-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_offline.py
231 lines (213 loc) · 11.9 KB
/
training_offline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import copy
import d4rl
import gym
import numpy as np
import torch
import wandb
import agents
import data
import envs
import evaluation
import training
import utils
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Offline RL")
# dataset arguments
parser.add_argument("--name_env", type=str, choices=["HalfCheetah", "Hopper", "Walker"], required=True,
help="name of the environment")
parser.add_argument("--name_task", type=str, choices=["random", "medium", "expert", "medium-expert"], required=True,
help="name of the task")
# model arguments
parser.add_argument("--path_checkpoint_model", type=str, default=None,
help="path to model checkpoint (default: None (no checkpointing))")
parser.add_argument("--weight_prior_model", type=float, default=0.0,
help="weight on the prior in the map estimate for model training (default: 0.0)")
parser.add_argument("--weight_loss_adversarial_model", type=float, default=0.0,
help="regularizer weight lambda of the prior in the map estimate for model training (default: 0.0)")
parser.add_argument("--lr_model", type=float, default=0.001,
help="learning rate (default: 0.001)")
# model environment arguments
parser.add_argument("--method_sampling", default="DS", choices=["DS", "TS1"],
help="sampling method to use in model environment (see [Chua et al.](https://arxiv.org/abs/1805.12114) for explanation)) (default: DS)")
parser.add_argument("--calibrate", default=False, action="store_true",
help="set to use calibration for transition model (default: False)")
parser.add_argument("--use_aleatoric", default=False, action="store_true",
help="set to use aleatoric noise from transition model (default: False)")
parser.add_argument("--weight_penalty_reward", type=float, default=0.0,
help="weight on the reward penalty (see MOPO) (default: 0.0)")
parser.add_argument("--hallucinate", default=False, action="store_true",
help="set to add hallucinated control (default: False)")
parser.add_argument("--beta", type=float, default=1.0,
help="parameter for the amount of hallucinated control (only has effect if hallucinate is set) (default: 1.0)")
# SAC arguments
parser.add_argument("--gamma", type=float, default=0.99,
help="discount factor for reward (default: 0.99)")
parser.add_argument("--tau", type=float, default=0.005,
help="target smoothing coefficient (default: 0.005)")
parser.add_argument("--alpha", type=float, default=0.1,
help="regularizer weight alpha of the entropy regularization term for sac training (default: 0.1)")
parser.add_argument("--learn_alpha", default=False, action="store_true",
help="set to learn alpha (default: False)")
parser.add_argument("--lr_agent", type=float, default=0.0003,
help="learning rate (default: 0.0003)")
parser.add_argument("--conservative", default=False, action="store_true",
help="set to add conservative Q learning (default: False)")
# procedure arguments
parser.add_argument("--size_batch", type=int, default=256,
help="batch size (default: 256)")
parser.add_argument("--ratio_env_model", type=float, default=0.05,
help="ratio of env data to model data in agent batches (default: 0.05)")
parser.add_argument("--num_rounds", type=int, default=128,
help="number of rounds to train (default: 128)")
parser.add_argument("--interval_rollout_model", type=int, default=1,
help="interval of rounds after which a round of model rollout is done (default: 1)")
parser.add_argument("--num_steps_rollout_model", type=int, default=100000,
help="number of steps to rollout model in a round of rollout (default: 100000)")
parser.add_argument("--max_length_rollout_model", type=int, default=1,
help="number of steps to rollout model from initial state (a.k.a. episode length) (default: 1)")
parser.add_argument("--interval_train_model_adversarial", type=int, default=1,
help="interval of rounds after which a round of adversarial training is done (default: 1)")
parser.add_argument("--num_steps_train_agent", type=int, default=250,
help="number of steps to train agent per round (default: 250)")
parser.add_argument("--interval_eval_agent", type=int, default=1,
help="interval of rounds after which a round of evaluation is done (default: 1)")
parser.add_argument("--num_episodes_eval_agent", type=int, default=1,
help="number of episodes to evaluate (default: 1)")
parser.add_argument("--seed", type=int, default=42,
help="random seed (default: 42)")
parser.add_argument("--device", default=None,
help="device (default: cuda if available else cpu)")
parser.add_argument("--replay_size", type=int, default=1000000,
help="capacity of replay buffer (default: 1000000)")
args = parser.parse_args()
use_model = args.ratio_env_model < 1.0
train_adversarial = args.weight_loss_adversarial_model > 0.0
if use_model:
if args.weight_loss_adversarial_model == 0.0:
if args.hallucinate:
if args.weight_penalty_reward == 0.0:
if args.conservative:
args.algorithm = "COMBO + HAMBO"
else:
args.algorithm = "HAMBO"
else:
if args.conservative:
args.algorithm = "MOPO + COMBO + HAMBO"
else:
args.algorithm = "MOPO + HAMBO"
else:
if args.weight_penalty_reward == 0.0:
if args.conservative:
args.algorithm = "COMBO"
else:
args.algorithm = "MBPO"
else:
if args.conservative:
args.algorithm = "MOPO + COMBO"
else:
args.algorithm = "MOPO"
else:
if args.hallucinate:
if args.weight_penalty_reward == 0.0:
if args.conservative:
args.algorithm = "COMBO + RAMBO + HAMBO"
else:
args.algorithm = "RAMBO + HAMBO"
else:
if args.conservative:
args.algorithm = "MOPO + COMBO + RAMBO + HAMBO"
else:
args.algorithm = "MOPO + RAMBO + HAMBO"
else:
if args.weight_penalty_reward == 0.0:
if args.conservative:
args.algorithm = "COMBO + RAMBO"
else:
args.algorithm = "RAMBO"
else:
if args.conservative:
args.algorithm = "MOPO + COMBO + RAMBO"
else:
args.algorithm = "MOPO + RAMBO"
else:
if args.conservative:
args.algorithm = "CQL"
else:
args.algorithm = "SAC"
if args.device is None:
if torch.cuda.is_available():
args.device = "cuda"
else:
args.device = "cpu"
print(f"algorithm: {args.algorithm}")
print(f"device: {args.device}")
wandb.init(mode="disabled", project="Offline RL", entity="tobiabir", config=args)
# setting rng seeds
utils.set_seeds(args.seed)
if args.name_env == "HalfCheetah":
env = gym.make("halfcheetah-" + args.name_task + "-v2")
env = envs.WrapperEnvHalfCheetah(env)
elif args.name_env == "Hopper":
env = gym.make("hopper-" + args.name_task + "-v2")
env = envs.WrapperEnvHopper(env)
elif args.name_env == "Walker":
env = gym.make("walker2d-" + args.name_task + "-v2")
env = envs.WrapperEnvWalker(env)
dataset_env = env.get_dataset()
dataset_states_initial = data.DatasetNumpy()
dataset_states_initial.append_batch(list(dataset_env["observations"]))
state = dataset_env["observations"]
action = dataset_env["actions"]
if use_model and args.hallucinate:
if args.method_sampling == "DS":
action_hallucinated = np.zeros(state.shape, dtype=np.float32)
else:
action_hallucinated = np.zeros(state.shape[0], dtype=np.int64)
action = action, action_hallucinated
reward = dataset_env["rewards"]
state_next = dataset_env["next_observations"]
terminal = dataset_env["terminals"]
dataset_env = data.DatasetSARS()
dataset_env.push_batch(list(zip(state, zip(*action), reward, state_next, terminal)))
dataset_model = data.DatasetSARS(capacity=args.replay_size)
if use_model:
checkpoint_model = torch.load(args.path_checkpoint_model, map_location=args.device)
model = checkpoint_model["model"]
if not args.calibrate:
model.temperature = 1.0
model.eval()
if args.hallucinate:
EnvModel = envs.EnvModelHallucinated
else:
EnvModel = envs.EnvModel
env_model = EnvModel(env.observation_space, env.action_space, dataset_states_initial, model, env.done, args)
env_model = gym.wrappers.TimeLimit(env_model, args.max_length_rollout_model)
env_model = envs.WrapperEnv(env_model)
agent = agents.AgentSAC(env.observation_space, env.action_space, args)
if use_model and args.hallucinate:
if args.method_sampling == "DS":
agent_antagonist = agents.AgentSACAntagonist(env.observation_space, env_model.space_action_hallucinated, args)
else:
agent_antagonist = agents.AgentDQNAntagonist(env.observation_space, env_model.space_action_hallucinated, args)
agent = agents.AgentTuple([agent, agent_antagonist])
for idx_round in range(args.num_rounds):
agent.train()
if use_model and (idx_round + 1) % args.interval_rollout_model == 0:
model.eval()
env_model.rollout(agent, dataset_model, args.num_steps_rollout_model, args.max_length_rollout_model)
dataloader = data.get_dataloader(dataset_env, dataset_model, args.num_steps_train_agent, args.size_batch, args.ratio_env_model)
for batch in dataloader:
losses = agent.step(batch)
wandb.log({"agent_protagonist": losses[0], "agent_antagonist": losses[1], "idx_round": idx_round})
print(f"idx_round: {idx_round}, agent_protagonist: {losses[0]}, agent_antagonist: {losses[1]}")
if train_adversarial and (idx_round + 1) % args.interval_train_model_adversarial == 0:
model.train()
losses_model, scores_calibration = training.train_ensemble_adversarial(model, dataset_env, agent, env_model.model_termination, args.weight_prior_model, args.gamma, args.weight_loss_adversarial_model, args.lr_model, args.size_batch, args.device)
wandb.log({"loss_model": loss_model, "score_calibration": score_calibration, "idx_round": idx_round})
print(f"idx_round: {idx_round}, loss_model: {loss_model}, score_calibration: {score_calibration}")
if (idx_round + 1) % args.interval_eval_agent == 0:
return_eval = evaluation.evaluate_agent(agent, env, args.num_episodes_eval_agent)
return_eval_normalized = env.get_normalized_score(return_eval)
wandb.log({"return_eval": return_eval, "return_eval_normalized": return_eval_normalized, "idx_round": idx_round})
print(f"idx_round: {idx_round}, return_eval: {return_eval}, return_eval_normalized: {return_eval_normalized}")