-
Notifications
You must be signed in to change notification settings - Fork 419
/
sbn_adaptive_is.py
141 lines (120 loc) · 5.27 KB
/
sbn_adaptive_is.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os
import time
import tensorflow as tf
from six.moves import range
import numpy as np
import zhusuan as zs
from examples import conf
from examples.utils import dataset
@zs.meta_bayesian_net(scope="sbn", reuse_variables=True)
def build_sbn(n, x_dim, h_dim, n_particles):
bn = zs.BayesianNet()
h3_logits = tf.zeros([n, h_dim])
h3 = bn.bernoulli("h3", h3_logits, group_ndims=1, n_samples=n_particles,
dtype=tf.float32)
h2_logits = tf.layers.dense(h3, h_dim)
h2 = bn.bernoulli("h2", h2_logits, group_ndims=1, dtype=tf.float32)
h1_logits = tf.layers.dense(h2, h_dim)
h1 = bn.bernoulli("h1", h1_logits, group_ndims=1, dtype=tf.float32)
x_logits = tf.layers.dense(h1, x_dim)
bn.bernoulli("x", x_logits, group_ndims=1)
return bn
@zs.reuse_variables(scope="proposal")
def build_proposal(x, h_dim, n_particles):
bn = zs.BayesianNet()
h1_logits = tf.layers.dense(tf.cast(x, tf.float32), h_dim)
h1 = bn.bernoulli("h1", h1_logits, group_ndims=1,
n_samples=n_particles, dtype=tf.float32)
h2_logits = tf.layers.dense(h1, h_dim)
h2 = bn.bernoulli("h2", h2_logits, group_ndims=1, dtype=tf.float32)
h3_logits = tf.layers.dense(h2, h_dim)
bn.bernoulli("h3", h3_logits, group_ndims=1, dtype=tf.float32)
return bn
def main():
tf.set_random_seed(1234)
np.random.seed(1234)
# Load MNIST
data_path = os.path.join(conf.data_dir, "mnist.pkl.gz")
x_train, t_train, x_valid, t_valid, x_test, t_test = \
dataset.load_mnist_realval(data_path)
x_train = np.vstack([x_train, x_valid])
x_test = np.random.binomial(1, x_test, size=x_test.shape)
x_dim = x_train.shape[1]
# Define model parameters
h_dim = 200
# Build the computation graph
n_particles = tf.placeholder(tf.int32, shape=[], name="n_particles")
x_input = tf.placeholder(tf.float32, shape=[None, x_dim], name="x")
x = tf.cast(tf.less(tf.random_uniform(tf.shape(x_input)), x_input),
tf.int32)
n = tf.placeholder(tf.int32, shape=[], name="n")
model = build_sbn(n, x_dim, h_dim, n_particles)
proposal = build_proposal(x, h_dim, n_particles)
optimizer = tf.train.AdamOptimizer(learning_rate=0.001, epsilon=1e-4)
# learning model parameters
lower_bound = tf.reduce_mean(
zs.variational.importance_weighted_objective(
model, observed={"x": x}, variational=proposal, axis=0))
model_params = tf.trainable_variables(scope="sbn")
model_grads = optimizer.compute_gradients(-lower_bound, model_params)
# adapting the proposal
klpq_obj = zs.variational.klpq(
model, observed={"x": x}, variational=proposal, axis=0)
klpq_cost = tf.reduce_mean(klpq_obj.importance())
proposal_params = tf.trainable_variables(scope="proposal")
klpq_grads = optimizer.compute_gradients(klpq_cost, proposal_params)
infer_op = optimizer.apply_gradients(model_grads + klpq_grads)
# Define training/evaluation parameters
lb_samples = 10
ll_samples = 1000
epochs = 3000
batch_size = 24
iters = x_train.shape[0] // batch_size
test_freq = 10
test_batch_size = 100
test_iters = x_test.shape[0] // test_batch_size
# Run the inference
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(1, epochs + 1):
time_epoch = -time.time()
np.random.shuffle(x_train)
lbs = []
for t in range(iters):
x_batch = x_train[t * batch_size:(t + 1) * batch_size]
_, lb = sess.run([infer_op, lower_bound],
feed_dict={x_input: x_batch,
n_particles: lb_samples,
n: batch_size})
lbs.append(lb)
time_epoch += time.time()
print("Epoch {} ({:.1f}s): Lower bound = {}".format(
epoch, time_epoch, np.mean(lbs)))
if epoch % test_freq == 0:
time_test = -time.time()
test_lbs = []
test_lls = []
for t in range(test_iters):
test_x_batch = x_test[
t * test_batch_size: (t + 1) * test_batch_size]
test_lb = sess.run(lower_bound,
feed_dict={x: test_x_batch,
n_particles: lb_samples,
n: test_batch_size})
test_ll = sess.run(lower_bound,
feed_dict={x: test_x_batch,
n_particles: ll_samples,
n: test_batch_size})
test_lbs.append(test_lb)
test_lls.append(test_ll)
time_test += time.time()
print(">>> TEST ({:.1f}s)".format(time_test))
print(">> Test lower bound = {}".format(np.mean(test_lbs)))
print(">> Test log likelihood = {}".format(np.mean(test_lls)))
if __name__ == "__main__":
main()