-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattack_experiments.py
179 lines (157 loc) · 7.74 KB
/
attack_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from transformers import AutoTokenizer, FlaxAutoModelForSeq2SeqLM
from preprocessing import MLongT5Preprocessor
from torch.utils.data import DataLoader
from flax.training import train_state
from datetime import datetime
import jax.numpy as jnp
from typing import Any
from tqdm import tqdm
import evaluate
import logging
import optax
import json
import glob
import jax
import os
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class AttackExperiment:
def __init__(self, settings) -> None:
self.seed = settings.seed
self.dataset_infer = settings.dataset_infer
self.dataset_loss = settings.dataset_loss
self.base_path: str = "/".join(settings.base_model.split("/")[:-1])
self.target_path = "/".join(settings.target_model.split("/")[:-1])
self.base_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(settings.base_model, seed=self.seed)
self.target_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(settings.target_model, seed=self.seed)
self.batch_size = settings.batch_size
self.dataset_infer_name = self.dataset_infer.split("/")[-1].split(".")[0]
self.dataset_loss_name = self.dataset_loss.split("/")[-1].split(".")[0]
# noinspection PyTypeChecker
self.metrics = evaluate.combine([
"accuracy", "f1", "precision","recall", "ealvaradob/false_positive_rate",
])
self.threshold = self._base_threshold()
self.attack_writer = {}
self.tokenizer = AutoTokenizer.from_pretrained(
'agemagician/mlong-t5-tglobal-base',
legacy=False,
use_fast=False
)
self.labels = []
self.preprocessor = MLongT5Preprocessor(
model=self.base_model,
tokenizer=self.tokenizer,
lang_pair=settings.lang_pair,
input_max_seq_len=settings.input_max_seq_len,
)
self._setup_dataloader(settings)
def _setup_dataloader(self, settings) -> None:
train_dataset_loss, _ = self.preprocessor.process_data(
data_name=settings.dataset_loss,
)
self.train_data_loader_loss = DataLoader(
train_dataset_loss,
batch_size=self.batch_size,
collate_fn=lambda batch: {key: jnp.array([sample[key] for sample in batch]) for key in batch[0].keys()},
)
train_dataset, eval_dataset = self.preprocessor.process_data(
data_name=settings.dataset_infer,
)
self.train_data_loader = DataLoader(
train_dataset,
batch_size=self.batch_size,
collate_fn=lambda batch: {key: jnp.array([sample[key] for sample in batch]) for key in batch[0].keys()},
)
self.eval_data_loader = DataLoader(
eval_dataset,
batch_size=self.batch_size,
collate_fn=lambda batch: {key: jnp.array([sample[key] for sample in batch]) for key in batch[0].keys()},
)
test_dataset = self.preprocessor.process_data(
data_name=settings.dataset_infer,
test_only=True,
)
self.test_data_loader = DataLoader(
test_dataset,
batch_size=self.batch_size,
collate_fn=lambda batch: {key: jnp.array([sample[key] for sample in batch]) for key in batch[0].keys()},
)
def _base_threshold(self):
threshold = sorted(glob.glob(f'{self.base_path}/threshold_{self.dataset_loss_name}*'))
if len(threshold) == 0:
return 0
else:
with open(threshold[-1], "r") as f:
return float(f.read())
def eval_step(self, state, batch):
labels = batch.pop("labels")
logits = state.apply_fn(**batch, params=state.params, train=False).logits
loss = self.loss_function(logits, labels)
return loss
def loss_function(self, logits, labels):
cross_entropy = optax.softmax_cross_entropy(
logits,
jax.nn.one_hot(labels, num_classes=self.base_model.config.vocab_size))
return jnp.mean(cross_entropy, axis=1)
def run_experiment(self) -> None:
eval_step = jax.jit(self.eval_step)
if self.threshold == 0:
base_state: train_state.TrainState = train_state.TrainState.create(
apply_fn=self.base_model.__call__,
params=self.base_model.params,
tx=optax.adam(0.0001),
)
base_train_loss = []
for _, batch in tqdm(enumerate(self.train_data_loader_loss), desc="Loss of training data on base model ...."):
eval_metrics = eval_step(base_state, batch)
base_train_loss.extend(eval_metrics)
self.threshold = jnp.mean(jnp.array(base_train_loss))
with open(f'{self.base_path}/threshold_{self.dataset_loss_name}.txt', "w") as f:
f.write(str(self.threshold))
target_state: train_state.TrainState = train_state.TrainState.create(
apply_fn=self.target_model.__call__,
params=self.target_model.params,
tx=optax.adam(0.0001),
)
target_train_loss = []
for _, batch in tqdm(enumerate(self.train_data_loader), desc="Loss of training data on target model ...."):
self.labels.extend(self.tokenizer.batch_decode(batch["labels"], skip_special_tokens=True))
eval_metrics = eval_step(target_state, batch)
target_train_loss.extend(eval_metrics)
target_dev_loss = []
for _, batch in tqdm(enumerate(self.eval_data_loader), desc="Loss of dev data on target model ...."):
eval_metrics = eval_step(target_state, batch)
target_dev_loss.extend(eval_metrics)
target_test_loss = []
for _, batch in tqdm(enumerate(self.test_data_loader), desc="Loss of test data on target model ...."):
eval_metrics = eval_step(target_state, batch)
target_test_loss.extend(eval_metrics)
print("threshold", self.threshold)
train_label: list[int] = [1] * len(target_train_loss)
dev_label: list[int] = [0] * len(target_dev_loss)
test_label: list[int] = [0] * len(target_test_loss)
prediction_train: list[int] = [1 if loss < self.threshold else 0 for loss in target_train_loss]
prediction_dev: list[int] = [1 if loss < self.threshold else 0 for loss in target_dev_loss]
prediction_test: list[int] = [1 if loss < self.threshold else 0 for loss in target_test_loss]
label = train_label + dev_label + test_label
prediction = prediction_train + prediction_dev + prediction_test
for ref, pred in zip(label, prediction):
self.metrics.add(references=ref, predictions=pred)
results = self.metrics.compute()
print("seed", self.seed)
print("results", results)
leakage = results["recall"] - results["false_positive_rate"]
print("leakage", leakage)
self.attack_writer["dataset_loss"] = self.dataset_loss_name
self.attack_writer["dataset_infer"] = self.dataset_infer_name
self.attack_writer["threshold"] = float(self.threshold)
self.attack_writer["results"] = results
self.attack_writer["leakage"] = leakage
self.attack_writer["leaked"] = []
for pred, label in zip(prediction, self.labels):
if pred == 1:
self.attack_writer["leaked"].append(label)
with open(f'{self.target_path}/attack_{self.dataset_infer_name}_result.json', "w") as f:
json.dump(self.attack_writer, f, indent=4, separators=(',', ': '))