-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedder.py
136 lines (113 loc) · 5.46 KB
/
embedder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
np.random.seed(0)
import torch
import torch.nn as nn
from utils import printConfig
from torch_geometric.nn import GCNConv, GATConv
import torch.nn.functional as F
# To fix the random seed
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
import random
random.seed(0)
import os
from sklearn.cluster import KMeans
from sklearn.metrics import normalized_mutual_info_score, adjusted_rand_score, pairwise
import umap
import hdbscan
class embedder:
def __init__(self, args):
self.args = args
self.hidden_layers = eval(args.layers)
printConfig(args)
def infer_embeddings(self, epoch):
self._model.train(False)
self._embeddings = self._labels = None
self._train_mask = self._dev_mask = self._test_mask = None
# one batch
for bc, batch_data in enumerate(self._loader):
batch_data.to(self._device)
emb, _, _, _ = self._model(x=batch_data.x, y=batch_data.y, edge_index=batch_data.edge_index,
neighbor=[batch_data.neighbor_index, batch_data.neighbor_attr],
edge_weight=batch_data.edge_attr, epoch=epoch)
emb = emb.detach()
y = batch_data.y.detach()
if self._embeddings is None:
self._embeddings, self._labels = emb, y
else:
self._embeddings = torch.cat([self._embeddings, emb])
self._labels = torch.cat([self._labels, y])
def evaluate(self, task, epoch):
if task == "clustering":
self.evaluate_clustering(epoch)
def evaluate_clustering(self, epoch, clusters=''):
embeddings = F.normalize(self._embeddings, dim=-1, p=2).detach().cpu().numpy()
# self._dataset[0] 表示data图数据
nb_class = len(self._dataset[0].y.unique())
true_y = self._dataset[0].y.detach().cpu().numpy()
if clusters == 'kmeans':
estimator = KMeans(n_clusters = nb_class)
ARI_list = []
NMI_list = []
for i in range(10):
estimator.fit(embeddings)
y_pred = estimator.predict(embeddings)
s1 = normalized_mutual_info_score(true_y, y_pred, average_method='arithmetic')
s2 = adjusted_rand_score(true_y, y_pred)
NMI_list.append(s1)
ARI_list.append(s2)
s1 = sum(NMI_list) / len(NMI_list)
s2 = sum(ARI_list) / len(ARI_list)
print('kmeans')
else:
umap_reducer = umap.UMAP()
u = umap_reducer.fit_transform(embeddings)
cl_sizes = [10, 25, 50, 100]
min_samples = [5, 10, 25, 50]
hdbscan_dict = {}
ari_dict = {}
for cl_size in cl_sizes:
for min_sample in min_samples:
clusterer = hdbscan.HDBSCAN(min_cluster_size=cl_size, min_samples=min_sample)
clusterer.fit(u)
y_pred = clusterer.labels_
nmi = normalized_mutual_info_score(true_y, y_pred)
ari = adjusted_rand_score(true_y, y_pred)
ari_dict[(cl_size, min_sample)] = {'NMI': nmi, 'ARI': ari}
hdbscan_dict[(cl_size, min_sample)] = y_pred
max_tuple = max(ari_dict, key=lambda x: ari_dict[x]['ARI'])
s2 = ari_dict[max_tuple]['ARI']
s1 = ari_dict[max_tuple]['NMI']
print('hdbscan')
print('** [{}] [Current Epoch {}] Clustering ARI: {:.4f} NMI: {:.4f} **'.format(self.args.embedder, epoch, s2,
s1))
if s2 > self.best_dev_acc_ari:
self.best_epoch = epoch
self.best_dev_acc_ari = s2
self.best_dev_acc_nmi = s1
if self._args.checkpoint_dir is not '':
print('Saving checkpoint...')
torch.save(self._embeddings.detach().cpu(), os.path.join(self._args.checkpoint_dir,
'embeddings_{}_{}.pt'.format(
self._args.dataset.split('/')[2],
self._args.task)))
self.st_best = '** [Best epoch: {}] Best ARI: {:.4f} NMI: {:.4f} **\n'.format(self.best_epoch,
self.best_dev_acc_ari,
self.best_dev_acc_nmi)
print(self.st_best)
class Encoder(nn.Module):
def __init__(self, layer_config, dropout=None, project=False, **kwargs):
super().__init__()
self.stacked_gnn = nn.ModuleList(
[GCNConv(layer_config[i - 1], layer_config[i]) for i in range(1, len(layer_config))])
self.stacked_bns = nn.ModuleList(
[nn.BatchNorm1d(layer_config[i], momentum=0.01) for i in range(1, len(layer_config))])
self.stacked_prelus = nn.ModuleList([nn.PReLU() for _ in range(1, len(layer_config))])
def forward(self, x, edge_index, edge_weight=None):
for i, gnn in enumerate(self.stacked_gnn):
x = gnn(x, edge_index, edge_weight)
x = self.stacked_bns[i](x)
x = self.stacked_prelus[i](x)
return x