diff --git a/DESCRIPTION b/DESCRIPTION
index 02f0252..8df9225 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -4,7 +4,7 @@ Version: 1.0.2.9000
 Authors@R: c(
     person("Max", "Kuhn", , "max@posit.co", role = c("aut", "cre"),
            comment = c(ORCID = "0000-0003-2402-136X")),
-    person(given = "Posit Software, PBC", role = c("cph", "fnd"))
+    person("Posit Software, PBC", role = c("cph", "fnd"))
   )
 Description: Tree- and rule-based models can be bagged
     (<doi:10.1007/BF00058655>) using this package and their predictions
@@ -28,7 +28,7 @@ Imports:
     hardhat (>= 1.1.0),
     magrittr,
     purrr,
-    rlang,
+    rlang (>= 1.1.0),
     rpart,
     rsample,
     tibble,
@@ -36,9 +36,8 @@ Imports:
     utils,
     withr
 Suggests: 
-    AmesHousing,
     covr,
-    earth,    
+    earth,
     modeldata,
     nnet,
     recipes,
@@ -48,7 +47,31 @@ Suggests:
     yardstick
 Config/Needs/website: tidyverse/tidytemplate
 Config/testthat/edition: 3
+Config/usethis/last-upkeep: 2024-10-23
 Encoding: UTF-8
 Language: en-US
 Roxygen: list(markdown = TRUE)
 RoxygenNote: 7.3.2
+Collate: 
+    'C5.0.R'
+    'bag_mars_data.R'
+    'bag_nnet_data.R'
+    'bag_tree_data.R'
+    'import-standalone-types-check.R'
+    'validate.R'
+    'bagger.R'
+    'baguette-package.R'
+    'bridge.R'
+    'cart.R'
+    'class_cost.R'
+    'constructor.R'
+    'cost_models.R'
+    'import-standalone-obj-type.R'
+    'mars.R'
+    'misc.R'
+    'model_info.R'
+    'nnet.R'
+    'out-of-bag.R'
+    'predict.R'
+    'var_imp.R'
+    'zzz.R'
diff --git a/R/C5.0.R b/R/C5.0.R
index 7c7b651..c72ca31 100644
--- a/R/C5.0.R
+++ b/R/C5.0.R
@@ -1,5 +1,5 @@
 
-c5_bagger <- function(rs, control, ...) {
+c5_bagger <- function(rs, control, ..., call) {
 
   opt <- rlang::dots_list(...)
   mod_spec <- make_c5_spec(opt)
@@ -17,7 +17,7 @@ c5_bagger <- function(rs, control, ...) {
       control = control
     ))
 
-  rs <- check_for_disaster(rs)
+  rs <- check_for_disaster(rs, call = call)
 
   rs <- filter_rs(rs)
 
@@ -32,7 +32,7 @@ c5_bagger <- function(rs, control, ...) {
   if (control$reduce) {
     rs <-
       rs %>%
-      mutate(model = map(model, axe_C5))
+      dplyr::mutate(model = purrr::map(model, axe_C5))
   }
 
   list(model = rs, imp = imps)
diff --git a/R/aaa_validate.R b/R/aaa_validate.R
deleted file mode 100644
index bb54465..0000000
--- a/R/aaa_validate.R
+++ /dev/null
@@ -1,160 +0,0 @@
-validate_args <- function(model, times, control, cost) {
-  if (!is.character(model) || length(model) != 1) {
-    cli::cli_abort("`base_model` should be a single character value.")
-  }
-  if (!(model %in% baguette_models)) {
-    msg <- paste(
-      "`base_model` should be one of ",
-      paste0("'", baguette_models, "'", collapse = ", ")
-    )
-    cli::cli_abort(msg)
-  }
-
-  # ----------------------------------------------------------------------------
-
-  if (!is.null(cost) & !(model %in% c("CART", "C5.0"))) {
-    cli::cli_abort("`base_model` should be either 'CART' or 'C5.0'")
-  }
-  if (!is.null(cost)) {
-    if (is.numeric(cost) && any(cost < 0)) {
-      cli::cli_abort("`cost` should be non-negative.")
-    }
-  }
-
-  # ----------------------------------------------------------------------------
-
-  if (!is.integer(times)) {
-    cli::cli_abort("`times` must be an integer > 1.")
-  }
-  if (times < 1) {
-    cli::cli_abort("`times` must be an integer > 1.")
-  }
-
-  # ----------------------------------------------------------------------------
-
-  validate_control(control)
-
-  # ----------------------------------------------------------------------------
-
-  invisible(TRUE)
-
-}
-
-integer_B <- function(B) {
-  if (is.numeric(B) & !is.integer(B)) {
-    B <- as.integer(B)
-  }
-  B
-}
-
-# ------------------------------------------------------------------------------
-
-validate_y_type <- function(base_model, outcomes) {
-  hardhat::validate_outcomes_are_univariate(outcomes)
-
-  if (base_model == "C5.0") {
-    hardhat::validate_outcomes_are_factors(outcomes)
-  }
-
-}
-
-# ------------------------------------------------------------------------------
-
-model_failure <- function(x) {
-  if (inherits(x, "model_fit")) {
-    res <- inherits(x$fit, "try-error")
-  } else {
-    res <- inherits(x, "try-error")
-  }
-  res
-}
-
-check_for_disaster <- function(x) {
-  x <- dplyr::mutate(x, passed = !purrr::map_lgl(model, model_failure))
-
-  if (sum(x$passed) == 0) {
-    if (inherits(x$model[[1]], "try-error")) {
-      msg <- as.character(x$model[[1]])
-    } else {
-      if (inherits(x$model[[1]], "model_fit")) {
-        msg <- as.character(x$model[[1]]$fit)
-      } else msg <- NA
-    }
-
-    if (!is.na(msg)) {
-      msg <- paste0("An example message was:\n  ", msg)
-    } else msg <- ""
-
-
-    cli::cli_abort(paste0("All of the models failed. ", msg))
-  }
-  x
-}
-
-# ------------------------------------------------------------------------------
-
-check_type <- function(object, type) {
-  if (is.null(type)) {
-    if (object$base_model[2] == "classification") {
-      type <- "class"
-    } else {
-      type <- "numeric"
-    }
-  } else {
-    if (object$base_model[2] == "classification") {
-      if (!(type %in% c("class", "prob")))
-        cli::cli_abort("`type` should be either 'class' or 'prob'")
-    } else {
-      if (type != "numeric")
-        cli::cli_abort("`type` should be 'numeric'")
-    }
-  }
-  type
-}
-
-validate_importance <- function(x) {
-  if (is.null(x)) {
-    return(x)
-  }
-
-  if (!is_tibble(x)) {
-    cli::cli_abort("Imprtance score results should be a tibble.")
-  }
-
-  exp_cols <- c("term", "value", "std.error", "used")
-  if (!isTRUE(all.equal(exp_cols, names(x)))) {
-    msg <- paste0("Importance columns should be: ",
-                  paste0("'", exp_cols, "'", collapse = ", "),
-                  "."
-                  )
-    cli::cli_abort(msg)
-  }
-  x
-}
-
-# ------------------------------------------------------------------------------
-
-validate_control <- function(x) {
-  if (!is.list(x)) {
-    cli::cli_abort("The control object should be a list created by `control_bag()`.")
-  }
-  samps <- c("none", "down")
-
-  if (length(x$var_imp) != 1 || !is.logical(x$var_imp)) {
-    cli::cli_abort("`var_imp` should be a single logical value.")
-  }
-  if (length(x$allow_parallel) != 1 || !is.logical(x$allow_parallel)) {
-    cli::cli_abort("`allow_parallel` should be a single logical value.")
-  }
-  if (length(x$sampling) != 1 || !is.character(x$sampling) || !any(samps == x$sampling)) {
-    cli::cli_abort("`sampling` should be either 'none' or 'down'.")
-  }
-  if (length(x$reduce) != 1 || !is.logical(x$reduce)) {
-    cli::cli_abort("`reduce` should be a single logical value.")
-  }
-  if (!is.null(x$extract) && !is.function(x$extract)) {
-    cli::cli_abort("`extract` should be NULL or a function.")
-  }
-
-  x
-}
diff --git a/R/bag_mars_data.R b/R/bag_mars_data.R
index 37aa68f..f1f450a 100644
--- a/R/bag_mars_data.R
+++ b/R/bag_mars_data.R
@@ -3,7 +3,7 @@
 # they are already in the parsnip model database. We'll exclude them from
 # coverage stats for this reason.
 
-# nocov
+# nocov start
 
 make_bag_mars <- function() {
 
diff --git a/R/bag_nnet_data.R b/R/bag_nnet_data.R
index 5605136..2f21f7e 100644
--- a/R/bag_nnet_data.R
+++ b/R/bag_nnet_data.R
@@ -3,7 +3,7 @@
 # they are already in the parsnip model database. We'll exclude them from
 # coverage stats for this reason.
 
-# nocov
+# nocov start
 
 make_bag_mlp <- function() {
 
diff --git a/R/bag_tree_data.R b/R/bag_tree_data.R
index 1e476b6..a140667 100644
--- a/R/bag_tree_data.R
+++ b/R/bag_tree_data.R
@@ -3,7 +3,7 @@
 # they are already in the parsnip model database. We'll exclude them from
 # coverage stats for this reason.
 
-# nocov
+# nocov start
 
 make_bag_tree <- function() {
 
diff --git a/R/bagger.R b/R/bagger.R
index 797c223..b946991 100644
--- a/R/bagger.R
+++ b/R/bagger.R
@@ -19,7 +19,7 @@
 #' @param times A single integer greater than 1 for the maximum number of bootstrap
 #'  samples/ensemble members (some model fits might fail).
 #' @param control A list of options generated by `control_bag()`.
-#' @param cost A non-negative scale (for two class problems) or a cost matrix.
+#' @param cost A non-negative scale (for two class problems) or a square cost matrix.
 #' @param ... Optional arguments to pass to the base model function.
 #' @details `bagger()` fits separate models to bootstrap samples. The
 #'  prediction function for each model object is encoded in an R expression and
@@ -89,6 +89,7 @@
 #'   cart_pca_bag
 #' }
 #' @export
+#' @include validate.R
 bagger <- function(x, ...) {
   UseMethod("bagger")
 }
@@ -96,7 +97,7 @@ bagger <- function(x, ...) {
 #' @export
 #' @rdname bagger
 bagger.default <- function(x, ...) {
-  stop("`bagger()` is not defined for a '", class(x)[1], "'.", call. = FALSE)
+  cli::cli_abort("{.fn bagger} is not defined for {obj_type_friendly(x)}.", call. = FALSE)
 }
 
 # XY method - data frame
diff --git a/R/aaa.R b/R/baguette-package.R
similarity index 69%
rename from R/aaa.R
rename to R/baguette-package.R
index dc2d4d4..c7776e4 100644
--- a/R/aaa.R
+++ b/R/baguette-package.R
@@ -1,7 +1,10 @@
+#' @keywords internal
+"_PACKAGE"
+
+## usethis namespace: start
 #' @import rlang
 #' @import dplyr
 #' @import hardhat
-#'
 #' @importFrom parsnip set_engine fit fit_xy control_parsnip mars decision_tree
 #' @importFrom parsnip set_new_model multi_predict update_dot_check show_fit
 #' @importFrom parsnip new_model_spec null_value update_main_parameters
@@ -17,8 +20,20 @@
 #' @importFrom withr with_seed
 #' @importFrom dials new_quant_param
 #' @importFrom stats coef
-#'
-# ------------------------------------------------------------------------------
+
+#' @keywords internal
+"_PACKAGE"
+
+#' @importFrom magrittr %>%
+#' @export
+magrittr::`%>%`
+
+#' @importFrom generics var_imp
+#' @export
+generics::var_imp
+
+## usethis namespace: end
+NULL
 
 utils::globalVariables(
   c(
@@ -42,16 +57,3 @@ utils::globalVariables(
     ".estimator"
   )
 )
-
-# ------------------------------------------------------------------------------
-
-# The functions below define the model information. These access the model
-# environment inside of parsnip so they have to be executed once parsnip has
-# been loaded.
-
-.onLoad <- function(libname, pkgname) {
-  # This defines model functions in the parsnip model database
-  make_bag_tree()
-  make_bag_mars()
-  make_bag_mlp()
-}
diff --git a/R/bridge.R b/R/bridge.R
index 0178b9d..b4f0e88 100644
--- a/R/bridge.R
+++ b/R/bridge.R
@@ -1,4 +1,5 @@
-bagger_bridge <- function(processed, weights, base_model, seed, times, control, cost, ...) {
+bagger_bridge <- function(processed, weights, base_model, seed, times, control,
+                          cost, ..., call = rlang::caller_env()) {
   validate_outcomes_are_univariate(processed$outcomes)
   if (base_model %in% c("C5.0")) {
     validate_outcomes_are_factors(processed$outcomes)
@@ -19,16 +20,16 @@ bagger_bridge <- function(processed, weights, base_model, seed, times, control,
   if (is.null(cost)) {
     res <- switch(
       base_model,
-      CART = cart_bagger(rs, control, ...),
-      C5.0 =   c5_bagger(rs, control, ...),
-      MARS = mars_bagger(rs, control, ...),
-      nnet = nnet_bagger(rs, control, ...)
+      CART = cart_bagger(rs, control, ..., call = call),
+      C5.0 =   c5_bagger(rs, control, ..., call = call),
+      MARS = mars_bagger(rs, control, ..., call = call),
+      nnet = nnet_bagger(rs, control, ..., call = call)
     )
   } else {
     res <- switch(
       base_model,
-      CART = cost_sens_cart_bagger(rs, control, cost, ...),
-      C5.0 =   cost_sens_c5_bagger(rs, control, cost, ...)
+      CART = cost_sens_cart_bagger(rs, control, cost, ..., call = call),
+      C5.0 =   cost_sens_c5_bagger(rs, control, cost, ..., call = call)
     )
   }
 
@@ -43,16 +44,3 @@ bagger_bridge <- function(processed, weights, base_model, seed, times, control,
     )
   res
 }
-
-validate_case_weights <- function(weights, data) {
-  if (is.null(weights)) {
-    return(invisible(NULL))
-  }
-  n <- nrow(data)
-  if (!is.vector(weights) || !is.numeric(weights) || length(weights) != n ||
-      any(weights < 0)) {
-    cli::cli_abort("'weights' should be a non-negative numeric vector with the same size as the data.")
-  }
-  invisible(NULL)
-}
-
diff --git a/R/cart.R b/R/cart.R
index c9aa131..e46929b 100644
--- a/R/cart.R
+++ b/R/cart.R
@@ -1,5 +1,5 @@
 
-cart_bagger <- function(rs, control, ...) {
+cart_bagger <- function(rs, control, ..., call) {
   opt <- rlang::dots_list(...)
   is_classif <- is.factor(rs$splits[[1]]$data$.outcome)
   mod_spec <- make_cart_spec(is_classif, opt)
@@ -19,7 +19,7 @@ cart_bagger <- function(rs, control, ...) {
       )
     )
 
-  rs <- check_for_disaster(rs)
+  rs <- check_for_disaster(rs, call = call)
 
   rs <- filter_rs(rs)
 
@@ -34,7 +34,7 @@ cart_bagger <- function(rs, control, ...) {
   if (control$reduce) {
     rs <-
       rs %>%
-      mutate(model = map(model, axe_cart))
+      dplyr::mutate(model = purrr::map(model, axe_cart))
   }
 
   list(model = rs, imp = imps)
diff --git a/R/constructor.R b/R/constructor.R
index 1856203..4fcddce 100644
--- a/R/constructor.R
+++ b/R/constructor.R
@@ -1,9 +1,12 @@
-new_bagger <- function(model_df, imp, control, cost, base_model, blueprint) {
+new_bagger <- function(model_df, imp, control, cost, base_model, blueprint,
+                       call = rlang::caller_env()) {
 
   if (!is_tibble(model_df)) {
-    cli::cli_abort("`model_df` should be a tibble.")
+    cli::cli_abort("{.arg model_df} should be a {.cls tibble}, not
+                   {obj_type_friendly(model_df)}.", call = call)
   }
 
+  # TODO extend to use mode from model object(s)
   if (is.numeric(blueprint$ptypes$outcomes[[1]])) {
     mod_mode <- "regression"
   } else {
diff --git a/R/cost_models.R b/R/cost_models.R
index 436d545..7eb53bf 100644
--- a/R/cost_models.R
+++ b/R/cost_models.R
@@ -1,9 +1,10 @@
-cost_matrix <- function(x, lvl, truth_is_row = TRUE) {
+cost_matrix <- function(x, lvl, truth_is_row = TRUE, call = rlang::caller_env()) {
   if (is.matrix(x)) {
 
   } else {
     if (length(lvl) != 2) {
-      cli::cli_abort("`cost` can only be a scalar when there are two levels.")
+      cli::cli_abort("{.arg cost} can only be a scalar when there are two
+                     levels.", call = call)
     } else {
       x0 <- x
       x <- matrix(1, ncol = 2, nrow = 2)
@@ -19,14 +20,14 @@ cost_matrix <- function(x, lvl, truth_is_row = TRUE) {
   x
 }
 
-cost_sens_cart_bagger <- function(rs, control, cost, ...) {
+cost_sens_cart_bagger <- function(rs, control, cost, ..., call = rlang::caller_env()) {
 
   # capture dots
   opt <- rlang::dots_list(...)
   nms <- names(opt)
   lvl <- levels(rs$splits[[1]]$data$.outcome)
 
-  cost <- cost_matrix(cost, lvl)
+  cost <- cost_matrix(cost, lvl, call = call)
 
   # Attach cost matrix to parms = list(loss) but first
   # check existing options passed by user for loss
@@ -36,22 +37,22 @@ cost_sens_cart_bagger <- function(rs, control, cost, ...) {
     opt$parms <- list(loss = cost)
   }
 
-  cart_bagger(rs = rs, control = control, !!!opt)
+  cart_bagger(rs = rs, control = control, call = call, !!!opt)
 }
 
 
 
-cost_sens_c5_bagger <- function(rs, control, cost, ...) {
+cost_sens_c5_bagger <- function(rs, control, cost, ..., call = rlang::caller_env()) {
 
   # capture dots
   opt <- rlang::dots_list(...)
   nms <- names(opt)
   lvl <- levels(rs$splits[[1]]$data$.outcome)
 
-  cost <- cost_matrix(cost, lvl, truth_is_row = FALSE)
+  cost <- cost_matrix(cost, lvl, truth_is_row = FALSE, call = call)
 
   # Attach cost matrix to options
   opt$costs <-  cost
 
-  c5_bagger(rs = rs, control = control, !!!opt)
+  c5_bagger(rs = rs, control = control, call = call, !!!opt)
 }
diff --git a/R/import-standalone-obj-type.R b/R/import-standalone-obj-type.R
new file mode 100644
index 0000000..646aa33
--- /dev/null
+++ b/R/import-standalone-obj-type.R
@@ -0,0 +1,363 @@
+# Standalone file: do not edit by hand
+# Source: <https://github.com/r-lib/rlang/blob/main/R/standalone-obj-type.R>
+# ----------------------------------------------------------------------
+#
+# ---
+# repo: r-lib/rlang
+# file: standalone-obj-type.R
+# last-updated: 2024-02-14
+# license: https://unlicense.org
+# imports: rlang (>= 1.1.0)
+# ---
+#
+# ## Changelog
+#
+# 2024-02-14:
+# - `obj_type_friendly()` now works for S7 objects.
+#
+# 2023-05-01:
+# - `obj_type_friendly()` now only displays the first class of S3 objects.
+#
+# 2023-03-30:
+# - `stop_input_type()` now handles `I()` input literally in `arg`.
+#
+# 2022-10-04:
+# - `obj_type_friendly(value = TRUE)` now shows numeric scalars
+#   literally.
+# - `stop_friendly_type()` now takes `show_value`, passed to
+#   `obj_type_friendly()` as the `value` argument.
+#
+# 2022-10-03:
+# - Added `allow_na` and `allow_null` arguments.
+# - `NULL` is now backticked.
+# - Better friendly type for infinities and `NaN`.
+#
+# 2022-09-16:
+# - Unprefixed usage of rlang functions with `rlang::` to
+#   avoid onLoad issues when called from rlang (#1482).
+#
+# 2022-08-11:
+# - Prefixed usage of rlang functions with `rlang::`.
+#
+# 2022-06-22:
+# - `friendly_type_of()` is now `obj_type_friendly()`.
+# - Added `obj_type_oo()`.
+#
+# 2021-12-20:
+# - Added support for scalar values and empty vectors.
+# - Added `stop_input_type()`
+#
+# 2021-06-30:
+# - Added support for missing arguments.
+#
+# 2021-04-19:
+# - Added support for matrices and arrays (#141).
+# - Added documentation.
+# - Added changelog.
+#
+# nocov start
+
+#' Return English-friendly type
+#' @param x Any R object.
+#' @param value Whether to describe the value of `x`. Special values
+#'   like `NA` or `""` are always described.
+#' @param length Whether to mention the length of vectors and lists.
+#' @return A string describing the type. Starts with an indefinite
+#'   article, e.g. "an integer vector".
+#' @noRd
+obj_type_friendly <- function(x, value = TRUE) {
+  if (is_missing(x)) {
+    return("absent")
+  }
+
+  if (is.object(x)) {
+    if (inherits(x, "quosure")) {
+      type <- "quosure"
+    } else {
+      type <- class(x)[[1L]]
+    }
+    return(sprintf("a <%s> object", type))
+  }
+
+  if (!is_vector(x)) {
+    return(.rlang_as_friendly_type(typeof(x)))
+  }
+
+  n_dim <- length(dim(x))
+
+  if (!n_dim) {
+    if (!is_list(x) && length(x) == 1) {
+      if (is_na(x)) {
+        return(switch(
+          typeof(x),
+          logical = "`NA`",
+          integer = "an integer `NA`",
+          double =
+            if (is.nan(x)) {
+              "`NaN`"
+            } else {
+              "a numeric `NA`"
+            },
+          complex = "a complex `NA`",
+          character = "a character `NA`",
+          .rlang_stop_unexpected_typeof(x)
+        ))
+      }
+
+      show_infinites <- function(x) {
+        if (x > 0) {
+          "`Inf`"
+        } else {
+          "`-Inf`"
+        }
+      }
+      str_encode <- function(x, width = 30, ...) {
+        if (nchar(x) > width) {
+          x <- substr(x, 1, width - 3)
+          x <- paste0(x, "...")
+        }
+        encodeString(x, ...)
+      }
+
+      if (value) {
+        if (is.numeric(x) && is.infinite(x)) {
+          return(show_infinites(x))
+        }
+
+        if (is.numeric(x) || is.complex(x)) {
+          number <- as.character(round(x, 2))
+          what <- if (is.complex(x)) "the complex number" else "the number"
+          return(paste(what, number))
+        }
+
+        return(switch(
+          typeof(x),
+          logical = if (x) "`TRUE`" else "`FALSE`",
+          character = {
+            what <- if (nzchar(x)) "the string" else "the empty string"
+            paste(what, str_encode(x, quote = "\""))
+          },
+          raw = paste("the raw value", as.character(x)),
+          .rlang_stop_unexpected_typeof(x)
+        ))
+      }
+
+      return(switch(
+        typeof(x),
+        logical = "a logical value",
+        integer = "an integer",
+        double = if (is.infinite(x)) show_infinites(x) else "a number",
+        complex = "a complex number",
+        character = if (nzchar(x)) "a string" else "\"\"",
+        raw = "a raw value",
+        .rlang_stop_unexpected_typeof(x)
+      ))
+    }
+
+    if (length(x) == 0) {
+      return(switch(
+        typeof(x),
+        logical = "an empty logical vector",
+        integer = "an empty integer vector",
+        double = "an empty numeric vector",
+        complex = "an empty complex vector",
+        character = "an empty character vector",
+        raw = "an empty raw vector",
+        list = "an empty list",
+        .rlang_stop_unexpected_typeof(x)
+      ))
+    }
+  }
+
+  vec_type_friendly(x)
+}
+
+vec_type_friendly <- function(x, length = FALSE) {
+  if (!is_vector(x)) {
+    abort("`x` must be a vector.")
+  }
+  type <- typeof(x)
+  n_dim <- length(dim(x))
+
+  add_length <- function(type) {
+    if (length && !n_dim) {
+      paste0(type, sprintf(" of length %s", length(x)))
+    } else {
+      type
+    }
+  }
+
+  if (type == "list") {
+    if (n_dim < 2) {
+      return(add_length("a list"))
+    } else if (is.data.frame(x)) {
+      return("a data frame")
+    } else if (n_dim == 2) {
+      return("a list matrix")
+    } else {
+      return("a list array")
+    }
+  }
+
+  type <- switch(
+    type,
+    logical = "a logical %s",
+    integer = "an integer %s",
+    numeric = ,
+    double = "a double %s",
+    complex = "a complex %s",
+    character = "a character %s",
+    raw = "a raw %s",
+    type = paste0("a ", type, " %s")
+  )
+
+  if (n_dim < 2) {
+    kind <- "vector"
+  } else if (n_dim == 2) {
+    kind <- "matrix"
+  } else {
+    kind <- "array"
+  }
+  out <- sprintf(type, kind)
+
+  if (n_dim >= 2) {
+    out
+  } else {
+    add_length(out)
+  }
+}
+
+.rlang_as_friendly_type <- function(type) {
+  switch(
+    type,
+
+    list = "a list",
+
+    NULL = "`NULL`",
+    environment = "an environment",
+    externalptr = "a pointer",
+    weakref = "a weak reference",
+    S4 = "an S4 object",
+
+    name = ,
+    symbol = "a symbol",
+    language = "a call",
+    pairlist = "a pairlist node",
+    expression = "an expression vector",
+
+    char = "an internal string",
+    promise = "an internal promise",
+    ... = "an internal dots object",
+    any = "an internal `any` object",
+    bytecode = "an internal bytecode object",
+
+    primitive = ,
+    builtin = ,
+    special = "a primitive function",
+    closure = "a function",
+
+    type
+  )
+}
+
+.rlang_stop_unexpected_typeof <- function(x, call = caller_env()) {
+  abort(
+    sprintf("Unexpected type <%s>.", typeof(x)),
+    call = call
+  )
+}
+
+#' Return OO type
+#' @param x Any R object.
+#' @return One of `"bare"` (for non-OO objects), `"S3"`, `"S4"`,
+#'   `"R6"`, or `"S7"`.
+#' @noRd
+obj_type_oo <- function(x) {
+  if (!is.object(x)) {
+    return("bare")
+  }
+
+  class <- inherits(x, c("R6", "S7_object"), which = TRUE)
+
+  if (class[[1]]) {
+    "R6"
+  } else if (class[[2]]) {
+    "S7"
+  } else if (isS4(x)) {
+    "S4"
+  } else {
+    "S3"
+  }
+}
+
+#' @param x The object type which does not conform to `what`. Its
+#'   `obj_type_friendly()` is taken and mentioned in the error message.
+#' @param what The friendly expected type as a string. Can be a
+#'   character vector of expected types, in which case the error
+#'   message mentions all of them in an "or" enumeration.
+#' @param show_value Passed to `value` argument of `obj_type_friendly()`.
+#' @param ... Arguments passed to [abort()].
+#' @inheritParams args_error_context
+#' @noRd
+stop_input_type <- function(x,
+                            what,
+                            ...,
+                            allow_na = FALSE,
+                            allow_null = FALSE,
+                            show_value = TRUE,
+                            arg = caller_arg(x),
+                            call = caller_env()) {
+  # From standalone-cli.R
+  cli <- env_get_list(
+    nms = c("format_arg", "format_code"),
+    last = topenv(),
+    default = function(x) sprintf("`%s`", x),
+    inherit = TRUE
+  )
+
+  if (allow_na) {
+    what <- c(what, cli$format_code("NA"))
+  }
+  if (allow_null) {
+    what <- c(what, cli$format_code("NULL"))
+  }
+  if (length(what)) {
+    what <- oxford_comma(what)
+  }
+  if (inherits(arg, "AsIs")) {
+    format_arg <- identity
+  } else {
+    format_arg <- cli$format_arg
+  }
+
+  message <- sprintf(
+    "%s must be %s, not %s.",
+    format_arg(arg),
+    what,
+    obj_type_friendly(x, value = show_value)
+  )
+
+  abort(message, ..., call = call, arg = arg)
+}
+
+oxford_comma <- function(chr, sep = ", ", final = "or") {
+  n <- length(chr)
+
+  if (n < 2) {
+    return(chr)
+  }
+
+  head <- chr[seq_len(n - 1)]
+  last <- chr[n]
+
+  head <- paste(head, collapse = sep)
+
+  # Write a or b. But a, b, or c.
+  if (n > 2) {
+    paste0(head, sep, final, " ", last)
+  } else {
+    paste0(head, " ", final, " ", last)
+  }
+}
+
+# nocov end
diff --git a/R/import-standalone-types-check.R b/R/import-standalone-types-check.R
new file mode 100644
index 0000000..1ca8399
--- /dev/null
+++ b/R/import-standalone-types-check.R
@@ -0,0 +1,553 @@
+# Standalone file: do not edit by hand
+# Source: <https://github.com/r-lib/rlang/blob/main/R/standalone-types-check.R>
+# ----------------------------------------------------------------------
+#
+# ---
+# repo: r-lib/rlang
+# file: standalone-types-check.R
+# last-updated: 2023-03-13
+# license: https://unlicense.org
+# dependencies: standalone-obj-type.R
+# imports: rlang (>= 1.1.0)
+# ---
+#
+# ## Changelog
+#
+# 2024-08-15:
+# - `check_character()` gains an `allow_na` argument (@martaalcalde, #1724)
+#
+# 2023-03-13:
+# - Improved error messages of number checkers (@teunbrand)
+# - Added `allow_infinite` argument to `check_number_whole()` (@mgirlich).
+# - Added `check_data_frame()` (@mgirlich).
+#
+# 2023-03-07:
+# - Added dependency on rlang (>= 1.1.0).
+#
+# 2023-02-15:
+# - Added `check_logical()`.
+#
+# - `check_bool()`, `check_number_whole()`, and
+#   `check_number_decimal()` are now implemented in C.
+#
+# - For efficiency, `check_number_whole()` and
+#   `check_number_decimal()` now take a `NULL` default for `min` and
+#   `max`. This makes it possible to bypass unnecessary type-checking
+#   and comparisons in the default case of no bounds checks.
+#
+# 2022-10-07:
+# - `check_number_whole()` and `_decimal()` no longer treat
+#   non-numeric types such as factors or dates as numbers.  Numeric
+#   types are detected with `is.numeric()`.
+#
+# 2022-10-04:
+# - Added `check_name()` that forbids the empty string.
+#   `check_string()` allows the empty string by default.
+#
+# 2022-09-28:
+# - Removed `what` arguments.
+# - Added `allow_na` and `allow_null` arguments.
+# - Added `allow_decimal` and `allow_infinite` arguments.
+# - Improved errors with absent arguments.
+#
+#
+# 2022-09-16:
+# - Unprefixed usage of rlang functions with `rlang::` to
+#   avoid onLoad issues when called from rlang (#1482).
+#
+# 2022-08-11:
+# - Added changelog.
+#
+# nocov start
+
+# Scalars -----------------------------------------------------------------
+
+.standalone_types_check_dot_call <- .Call
+
+check_bool <- function(x,
+                       ...,
+                       allow_na = FALSE,
+                       allow_null = FALSE,
+                       arg = caller_arg(x),
+                       call = caller_env()) {
+  if (!missing(x) && .standalone_types_check_dot_call(ffi_standalone_is_bool_1.0.7, x, allow_na, allow_null)) {
+    return(invisible(NULL))
+  }
+
+  stop_input_type(
+    x,
+    c("`TRUE`", "`FALSE`"),
+    ...,
+    allow_na = allow_na,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+check_string <- function(x,
+                         ...,
+                         allow_empty = TRUE,
+                         allow_na = FALSE,
+                         allow_null = FALSE,
+                         arg = caller_arg(x),
+                         call = caller_env()) {
+  if (!missing(x)) {
+    is_string <- .rlang_check_is_string(
+      x,
+      allow_empty = allow_empty,
+      allow_na = allow_na,
+      allow_null = allow_null
+    )
+    if (is_string) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "a single string",
+    ...,
+    allow_na = allow_na,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+.rlang_check_is_string <- function(x,
+                                   allow_empty,
+                                   allow_na,
+                                   allow_null) {
+  if (is_string(x)) {
+    if (allow_empty || !is_string(x, "")) {
+      return(TRUE)
+    }
+  }
+
+  if (allow_null && is_null(x)) {
+    return(TRUE)
+  }
+
+  if (allow_na && (identical(x, NA) || identical(x, na_chr))) {
+    return(TRUE)
+  }
+
+  FALSE
+}
+
+check_name <- function(x,
+                       ...,
+                       allow_null = FALSE,
+                       arg = caller_arg(x),
+                       call = caller_env()) {
+  if (!missing(x)) {
+    is_string <- .rlang_check_is_string(
+      x,
+      allow_empty = FALSE,
+      allow_na = FALSE,
+      allow_null = allow_null
+    )
+    if (is_string) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "a valid name",
+    ...,
+    allow_na = FALSE,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+IS_NUMBER_true <- 0
+IS_NUMBER_false <- 1
+IS_NUMBER_oob <- 2
+
+check_number_decimal <- function(x,
+                                 ...,
+                                 min = NULL,
+                                 max = NULL,
+                                 allow_infinite = TRUE,
+                                 allow_na = FALSE,
+                                 allow_null = FALSE,
+                                 arg = caller_arg(x),
+                                 call = caller_env()) {
+  if (missing(x)) {
+    exit_code <- IS_NUMBER_false
+  } else if (0 == (exit_code <- .standalone_types_check_dot_call(
+    ffi_standalone_check_number_1.0.7,
+    x,
+    allow_decimal = TRUE,
+    min,
+    max,
+    allow_infinite,
+    allow_na,
+    allow_null
+  ))) {
+    return(invisible(NULL))
+  }
+
+  .stop_not_number(
+    x,
+    ...,
+    exit_code = exit_code,
+    allow_decimal = TRUE,
+    min = min,
+    max = max,
+    allow_na = allow_na,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+check_number_whole <- function(x,
+                               ...,
+                               min = NULL,
+                               max = NULL,
+                               allow_infinite = FALSE,
+                               allow_na = FALSE,
+                               allow_null = FALSE,
+                               arg = caller_arg(x),
+                               call = caller_env()) {
+  if (missing(x)) {
+    exit_code <- IS_NUMBER_false
+  } else if (0 == (exit_code <- .standalone_types_check_dot_call(
+    ffi_standalone_check_number_1.0.7,
+    x,
+    allow_decimal = FALSE,
+    min,
+    max,
+    allow_infinite,
+    allow_na,
+    allow_null
+  ))) {
+    return(invisible(NULL))
+  }
+
+  .stop_not_number(
+    x,
+    ...,
+    exit_code = exit_code,
+    allow_decimal = FALSE,
+    min = min,
+    max = max,
+    allow_na = allow_na,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+.stop_not_number <- function(x,
+                             ...,
+                             exit_code,
+                             allow_decimal,
+                             min,
+                             max,
+                             allow_na,
+                             allow_null,
+                             arg,
+                             call) {
+  if (allow_decimal) {
+    what <- "a number"
+  } else {
+    what <- "a whole number"
+  }
+
+  if (exit_code == IS_NUMBER_oob) {
+    min <- min %||% -Inf
+    max <- max %||% Inf
+
+    if (min > -Inf && max < Inf) {
+      what <- sprintf("%s between %s and %s", what, min, max)
+    } else if (x < min) {
+      what <- sprintf("%s larger than or equal to %s", what, min)
+    } else if (x > max) {
+      what <- sprintf("%s smaller than or equal to %s", what, max)
+    } else {
+      abort("Unexpected state in OOB check", .internal = TRUE)
+    }
+  }
+
+  stop_input_type(
+    x,
+    what,
+    ...,
+    allow_na = allow_na,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+check_symbol <- function(x,
+                         ...,
+                         allow_null = FALSE,
+                         arg = caller_arg(x),
+                         call = caller_env()) {
+  if (!missing(x)) {
+    if (is_symbol(x)) {
+      return(invisible(NULL))
+    }
+    if (allow_null && is_null(x)) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "a symbol",
+    ...,
+    allow_na = FALSE,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+check_arg <- function(x,
+                      ...,
+                      allow_null = FALSE,
+                      arg = caller_arg(x),
+                      call = caller_env()) {
+  if (!missing(x)) {
+    if (is_symbol(x)) {
+      return(invisible(NULL))
+    }
+    if (allow_null && is_null(x)) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "an argument name",
+    ...,
+    allow_na = FALSE,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+check_call <- function(x,
+                       ...,
+                       allow_null = FALSE,
+                       arg = caller_arg(x),
+                       call = caller_env()) {
+  if (!missing(x)) {
+    if (is_call(x)) {
+      return(invisible(NULL))
+    }
+    if (allow_null && is_null(x)) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "a defused call",
+    ...,
+    allow_na = FALSE,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+check_environment <- function(x,
+                              ...,
+                              allow_null = FALSE,
+                              arg = caller_arg(x),
+                              call = caller_env()) {
+  if (!missing(x)) {
+    if (is_environment(x)) {
+      return(invisible(NULL))
+    }
+    if (allow_null && is_null(x)) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "an environment",
+    ...,
+    allow_na = FALSE,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+check_function <- function(x,
+                           ...,
+                           allow_null = FALSE,
+                           arg = caller_arg(x),
+                           call = caller_env()) {
+  if (!missing(x)) {
+    if (is_function(x)) {
+      return(invisible(NULL))
+    }
+    if (allow_null && is_null(x)) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "a function",
+    ...,
+    allow_na = FALSE,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+check_closure <- function(x,
+                          ...,
+                          allow_null = FALSE,
+                          arg = caller_arg(x),
+                          call = caller_env()) {
+  if (!missing(x)) {
+    if (is_closure(x)) {
+      return(invisible(NULL))
+    }
+    if (allow_null && is_null(x)) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "an R function",
+    ...,
+    allow_na = FALSE,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+check_formula <- function(x,
+                          ...,
+                          allow_null = FALSE,
+                          arg = caller_arg(x),
+                          call = caller_env()) {
+  if (!missing(x)) {
+    if (is_formula(x)) {
+      return(invisible(NULL))
+    }
+    if (allow_null && is_null(x)) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "a formula",
+    ...,
+    allow_na = FALSE,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+
+# Vectors -----------------------------------------------------------------
+
+# TODO: Figure out what to do with logical `NA` and `allow_na = TRUE`
+
+check_character <- function(x,
+                            ...,
+                            allow_na = TRUE,
+                            allow_null = FALSE,
+                            arg = caller_arg(x),
+                            call = caller_env()) {
+
+  if (!missing(x)) {
+    if (is_character(x)) {
+      if (!allow_na && any(is.na(x))) {
+        abort(
+          sprintf("`%s` can't contain NA values.", arg),
+          arg = arg,
+          call = call
+        )
+      }
+
+      return(invisible(NULL))
+    }
+
+    if (allow_null && is_null(x)) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "a character vector",
+    ...,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+check_logical <- function(x,
+                          ...,
+                          allow_null = FALSE,
+                          arg = caller_arg(x),
+                          call = caller_env()) {
+  if (!missing(x)) {
+    if (is_logical(x)) {
+      return(invisible(NULL))
+    }
+    if (allow_null && is_null(x)) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "a logical vector",
+    ...,
+    allow_na = FALSE,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+check_data_frame <- function(x,
+                             ...,
+                             allow_null = FALSE,
+                             arg = caller_arg(x),
+                             call = caller_env()) {
+  if (!missing(x)) {
+    if (is.data.frame(x)) {
+      return(invisible(NULL))
+    }
+    if (allow_null && is_null(x)) {
+      return(invisible(NULL))
+    }
+  }
+
+  stop_input_type(
+    x,
+    "a data frame",
+    ...,
+    allow_null = allow_null,
+    arg = arg,
+    call = call
+  )
+}
+
+# nocov end
diff --git a/R/mars.R b/R/mars.R
index ff871ea..4f5c480 100644
--- a/R/mars.R
+++ b/R/mars.R
@@ -1,5 +1,5 @@
 
-mars_bagger <- function(rs, control, ...) {
+mars_bagger <- function(rs, control, ..., call) {
 
   opt <- rlang::dots_list(...)
   is_classif <- is.factor(rs$splits[[1]]$data$.outcome)
@@ -18,7 +18,7 @@ mars_bagger <- function(rs, control, ...) {
       control = control
     ))
 
-  rs <- check_for_disaster(rs)
+  rs <- check_for_disaster(rs, call = call)
 
   rs <- filter_rs(rs)
 
@@ -33,7 +33,7 @@ mars_bagger <- function(rs, control, ...) {
   if (control$reduce) {
     rs <-
      rs %>%
-      mutate(model = map(model, axe_mars))
+      dplyr::mutate(model = purrr::map(model, axe_mars))
   }
 
   list(model = rs, imp = imps)
diff --git a/R/misc.R b/R/misc.R
index 6d3c66a..276a6c2 100644
--- a/R/misc.R
+++ b/R/misc.R
@@ -27,10 +27,10 @@ compute_imp <- function(rs, .fn, compute) {
           used = length(predictor)
         ) %>%
         dplyr::select(-sds) %>%
-        dplyr::arrange(desc(value)) %>%
+        dplyr::arrange(dplyr::desc(value)) %>%
         dplyr::rename(term = predictor)
     } else {
-      imps <- tibble(
+      imps <- tibble::tibble(
         term = character(0),
         value = numeric(0),
         std.error = numeric(0),
@@ -48,7 +48,7 @@ compute_imp <- function(rs, .fn, compute) {
 
 extractor <- function(rs, extract) {
   if (!is.null(extract)) {
-    rs <- rs %>% dplyr::mutate(extras = map(model, ~ extract(.x$fit)))
+    rs <- rs %>% dplyr::mutate(extras = purrr::map(model, ~ extract(.x$fit)))
   }
   rs
 }
@@ -84,9 +84,9 @@ down_sampler <- function(x) {
 
   min_n <- min(table(x$.outcome))
   x %>%
-    group_by(.outcome) %>%
-    sample_n(size = min_n, replace = TRUE) %>%
-    ungroup()
+    dplyr::group_by(.outcome) %>%
+    dplyr::sample_n(size = min_n, replace = TRUE) %>%
+    dplyr::ungroup()
 }
 
 
@@ -112,7 +112,7 @@ replaced <- function(x, replacement) {
 replace_parsnip_terms <- function(x) {
   new_terms <- butcher::axe_env(x$model[[1]]$preproc$terms)
   x <- x %>%
-    mutate(model = map(model, replaced, replacement = new_terms))
+    dplyr::mutate(model = purrr::map(model, replaced, replacement = new_terms))
   x
 }
 
@@ -121,12 +121,9 @@ replace_parsnip_terms <- function(x) {
 # fix column names (see https://github.com/tidymodels/parsnip/issues/263)
 
 fix_column_names <- function(result, object) {
-  # print("# ------------------------------------------------------------------------------\n")
-  # print(head(result))
   nms <- colnames(result)
   nms <- gsub(".pred_", "", nms, fixed = TRUE)
   result <- setNames(result, nms)
-  # print(head(result))
   result
 }
 
diff --git a/R/nnet.R b/R/nnet.R
index 423eaa2..3a820f5 100644
--- a/R/nnet.R
+++ b/R/nnet.R
@@ -1,5 +1,5 @@
 
-nnet_bagger <- function(rs, control, ...) {
+nnet_bagger <- function(rs, control, ..., call) {
   opt <- rlang::dots_list(...)
   is_classif <- is.factor(rs$splits[[1]]$data$.outcome)
   mod_spec <- make_nnet_spec(is_classif, opt)
@@ -19,7 +19,7 @@ nnet_bagger <- function(rs, control, ...) {
       )
     )
 
-  rs <- check_for_disaster(rs)
+  rs <- check_for_disaster(rs, call = call)
 
   rs <- filter_rs(rs)
 
@@ -34,7 +34,7 @@ nnet_bagger <- function(rs, control, ...) {
   if (control$reduce) {
     rs <-
       rs %>%
-      mutate(model = map(model, axe_nnet))
+      dplyr::mutate(model = purrr::map(model, axe_nnet))
   }
 
   list(model = rs, imp = imps)
diff --git a/R/out-of-bag.R b/R/out-of-bag.R
index f9d11b7..119de15 100644
--- a/R/out-of-bag.R
+++ b/R/out-of-bag.R
@@ -48,7 +48,7 @@ compute_oob <- function(rs, oob) {
       purrr::map2_dfr(rs$model, rs$splits, .fn, met = oob) %>%
       dplyr::group_by(.metric, .estimator) %>%
       dplyr::summarize(.estimate = mean(.estimate, na.rm = TRUE)) %>%
-      mutate(.estimator = "out-of-bag") %>%
+      dplyr::mutate(.estimator = "out-of-bag") %>%
       dplyr::ungroup()
   } else {
     oob <- NULL
diff --git a/R/reexports.R b/R/reexports.R
deleted file mode 100644
index f4d6abe..0000000
--- a/R/reexports.R
+++ /dev/null
@@ -1,10 +0,0 @@
-#' @keywords internal
-"_PACKAGE"
-
-#' @importFrom magrittr %>%
-#' @export
-magrittr::`%>%`
-
-#' @importFrom generics var_imp
-#' @export
-generics::var_imp
diff --git a/R/validate.R b/R/validate.R
new file mode 100644
index 0000000..ec42b6c
--- /dev/null
+++ b/R/validate.R
@@ -0,0 +1,159 @@
+#' @include import-standalone-types-check.R
+validate_args <- function(model, times, control, cost, call = rlang::caller_env()) {
+  model <- rlang::arg_match(model, baguette_models, error_arg = "base_model",
+                            error_call = call)
+
+  if (!is.null(cost) & !(model %in% c("CART", "C5.0"))) {
+    cli::cli_abort("When using misclassification costs, {.arg base_model} should
+                    be either {.val CART} or {.val C5.0}, not
+                   {obj_type_friendly(model)}.", call = call)
+  }
+  if (!is.matrix(cost)) {
+    check_number_decimal(cost, allow_null = TRUE, min = 0, call = call)
+  } else {
+    is_sq <- nrow(cost) == ncol(cost)
+    if (!is.numeric(cost) || !is_sq) {
+      cli::cli_abort("If {.arg cost} is a matrix, is must be numeric and square.",
+                     call = call)
+    }
+  }
+
+  check_number_whole(times, min = 2, call = call)
+
+  validate_control(control, call = call)
+
+  invisible(TRUE)
+
+}
+
+integer_B <- function(B) {
+  if (is.double(B)) {
+    B <- as.integer(B)
+  }
+  B
+}
+
+# ------------------------------------------------------------------------------
+
+validate_y_type <- function(base_model, outcomes) {
+  hardhat::validate_outcomes_are_univariate(outcomes)
+
+  if (base_model == "C5.0") {
+    hardhat::validate_outcomes_are_factors(outcomes)
+  }
+
+}
+
+# ------------------------------------------------------------------------------
+
+model_failure <- function(x) {
+  if (inherits(x, "model_fit")) {
+    res <- inherits(x$fit, "try-error")
+  } else {
+    res <- inherits(x, "try-error")
+  }
+  res
+}
+
+check_for_disaster <- function(x, call = rlang::caller_env()) {
+  x <- dplyr::mutate(x, passed = !purrr::map_lgl(model, model_failure))
+
+  if (sum(x$passed) == 0) {
+    if (inherits(x$model[[1]], "try-error")) {
+      msg <- as.character(x$model[[1]])
+    } else {
+      if (inherits(x$model[[1]], "model_fit")) {
+        msg <- as.character(x$model[[1]]$fit)
+      } else msg <- NA
+    }
+
+    if (!is.na(msg)) {
+      # escape any brackets in the error message
+      msg <- cli::format_error("{msg}")
+      cli::cli_abort(
+        c("All of the models failed. Example:", "x" = "{msg}"),
+        call = call
+      )
+    } else {
+      cli::cli_abort("All of the models failed.", call = call)
+    }
+  }
+  x
+}
+
+# ------------------------------------------------------------------------------
+
+check_type <- function(object, type, call = rlang::caller_env()) {
+  model_type <- object$base_model[2]
+  model_modes <- parsnip::get_from_env("modes")
+  if (is.null(type)) {
+    if (model_type == "classification") {
+      type <- "class"
+    } else if (model_type == "regression") {
+      type <- "numeric"
+    }
+  } else {
+    if (model_type == "classification") {
+      type <- rlang::arg_match(type, c("class", "prob"), error_call = call)
+    } else if (model_type == "regression") {
+      type <- rlang::arg_match(type, c("numeric"), error_call = call)
+    } else {
+      cli::cli_abort("Model mode {.val {model_type}} is not allowed
+                     Possible values are {.or {.val {model_modes}}}.",
+                     call = call)
+    }
+  }
+  type
+}
+
+validate_importance <- function(x, call = rlang::caller_env()) {
+  if (is.null(x)) {
+    return(x)
+  }
+
+  if (!is_tibble(x)) {
+    cli::cli_abort("Imprtance score results should be a tibble, not
+                   {obj_type_friendly(x)}.", call = call)
+  }
+
+  exp_cols <- c("term", "value", "std.error", "used")
+  if (!isTRUE(all.equal(exp_cols, names(x)))) {
+    cli::cli_abort("Importance columns should be: {.val {exp_cols}}.", call = call)
+  }
+  x
+}
+
+# ------------------------------------------------------------------------------
+
+validate_control <- function(x, call = rlang::caller_env()) {
+  if (!is.list(x)) {
+    cli::cli_abort("The control object should be a list created by
+                   {.fn control_bag}, not {obj_type_friendly(x)}.", call = call)
+  }
+
+  check_bool(x$var_imp, arg = "var_imp", call = call)
+  check_bool(x$allow_parallel, arg = "allow_parallel", call = call)
+  x$sampling <- rlang::arg_match0(x$sampling, c("none", "down"),
+                                  arg_nm = "sampling", error_call = call)
+  check_bool(x$reduce, arg = "reduce", call = call)
+  check_function(x$extract, allow_null = TRUE, arg = "extract", call = call)
+
+  x
+}
+
+# ------------------------------------------------------------------------------
+
+validate_case_weights <- function(weights, data, call = rlang::caller_env()) {
+  if (is.null(weights)) {
+    return(invisible(NULL))
+  }
+  n <- nrow(data)
+  if (!is.vector(weights) || !is.numeric(weights) || length(weights) != n ||
+      any(weights < 0)) {
+    cli::cli_abort("{.arg weights} should be a non-negative numeric vector
+                    with the same size as the data, not
+                   {obj_type_friendly(weights)}.", call = call)
+  }
+  invisible(NULL)
+}
+
diff --git a/R/zzz.R b/R/zzz.R
new file mode 100644
index 0000000..0433e53
--- /dev/null
+++ b/R/zzz.R
@@ -0,0 +1,14 @@
+# nocov start
+
+# The functions below define the model information. These access the model
+# environment inside of parsnip so they have to be executed once parsnip has
+# been loaded.
+
+.onLoad <- function(libname, pkgname) {
+  # This defines model functions in the parsnip model database
+  make_bag_tree()
+  make_bag_mars()
+  make_bag_mlp()
+}
+
+# nocov end
diff --git a/baguette.Rproj b/baguette.Rproj
index 30e02be..02c8484 100644
--- a/baguette.Rproj
+++ b/baguette.Rproj
@@ -1,4 +1,5 @@
 Version: 1.0
+ProjectId: 4ba56cb3-ec77-4889-8c98-730456024b05
 
 RestoreWorkspace: No
 SaveWorkspace: No
diff --git a/man/bagger.Rd b/man/bagger.Rd
index 224c31a..8364909 100644
--- a/man/bagger.Rd
+++ b/man/bagger.Rd
@@ -75,7 +75,7 @@ samples/ensemble members (some model fits might fail).}
 
 \item{control}{A list of options generated by \code{control_bag()}.}
 
-\item{cost}{A non-negative scale (for two class problems) or a cost matrix.}
+\item{cost}{A non-negative scale (for two class problems) or a square cost matrix.}
 
 \item{formula}{An object of class "formula" (or one that can be coerced to
 that class): a symbolic description of the model to be fitted. Note that
diff --git a/man/baguette-package.Rd b/man/baguette-package.Rd
index ca00654..a755281 100644
--- a/man/baguette-package.Rd
+++ b/man/baguette-package.Rd
@@ -1,13 +1,16 @@
 % Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/reexports.R
+% Please edit documentation in R/baguette-package.R
 \docType{package}
 \name{baguette-package}
-\alias{baguette}
 \alias{baguette-package}
 \title{baguette: Efficient Model Functions for Bagging}
 \description{
 \if{html}{\figure{logo.png}{options: style='float: right' alt='logo' width='120'}}
 
+Tree- and rule-based models can be bagged (\doi{10.1007/BF00058655}) using this package and their predictions equations are stored in an efficient format to reduce the model objects size and speed.
+
+\if{html}{\figure{logo.png}{options: style='float: right' alt='logo' width='120'}}
+
 Tree- and rule-based models can be bagged (\doi{10.1007/BF00058655}) using this package and their predictions equations are stored in an efficient format to reduce the model objects size and speed.
 }
 \seealso{
@@ -18,6 +21,14 @@ Useful links:
   \item Report bugs at \url{https://github.com/tidymodels/baguette/issues}
 }
 
+
+Useful links:
+\itemize{
+  \item \url{https://baguette.tidymodels.org}
+  \item \url{https://github.com/tidymodels/baguette}
+  \item Report bugs at \url{https://github.com/tidymodels/baguette/issues}
+}
+
 }
 \author{
 \strong{Maintainer}: Max Kuhn \email{max@posit.co} (\href{https://orcid.org/0000-0003-2402-136X}{ORCID})
diff --git a/man/reexports.Rd b/man/reexports.Rd
index 991e371..4e64029 100644
--- a/man/reexports.Rd
+++ b/man/reexports.Rd
@@ -1,5 +1,5 @@
 % Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/reexports.R
+% Please edit documentation in R/baguette-package.R
 \docType{import}
 \name{reexports}
 \alias{reexports}
diff --git a/tests/testthat/_snaps/validation.md b/tests/testthat/_snaps/validation.md
index 78278db..c864cef 100644
--- a/tests/testthat/_snaps/validation.md
+++ b/tests/testthat/_snaps/validation.md
@@ -1,4 +1,232 @@
+# bad values
+
+    Code
+      baguette:::validate_args(model = "mars", times = 5L, control = control_bag(),
+      cost = NULL)
+    Condition
+      Error:
+      ! `base_model` must be one of "CART", "C5.0", "MARS", or "nnet", not "mars".
+      i Did you mean "MARS"?
+
+---
+
+    Code
+      baguette:::validate_args(model = "MARS", times = 1, control = control_bag(),
+      cost = NULL)
+    Condition
+      Error:
+      ! `times` must be a whole number larger than or equal to 2, not the number 1.
+
+---
+
+    Code
+      baguette:::validate_args(model = "MARS", times = -1L, control = control_bag(),
+      cost = NULL)
+    Condition
+      Error:
+      ! `times` must be a whole number larger than or equal to 2, not the number -1.
+
+---
+
+    Code
+      baguette:::validate_args(model = "MARS", times = 5L, control = 2, cost = NULL)
+    Condition
+      Error:
+      ! The control object should be a list created by `control_bag()`, not the number 2.
+
+---
+
+    Code
+      bagger(Sepal.Length ~ ., data = iris, times = 2L, base_model = "CART", cost = 2)
+    Condition
+      Error in `bagger()`:
+      ! `cost` can only be a scalar when there are two levels.
+
+# wrong y for C5
+
+    Code
+      bagger(Sepal.Length ~ ., data = iris, times = 2L, base_model = "C5.0")
+    Condition
+      Error in `validate_outcomes_are_factors()`:
+      ! All outcomes must be factors.
+      i The following is not:
+      "Sepal.Length": <numeric>
+
+# validate imps
+
+    Code
+      baguette:::validate_importance(tibble::tibble(terms = letters[1:2], value = 1:2,
+      std.error = 1:2))
+    Condition
+      Error:
+      ! Importance columns should be: "term", "value", "std.error", and "used".
+
+---
+
+    Code
+      baguette:::validate_importance(data.frame(term = letters[1:2], value = 1:2,
+      std.error = 1:2))
+    Condition
+      Error:
+      ! Imprtance score results should be a tibble, not a <data.frame> object.
+
 # bad inputs
 
-    `type` should be either 'class' or 'prob'
+    Code
+      bagger(mpg ~ ., data = mtcars, base_model = letters[1:2])
+    Condition
+      Error in `bagger()`:
+      ! `base_model` must be one of "CART", "C5.0", "MARS", or "nnet", not "a".
+
+---
+
+    Code
+      bagger(mpg ~ ., data = mtcars, base_model = "MARS", cost = 2)
+    Condition
+      Error in `bagger()`:
+      ! When using misclassification costs, `base_model` should be either "CART" or "C5.0", not the string "MARS".
+
+---
+
+    Code
+      bagger(mpg ~ ., data = mtcars, base_model = "CART", cost = -2)
+    Condition
+      Error in `bagger()`:
+      ! `cost` must be a number larger than or equal to 0 or `NULL`, not the number -2.
+
+---
+
+    Code
+      bagger(mpg ~ ., data = mtcars, base_model = "CART", cost = matrix(1, ncol = 2,
+        nrow = 1))
+    Condition
+      Error in `bagger()`:
+      ! If `cost` is a matrix, is must be numeric and square.
+
+---
+
+    Code
+      bagger(mpg ~ ., data = mtcars, base_model = "MARS", control = control_bag(
+        extract = 2))
+    Condition
+      Error in `control_bag()`:
+      ! `extract` must be a function or `NULL`, not the number 2.
+
+---
+
+    Code
+      bagger(mpg ~ ., data = mtcars, base_model = "C5.0")
+    Condition
+      Error in `validate_outcomes_are_factors()`:
+      ! All outcomes must be factors.
+      i The following is not:
+      "mpg": <numeric>
+
+---
+
+    Code
+      bagger(wt + mpg ~ ., data = mtcars, base_model = "MARS")
+    Condition
+      Error in `validate_outcomes_are_univariate()`:
+      ! The outcome must be univariate, but 2 columns were found.
+
+---
+
+    Code
+      predict(bagger(mpg ~ ., data = mtcars, base_model = "MARS"), mtcars[1:2, -1],
+      type = "potato")
+    Condition
+      Error in `predict()`:
+      ! `type` must be one of "numeric", not "potato".
+
+---
+
+    Code
+      set.seed(3983)
+      predict(bagger(Class ~ ., data = two_class_dat, base_model = "MARS"),
+      two_class_dat[1:2, -3], type = "topepo")
+    Condition
+      Warning:
+      There were 2 warnings in `dplyr::mutate()`.
+      The first warning was:
+      i In argument: `model = iter(...)`.
+      Caused by warning:
+      ! glm.fit: fitted probabilities numerically 0 or 1 occurred
+      i Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.
+      Error in `predict()`:
+      ! `type` must be one of "class" or "prob", not "topepo".
+
+# model failures inputs
+
+    Code
+      set.seed(459394)
+      bagger(a ~ ., data = bad_iris, base_model = "CART", times = 3)
+    Condition
+      Error in `bagger()`:
+      ! All of the models failed. Example:
+      x Error in cbind(yval2, yprob, nodeprob) : number of rows of matrices must match (see arg 2)
+
+# control inputs
+
+    Code
+      control_bag(reduce = 1:2)
+    Condition
+      Error in `control_bag()`:
+      ! `reduce` must be `TRUE` or `FALSE`, not an integer vector.
+
+---
+
+    Code
+      control_bag(reduce = 1)
+    Condition
+      Error in `control_bag()`:
+      ! `reduce` must be `TRUE` or `FALSE`, not the number 1.
+
+---
+
+    Code
+      control_bag(sampling = rep("none", 2))
+    Condition
+      Error in `control_bag()`:
+      ! `arg` must be length 1 or a permutation of `c("none", "down")`.
+
+---
+
+    Code
+      control_bag(sampling = 1)
+    Condition
+      Error in `control_bag()`:
+      ! `sampling` must be a string or character vector.
+
+---
+
+    Code
+      control_bag(allow_parallel = 1:2)
+    Condition
+      Error in `control_bag()`:
+      ! `allow_parallel` must be `TRUE` or `FALSE`, not an integer vector.
+
+---
+
+    Code
+      control_bag(allow_parallel = 1)
+    Condition
+      Error in `control_bag()`:
+      ! `allow_parallel` must be `TRUE` or `FALSE`, not the number 1.
+
+---
+
+    Code
+      control_bag(var_imp = 1:2)
+    Condition
+      Error in `control_bag()`:
+      ! `var_imp` must be `TRUE` or `FALSE`, not an integer vector.
+
+---
+
+    Code
+      control_bag(var_imp = 1)
+    Condition
+      Error in `control_bag()`:
+      ! `var_imp` must be `TRUE` or `FALSE`, not the number 1.
 
diff --git a/tests/testthat/test-validation.R b/tests/testthat/test-validation.R
index a871251..6811cef 100644
--- a/tests/testthat/test-validation.R
+++ b/tests/testthat/test-validation.R
@@ -1,86 +1,97 @@
 test_that('good values', {
-  expect_error(
+  expect_no_error(
     baguette:::validate_args(
       model = "MARS",
       times = 5L,
       control = control_bag(),
       cost = NULL
-    ),
-    regexp = NA
+    )
   )
 })
 
 test_that('bad values', {
-  expect_error(
+  expect_snapshot(
     baguette:::validate_args(
       model = "mars",
       times = 5L,
       control = control_bag(),
-      cost = NULL
-    ),
-    regexp = "`base_model`",
-    class = "rlang_error"
+      cost = NULL),
+    error = TRUE
   )
-  expect_error(
+
+  expect_snapshot(
     baguette:::validate_args(
       model = "MARS",
       times = 1,
       control = control_bag(),
       cost = NULL
     ),
-    regexp = "integer"
+    error = TRUE
   )
-  expect_error(
+
+  expect_snapshot(
     baguette:::validate_args(
       model = "MARS",
       times = -1L,
       control = control_bag(),
       cost = NULL
     ),
-    regexp = "integer"
+    error = TRUE
   )
-  expect_error(
+
+  expect_snapshot(
     baguette:::validate_args(
       model = "MARS",
       times = 5L,
       control = 2,
       cost = NULL
     ),
-    regexp = "should be a list"
+    error = TRUE
   )
-  expect_error(
-    bagger(Sepal.Length ~ ., data = iris, times = 2L, base_model = "CART", cost = 2),
-    regexp = "`cost` can only be a scalar"
+
+  expect_snapshot(
+    bagger(
+      Sepal.Length ~ .,
+      data = iris,
+      times = 2L,
+      base_model = "CART",
+      cost = 2
+    ),
+    error = TRUE
   )
+
 })
 
 # ------------------------------------------------------------------------------
 
 test_that('wrong y for C5', {
-  expect_error(
+  skip_if_not_installed("hardhat", minimum_version = "1.4.0.9002")
+  expect_snapshot(
     bagger(Sepal.Length ~ ., data = iris, times = 2L, base_model = "C5.0"),
-    regexp = "must be factors"
+    error = TRUE
   )
 })
 
 # ------------------------------------------------------------------------------
 
 test_that('validate imps', {
-  expect_error(
+
+  expect_snapshot(
     baguette:::validate_importance(
       tibble::tibble(
         terms = letters[1:2],
         value = 1:2,
         std.error = 1:2
       )
-    )
+    ),
+    error = TRUE
   )
-  expect_error(
+
+  expect_snapshot(
     baguette:::validate_importance(
-      data.frame(term = letters[1:2],
-                 value = 1:2,
-                 std.error = 1:2)
-    )
+      data.frame(term = letters[1:2], value = 1:2, std.error = 1:2)
+    ),
+    error = TRUE
   )
 })
 
@@ -89,50 +100,73 @@ test_that('validate imps', {
 test_that('bad inputs', {
   skip_if_not_installed("earth")
   skip_if_not_installed("modeldata")
+  skip_if_not_installed("hardhat", minimum_version = "1.4.0.9002")
 
-  expect_error(
+  expect_snapshot(
     bagger(mpg ~ ., data = mtcars, base_model = letters[1:2]),
-    "should be a single character value."
+    error = TRUE
   )
-  expect_error(
+
+  expect_snapshot(
     bagger(mpg ~ ., data = mtcars, base_model = "MARS", cost = 2),
-    "should be either 'CART' or 'C5.0'"
+    error = TRUE
   )
-  expect_error(
+
+  expect_snapshot(
     bagger(mpg ~ ., data = mtcars, base_model = "CART", cost = -2),
-    "`cost` should be non-negative"
+    error = TRUE
   )
-  expect_error(
-    bagger(mpg ~ ., data = mtcars, base_model = "CART", cost = matrix(-2, ncol = 2, nrow = 2)),
-    "`cost` should be non-negative"
+
+  expect_snapshot(
+    bagger(
+      mpg ~ .,
+      data = mtcars,
+      base_model = "CART",
+      cost = matrix(1, ncol = 2, nrow = 1)
+    ),
+    error = TRUE
   )
-  expect_error(
-    bagger(mpg ~ ., data = mtcars, base_model = "MARS", control = control_bag(extract = 2)),
-    "`extract` should be NULL or a function"
+
+  expect_snapshot(
+    bagger(
+      mpg ~ .,
+      data = mtcars,
+      base_model = "MARS",
+      control = control_bag(extract = 2)
+    ),
+    error = TRUE
   )
-  expect_error(
+
+  expect_snapshot(
     bagger(mpg ~ ., data = mtcars, base_model = "C5.0"),
-    "All outcomes must be factors, but the following are not"
+    error = TRUE
   )
-  expect_error(
+
+  expect_snapshot(
     bagger(wt + mpg ~ ., data = mtcars, base_model = "MARS"),
-    "The outcome must be univariate"
+    error = TRUE
   )
-  expect_error(
+
+  expect_snapshot(
     predict(bagger(mpg ~ ., data = mtcars, base_model = "MARS"),
             mtcars[1:2, -1],
             type = "potato"),
-    "`type` should be 'numeric'"
+    error = TRUE
   )
+
   if (compareVersion(as.character(getRversion()), "3.6.0") > 0) {
     expect_warning(RNGkind(sample.kind = "Rounding"))
   }
-  set.seed(3983)
-  expect_snapshot_error(
-      predict(bagger(Class ~ ., data = two_class_dat, base_model = "MARS"),
-              two_class_dat[1:2, -3],
-              type = "topepo"),
-    )
+
+  expect_snapshot({
+    set.seed(3983)
+    predict(bagger(Class ~ ., data = two_class_dat, base_model = "MARS"),
+            two_class_dat[1:2, -3],
+            type = "topepo")
+  },
+  error = TRUE
+  )
+
 })
 
 # ------------------------------------------------------------------------------
@@ -144,48 +178,57 @@ test_that('model failures inputs', {
   if (compareVersion(as.character(getRversion()), "3.6.0") > 0) {
     expect_warning(RNGkind(sample.kind = "Rounding"))
   }
-  set.seed(459394)
-  expect_error(
-    bagger(a ~ ., data = bad_iris, base_model = "CART", times = 3),
-    "All of the models failed"
-  )
 
+  expect_snapshot({
+    set.seed(459394)
+    bagger(a ~ ., data = bad_iris, base_model = "CART", times = 3)
+  },
+  error = TRUE
+  )
 })
 
-
 # ------------------------------------------------------------------------------
 
 test_that('control inputs', {
-  expect_error(
-    control_bag(var_imp = 1),
-    "`var_imp` should be a single logical value."
-  )
-  expect_error(
-    control_bag(var_imp = 1:2),
-    "`var_imp` should be a single logical value."
+
+  expect_snapshot(
+    control_bag(reduce = 1:2),
+    error = TRUE
   )
-  expect_error(
-    control_bag(allow_parallel = 1),
-    "`allow_parallel` should be a single logical value."
+
+  expect_snapshot(
+    control_bag(reduce = 1),
+    error = TRUE
   )
-  expect_error(
-    control_bag(allow_parallel = 1:2),
-    "`allow_parallel` should be a single logical value."
+
+  expect_snapshot(
+    control_bag(sampling = rep("none", 2)),
+    error = TRUE
   )
-  expect_error(
+
+  expect_snapshot(
     control_bag(sampling = 1),
-    "`sampling` should be either 'none' or 'down'"
+    error = TRUE
   )
-  expect_error(
-    control_bag(sampling = rep("none", 2)),
-    "`sampling` should be either 'none' or 'down'"
+
+  expect_snapshot(
+    control_bag(allow_parallel = 1:2),
+    error = TRUE
   )
-  expect_error(
-    control_bag(reduce = 1),
-    "`reduce` should be a single logical value."
+
+  expect_snapshot(
+    control_bag(allow_parallel = 1),
+    error = TRUE
   )
-  expect_error(
-    control_bag(reduce = 1:2),
-    "`reduce` should be a single logical value."
+
+  expect_snapshot(
+    control_bag(var_imp = 1:2),
+    error = TRUE
   )
+
+  expect_snapshot(
+    control_bag(var_imp = 1),
+    error = TRUE
+  )
+
 })