-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunffx.py
373 lines (298 loc) · 13.2 KB
/
runffx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#!/bin/env python2.5
"""
runffx.py v1.3 (Sept 16, 2011)
This module is a toolkit for command-line testing of the Fast Function Extraction (FFX) algorithm.
Reference: Trent McConaghy, FFX: Fast, Scalable, Deterministic Symbolic Regression Technology, Genetic Programming Theory and Practice IX, Edited by R. Riolo, E. Vladislavleva, and J. Moore, Springer, 2011. http://www.trent.st/ffx
"""
"""
FFX Software Licence Agreement (like BSD, but adapted for non-commercial gain only)
Copyright (c) 2011, Solido Design Automation Inc. Authored by Trent McConaghy.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Usage does not involve commercial gain.
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the associated institutions nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
For permissions beyond the scope of this license, please contact Trent McConaghy ([email protected]).
THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE DEVELOPERS OR THEIR INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Patent pending.
"""
import csv, os, sys, time, types
import numpy
import FFX
USAGE = """
Fast Function Extraction (FFX) toolkit.
Tools:
runffx test -- given x/y training data and x/y test data, build model then calculate its test rmse
runffx splitdata -- split x/y datafiles into separate datafiles for training and testing
runffx aboutdata -- gives the number of variables and samples for a given x
runffx help -- shows this string
Type 'runffx TOOLNAME' with no arguments to get help for that tool, e.g. 'runffx test'.
"""
def runmain(args):
"""This is the main routine that is called from a lightweight command-line application."""
#case: no extra args, so return help
if len(args) == 0:
print USAGE
return
toolname = args[1]
if toolname == 'help':
print USAGE
return
elif toolname == 'splitdata':
splitdata(args)
return
elif toolname == 'aboutdata':
aboutdata(args)
return
elif toolname == 'test':
testffx(args)
return
else:
print "There is no toolname of '%s'." % toolname
print USAGE
return
def splitdata(args):
help = """
Usage: runffx splitdata INPUTS_FILE.csv OUTPUTS_FILE.csv
Given csv-formatted inputs and outputs files, splits them into training and testing data files
of the form INPUTS_FILE_train.csv, OUTPUTS_FILE_train.csv, INPUTS_FILE_test.csv, OUTPUTS_FILE_test.csv.
Sorts the data in ascending y. Assigns every fourth value to test data; and rest to train data.
In the csv files, there is one column for each sample point. The inputs files have one
row for each input variable. The outputs files have just one row total, because the
output is scalar. Values in a given row are separated by spaces.
"""
#got the right number of args? If not, output help
args = args[1:] #remove 'runffx.py'
num_args = len(args)
if num_args == 1 or (num_args == 2 and args[1] == 'help'):
print help; return
if num_args not in [3]:
print help
print 'Got %d args, need 3.' % num_args
return
#yank out the args
X_file = args[1]
if not (X_file.endswith('.csv') or X_file.endswith('.txt')):
print "SAMPLES_IN file '%s' needs to end with .csv or .txt. Early exit." % X_file
return
if not os.path.exists(X_file):
print "SAMPLES_IN file '%s' does not exist. Early exit." % X_file
return
y_file = args[2]
if not (y_file.endswith('.csv') or y_file.endswith('.txt')):
print "SAMPLES_OUT file '%s' needs to end with .csv or .txt. Early exit." % y_file
return
if not os.path.exists(y_file):
print "SAMPLES_OUT file '%s' does not exist. Early exit." % y_file
return
#create the target output filenames, and ensure they don't exist
train_X_file = addPathPrefix('train_', X_file)
train_y_file = addPathPrefix('train_', y_file)
test_X_file = addPathPrefix('test_', X_file)
test_y_file = addPathPrefix('test_', y_file)
for newfile in [train_X_file, train_y_file, test_X_file, test_y_file]:
if os.path.exists(newfile):
print "New file '%s' exists, and should not. Early exit." % newfile
return
#report what we're working with
print "Begin runffx splitdata. INPUTS_FILE.csv=%s, OUTPUTS_FILE.csv=%s" % (X_file, y_file)
#create X, y
X = csvToArray(X_file) #[var_i][sample_i] : float
Y = csvToArray(y_file) # [sample_i] : float
if Y.shape[0] != 1 and Y.shape[1] != 1:
print "The y data needs to be one row or one column. Exiting". sys.exit(0)
elif Y.shape[0] == 1:
y = Y[0,:]
else:
y = Y[:,0]
if X.shape[1] != y.shape[0]:
X = X.T
assert X.shape[1] == y.shape[0]
#create train/test data from X,y
I = numpy.argsort(y)
test_I, train_I = [], []
for (loc, i) in enumerate(I):
if loc % 4 == 0: test_I.append(i)
else: train_I.append(i)
train_X = numpy.take(X, train_I, 1)
train_y = numpy.take(y, train_I)
test_X = numpy.take(X, test_I, 1)
test_y = numpy.take(y, test_I)
print "There will be %d samples in training data, and %d samples in test data" % (len(train_y), len(test_y))
#dump to file
arrayToCsv(train_X, train_X_file)
vecToCsv(train_y, train_y_file)
arrayToCsv(test_X, test_X_file)
vecToCsv(test_y, test_y_file)
#done
print "Created these files:"
print " Training inputs: %s" % train_X_file
print " Training outputs: %s" % train_y_file
print " Testing inputs: %s" % test_X_file
print " Testing outputs: %s" % test_y_file
print ""
print "Done runffx splitdata."
def aboutdata(args):
help = """
Usage: runffx aboutdata SAMPLES_IN.csv
Simply prints the number of variables and number of samples for the given ascii database.
"""
#got the right number of args? If not, output help
args = args[1:] #remove 'runffx.py'
num_args = len(args)
if num_args == 1 or (num_args == 2 and args[1] == 'help'):
print help; return
if num_args not in [2]:
print help
print "Got %d arguments; need 2." % num_args
return
#yank out the args
X_file = args[1]
#get raw data
(num_vars, num_samples) = xFileInfo(X_file)
#print info
print "Data file: %s" % X_file
print "Number of input variables: %d" % num_vars
print "Number of input samples: %d" % num_samples
def testffx(args):
help = """
Usage: runffx test TRAIN_IN.csv TRAIN_OUT.csv TEST_IN.csv TEST_OUT.csv [VARNAMES.csv]
-Builds a model from training data TRAIN_IN.csv and TRAIN_OUT.csv.
-Computes & prints test nmse using test data TEST_IN.csv TEST_OUT.csv.
-Also outputs the whole pareto optimal set of # bases vs. error in a .csv
Arguments:
TRAIN_IN.csv -- model input values for training data
TRAIN_OUT.csv -- model output values for training data
TEST_IN.csv -- model input values for testing data
TEST_OUT.csv -- model output values for testing data
VARNAMES.csv (optional) -- variable names. One string for each variable name.
In the training and test files, there is one column for each sample point. The inputs
files have one row for each input variable. The outputs files have just one row total,
because the output is scalar. Values in a given row are separated by spaces.
"""
#got the right number of args? If not, output help
args = args[1:] #remove 'runffx.py'
num_args = len(args)
if num_args == 1 or (num_args == 2 and args[1] == 'help'):
print help; return
if num_args not in [5, 6]:
print help
print '\nGot %d args. Need 5 or 6.' % num_args
return
#yank out the args
train_X_file, train_y_file, test_X_file, test_y_file = args[1:5]
if num_args == 6:
varnames_file = args[5]
else:
varnames_file = None
#report what we're working with
print "Begin ffx test."
#get X/y
train_X = csvToArray(train_X_file) #[var_i][sample_i] : float
test_X = csvToArray(test_X_file) #[var_i][sample_i] : float
train_y = csvToVec(train_y_file) #[sample_i] : float
test_y = csvToVec(test_y_file) #[sample_i] : float
min_y = min(min(train_y), min(test_y))
max_y = max(max(train_y), max(test_y))
#get varnames
if varnames_file:
varnames = csvRowToStrings(varnames_file)
else:
varnames = ['x%d' % i for i in xrange(train_X.shape[0])]
#build models
start_time = time.time()
models = FFX.MultiFFXModelFactory().build(train_X, train_y, test_X, test_y, varnames)
#output to uniquely-named csv
time_s = str(time.time()).replace('.','')
output_csv = 'pareto_front_%s.csv' % time_s
f = open(output_csv, 'w')
f.write('%10s, %13s, %s\n' % ('Num bases', 'Test error (%)', 'Model'))
for model in models:
f.write('%10s, %13s, %s\n' %
('%d' % model.numBases(), '%.4f' % (model.test_nmse * 100.0), model))
f.close()
end_time = time.time()
elapsed_time = end_time - start_time
print "Done. Runtime: %.1f seconds. Results are in: %s" % \
(elapsed_time, output_csv)
#=================================================================================
#utility functions
def addPathPrefix(prefix, pathname):
"""Given a filename like 'dirA/dirB/filename.ext', returns 'dirA/dirB/$prefixfilename.ext'
"""
new_pathname = os.path.join(os.path.dirname(pathname), prefix + os.path.basename(pathname))
return new_pathname
def xFileInfo(filename):
"""Returns the number of rows and columns in the file."""
delim = getDelimiter(filename)
f = open(filename, 'r')
reader = csv.reader(f, delimiter=delim)
num_rows = 0
for (row_i, row) in enumerate(reader):
if row_i == 0: #ignore empty strings (e.g. at end of row)
num_cols = len([val for val in row if val])
num_rows += 1
f.close()
return (num_rows, num_cols)
def csvToArray(filename):
"""Return a 2d array version of the input csv file."""
(num_rows, num_cols) = xFileInfo(filename)
X = numpy.zeros((num_rows, num_cols), dtype=float) #[row_i][col_i] : float
delim = getDelimiter(filename)
f = open(filename, 'r')
reader = csv.reader(f, delimiter=delim)
for (row_i, row) in enumerate(reader):
col_i = 0
for val in row:
if val: #ignore empty strings (e.g. at end of row)
X[row_i, col_i] = float(val)
col_i += 1
f.close()
return X
def csvToVec(filename):
"""Return a 1d array version of the input csv file. Input file must have just 1 row."""
X = csvToArray(filename)
assert X.shape[0] == 1, 'file %s must have 1 row' % filename
y = X[0,:]
return y
def arrayToCsv(X, filename):
"""Create an ascii file, where each row of 2d array X is a different line."""
assert len(X.shape) == 2
assert isinstance(filename, types.StringType), filename.__class__
try:
f = open(filename, 'w')
writer = csv.writer(f) # default to Excel CSV dialect
for row_i in xrange(X.shape[0]):
writer.writerow(X[row_i,:])
f.close()
except (IOError, OSError), o:
raise ValueError('Error while writing ASCII file %s: %s'
% (filename, o))
def getDelimiter(filename):
"""Auto-determines whether the entry delimiter is ',' or ' '"""
f = open(filename, 'r')
line = f.readline()
f.close()
if ',' in line:
return ','
else:
return ' '
def vecToCsv(y, filename):
"""Create an ascii file, where each row of 1d array y is a different line."""
assert len(y.shape) == 1, "v needs to be a 1d array"
X = numpy.reshape(y, (1, len(y)))
arrayToCsv(X, filename)
def csvRowToStrings(filename):
"""Extracts and returns a list of strings from the first row of the file."""
f = open(filename, 'r')
line = f.readline()
f.close()
strings = line.split()
return strings
#=================================================================================
if __name__ == '__main__':
if len(sys.argv) == 1:
print USAGE
sys.exit(0)
runmain(sys.argv) #main call