-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathror.py
186 lines (134 loc) · 6.41 KB
/
ror.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from keras.models import Model
from keras.layers import Input, Add, Activation, Dropout, Flatten, Dense
from keras.layers.convolutional import Convolution2D, MaxPooling2D, AveragePooling2D
from keras.layers.normalization import BatchNormalization
from keras import backend as K
def initial_conv(input):
x = Convolution2D(16, (3, 3), padding='same', kernel_initializer='he_normal')(input)
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
x = BatchNormalization(axis=channel_axis)(x)
x = Activation('relu')(x)
return x
def conv1_block(input, dropout=0.0, initial=False):
init = input
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
# Check if input number of filters is same as 16, else create convolution2d for this input
if initial:
if K.image_data_format() == "th":
init = Convolution2D(16, (1, 1), kernel_initializer='he_normal', padding='same')(init)
else:
init = Convolution2D(16, (1, 1), kernel_initializer='he_normal', padding='same')(init)
x = Convolution2D(16, (3, 3), kernel_initializer='he_normal', padding='same')(input)
x = BatchNormalization(axis=channel_axis)(x)
x = Activation('relu')(x)
if dropout > 0.0: x = Dropout(dropout)(x)
x = Convolution2D(16, (3, 3), kernel_initializer='he_normal', padding='same')(x)
x = BatchNormalization(axis=channel_axis)(x)
m = Add()([init, x])
x = Activation('relu')(m)
return x
def conv2_block(input, dropout=0.0):
init = input
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
# Check if input number of filters is same as 32, else create convolution2d for this input
if K.image_data_format() == "channels_first":
if init._keras_shape[1] != 32:
init = Convolution2D(32, (1, 1), kernel_initializer='he_normal', padding='same')(init)
else:
if init._keras_shape[-1] != 32:
init = Convolution2D(32, (1, 1), kernel_initializer='he_normal', padding='same')(init)
x = Convolution2D(32, (3, 3), kernel_initializer='he_normal', padding='same')(input)
x = BatchNormalization(axis=channel_axis)(x)
x = Activation('relu')(x)
if dropout > 0.0: x = Dropout(dropout)(x)
x = Convolution2D(32, (3, 3), kernel_initializer='he_normal', padding='same')(x)
x = BatchNormalization(axis=channel_axis)(x)
m = Add()([init, x])
x = Activation('relu')(m)
return x
def conv3_block(input, dropout=0.0, is_last=False):
global count
init = input
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
# Check if input number of filters is same as 64, else create convolution2d for this input
if K.image_data_format() == "channels_first":
if init._keras_shape[1] != 64:
init = Convolution2D(64, (1, 1), kernel_initializer='he_normal', padding='same')(init)
else:
if init._keras_shape[-1] != 64:
init = Convolution2D(64, (1, 1), kernel_initializer='he_normal', padding='same')(init)
x = Convolution2D(64, (3, 3), kernel_initializer='he_normal', padding='same')(input)
x = BatchNormalization(axis=channel_axis)(x)
x = Activation('relu')(x)
if dropout > 0.0: x = Dropout(dropout)(x)
x = Convolution2D(64, (3, 3), kernel_initializer='he_normal', padding='same')(x)
x = BatchNormalization(axis=channel_axis)(x)
m = Add()([init, x])
if not is_last:
m = Activation('relu')(m)
return m
def create_residual_of_residual(input_dim, nb_classes=100, N=2, dropout=0.0, verbose=1):
"""
Creates a Residual Network of Residual Network with specified parameters
Example : To create a RoR-3-110 model for CIFAR-10:
model = create_pre_residual_of_residual((3, 32, 32), 10, N=2)
Note : The ResNet 101 model is the RoR-3-110 model
:param input: Input Keras object
:param nb_classes: Number of output classes
:param N: Depth of the network. Compute n = 6 * (N * 9 - 1) + 8.
Example1: For a depth of 56, N = 1, n = 6 * (1 * 9 - 1) + 8 = 56
Example2: For a depth of 110, N = 2, n = 6 * (2 * 9 - 1) + 8 = 110
Example3: For a depth of 164, N = 3, N = 6 * (3 * 9 - 1) + 8 = 164
:param dropout: Adds dropout if value is greater than 0.0.
Note : Generally not used in RoR
:param verbose: Debug info to describe created WRN
:return:
"""
ip = Input(shape=input_dim)
x = initial_conv(ip)
nb_conv = 8
conv0_level1_shortcut = Convolution2D(64, (1, 1), kernel_initializer='he_normal', padding='same', strides=(4, 4),
name='conv0_level1_shortcut')(x)
conv1_level2_shortcut = Convolution2D(16, (1, 1), kernel_initializer='he_normal', padding='same',
name='conv1_level2_shortcut')(x)
for i in range(N * 9 - 1):
initial = (i == 0)
x = conv1_block(x, dropout, initial=initial)
nb_conv += 2
# Add Level 2 shortcut
x = Add()([x, conv1_level2_shortcut])
x = Activation('relu')(x)
x = MaxPooling2D((2, 2))(x)
conv2_level2_shortcut = Convolution2D(32, (1, 1), kernel_initializer='he_normal', padding='same',
name='conv2_level2_shortcut')(x)
for i in range(N * 9 - 1):
x = conv2_block(x, dropout)
nb_conv += 2
# Add Level 2 shortcut
x = Add()([x, conv2_level2_shortcut])
x = Activation('relu')(x)
x = MaxPooling2D((2, 2))(x)
conv3_level2_shortcut = Convolution2D(64, (1, 1), kernel_initializer='he_normal', padding='same',
name='conv3_level2_shortcut')(x)
for i in range(N * 9 - 1):
is_last = (i == N - 1)
x = conv3_block(x, dropout, is_last=is_last)
nb_conv += 2
# Add Level 2 shortcut
x = Add()([x, conv3_level2_shortcut])
# Add Level 1 shortcut
x = Add()([x, conv0_level1_shortcut])
x = Activation('relu')(x)
x = AveragePooling2D((8, 8))(x)
x = Flatten()(x)
x = Dense(nb_classes, activation='softmax')(x)
model = Model(ip, x)
if verbose: print("Residual-in-Residual-Network-%d created." % (nb_conv))
return model
if __name__ == '__main__':
model = create_residual_of_residual((3, 32, 32), 10, N=2)
conv_count = 0
for layer in model.layers:
if 'conv' in layer.name:
conv_count += 1
print('Number of convolution layers : ', conv_count)