forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
152 lines (119 loc) · 4.75 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import numpy as np
from paddlenlp.datasets import MapDataset
def create_dataloader(dataset,
mode='train',
batch_size=1,
batchify_fn=None,
trans_fn=None):
if trans_fn:
dataset = dataset.map(trans_fn)
shuffle = True if mode == 'train' else False
if mode == 'train':
batch_sampler = paddle.io.DistributedBatchSampler(
dataset, batch_size=batch_size, shuffle=shuffle)
else:
batch_sampler = paddle.io.BatchSampler(
dataset, batch_size=batch_size, shuffle=shuffle)
return paddle.io.DataLoader(
dataset=dataset,
batch_sampler=batch_sampler,
collate_fn=batchify_fn,
return_list=True)
def read_text_pair(data_path):
"""Reads data."""
with open(data_path, 'r', encoding='utf-8') as f:
for line in f:
data = line.rstrip().split("\t")
if len(data) != 2:
continue
yield {'query': data[0], 'title': data[1]}
def convert_pointwise_example(example,
tokenizer,
max_seq_length=512,
is_test=False):
query, title = example["query"], example["title"]
encoded_inputs = tokenizer(
text=query, text_pair=title, max_seq_len=max_seq_length)
input_ids = encoded_inputs["input_ids"]
token_type_ids = encoded_inputs["token_type_ids"]
if not is_test:
label = np.array([example["label"]], dtype="int64")
return input_ids, token_type_ids, label
else:
return input_ids, token_type_ids
def convert_pairwise_example(example,
tokenizer,
max_seq_length=512,
phase="train"):
if phase == "train":
query, pos_title, neg_title = example["query"], example[
"title"], example["neg_title"]
pos_inputs = tokenizer(
text=query, text_pair=pos_title, max_seq_len=max_seq_length)
neg_inputs = tokenizer(
text=query, text_pair=neg_title, max_seq_len=max_seq_length)
pos_input_ids = pos_inputs["input_ids"]
pos_token_type_ids = pos_inputs["token_type_ids"]
neg_input_ids = neg_inputs["input_ids"]
neg_token_type_ids = neg_inputs["token_type_ids"]
return (pos_input_ids, pos_token_type_ids, neg_input_ids,
neg_token_type_ids)
else:
query, title = example["query"], example["title"]
inputs = tokenizer(
text=query, text_pair=title, max_seq_len=max_seq_length)
input_ids = inputs["input_ids"]
token_type_ids = inputs["token_type_ids"]
if phase == "eval":
return input_ids, token_type_ids, example["label"]
elif phase == "predict":
return input_ids, token_type_ids
else:
raise ValueError("not supported phase:{}".format(phase))
def gen_pair(dataset, pool_size=100):
"""
Generate triplet randomly based on dataset
Args:
dataset: A `MapDataset` or `IterDataset` or a tuple of those.
Each example is composed of 2 texts: exampe["query"], example["title"]
pool_size: the number of example to sample negative example randomly
Return:
dataset: A `MapDataset` or `IterDataset` or a tuple of those.
Each example is composed of 2 texts: exampe["query"], example["pos_title"]、example["neg_title"]
"""
if len(dataset) < pool_size:
pool_size = len(dataset)
new_examples = []
pool = []
tmp_exmaples = []
for example in dataset:
label = example["label"]
# Filter negative example
if label == 0:
continue
tmp_exmaples.append(example)
pool.append(example["title"])
if len(pool) >= pool_size:
np.random.shuffle(pool)
for idx, example in enumerate(tmp_exmaples):
example["neg_title"] = pool[idx]
new_examples.append(example)
tmp_exmaples = []
pool = []
else:
continue
return MapDataset(new_examples)