-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutil.py
127 lines (103 loc) · 3.81 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import numpy as np
import pandas as pd
import xarray as xr
__all__ = ["save_like"]
pl_names = ['z', 't', 'u', 'v', 'r']
sfc_names = ['t2m', 'u10', 'v10', 'msl', 'tp']
levels = [50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000]
def weighted_rmse(out, tgt):
wlat = np.cos(np.deg2rad(tgt.lat))
wlat /= wlat.mean()
error = ((out - tgt) ** 2 * wlat)
return np.sqrt(error.mean(('lat', 'lon')))
def split_variable(ds, name):
if name in sfc_names:
v = ds.sel(level=[name])
v = v.assign_coords(level=[0])
v = v.rename({"level": "level0"})
v = v.transpose('member', 'level0', 'time', 'dtime', 'lat', 'lon')
elif name in pl_names:
level = [f'{name}{l}' for l in levels]
v = ds.sel(level=level)
v = v.assign_coords(level=levels)
v = v.transpose('member', 'level', 'time', 'dtime', 'lat', 'lon')
return v
def save_like(output, input, step, save_dir="", freq=6, split=False):
if save_dir:
os.makedirs(save_dir, exist_ok=True)
step = (step+1) * freq
init_time = pd.to_datetime(input.time.values[-1])
ds = xr.DataArray(
output[None],
dims=['time', 'step', 'level', 'lat', 'lon'],
coords=dict(
time=[init_time],
step=[step],
level=input.level,
lat=input.lat.values,
lon=input.lon.values,
)
).astype(np.float32)
if split:
def rename(name):
if name == "tp":
return "TP06"
elif name == "r":
return "RH"
return name.upper()
new_ds = []
for k in pl_names + sfc_names:
v = split_variable(ds, k)
v.name = rename(k)
new_ds.append(v)
ds = xr.merge(new_ds, compat="no_conflicts")
save_name = os.path.join(save_dir, f'{step:03d}.nc')
# print(f'Save to {save_name} ...')
ds.to_netcdf(save_name)
def visualize(save_name, vars=[], titles=[], vmin=None, vmax=None):
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
fig, ax = plt.subplots(len(vars), 1, figsize=(8, 6), subplot_kw={
"projection": ccrs.PlateCarree()})
def plot(ax, v, title):
v.plot(
ax=ax,
x='lon',
y='lat',
vmin=vmin,
vmax=vmax,
transform=ccrs.PlateCarree(),
add_colorbar=False
)
# ax.coastlines()
ax.set_title(title)
gl = ax.gridlines(draw_labels=True, linewidth=0.5)
gl.top_labels = False
gl.right_labels = False
for i, v in enumerate(vars):
if len(vars) == 1:
plot(ax, v, titles[i])
else:
plot(ax[i], v, titles[i])
plt.savefig(save_name, bbox_inches='tight',
pad_inches=0.1, transparent='true', dpi=200)
plt.close()
def test_visualize(step, data_dir):
src_name = os.path.join(data_dir, f"{step:03d}.nc")
ds = xr.open_dataarray(src_name).isel(time=0)
ds = ds.sel(lon=slice(90, 150), lat=slice(50, 0))
print(ds)
u850 = ds.sel(level='U850', step=step)
v850 = ds.sel(level='V850', step=step)
ws850 = np.sqrt(u850 ** 2 + v850 ** 2)
visualize(f'ws850/{step:03d}.jpg', [ws850], [f'20230725-18+{step:03d}h'], vmin=0, vmax=30)
def test_rmse(output_name, target_name):
output = xr.open_dataarray(output_name)
output = output.isel(time=0).sel(step=120)
target = xr.open_dataarray(target_name)
for level in ["z500", "t850", "t2m", "u10", "v10", "msl", "tp"]:
out = output.sel(level=level)
tgt = target.sel(level=level)
rmse = weighted_rmse(out, tgt).load()
print(f"{level.upper()} 120h rmse: {rmse:.3f}")