forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencode.py
137 lines (118 loc) · 5.1 KB
/
encode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
import numpy as np
def convert_example(tokenizer,
attn_id,
tgt_type_id=3,
max_encode_len=512,
max_decode_len=128,
is_test=False,
noise_prob=0.,
use_random_noice=False):
def warpper(example):
"""convert an example into necessary features"""
tokens = example['tokens']
labels = example['labels']
encoded_src = tokenizer(
tokens, max_seq_len=max_encode_len, pad_to_max_seq_len=False)
src_ids, src_sids = encoded_src["input_ids"], encoded_src[
"token_type_ids"]
src_pids = np.arange(len(src_ids))
if not is_test:
encoded_tgt = tokenizer(
labels, max_seq_len=max_decode_len, pad_to_max_seq_len=False)
tgt_ids, tgt_sids = encoded_tgt["input_ids"], encoded_tgt[
"token_type_ids"]
tgt_ids = np.array(tgt_ids).astype("int64")
tgt_sids = np.array(tgt_sids) + tgt_type_id
tgt_pids = np.arange(len(tgt_ids)) + len(src_ids)
attn_ids = np.ones_like(tgt_ids) * attn_id
if noise_prob > 0.:
tgt_labels = deepcopy(tgt_ids)
if use_random_noice:
noice_ids = np.random.randint(
1, len(tokenizer.vocab), size=tgt_ids.shape)
else:
noice_ids = np.ones_like(tgt_ids) * tokenizer.vocab['[NOISE]']
pos, = np.where(np.ones_like(tgt_ids))
np.random.shuffle(pos)
pos = pos[:int(noise_prob * len(pos))]
tgt_ids[pos, ] = noice_ids[pos, ]
else:
tgt_labels = tgt_ids
return (src_ids, src_pids, src_sids, tgt_ids, tgt_pids, tgt_sids,
attn_ids, tgt_labels)
return warpper
def gen_mask(batch_ids, mask_type='bidi', query_len=None, pad_value=0):
if query_len is None:
query_len = batch_ids.shape[1]
if mask_type != 'empty':
mask = (batch_ids != pad_value).astype(np.float32)
mask = np.tile(np.expand_dims(mask, 1), [1, query_len, 1])
if mask_type == 'causal':
assert query_len == batch_ids.shape[1]
mask = np.tril(mask)
elif mask_type == 'causal_without_diag':
assert query_len == batch_ids.shape[1]
mask = np.tril(mask, -1)
elif mask_type == 'diag':
assert query_len == batch_ids.shape[1]
# import pdb; pdb.set_trace()
mask = np.stack([np.diag(np.diag(m)) for m in mask], 0)
else:
mask_type == 'empty'
mask = np.zeros_like(batch_ids).astype(np.float32)
mask = np.tile(np.expand_dims(mask, 1), [1, query_len, 1])
return mask
def after_padding(args):
'''
attention mask:
*** src, tgt, attn
src 00, 01, 11
tgt 10, 11, 12
attn 20, 21, 22
*** s1, s2 | t1 t2 t3| attn1 attn2 attn3
s1 1, 1 | 0, 0, 0,| 0, 0, 0,
s2 1, 1 | 0, 0, 0,| 0, 0, 0,
-
t1 1, 1, | 1, 0, 0,| 0, 0, 0,
t2 1, 1, | 1, 1, 0,| 0, 0, 0,
t3 1, 1, | 1, 1, 1,| 0, 0, 0,
-
attn1 1, 1, | 0, 0, 0,| 1, 0, 0,
attn2 1, 1, | 1, 0, 0,| 0, 1, 0,
attn3 1, 1, | 1, 1, 0,| 0, 0, 1,
for details, see Fig3. https://arxiv.org/abs/2001.11314
'''
src_ids, src_pids, src_sids, tgt_ids, tgt_pids, tgt_sids, attn_ids, tgt_labels = args
src_len = src_ids.shape[1]
tgt_len = tgt_ids.shape[1]
mask_00 = gen_mask(src_ids, 'bidi', query_len=src_len)
mask_01 = gen_mask(tgt_ids, 'empty', query_len=src_len)
mask_02 = gen_mask(attn_ids, 'empty', query_len=src_len)
mask_10 = gen_mask(src_ids, 'bidi', query_len=tgt_len)
mask_11 = gen_mask(tgt_ids, 'causal', query_len=tgt_len)
mask_12 = gen_mask(attn_ids, 'empty', query_len=tgt_len)
mask_20 = gen_mask(src_ids, 'bidi', query_len=tgt_len)
mask_21 = gen_mask(tgt_ids, 'causal_without_diag', query_len=tgt_len)
mask_22 = gen_mask(attn_ids, 'diag', query_len=tgt_len)
mask_src_2_src = mask_00
mask_tgt_2_srctgt = np.concatenate([mask_10, mask_11], 2)
mask_attn_2_srctgtattn = np.concatenate([mask_20, mask_21, mask_22], 2)
raw_tgt_labels = deepcopy(tgt_labels)
tgt_labels = tgt_labels[np.where(tgt_labels != 0)]
return (src_ids, src_sids, src_pids, tgt_ids, tgt_sids, tgt_pids, attn_ids,
mask_src_2_src, mask_tgt_2_srctgt, mask_attn_2_srctgtattn,
tgt_labels, raw_tgt_labels)