@@ -54,7 +54,7 @@ model_info_table <-
5454# ' @keywords internal
5555# ' @references "How to build a parsnip model"
5656# ' \url{https://www.tidymodels.org/learn/develop/models/}
57- # ' @examples
57+ # ' @examplesIf !parsnip:::is_cran_check()
5858# ' # Access the model data:
5959# ' current_code <- get_model_env()
6060# ' ls(envir = current_code)
@@ -473,7 +473,6 @@ check_interface_val <- function(x) {
473473# ' `"rand_forest"`, etc).
474474# ' @param mode A single character string for the model mode (e.g. "regression").
475475# ' @param eng A single character string for the model engine.
476- # ' @param arg A single character string for the model argument name.
477476# ' @param has_submodel A single logical for whether the argument
478477# ' can make predictions on multiple submodels at once.
479478# ' @param func A named character vector that describes how to call
@@ -483,10 +482,6 @@ check_interface_val <- function(x) {
483482# ' used to invoke the usual linear regression function. In some
484483# ' cases, it is helpful to use `c(fun = "predict")` when using a
485484# ' package's `predict` method.
486- # ' @param fit_obj A list with elements `interface`, `protect`,
487- # ' `func` and `defaults`. See the package vignette "Making a
488- # ' `parsnip` model from scratch".
489- # ' @param pred_obj A list with elements `pre`, `post`, `func`, and `args`.
490485# ' @param type A single character value for the type of prediction. Possible
491486# ' values are: `class`, `conf_int`, `numeric`, `pred_int`, `prob`, `quantile`,
492487# ' and `raw`.
@@ -557,7 +552,7 @@ check_interface_val <- function(x) {
557552# '
558553# ' @references "How to build a parsnip model"
559554# ' \url{https://www.tidymodels.org/learn/develop/models/}
560- # ' @examples
555+ # ' @examplesIf !parsnip:::is_cran_check()
561556# ' # set_new_model("shallow_learning_model")
562557# '
563558# ' # Show the information about a model:
0 commit comments