-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathdemo_llama.py
executable file
·289 lines (241 loc) · 10.3 KB
/
demo_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from llama import Tokenizer, Decoder
from llama import MemoryPoolSimple, npsoftmax, npmultinominal2D, warp_temperature, warp_topk
import numpy as np
import os
import pdb
import argparse
from loguru import logger
PROMPT_DICT = {
"prompt_input":
("Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
),
"prompt_no_input":
("Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"),
}
PROMPT = PROMPT_DICT['prompt_no_input']
class Llama:
def __init__(self, onnxdir='models', config: dict = {}):
if not os.path.exists(onnxdir):
logger.error('{} not exist'.format(onnxdir))
assert os.path.isdir(onnxdir)
self.DECODER_COUNT = 32
# EOS token
self.FINISH_TOKEN = 2
self.tokenizer = Tokenizer(os.path.join(onnxdir, 'tokenizer.model'))
pool = MemoryPoolSimple(config['poolsize'])
self.decoder = Decoder(pool, onnxdir, 'decoder-merge-{}.onnx',
self.DECODER_COUNT)
self.config = config
# cache
self.pastkeys = [None for i in range(self.DECODER_COUNT)]
self.pastvalues = [None for i in range(self.DECODER_COUNT)]
pool.check()
# Modified transformers.models.llama.modeling_llama._make_causal_mask with np.array
def _make_causal_mask(self,
input_ids_shape,
dtype,
past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
Output triangle-matrix if `past_key_values_length`=0
Padding left if `past_key_values_length`>0
"""
bsz, tgt_len = input_ids_shape
mask = np.full((tgt_len, tgt_len), fill_value=np.finfo(dtype).min)
mask_cond = np.arange(mask.shape[1])
cond = mask_cond < (mask_cond + 1).reshape(-1, 1)
mask = np.ma.array(mask, mask=cond, fill_value=0).filled()
# masked_fill_result = np.ma.masked_fill_(mask, condition_row_array)
if past_key_values_length > 0:
mask = np.concatenate([
np.zeros((tgt_len, past_key_values_length), dtype=dtype), mask
],
axis=1)
return mask.reshape(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Modified transformers.models.llama.modeling_llama._expand_mask with np.array
def _expand_mask(self, mask, dtype, tgt_len=None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.shape
if tgt_len is None:
tgt_len = src_len
# expand [bsz,38] to [bsz,1,1,38]
expanded_mask = np.expand_dims(mask, axis=1)
expanded_mask = np.expand_dims(mask, axis=1)
expanded_mask = np.broadcast_to(expanded_mask,
(bsz, 1, tgt_len, src_len))
inverted_mask = 1.0 - expanded_mask
cond = inverted_mask > 0
return np.ma.array(inverted_mask,
mask=cond,
fill_value=np.finfo(dtype).min).filled()
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape,
inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = self._make_causal_mask(
input_shape,
inputs_embeds.dtype,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = self._expand_mask(attention_mask,
inputs_embeds.dtype,
tgt_len=input_shape[-1])
combined_attention_mask = (expanded_attn_mask
if combined_attention_mask is None else
expanded_attn_mask +
combined_attention_mask)
return combined_attention_mask
def convert_to_fp16(self, inputs):
outputs = dict()
for k, v in inputs.items():
if v.dtype == np.float32:
outputs[k] = v.astype(np.float16)
else:
outputs[k] = v
return outputs
def decode(self, token: np.array):
# embed space
hidden = self.decoder.embed(token)
assert hidden.shape[-1] == 4096
if self.pastkeys[0] is None:
pastlen = 0
else:
pastlen = self.pastkeys[0].shape[-2]
seqlen = hidden.shape[1]
position_ids = np.arange(seqlen, dtype=np.int64).reshape((1, seqlen))
position_ids[0][0] = pastlen
attention_mask = np.ones((1, seqlen + pastlen), dtype=np.float32)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (1, seqlen), hidden, pastlen)
for idx in range(self.DECODER_COUNT):
past_key = self.pastkeys[idx]
past_value = self.pastvalues[idx]
if past_key is None:
zero_tensor = np.zeros((1, 32, 0, 128), dtype=np.float32)
inputs = {
'hidden_in': hidden,
'attn_mask': attention_mask,
'position_ids': position_ids,
'past_key_in': zero_tensor,
'past_value_in': zero_tensor
}
else:
inputs = {
'hidden_in': hidden,
'attn_mask': attention_mask,
'position_ids': position_ids,
'past_key_in': past_key,
'past_value_in': past_value
}
if self.config['fp16']:
inputs = self.convert_to_fp16(inputs)
outputs = self.decoder.decode(inputs, idx)
hidden = outputs[
'hidden_out'] # [[[ 0.0221, 0.0120, 0.0007, ..., -0.0614, -0.0625, 0.0494]]]
self.pastkeys[idx] = outputs['past_key']
self.pastvalues[idx] = outputs['past_value']
hidden = self.decoder.norm_head(hidden)
return hidden
def apply_warp(self, tensor: np.array):
tensor = warp_temperature(tensor, self.config['temperature'])
tensor = warp_topk(tensor, self.config['topk'])
return tensor
def sample(self, prompt: str = 'bonjour'):
prompt = prompt.strip()
format_prompt = PROMPT.format_map({'instruction': prompt})
# no EOS
input_ids = self.tokenizer.encode(format_prompt, True, False)
input_ids = np.array(input_ids, dtype=np.int64).reshape(
(1, len(input_ids)))
# decoder backbone loop
next_token = input_ids
pre = 0
while True:
# decoder backbone
logits = self.decode(next_token)
# split tail
next_token_scores = logits[:, -1, :]
# wrap logits for better token
next_token_scores = self.apply_warp(next_token_scores)
probs = npsoftmax(next_token_scores.astype(np.float64), axis=1)
# Caution:
# *** ValueError: sum(pvals[:-1].astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.
next_token = npmultinominal2D(probs).astype(input_ids.dtype)
# logger.debug(next_token)
input_ids = np.concatenate(
[input_ids, next_token.reshape((1, 1))], axis=1)
decoded = self.tokenizer.decode(input_ids[0].tolist())
out = str(decoded.split('Response:')[1])
# stream print
now = len(out)
if now - 1 > pre:
print(out[pre: now-1], end="", flush=True)
pre = now - 1
if input_ids.shape[-1] >= self.config['max'] or next_token[
0, 0] == self.FINISH_TOKEN:
break
# decode
decoded = self.tokenizer.decode(input_ids[0].tolist())
out = str(decoded.split('Response:')[1])
logger.debug('Q: {} A: {}'.format(prompt, out))
return out
def parse_args():
parser = argparse.ArgumentParser(description='llama.onnx onnxruntime demo')
parser.add_argument('onnxdir', help='llama 7B onnx model directory.')
parser.add_argument('prompt', help='prompt text.')
parser.add_argument(
'--temperature',
default=0.1,
type=float,
help=
'factor to scale up logits, 1.0 means no warp. use `0.1` by default.')
parser.add_argument(
'--topk',
default=40,
type=int,
help=
'filter k high score values from logits, None means no filter. 40 by default.'
)
parser.add_argument(
'--max',
default=50,
type=int,
help=
'stop condition. default value is 2000, it would stop until len(output_token)==2000.'
)
parser.add_argument(
'--poolsize',
default=32,
type=float,
help='onnxruntime memory pool size. default value is 32GB')
parser.add_argument('--fp16',
default=True,
type=bool,
help='enable fp16 inference, default True.')
args = parser.parse_args()
return args
def main():
args = parse_args()
logger.warning(args)
llama = Llama(onnxdir=args.onnxdir,
config={
'temperature': args.temperature,
'topk': args.topk,
'max': args.max,
'poolsize': args.poolsize,
'fp16': args.fp16
})
llama.sample(args.prompt)
if __name__ == '__main__':
main()