diff --git a/README.md b/README.md
index 744ef05..1b9cbd2 100644
--- a/README.md
+++ b/README.md
@@ -6,7 +6,7 @@
- PutnamBench consists of 1712 hand-constructed formalizations of problems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. + PutnamBench consists of 1724 hand-constructed formalizations of problems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. There are 660 problems formalized in Lean 4, 640 formalized in Isabelle, and 412 formalized in Coq.
diff --git a/informal/putnam.json b/informal/putnam.json index 1e9cdc2..7767584 100644 --- a/informal/putnam.json +++ b/informal/putnam.json @@ -5424,5 +5424,105 @@ "tags": [ "analysis" ] + }, + { + "problem_name": "putnam_2025_a1", + "informal_statement": "Let $m_0$ and $n_0$ be distinct positive integers. For every positive integer $k$,\ndefine $m_k$ and $n_k$ to be the relatively prime positive integers such that\n$$\\frac{m_k}{n_k} = \\frac{2m_{k-1} + 1}{2n_{k-1} + 1}.$$\nProve that $2m_k + 1$ and $2n_k + 1$ are relatively prime for all but finitely many\npositive integers $k$.", + "informal_solution": "None.", + "tags": [ + "number_theory" + ] + }, + { + "problem_name": "putnam_2025_a2", + "informal_statement": "Find the largest real number $a$ and the smallest real number $b$ such that\n$$ax(\\pi - x) \\le \\sin x \\le bx(\\pi - x)$$\nfor all $x$ in the interval $[0, \\pi]$.", + "informal_solution": "Show that the optimal constants are $a = \\tfrac{1}{\\pi}$ and $b = \\tfrac{4}{\\pi^2}$.", + "tags": [ + "analysis" + ] + }, + { + "problem_name": "putnam_2025_a3", + "informal_statement": "Alice and Bob play a game with a string of $n$ digits, each of which is restricted\nto be 0, 1, or 2. Initially all the digits are 0. A legal move is to add or subtract 1\nfrom one digit to create a new string that has not appeared before. A player with no\nlegal move loses, and the other player wins. Alice goes first, and the players alternate\nmoves. For each $n \\ge 1$, determine which player has a strategy that guarantees winning.", + "informal_solution": "Show that Bob has a winning strategy for all $n \\ge 1$.", + "tags": [ + "combinatorics" + ] + }, + { + "problem_name": "putnam_2025_a4", + "informal_statement": "Find the minimal value of $k$ such that there exist $k$-by-$k$ real matrices\n$A_1, \\ldots, A_{2025}$ with the property that $A_i A_j = A_j A_i$ if and only if\n$|i - j| \\in \\{0, 1, 2024\\}$.", + "informal_solution": "Show that the minimal value is $3$.", + "tags": [ + "linear_algebra" + ] + }, + { + "problem_name": "putnam_2025_a5", + "informal_statement": "Let $n$ be an integer with $n \\ge 2$. For a sequence $s = (s_1, \\ldots, s_{n-1})$ where each\n$s_i = \\pm 1$, let $f(s)$ be the number of permutations $(a_1, \\ldots, a_n)$ of $\\{1, 2, \\ldots, n\\}$\nsuch that $s_i(a_{i+1} - a_i) > 0$ for all $i$. For each $n$, determine the sequences $s$ for which\n$f(s)$ is maximal.", + "informal_solution": "Show that $f(s)$ is maximized exactly when the signs alternate, that is, when $s_i = (-1)^{i+1}$ for all $i$ or $s_i = (-1)^i$ for all $i$.", + "tags": [ + "combinatorics" + ] + }, + { + "problem_name": "putnam_2025_a6", + "informal_statement": "Let $b_0 = 0$ and, for $n \\ge 0$, define $b_{n+1} = 2b_n^2 + b_n + 1$.\nFor each $k \\ge 1$, show that $b_{2^{k+1}} - 2b_{2^k}$ is divisible by $2^{2k+2}$\nbut not by $2^{2k+3}$.", + "informal_solution": "None.", + "tags": [ + "number_theory" + ] + }, + { + "problem_name": "putnam_2025_b1", + "informal_statement": "Suppose that each point in the plane is colored either red or green, subject to the following\ncondition: For every three noncollinear points $A$, $B$, $C$ of the same color, the center of the\ncircle passing through $A$, $B$, $C$ is also this color. Prove that all points of the plane are the\nsame color.", + "informal_solution": "Show that all points of the plane must have the same color.", + "tags": [ + "geometry", + "combinatorics" + ] + }, + { + "problem_name": "putnam_2025_b2", + "informal_statement": "Let $f: [0,1] \\to [0, \\infty)$ be strictly increasing and continuous.\nLet $R$ be the region bounded by $x = 0$, $x = 1$, $y = 0$, and $y = f(x)$.\nLet $x_1$ be the $x$-coordinate of the centroid of $R$.\nLet $x_2$ be the $x$-coordinate of the centroid of the solid generated by rotating $R$ about the $x$-axis.\nProve that $x_1 < x_2$.", + "informal_solution": "None.", + "tags": [ + "analysis", + "geometry" + ] + }, + { + "problem_name": "putnam_2025_b3", + "informal_statement": "Suppose $S$ is a nonempty set of positive integers with the property that if $n$ is in $S$,\nthen every positive divisor of $2025^n - 15^n$ is in $S$. Must $S$ contain all positive integers?", + "informal_solution": "Yes, $S$ must contain all positive integers.", + "tags": [ + "number_theory" + ] + }, + { + "problem_name": "putnam_2025_b4", + "informal_statement": "For $n \\geq 2$, let $A = [a_{i,j}]_{i,j=1}^n$ be an $n$-by-$n$ matrix of nonnegative integers such that:\n(a) $a_{i,j} = 0$ when $i + j \\leq n$;\n(b) $a_{i+1,j} \\in \\{a_{i,j}, a_{i,j} + 1\\}$ when $1 \\leq i \\leq n-1$ and $1 \\leq j \\leq n$; and\n(c) $a_{i,j+1} \\in \\{a_{i,j}, a_{i,j} + 1\\}$ when $1 \\leq i \\leq n$ and $1 \\leq j \\leq n-1$.\n\nLet $S$ be the sum of the entries of $A$, and let $N$ be the number of nonzero entries of $A$.\nProve that $S \\leq \\frac{(n+2)N}{3}$.", + "informal_solution": "None.", + "tags": [ + "linear_algebra", + "combinatorics" + ] + }, + { + "problem_name": "putnam_2025_b5", + "informal_statement": "Let $p$ be a prime number greater than 3. For each $k \\in \\{1, \\ldots, p-1\\}$,\nlet $I(k) \\in \\{1, 2, \\ldots, p-1\\}$ be such that $k \\cdot I(k) \\equiv 1 \\pmod{p}$.\nProve that the number of integers $k \\in \\{1, \\ldots, p-2\\}$ such that\n$I(k+1) < I(k)$ is greater than $p/4 - 1$.", + "informal_solution": "None.", + "tags": [ + "number_theory" + ] + }, + { + "problem_name": "putnam_2025_b6", + "informal_statement": "Let $\\mathbb{N} = \\{1, 2, 3, \\ldots\\}$. Find the largest real constant $r$ such that\nthere exists a function $g: \\mathbb{N} \\to \\mathbb{N}$ such that\n$$g(n+1) - g(n) \\geq (g(g(n)))^r$$\nfor all $n \\in \\mathbb{N}$.", + "informal_solution": "Show that the largest possible value of $r$ is $1/4$.", + "tags": [ + "analysis", + "number_theory" + ] } ] diff --git a/lean4/src/putnam_2025_a1.lean b/lean4/src/putnam_2025_a1.lean new file mode 100644 index 0000000..88dba23 --- /dev/null +++ b/lean4/src/putnam_2025_a1.lean @@ -0,0 +1,19 @@ +import Mathlib + +/-- +Let $m_0$ and $n_0$ be distinct positive integers. For every positive integer $k$, +define $m_k$ and $n_k$ to be the relatively prime positive integers such that +$$\frac{m_k}{n_k} = \frac{2m_{k-1} + 1}{2n_{k-1} + 1}.$$ +Prove that $2m_k + 1$ and $2n_k + 1$ are relatively prime for all but finitely many +positive integers $k$. +-/ +theorem putnam_2025_a1 + (m n : ℕ → ℕ) + (hm : ∀ k : ℕ, 0 < m k) + (hn : ∀ k : ℕ, 0 < n k) + (h_distinct : m 0 ≠ n 0) + (h_coprime : ∀ k : ℕ, 0 < k → Nat.Coprime (m k) (n k)) + (h_recurrence : ∀ k : ℕ, + (m (k + 1) : ℚ) / (n (k + 1) : ℚ) = (2 * (m k : ℚ) + 1) / (2 * (n k : ℚ) + 1)) : + {k : ℕ | ¬Nat.Coprime (2 * m k + 1) (2 * n k + 1)}.Finite := +sorry diff --git a/lean4/src/putnam_2025_a2.lean b/lean4/src/putnam_2025_a2.lean new file mode 100644 index 0000000..73ed7a1 --- /dev/null +++ b/lean4/src/putnam_2025_a2.lean @@ -0,0 +1,17 @@ +import Mathlib + +open Real + +noncomputable abbrev putnam_2025_a2_solution : ℝ × ℝ := sorry +-- (1 / π, 4 / π ^ 2) + +/-- +Find the largest real number $a$ and the smallest real number $b$ such that +$$ax(\pi - x) \le \sin x \le bx(\pi - x)$$ +for all $x$ in the interval $[0, \pi]$. +-/ +theorem putnam_2025_a2 (a b : ℝ) : + ((a, b) = putnam_2025_a2_solution) ↔ + (IsGreatest {a' : ℝ | ∀ x ∈ Set.Icc 0 π, a' * x * (π - x) ≤ sin x} a ∧ + IsLeast {b' : ℝ | ∀ x ∈ Set.Icc 0 π, sin x ≤ b' * x * (π - x)} b) := +sorry diff --git a/lean4/src/putnam_2025_a3.lean b/lean4/src/putnam_2025_a3.lean new file mode 100644 index 0000000..16fe674 --- /dev/null +++ b/lean4/src/putnam_2025_a3.lean @@ -0,0 +1,38 @@ +import Mathlib + +open Finset Function + +abbrev putnam_2025_a3_solution : ℕ → Prop := sorry +-- fun _ => False + +def GameString (n : ℕ) := Fin n → Fin 3 + +def initialState (n : ℕ) : GameString n := fun _ => 0 + +def isValidMove {n : ℕ} (s1 s2 : GameString n) : Prop := + (∃! i : Fin n, s1 i ≠ s2 i) ∧ + ∀ i : Fin n, s1 i ≠ s2 i → + ((s1 i).val + 1 = (s2 i).val ∨ (s2 i).val + 1 = (s1 i).val) + +def IsValidGamePlay {n : ℕ} (play : List (GameString n)) : Prop := + play.Chain isValidMove (initialState n) ∧ + (initialState n :: play).Nodup + +inductive HasWinningStrategy (n : ℕ) : List (GameString n) → Prop where + | win (play : List (GameString n)) (s : GameString n) : + IsValidGamePlay (play ++ [s]) → + (∀ s', IsValidGamePlay (play ++ [s, s']) → HasWinningStrategy n (play ++ [s, s'])) → + HasWinningStrategy n play + +def AliceHasWinningStrategy (n : ℕ) : Prop := HasWinningStrategy n [] + +/-- +Alice and Bob play a game with a string of $n$ digits, each of which is restricted +to be 0, 1, or 2. Initially all the digits are 0. A legal move is to add or subtract 1 +from one digit to create a new string that has not appeared before. A player with no +legal move loses, and the other player wins. Alice goes first, and the players alternate +moves. For each $n \ge 1$, determine which player has a strategy that guarantees winning. +-/ +theorem putnam_2025_a3 (n : ℕ) (hn : 1 ≤ n) : + putnam_2025_a3_solution n ↔ AliceHasWinningStrategy n := by + sorry diff --git a/lean4/src/putnam_2025_a4.lean b/lean4/src/putnam_2025_a4.lean new file mode 100644 index 0000000..3c19576 --- /dev/null +++ b/lean4/src/putnam_2025_a4.lean @@ -0,0 +1,16 @@ +import Mathlib + +abbrev putnam_2025_a4_solution : ℕ := sorry +-- 3 + +/-- +Find the minimal value of $k$ such that there exist $k$-by-$k$ real matrices +$A_1, \ldots, A_{2025}$ with the property that $A_i A_j = A_j A_i$ if and only if +$|i - j| \in \{0, 1, 2024\}$. +-/ +theorem putnam_2025_a4 : + IsLeast {k : ℕ | ∃ A : Fin 2025 → Matrix (Fin k) (Fin k) ℝ, + ∀ i j : Fin 2025, i ≤ j → + (A i * A j = A j * A i ↔ j.val - i.val ∈ ({0, 1, 2024} : Set ℕ))} + putnam_2025_a4_solution := +sorry diff --git a/lean4/src/putnam_2025_a5.lean b/lean4/src/putnam_2025_a5.lean new file mode 100644 index 0000000..08afaf5 --- /dev/null +++ b/lean4/src/putnam_2025_a5.lean @@ -0,0 +1,23 @@ +import Mathlib + +open Finset + +abbrev putnam_2025_a5_solution : (n : ℕ) → Set (Fin n → ℤˣ) := sorry +-- fun n => {s | (∀ i : Fin n, s i = (-1) ^ (i.val + 1)) ∨ (∀ i : Fin n, s i = (-1) ^ i.val)} + +def f (n : ℕ) (s : Fin n → ℤˣ) : ℕ := + Finset.card {σ : Equiv.Perm (Fin (n + 1)) | + ∀ i : Fin n, 0 < (s i : ℤ) * ((σ i.succ : ℤ) - (σ i.castSucc : ℤ))} + +/-- +Let $n$ be an integer with $n \ge 2$. For a sequence $s = (s_1, \ldots, s_{n-1})$ where each +$s_i = \pm 1$, let $f(s)$ be the number of permutations $(a_1, \ldots, a_n)$ of $\{1, 2, \ldots, n\}$ +such that $s_i(a_{i+1} - a_i) > 0$ for all $i$. For each $n$, determine the sequences $s$ for which +$f(s)$ is maximal. +-/ +theorem putnam_2025_a5 + (n : ℕ) + (hn : 1 ≤ n) + (s : Fin n → ℤˣ) : + (∀ t : Fin n → ℤˣ, f n t ≤ f n s) ↔ s ∈ putnam_2025_a5_solution n := by + sorry diff --git a/lean4/src/putnam_2025_a6.lean b/lean4/src/putnam_2025_a6.lean new file mode 100644 index 0000000..c957df8 --- /dev/null +++ b/lean4/src/putnam_2025_a6.lean @@ -0,0 +1,15 @@ +import Mathlib + +def b : ℕ → ℤ +| 0 => 0 +| n + 1 => 2 * (b n) ^ 2 + b n + 1 + +/-- +Let $b_0 = 0$ and, for $n \ge 0$, define $b_{n+1} = 2b_n^2 + b_n + 1$. +For each $k \ge 1$, show that $b_{2^{k+1}} - 2b_{2^k}$ is divisible by $2^{2k+2}$ +but not by $2^{2k+3}$. +-/ +theorem putnam_2025_a6 (k : ℕ) (hk : 1 ≤ k) : + (2 ^ (2 * k + 2) : ℤ) ∣ (b (2 ^ (k + 1)) - 2 * b (2 ^ k)) ∧ + ¬((2 ^ (2 * k + 3) : ℤ) ∣ (b (2 ^ (k + 1)) - 2 * b (2 ^ k))) := by + sorry diff --git a/lean4/src/putnam_2025_b1.lean b/lean4/src/putnam_2025_b1.lean new file mode 100644 index 0000000..ff26d14 --- /dev/null +++ b/lean4/src/putnam_2025_b1.lean @@ -0,0 +1,17 @@ +import Mathlib + +open Affine EuclideanGeometry + +/-- +Suppose that each point in the plane is colored either red or green, subject to the following +condition: For every three noncollinear points $A$, $B$, $C$ of the same color, the center of the +circle passing through $A$, $B$, $C$ is also this color. Prove that all points of the plane are the +same color. +-/ +theorem putnam_2025_b1 + (color : EuclideanSpace ℝ (Fin 2) → Bool) + (h : ∀ (s : Simplex ℝ (EuclideanSpace ℝ (Fin 2)) 2), + (∀ i j : Fin 3, color (s.points i) = color (s.points j)) → + color s.circumcenter = color (s.points 0)) : + ∃ c : Bool, ∀ P : EuclideanSpace ℝ (Fin 2), color P = c := by + sorry diff --git a/lean4/src/putnam_2025_b2.lean b/lean4/src/putnam_2025_b2.lean new file mode 100644 index 0000000..50d22ea --- /dev/null +++ b/lean4/src/putnam_2025_b2.lean @@ -0,0 +1,19 @@ +import Mathlib + +open Set Real MeasureTheory Interval + +/-- +Let $f: [0,1] \to [0, \infty)$ be strictly increasing and continuous. +Let $R$ be the region bounded by $x = 0$, $x = 1$, $y = 0$, and $y = f(x)$. +Let $x_1$ be the $x$-coordinate of the centroid of $R$. +Let $x_2$ be the $x$-coordinate of the centroid of the solid generated by rotating $R$ about the $x$-axis. +Prove that $x_1 < x_2$. +-/ +theorem putnam_2025_b2 + (f : ℝ → ℝ) + (hf_cont : ContinuousOn f (Icc 0 1)) + (hf_mono : StrictMonoOn f (Icc 0 1)) + (hf_nonneg : ∀ x ∈ Icc (0 : ℝ) 1, 0 ≤ f x) : + (∫ x in (0:ℝ)..1, x * f x) / (∫ x in (0:ℝ)..1, f x) < + (∫ x in (0:ℝ)..1, x * (f x) ^ 2) / (∫ x in (0:ℝ)..1, (f x) ^ 2) := by + sorry diff --git a/lean4/src/putnam_2025_b3.lean b/lean4/src/putnam_2025_b3.lean new file mode 100644 index 0000000..bd7eb41 --- /dev/null +++ b/lean4/src/putnam_2025_b3.lean @@ -0,0 +1,19 @@ +import Mathlib + +open Finset + +abbrev putnam_2025_b3_solution : Prop := sorry +-- True + +/-- +Suppose $S$ is a nonempty set of positive integers with the property that if $n$ is in $S$, +then every positive divisor of $2025^n - 15^n$ is in $S$. Must $S$ contain all positive integers? +-/ +theorem putnam_2025_b3 : + putnam_2025_b3_solution ↔ + ∀ S : Set ℕ, + S.Nonempty → + (∀ n ∈ S, 0 < n) → + (∀ n ∈ S, ∀ d : ℕ, 0 < d → d ∣ (2025 ^ n - 15 ^ n) → d ∈ S) → + S = {n : ℕ | 0 < n} := by + sorry diff --git a/lean4/src/putnam_2025_b4.lean b/lean4/src/putnam_2025_b4.lean new file mode 100644 index 0000000..a5d17bf --- /dev/null +++ b/lean4/src/putnam_2025_b4.lean @@ -0,0 +1,29 @@ +import Mathlib + +open BigOperators Finset Matrix + +/-- +For $n \geq 2$, let $A = [a_{i,j}]_{i,j=1}^n$ be an $n$-by-$n$ matrix of nonnegative integers such that: +(a) $a_{i,j} = 0$ when $i + j \leq n$; +(b) $a_{i+1,j} \in \{a_{i,j}, a_{i,j} + 1\}$ when $1 \leq i \leq n-1$ and $1 \leq j \leq n$; and +(c) $a_{i,j+1} \in \{a_{i,j}, a_{i,j} + 1\}$ when $1 \leq i \leq n$ and $1 \leq j \leq n-1$. + +Let $S$ be the sum of the entries of $A$, and let $N$ be the number of nonzero entries of $A$. +Prove that $S \leq \frac{(n+2)N}{3}$. +-/ +theorem putnam_2025_b4 + (m : ℕ) + (A : Matrix (Fin (m + 2)) (Fin (m + 2)) ℕ) + (ha : ∀ (i j : Fin (m + 2)), (i : ℕ) + (j : ℕ) ≤ m → A i j = 0) + (hb : ∀ (i : Fin (m + 1)) (j : Fin (m + 2)), + A (Fin.succ i) j = A (Fin.castSucc i) j ∨ + A (Fin.succ i) j = A (Fin.castSucc i) j + 1) + (hc : ∀ (i : Fin (m + 2)) (j : Fin (m + 1)), + A i (Fin.succ j) = A i (Fin.castSucc j) ∨ + A i (Fin.succ j) = A i (Fin.castSucc j) + 1) + (S : ℕ) + (hS : S = ∑ i : Fin (m + 2), ∑ j : Fin (m + 2), A i j) + (N : ℕ) + (hN : N = #{p : Fin (m + 2) × Fin (m + 2) | A p.1 p.2 ≠ 0}) : + 3 * S ≤ (m + 4) * N := by + sorry diff --git a/lean4/src/putnam_2025_b5.lean b/lean4/src/putnam_2025_b5.lean new file mode 100644 index 0000000..d516008 --- /dev/null +++ b/lean4/src/putnam_2025_b5.lean @@ -0,0 +1,21 @@ +import Mathlib + +open Finset BigOperators + +def modInv (p : ℕ) (k : ℕ) : ℕ := ZMod.val ((k : ZMod p)⁻¹) + +def descentCount (p : ℕ) : ℕ := + #{k ∈ Finset.Icc 1 (p - 2) | modInv p (k + 1) < modInv p k} + +/-- +Let $p$ be a prime number greater than 3. For each $k \in \{1, \ldots, p-1\}$, +let $I(k) \in \{1, 2, \ldots, p-1\}$ be such that $k \cdot I(k) \equiv 1 \pmod{p}$. +Prove that the number of integers $k \in \{1, \ldots, p-2\}$ such that +$I(k+1) < I(k)$ is greater than $p/4 - 1$. +-/ +theorem putnam_2025_b5 + (p : ℕ) + (hp_prime : p.Prime) + (hp_gt : 3 < p) : + (p : ℚ) / 4 - 1 < descentCount p := by + sorry diff --git a/lean4/src/putnam_2025_b6.lean b/lean4/src/putnam_2025_b6.lean new file mode 100644 index 0000000..3a6cb8d --- /dev/null +++ b/lean4/src/putnam_2025_b6.lean @@ -0,0 +1,19 @@ +import Mathlib + +open Real + +noncomputable abbrev putnam_2025_b6_solution : ℝ := sorry +-- 1 / 4 + +/-- +Let $\mathbb{N} = \{1, 2, 3, \ldots\}$. Find the largest real constant $r$ such that +there exists a function $g: \mathbb{N} \to \mathbb{N}$ such that +$$g(n+1) - g(n) \geq (g(g(n)))^r$$ +for all $n \in \mathbb{N}$. +-/ +theorem putnam_2025_b6 : + IsGreatest + {r : ℝ | ∃ g : ℕ → ℕ, (∀ n : ℕ, 0 < n → 0 < g n) ∧ + ∀ n : ℕ, 0 < n → ((g (g n) : ℝ) ^ r) ≤ (g (n + 1) : ℝ) - (g n : ℝ)} + putnam_2025_b6_solution := by + sorry