = slice(start_ind, start_ind + batch_left)
# slice the data from the list
data_out = self._batch_data(data, data_slice,args) #data_out is tuple
if previous_line != 0:
#attach the data
# for i in range(len(data_out)):
# data_out[i] = np.concatenate(
# [previous_data_out[i], data_out[i]],
# axis=0
# )
for key in data_out:
data_out[key] = np.concatenate(
[previous_data_out[key], data_out[key]],
axis=0
)
if self.batch_size != len(data_out['uid_batch_ph']):
raise ValueError('batch fetched wrong!')
start_ind = start_ind + batch_left
previous_line = 0
#print("start_ind ", start_ind)
yield data_out
if start_ind != file_line_num:
data_slice = slice(start_ind, file_line_num)
previous_data_out = self._batch_data(data, data_slice,args)
previous_line = file_line_num - start_ind
logging.debug("Left batch of size %d" %( previous_line))
etime = time.time()
logging.debug('Consume one file takes time= %.4f' %(etime-stime))
logging.debug('drop last batch since it is not full batch size')
def test():
data_load = DataLoader('/disk3/w.wei/dien-new/process_data_maxlen100_0225/', 'train_sample', 256, 15)
producer1 = threading.Thread(target=data_load.data_read, args=(0, 3))
producer2 = threading.Thread(target=data_load.data_read, args=(1, 3))
producer3 = threading.Thread(target=data_load.data_read, args=(2, 3))
producer1.start()
producer2.start()
producer3.start()
#data_i = iter(data_load)
#data_o = next(data_i)
#print('print=====',len(data_o))
num = 0
for data in data_load.next():
num = num+1
cnt = 1
for i in range(10000):
cnt = cnt * 1.0
if num%1000 == 0:
print('i=',num,',cnt=',cnt)
producer1.join()
producer2.join()
producer3.join()
if __name__ == '__main__':
test()