|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from pathlib import Path |
| 4 | +from typing import Any, BinaryIO, Dict, Optional, Tuple, Union |
| 5 | + |
| 6 | +from together.abstract import api_requestor |
| 7 | +from together.types import ( |
| 8 | + AudioTimestampGranularities, |
| 9 | + AudioTranscriptionResponse, |
| 10 | + AudioTranscriptionResponseFormat, |
| 11 | + AudioTranscriptionVerboseResponse, |
| 12 | + TogetherClient, |
| 13 | + TogetherRequest, |
| 14 | +) |
| 15 | + |
| 16 | + |
| 17 | +class Transcriptions: |
| 18 | + def __init__(self, client: TogetherClient) -> None: |
| 19 | + self._client = client |
| 20 | + |
| 21 | + def create( |
| 22 | + self, |
| 23 | + *, |
| 24 | + file: Union[str, BinaryIO, Path], |
| 25 | + model: str = "openai/whisper-large-v3", |
| 26 | + language: Optional[str] = None, |
| 27 | + prompt: Optional[str] = None, |
| 28 | + response_format: Union[str, AudioTranscriptionResponseFormat] = "json", |
| 29 | + temperature: float = 0.0, |
| 30 | + timestamp_granularities: Optional[ |
| 31 | + Union[str, AudioTimestampGranularities] |
| 32 | + ] = None, |
| 33 | + **kwargs: Any, |
| 34 | + ) -> Union[AudioTranscriptionResponse, AudioTranscriptionVerboseResponse]: |
| 35 | + """ |
| 36 | + Transcribes audio into the input language. |
| 37 | +
|
| 38 | + Args: |
| 39 | + file: The audio file object (not file name) to transcribe, in one of these formats: |
| 40 | + flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. |
| 41 | + Can be a file path (str/Path), file object (BinaryIO), or URL (str). |
| 42 | + model: ID of the model to use. Defaults to "openai/whisper-large-v3". |
| 43 | + language: The language of the input audio. Supplying the input language in |
| 44 | + ISO-639-1 format will improve accuracy and latency. |
| 45 | + prompt: An optional text to guide the model's style or continue a previous |
| 46 | + audio segment. The prompt should match the audio language. |
| 47 | + response_format: The format of the transcript output, in one of these options: |
| 48 | + json, verbose_json. |
| 49 | + temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 |
| 50 | + will make the output more random, while lower values like 0.2 will make it |
| 51 | + more focused and deterministic. |
| 52 | + timestamp_granularities: The timestamp granularities to populate for this |
| 53 | + transcription. response_format must be set verbose_json to use timestamp |
| 54 | + granularities. Either or both of these options are supported: word, or segment. |
| 55 | +
|
| 56 | + Returns: |
| 57 | + The transcribed text in the requested format. |
| 58 | + """ |
| 59 | + |
| 60 | + requestor = api_requestor.APIRequestor( |
| 61 | + client=self._client, |
| 62 | + ) |
| 63 | + |
| 64 | + # Handle file input - could be a path, URL, or file object |
| 65 | + files_data: Dict[str, Union[Tuple[None, str], BinaryIO]] = {} |
| 66 | + params_data = {} |
| 67 | + |
| 68 | + if isinstance(file, (str, Path)): |
| 69 | + if isinstance(file, str) and file.startswith(("http://", "https://")): |
| 70 | + # URL string - send as multipart field |
| 71 | + files_data["file"] = (None, file) |
| 72 | + else: |
| 73 | + # Local file path |
| 74 | + file_path = Path(file) |
| 75 | + files_data["file"] = open(file_path, "rb") |
| 76 | + else: |
| 77 | + # File object |
| 78 | + files_data["file"] = file |
| 79 | + |
| 80 | + # Build request parameters |
| 81 | + params_data.update( |
| 82 | + { |
| 83 | + "model": model, |
| 84 | + "response_format": ( |
| 85 | + response_format.value |
| 86 | + if hasattr(response_format, "value") |
| 87 | + else response_format |
| 88 | + ), |
| 89 | + "temperature": temperature, |
| 90 | + } |
| 91 | + ) |
| 92 | + |
| 93 | + if language is not None: |
| 94 | + params_data["language"] = language |
| 95 | + |
| 96 | + if prompt is not None: |
| 97 | + params_data["prompt"] = prompt |
| 98 | + |
| 99 | + if timestamp_granularities is not None: |
| 100 | + params_data["timestamp_granularities"] = ( |
| 101 | + timestamp_granularities.value |
| 102 | + if hasattr(timestamp_granularities, "value") |
| 103 | + else timestamp_granularities |
| 104 | + ) |
| 105 | + |
| 106 | + # Add any additional kwargs |
| 107 | + params_data.update(kwargs) |
| 108 | + |
| 109 | + try: |
| 110 | + response, _, _ = requestor.request( |
| 111 | + options=TogetherRequest( |
| 112 | + method="POST", |
| 113 | + url="audio/transcriptions", |
| 114 | + params=params_data, |
| 115 | + files=files_data, |
| 116 | + ), |
| 117 | + ) |
| 118 | + finally: |
| 119 | + # Close file if we opened it |
| 120 | + if files_data and "file" in files_data: |
| 121 | + try: |
| 122 | + # Only close if it's a file object (not a tuple for URL) |
| 123 | + file_obj = files_data["file"] |
| 124 | + if hasattr(file_obj, "close") and not isinstance(file_obj, tuple): |
| 125 | + file_obj.close() |
| 126 | + except: |
| 127 | + pass |
| 128 | + |
| 129 | + # Parse response based on format |
| 130 | + if ( |
| 131 | + response_format == "verbose_json" |
| 132 | + or response_format == AudioTranscriptionResponseFormat.VERBOSE_JSON |
| 133 | + ): |
| 134 | + return AudioTranscriptionVerboseResponse(**response.data) |
| 135 | + else: |
| 136 | + return AudioTranscriptionResponse(**response.data) |
| 137 | + |
| 138 | + |
| 139 | +class AsyncTranscriptions: |
| 140 | + def __init__(self, client: TogetherClient) -> None: |
| 141 | + self._client = client |
| 142 | + |
| 143 | + async def create( |
| 144 | + self, |
| 145 | + *, |
| 146 | + file: Union[str, BinaryIO, Path], |
| 147 | + model: str = "openai/whisper-large-v3", |
| 148 | + language: Optional[str] = None, |
| 149 | + prompt: Optional[str] = None, |
| 150 | + response_format: Union[str, AudioTranscriptionResponseFormat] = "json", |
| 151 | + temperature: float = 0.0, |
| 152 | + timestamp_granularities: Optional[ |
| 153 | + Union[str, AudioTimestampGranularities] |
| 154 | + ] = None, |
| 155 | + **kwargs: Any, |
| 156 | + ) -> Union[AudioTranscriptionResponse, AudioTranscriptionVerboseResponse]: |
| 157 | + """ |
| 158 | + Async version of transcribe audio into the input language. |
| 159 | +
|
| 160 | + Args: |
| 161 | + file: The audio file object (not file name) to transcribe, in one of these formats: |
| 162 | + flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. |
| 163 | + Can be a file path (str/Path), file object (BinaryIO), or URL (str). |
| 164 | + model: ID of the model to use. Defaults to "openai/whisper-large-v3". |
| 165 | + language: The language of the input audio. Supplying the input language in |
| 166 | + ISO-639-1 format will improve accuracy and latency. |
| 167 | + prompt: An optional text to guide the model's style or continue a previous |
| 168 | + audio segment. The prompt should match the audio language. |
| 169 | + response_format: The format of the transcript output, in one of these options: |
| 170 | + json, verbose_json. |
| 171 | + temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 |
| 172 | + will make the output more random, while lower values like 0.2 will make it |
| 173 | + more focused and deterministic. |
| 174 | + timestamp_granularities: The timestamp granularities to populate for this |
| 175 | + transcription. response_format must be set verbose_json to use timestamp |
| 176 | + granularities. Either or both of these options are supported: word, or segment. |
| 177 | +
|
| 178 | + Returns: |
| 179 | + The transcribed text in the requested format. |
| 180 | + """ |
| 181 | + |
| 182 | + requestor = api_requestor.APIRequestor( |
| 183 | + client=self._client, |
| 184 | + ) |
| 185 | + |
| 186 | + # Handle file input - could be a path, URL, or file object |
| 187 | + files_data: Dict[str, Union[Tuple[None, str], BinaryIO]] = {} |
| 188 | + params_data = {} |
| 189 | + |
| 190 | + if isinstance(file, (str, Path)): |
| 191 | + if isinstance(file, str) and file.startswith(("http://", "https://")): |
| 192 | + # URL string - send as multipart field |
| 193 | + files_data["file"] = (None, file) |
| 194 | + else: |
| 195 | + # Local file path |
| 196 | + file_path = Path(file) |
| 197 | + files_data["file"] = open(file_path, "rb") |
| 198 | + else: |
| 199 | + # File object |
| 200 | + files_data["file"] = file |
| 201 | + |
| 202 | + # Build request parameters |
| 203 | + params_data.update( |
| 204 | + { |
| 205 | + "model": model, |
| 206 | + "response_format": ( |
| 207 | + response_format |
| 208 | + if isinstance(response_format, str) |
| 209 | + else ( |
| 210 | + response_format.value |
| 211 | + if hasattr(response_format, "value") |
| 212 | + else response_format |
| 213 | + ) |
| 214 | + ), |
| 215 | + "temperature": temperature, |
| 216 | + } |
| 217 | + ) |
| 218 | + |
| 219 | + if language is not None: |
| 220 | + params_data["language"] = language |
| 221 | + |
| 222 | + if prompt is not None: |
| 223 | + params_data["prompt"] = prompt |
| 224 | + |
| 225 | + if timestamp_granularities is not None: |
| 226 | + params_data["timestamp_granularities"] = ( |
| 227 | + timestamp_granularities |
| 228 | + if isinstance(timestamp_granularities, str) |
| 229 | + else ( |
| 230 | + timestamp_granularities.value |
| 231 | + if hasattr(timestamp_granularities, "value") |
| 232 | + else timestamp_granularities |
| 233 | + ) |
| 234 | + ) |
| 235 | + |
| 236 | + # Add any additional kwargs |
| 237 | + params_data.update(kwargs) |
| 238 | + |
| 239 | + try: |
| 240 | + response, _, _ = await requestor.arequest( |
| 241 | + options=TogetherRequest( |
| 242 | + method="POST", |
| 243 | + url="audio/transcriptions", |
| 244 | + params=params_data, |
| 245 | + files=files_data, |
| 246 | + ), |
| 247 | + ) |
| 248 | + finally: |
| 249 | + # Close file if we opened it |
| 250 | + if files_data and "file" in files_data: |
| 251 | + try: |
| 252 | + # Only close if it's a file object (not a tuple for URL) |
| 253 | + file_obj = files_data["file"] |
| 254 | + if hasattr(file_obj, "close") and not isinstance(file_obj, tuple): |
| 255 | + file_obj.close() |
| 256 | + except: |
| 257 | + pass |
| 258 | + |
| 259 | + # Parse response based on format |
| 260 | + if ( |
| 261 | + response_format == "verbose_json" |
| 262 | + or response_format == AudioTranscriptionResponseFormat.VERBOSE_JSON |
| 263 | + ): |
| 264 | + return AudioTranscriptionVerboseResponse(**response.data) |
| 265 | + else: |
| 266 | + return AudioTranscriptionResponse(**response.data) |
0 commit comments