-
Notifications
You must be signed in to change notification settings - Fork 8
/
Generator.py
379 lines (328 loc) · 14.7 KB
/
Generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from calendar import c
import copy
from pyexpat import model
from typing import List, Optional, Tuple, Any
import json
from unittest import result
from openai import OpenAI
import tiktoken
from vllm import SamplingParams
from transformers import AutoTokenizer
import os
import re
import random
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential, stop_after_delay,
)
from utils import print_intermediate_output, run_thread_pool_sub, split_list_of_docs, thread_function
class Generator:
def __init__(
self,
config: dict,
tokenizer=None,
print_intermediate_path=None,
doc_id=None
):
tokenizer = AutoTokenizer.from_pretrained(
config['llm']['name_or_path'])
self.first_prompt = config['map_prompt']
self.gen_args = config.get('gen_args', {})
self.tokenizer = tokenizer
self.config = config
self.max_work_count = config.get('max_work_count', 4)
self.url = config.get('url', 'http://localhost:5002/infer')
self.print_intermediate_path = print_intermediate_path
self.doc_id = doc_id
def build_message(self, prompt, input_dict):
message = [{'role': 'user', 'content': prompt.format(**input_dict)}]
message_str = self.tokenizer.apply_chat_template(
conversation=message, tokenize=False, add_generation_prompt=True)
return message_str
def split_list_to_chunks(self, lst: list, chunk_num):
'''Divide the list into chunk_num parts'''
length = len(lst)
if len(lst) <= chunk_num:
return lst
chunk_size = length // chunk_num
result = [lst[i * chunk_size:(i + 1) * chunk_size]
for i in range(chunk_num - 1)]
# The last block contains all the remaining elements
result.append(lst[(chunk_num - 1) * chunk_size:])
assert len(result) == chunk_num
assert sum([len(i) for i in result]) == length
return result
def mr_map(self, context: list[str], question) -> list[str]:
prompt = self.config['map_prompt']
print("=====Map=====")
batch = []
intermediate_input = []
for i, item in enumerate(context):
messages = self.build_message(
prompt, {"question": question, "context": item})
intermediate_input.append(prompt.format_map(
{"question": question, "context": item}))
batch.append(messages)
res = self.get_batch_reply(batch)
print('map result:')
print(res)
if self.print_intermediate_path != None:
print_intermediate_output(
self.print_intermediate_path, intermediate_input, res, 'map', doc_id=self.doc_id)
return res
def get_batch_reply(self, batch):
chunk_req = self.split_list_to_chunks(batch, self.max_work_count)
result_map = {}
res = []
for i, result_list in run_thread_pool_sub(
thread_function, self.url, chunk_req, self.gen_args, min(
len(batch), self.max_work_count)
):
if i not in result_map:
result_map[i] = []
result_map[i].extend(result_list)
for i in range(len(chunk_req)):
res.extend(result_map[i])
return res
def split_sentences(self, text, spliter):
# Split by punctuation and keep punctuation
text = text.strip()
sentence_list = re.split(spliter, text)
# Rearrange sentences and punctuation
if spliter != ' ':
sentences = ["".join(i) for i in zip(
sentence_list[0::2], sentence_list[1::2])]
if len(sentence_list) % 2 != 0 and sentence_list[-1] != '':
sentences.append(sentence_list[-1])
else:
sentences = [i+' ' for i in sentence_list if i != '']
sentences[-1] = sentences[-1].strip()
return sentences
def split_into_chunks(self, text, chunk_size, spliter=r'([。!?;.?!;])'):
# Split by punctuation and keep punctuation
# Rearrange sentences and punctuation
sentences = self.split_sentences(text, spliter)
chunks = []
current_chunk = ""
for s_idx, sentence in enumerate(sentences):
sentence_length = self.get_prompt_length(sentence)
if self.get_prompt_length(current_chunk) + sentence_length <= chunk_size:
current_chunk += sentence
else:
if current_chunk:
if self.get_prompt_length(current_chunk) <= chunk_size:
chunks.append(current_chunk)
else:
if spliter != ' ': # Avoid infinite loops
chunks.extend(self.split_into_chunks(
current_chunk, chunk_size=chunk_size, spliter=' '))
current_chunk = sentence
if current_chunk != '':
if self.get_prompt_length(current_chunk) <= chunk_size:
chunks.append(current_chunk)
else:
if spliter != ' ': # Avoid infinite loops
chunks.extend(self.split_into_chunks(
current_chunk, chunk_size=chunk_size, spliter=' '))
# Re-segment the last two blocks
if len(chunks) > 1 and self.get_prompt_length(chunks[-1]) < chunk_size//2:
last_chunk = chunks.pop()
penultimate_chunk = chunks.pop()
combined_text = penultimate_chunk + last_chunk
new_sentences = self.split_sentences(combined_text, spliter)
# Reallocate sentence using double pointer
new_penultimate_chunk = ""
new_last_chunk = ""
i, j = 0, len(new_sentences) - 1
while i <= j and len(new_sentences) != 1:
flag = False
if self.get_prompt_length(new_penultimate_chunk + new_sentences[i]) <= chunk_size:
flag = True
new_penultimate_chunk += new_sentences[i]
if i == j:
break
i += 1
if self.get_prompt_length(new_last_chunk + new_sentences[j]) <= chunk_size:
new_last_chunk = new_sentences[j] + new_last_chunk
j -= 1
flag = True
if flag == False:
break
if i < j:
# If there is any unallocated part, split it by punctuation or space and then allocate it
remaining_sentences = new_sentences[i:j+1]
if remaining_sentences:
remaining_text = "".join(remaining_sentences)
words = remaining_text.split(' ')
end_index = len(words)-1
for index, w in enumerate(words):
if self.get_prompt_length(' '.join([new_penultimate_chunk, w])) <= chunk_size:
new_penultimate_chunk = ' '.join(
[new_penultimate_chunk, w])
else:
end_index = index
break
if end_index != len(words)-1:
new_last_chunk = ' '.join(
words[end_index:]) + ' ' + new_last_chunk
if len(new_sentences) == 1:
chunks.append(penultimate_chunk)
chunks.append(last_chunk)
else:
chunks.append(new_penultimate_chunk)
chunks.append(new_last_chunk)
return chunks
def chunk_docs(self, doc: str, chunk_size: int, separator='\n', chunk_overlap=0, question=None) -> list[str]:
chunk_size = chunk_size - \
self.get_prompt_length(self.first_prompt) - \
self.gen_args.get('max_tokens', 300)
if question != None:
chunk_size = chunk_size - self.get_prompt_length(question)
splits = doc.split(separator)
splits = [s for s in splits if s != '']
separator_len = self.get_prompt_length_no_special(separator)
docs = []
current_doc: List[str] = []
total = 0
for d in splits:
_len = self.get_prompt_length_no_special(d)
if (
total + _len + (separator_len if len(current_doc) > 0 else 0)
> chunk_size
):
if total > chunk_size:
print(
f"Created a chunk of size {total}, "
f"which is longer than the specified {chunk_size}"
)
if len(current_doc) == 1: # if one chunk is too long
split_again = self.split_into_chunks(
current_doc[0], chunk_size)
docs.extend(split_again)
current_doc = []
total = 0
if len(current_doc) > 0:
doc = separator.join(current_doc)
if doc is not None:
docs.append(doc)
# Keep on popping if:
# - we have a larger chunk than in the chunk overlap
# - or if we still have any chunks and the length is long
while total > chunk_overlap or (
total + _len +
(separator_len if len(current_doc) > 0 else 0)
> chunk_size
and total > 0
):
total -= self.get_prompt_length_no_special(current_doc[0]) + (
separator_len if len(current_doc) > 1 else 0
)
current_doc = current_doc[1:]
current_doc.append(d)
total += _len + (separator_len if len(current_doc) > 1 else 0)
# Check if the last one exceeds
if self.get_prompt_length_no_special(current_doc[-1]) > chunk_size and len(current_doc) == 1:
split_again = self.split_into_chunks(current_doc[0], chunk_size)
docs.extend(split_again)
current_doc = []
else:
doc = separator.join(current_doc)
if doc is not None:
docs.append(doc)
docs = [d for d in docs if d.strip() != ""]
return docs
def get_prompt_length(self, prompt, **kwargs: Any) -> int:
if isinstance(prompt, list):
prompt = self.join_docs(prompt)
return len(self.tokenizer.encode(prompt, **kwargs))
def get_prompt_length_format(self, prompt, **kwargs: Any) -> int:
# Calculate the length after formatting
if isinstance(prompt, list):
prompt = ''.join(self.format_chunk_information(prompt))
return len(self.tokenizer.encode(prompt, **kwargs))
def get_prompt_length_no_special(self, prompt, **kwargs: Any) -> int:
if isinstance(prompt, list):
prompt = self.join_docs(prompt)
if not isinstance(self.tokenizer, tiktoken.core.Encoding):
return len(self.tokenizer.encode(prompt, add_special_tokens=False, **kwargs))
else:
return len(self.tokenizer.encode(prompt, disallowed_special='all', ** kwargs))
def join_docs(self, docs: list[str]) -> str:
if isinstance(docs, str):
return docs
return '\n\n'.join(docs)
def format_chunk_information(self, docs):
if self.config.get('zh_chunk', False) == False:
# format chunk
new_docs = [
f'Information of Chunk {index}:\n{d}\n' for index, d in enumerate(docs)]
return new_docs
else:
new_docs = [
f'第{index}号块的信息:\n{d}\n' for index, d in enumerate(docs)]
return new_docs
def mr_collapse(
self,
docs: list[str],
question: str,
token_max: Optional[int] = None,
max_retries: Optional[int] = None,
) -> list[str]:
result_docs = docs
prompt = self.config['collapse_prompt']
num_tokens = self.get_prompt_length_format(result_docs)
prompt_len = self.get_prompt_length(prompt)
_token_max = token_max - prompt_len - \
self.gen_args.get('max_tokens', 300) # or self.chunk_size
retries: int = 0
while num_tokens is not None and num_tokens > _token_max:
new_result_doc_list = split_list_of_docs(
result_docs, self.get_prompt_length_format, _token_max,
)
result_docs = []
current_batch = []
intermediate_input = []
for index, docs in enumerate(new_result_doc_list):
# new_doc = collapse_chain.invoke(
# {"context": self.join_docs(docs), "question": question})
messages = self.build_message(
prompt, {"context": self.join_docs(docs), "question": question})
current_batch.append(messages)
#!--------
intermediate_input.append(prompt.format_map(
{"question": question, "context": self.join_docs(docs)}))
#!--------
result_docs = self.get_batch_reply(current_batch)
#!--------
if self.print_intermediate_path != None:
print_intermediate_output(
self.print_intermediate_path, intermediate_input, result_docs, 'collapse', doc_id=self.doc_id)
#!---------
num_tokens = self.get_prompt_length_format(result_docs)
retries += 1
if max_retries and retries == max_retries:
raise ValueError(
f"Exceed {max_retries} tries to \
collapse document to {_token_max} tokens."
)
print("=====Collapse=====")
print(result_docs)
return result_docs
def mr_reduce(self, context: list[str], question):
# Reduce
prompt = self.config['reduce_prompt']
context = ''.join(self.format_chunk_information(context))
print("=====Reduce=====")
messages = self.build_message(
prompt, {"context": context, "question": question})
result = self.get_batch_reply([messages])
result = result[0]
print("input")
print({"context": context, "question": question})
print('output')
print(result)
if self.print_intermediate_path != None:
print_intermediate_output(
self.print_intermediate_path, prompt.format_map({"context": context, "question": question}), result, 'reduce', doc_id=self.doc_id)
return result