forked from GeeeG/CloudPose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_6d_pose.py
425 lines (330 loc) · 18.6 KB
/
train_6d_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import argparse
import math
import numpy as np
import tensorflow as tf
import importlib
import os
import sys
import open3d
import transforms3d
import matplotlib.pyplot as plt
import random
import scipy.io
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
sys.path.append(os.path.join(BASE_DIR, 'losses'))
sys.path.append(os.path.join(BASE_DIR, 'ycb_video_data'))
import trans_distance
import angular_distance_taylor
from datetime import datetime
class_names = ["00_master_chef_can", "01_cracker_box", "02_sugar_box", "03_tomato_soup_can", "04_mustard_bottle", "05_tuna_fish_can", "06_pudding_box",
"07_gelatin_box", "08_potted_meat_can", "09_banana", "10_pitcher_base", "11_bleach_cleanser", "12_bowl", "13_mug",
"14_power_drill", "15_wood_block", "16_scissors", "17_large_marker", "18_large_clamp", "19_extra_large_clamp", "20_foam_brick"]
NUM_CLASS = 21
# Global settings, change according to your setup
data_dir = '/data_c/CloudPose_git/ycb_video_data_tfRecords/FPS1024/'
object_model_dir = "/data_c/CloudPose_git/object_model_tfrecord/obj_models.tfrecords"
target_cls = np.arange(21)
train_filenames = []
for cls in target_cls:
for i in range(2):
train_filename = data_dir + "train_files_FPS1024_" + str(cls) + "_" + str(i) + ".tfrecords"
train_filenames.append(train_filename)
def decode(serialized_example, total_num_point):
features = tf.parse_example(
[serialized_example],
features={
'xyz': tf.FixedLenFeature([total_num_point, 3], tf.float32),
'rgb': tf.FixedLenFeature([total_num_point, 3], tf.float32),
'translation': tf.FixedLenFeature([3], tf.float32),
'quaternion': tf.FixedLenFeature([4], tf.float32),
'num_valid_points_in_segment': tf.FixedLenFeature([], tf.int64),
'seq_id': tf.FixedLenFeature([], tf.int64),
'frame_id': tf.FixedLenFeature([], tf.int64),
'class_id': tf.FixedLenFeature([], tf.int64)
})
return features
def get_tfrecord_data(dataset, batch_size, total_num_point):
dataset = dataset.map(lambda x: decode(x, total_num_point))
dataset = dataset.batch(batch_size, drop_remainder=True)
dataset = dataset.prefetch(1)
return dataset
def reshape_element(element, batch_size, total_num_point):
element['xyz'] = tf.reshape(element['xyz'], [batch_size, total_num_point, 3])
element['rgb'] = tf.reshape(element['rgb'], [batch_size, total_num_point, 3])
element['translation'] = tf.reshape(element['translation'], [batch_size, 3])
element['quaternion'] = tf.reshape(element['quaternion'], [batch_size, 4])
element['class_id'] = tf.reshape(element['class_id'], [batch_size])
element['num_valid_points_in_segment'] = tf.reshape(element['num_valid_points_in_segment'], [batch_size])
return element
# the object models can be used for visualization and inspectation during training
def read_and_decode_obj_model(filename):
models = []
labels = []
features = {'label': tf.FixedLenFeature([], tf.int64),
'model': tf.FixedLenFeature([2048, 6], tf.float32)}
for examples in tf.python_io.tf_record_iterator(filename):
example = tf.parse_single_example(examples, features=features)
models.append(example['model'])
labels.append(example['label'])
return models, labels
def quat2axag(quat):
w = quat[:, 0]
x = quat[:, 1]
y = quat[:, 2]
z = quat[:, 3]
len2 = x * x + y * y + z * z
theta = 2 * tf.acos(tf.maximum(tf.minimum(w, 1), -1))
ax = tf.stack([x, y, z], axis=1)
ax = ax / tf.expand_dims(tf.math.sqrt(len2),1)
ag = theta
axag = ax * tf.expand_dims(ag, 1)
return axag
# ==============================================================================
def log_string(out_str, dir):
dir.write(out_str + '\n')
dir.flush()
print(out_str)
# define the graph
def setup_graph(general_opts, train_opts, hyperparameters):
tf.reset_default_graph()
now = datetime.now()
BATCH_SIZE = hyperparameters['batch_size']
NUM_POINT = general_opts['num_point']
TOTAL_NUM_POINT = general_opts['total_num_point']
MAX_EPOCH = train_opts['max_epoch']
BASE_LEARNING_RATE = hyperparameters['learning_rate']
GPU_INDEX = general_opts['gpu']
OPTIMIZER = train_opts['optimizer']
MODEL = importlib.import_module(general_opts['model']) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', general_opts['model'] + '.py')
CURRENT_FILE = os.path.realpath(__file__)
LOG_DIR = general_opts['log_dir'] + "/" + now.strftime("%Y%m%d-%H%M%S") + "/"
if not os.path.exists(LOG_DIR):
os.mkdir(LOG_DIR)
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(general_opts) + '\n')
LOG_FOUT.write(str(train_opts) + '\n')
LOG_FOUT.write(str(hyperparameters) + '\n')
tf.set_random_seed(123456789)
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp %s %s' % (CURRENT_FILE, LOG_DIR)) # bkp of train procedure
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(40)
BN_DECAY_CLIP = 0.99
with tf.Graph().as_default():
with tf.device('/cpu:0'):
with tf.name_scope('prepare_data'):
tr_dataset = tf.data.TFRecordDataset(train_filenames).shuffle(1000000)
tr_dataset = get_tfrecord_data(tr_dataset, batch_size=BATCH_SIZE, total_num_point=TOTAL_NUM_POINT)
tr_iterator = tr_dataset.make_initializable_iterator()
iter_handle = tf.placeholder(tf.string, shape=[], name='iterator_handle')
iterator = tf.data.Iterator.from_string_handle(iter_handle, tr_dataset.output_types,
tr_dataset.output_shapes)
next_element = iterator.get_next()
next_element = reshape_element(next_element, batch_size=BATCH_SIZE, total_num_point=TOTAL_NUM_POINT)
obj_model, _ = read_and_decode_obj_model(object_model_dir)
obj_model_tf = tf.convert_to_tensor(obj_model)
with tf.device('/gpu:' + str(GPU_INDEX)):
is_training_pl = tf.placeholder(tf.bool, shape=())
print(is_training_pl)
batch = tf.Variable(0.)
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch * BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
tf.summary.scalar('bn_decay', bn_decay)
# the object models can be used for visualization and inspectation during training
obj_batch = tf.gather(obj_model_tf, next_element['class_id'], axis=0)
obj_batch = obj_batch[:, 0:1024, :]
next_element_xyz = next_element['xyz'][:, 0:NUM_POINT, :]
cls_gt_onehot = tf.one_hot(indices=next_element['class_id'], depth=len(target_cls))
cls_gt_onehot_expand = tf.expand_dims(cls_gt_onehot, axis=1)
cls_gt_onehot_tile = tf.tile(cls_gt_onehot_expand, [1, NUM_POINT, 1])
current_batch_axag = quat2axag(next_element['quaternion'])
current_batch_axag = tf.dtypes.cast(current_batch_axag, dtype=tf.float64)
xyz_graph_input = next_element_xyz
trans_gt_graph_input = next_element['translation']
rot_gt_graph_input = tf.cast(current_batch_axag, tf.float64)
with tf.name_scope('6d_pose'):
element_mean = tf.reduce_mean(xyz_graph_input, axis=1)
xyz_normalized = xyz_graph_input - tf.expand_dims(element_mean, 1)
trans_pred_res, _ = MODEL.get_trans_model(tf.concat([xyz_normalized, cls_gt_onehot_tile], axis=2),
is_training_pl, bn_decay=bn_decay)
trans_pred = trans_pred_res + element_mean
rot_pred, _ = MODEL.get_rot_model(tf.concat([xyz_graph_input, cls_gt_onehot_tile], axis=2),
is_training_pl, bn_decay=bn_decay)
with tf.name_scope('translation'):
trans_loss, trans_loss_perSample = trans_distance.get_translation_error(trans_pred,
trans_gt_graph_input)
mean_dist_loss, mean_dist_loss_perSample = trans_distance.get_translation_error(element_mean,
trans_gt_graph_input)
tf.summary.scalar('trans_loss', trans_loss)
tf.summary.scalar('mean_dist_loss', mean_dist_loss)
tf.summary.scalar('trans_loss_min', tf.reduce_min(trans_loss_perSample))
tf.summary.scalar('trans_loss_max', tf.reduce_max(trans_loss_perSample))
with tf.name_scope('rotation'):
rot_pred = tf.cast(rot_pred, tf.float64)
axag_loss, axag_loss_perSample = angular_distance_taylor.get_rotation_error(rot_pred,
rot_gt_graph_input)
axag_loss = tf.cast(axag_loss, tf.float32)
tf.summary.scalar('axag_loss', axag_loss)
tf.summary.scalar('axag_loss_min', tf.reduce_min(axag_loss_perSample))
tf.summary.scalar('axag_loss_max', tf.reduce_max(axag_loss_perSample))
learning_rate = BASE_LEARNING_RATE
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'gd':
optimizer = tf.train.GradientDescentOptimizer(learning_rate*10)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
total_loss = 10 * trans_loss + axag_loss
tf.summary.scalar('total_loss', total_loss)
# reference: http://matpalm.com/blog/viz_gradient_norms/
gradients = optimizer.compute_gradients(loss=total_loss)
train_op = optimizer.apply_gradients(gradients, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver(max_to_keep=None)
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'),
sess.graph)
# Init variables
init = tf.global_variables_initializer()
sess.run(init, {is_training_pl: True})
ops = {'is_training_pl': is_training_pl,
'train_op': train_op,
'merged': merged,
'step': batch,
'trans_loss': trans_loss,
'trans_loss_perSample': trans_loss_perSample,
'mean_dist_loss_perSample': mean_dist_loss_perSample,
'axag_loss': axag_loss,
'axag_loss_perSample': axag_loss_perSample,
'class_id': next_element['class_id'],
'handle': iter_handle}
count_perClass = np.zeros([NUM_CLASS], dtype=np.int32)
axag_loss_perClass = [[] for _ in range(NUM_CLASS)]
trans_loss_perClass = [[] for _ in range(NUM_CLASS)]
mean_dist_loss_perClass = [[] for _ in range(NUM_CLASS)]
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch), dir=LOG_FOUT)
sys.stdout.flush()
training_handle = sess.run(tr_iterator.string_handle())
sess.run(tr_iterator.initializer)
train_graph(sess, ops, train_writer, training_handle, epoch,
count_perClass, axag_loss_perClass, trans_loss_perClass, mean_dist_loss_perClass,
logFOut=LOG_FOUT, batch_size=BATCH_SIZE, logdir=LOG_DIR, saver=saver)
def train_graph(sess, ops, train_writer, training_handle, epoch, count_perClass,
axag_loss_perClass, trans_loss_perClass, mean_dist_loss_perClass, logFOut, batch_size, logdir, saver):
""" ops: dict mapping from string to tf ops """
print("==================train======================")
is_training = True
# measure duration of each subprocess
start_time = datetime.now()
summary1 = tf.Summary()
batch_idx = 0
while True:
try:
total_seen = 0
# evaluate ever 100 batch during training
if batch_idx != 0 and batch_idx % 2000 == 0:
model_dir = "model.ckpt"
save_path = saver.save(sess, os.path.join(logdir, model_dir))
print("Model saved in file: %s" % save_path)
feed_dict = {ops['is_training_pl']: is_training, ops['handle']: training_handle}
summary, step, _, class_id, trans_loss, trans_loss_perSample, \
mean_dist_loss_perSample, axag_loss, axag_loss_perSample = sess.run([ops['merged'],
ops['step'],
ops['train_op'],
ops['class_id'],
ops['trans_loss'],
ops['trans_loss_perSample'],
ops['mean_dist_loss_perSample'],
ops['axag_loss'],
ops['axag_loss_perSample'],
],
feed_dict=feed_dict)
# for each sample in current batch
for x, y, z, c in zip(axag_loss_perSample, trans_loss_perSample, mean_dist_loss_perSample, class_id):
axag_loss_perClass[c].append(x)
trans_loss_perClass[c].append(y)
mean_dist_loss_perClass[c].append(z)
print("epoch %d batch %d trans_loss %f axag_loss %f" \
% (epoch, batch_idx, trans_loss, axag_loss))
# write to tensorboard
if batch_idx != 0 and batch_idx % 500 == 0:
for i in target_cls:
count_perClass[i] = count_perClass[i] + len(axag_loss_perClass[i])
avg_axag_loss = np.average(axag_loss_perClass[i])
avg_trans_loss = np.average(trans_loss_perClass[i])
avg_mean_dist_loss = np.average(mean_dist_loss_perClass[i])
summary1.value.add(tag="axag_loss_per_class_train/"+class_names[i], simple_value=avg_axag_loss)
summary1.value.add(tag="trans_loss_per_class_train/"+class_names[i], simple_value=avg_trans_loss)
summary1.value.add(tag="mean_dist_loss_per_class_train/"+class_names[i], simple_value=avg_mean_dist_loss)
summary1.value.add(tag="sample_count_per_class_train/"+class_names[i], simple_value=count_perClass[i])
axag_loss_perClass[i] = []
trans_loss_perClass[i] = []
mean_dist_loss_perClass[i] = []
train_writer.add_summary(summary, step)
train_writer.add_summary(summary1, step)
total_seen += batch_size
batch_idx = batch_idx + 1
except tf.errors.OutOfRangeError:
print("End of data!")
model_dir = "model.ckpt"
save_path = saver.save(sess, os.path.join(logdir, model_dir))
print("Model saved in file: %s" % save_path)
break
time_elapsed = datetime.now() - start_time
out_str = 'Current epoch Time elapsed (hh:mm:ss.ms) {}'.format(time_elapsed)
logFOut.write(out_str + '\n')
logFOut.flush()
print(out_str)
def get_training_argparser():
parser = argparse.ArgumentParser()
general = parser.add_argument_group('general')
general.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
general.add_argument('--model', default='pcpe_net',
help='Model name: name of network model [default: pcpe_net]')
general.add_argument('--log_dir', default='log', help='Log dir [default: log]')
general.add_argument('--num_point', type=int, default=256, help='Point Number [256/512/1024] [default: 256]')
general.add_argument('--total_num_point', type=int, default=1024, help='Dataset Point Number [256/512/1024] [default: 1024]')
train_opts = parser.add_argument_group('training_options')
train_opts.add_argument('--max_epoch', type=int, default=90, help='Epoch to run [default: 90]')
train_opts.add_argument('--optimizer', default='adam', help='adam or gd [default: adam]')
hyperparameters = parser.add_argument_group('hyperparameters')
hyperparameters.add_argument('--batch_size', type=int, default=128,
help='Batch Size during training [default: 128]')
hyperparameters.add_argument('--learning_rate', type=float, default=0.0008,
help='Initial learning rate [default: 0.0008]')
hyperparameters.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
hyperparameters.add_argument('--decay_step', type=int, default=30000,
help='Decay step for lr decay [default: 30000]')
hyperparameters.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
return parser
def parse_arg_groups(parser):
args = parser.parse_args()
arg_groups = {}
for group in parser._action_groups:
arg_groups[group.title] = {a.dest: getattr(args, a.dest, None) for a in group._group_actions}
return arg_groups
if __name__ == "__main__":
parser = get_training_argparser()
arg_groups = parse_arg_groups(parser)
general_opts, train_opts, hyperparameters = arg_groups['general'], arg_groups['training_options'], arg_groups[
'hyperparameters']
setup_graph(general_opts=general_opts,
train_opts=train_opts,
hyperparameters=hyperparameters)