-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrollout.py
41 lines (30 loc) · 1.11 KB
/
rollout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
import data
def rollout_episode(env, agent):
dataset = data.DatasetSARS()
reward_episode = 0
idx_step = 0
state = env.reset()
state_initial = state
done = False
while not done:
action = agent.get_action(state)[0]
state_next, reward, done, info = env.step(action)
mask = np.float32(done and not info["TimeLimit.truncated"])
dataset.push(state, action, reward, state_next, mask)
state = state_next
reward_episode += reward
idx_step += 1
return dataset, state_initial, reward_episode
def rollout_steps(env, agent, dataset, dataset_states_initial, num_steps):
state = env.state
for idx_step in range(num_steps):
action = agent.get_action(state)
state_next, reward, done, info = env.step(action[0])
mask = np.float32(done and not info["TimeLimit.truncated"])
dataset.push(state, action, reward, state_next, mask)
state = state_next
if done:
state = env.reset()
if dataset_states_initial is not None:
dataset_states_initial.append(state)