-
Notifications
You must be signed in to change notification settings - Fork 419
/
vae_ssl.py
207 lines (178 loc) · 7.97 KB
/
vae_ssl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os
import time
import tensorflow as tf
from six.moves import range
import numpy as np
import zhusuan as zs
from examples import conf
from examples.utils import dataset
@zs.meta_bayesian_net(scope="gen", reuse_variables=True)
def build_gen(n, x_dim, n_class, z_dim, n_particles):
bn = zs.BayesianNet()
z_mean = tf.zeros([n, z_dim])
z = bn.normal("z", z_mean, std=1., group_ndims=1, n_samples=n_particles)
h_from_z = tf.layers.dense(z, 500)
y_logits = tf.zeros([n, n_class])
y = bn.onehot_categorical("y", y_logits)
h_from_y = tf.layers.dense(tf.cast(y, tf.float32), 500)
h = tf.nn.relu(h_from_z + h_from_y)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
x_logits = tf.layers.dense(h, x_dim)
bn.bernoulli("x", x_logits, group_ndims=1)
return bn
@zs.reuse_variables(scope="variational")
def qz_xy(x, y, z_dim, n_particles):
bn = zs.BayesianNet()
h = tf.layers.dense(tf.cast(tf.concat([x, y], -1), tf.float32), 500,
activation=tf.nn.relu)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
z_mean = tf.layers.dense(h, z_dim)
z_logstd = tf.layers.dense(h, z_dim)
bn.normal("z", z_mean, logstd=z_logstd, group_ndims=1,
n_samples=n_particles)
return bn
@zs.reuse_variables("classifier")
def qy_x(x, n_class):
h = tf.layers.dense(tf.cast(x, tf.float32), 500, activation=tf.nn.relu)
h = tf.layers.dense(h, 500, activation=tf.nn.relu)
y_logits = tf.layers.dense(h, n_class)
return y_logits
def main():
tf.set_random_seed(1234)
np.random.seed(1234)
# Load MNIST
data_path = os.path.join(conf.data_dir, "mnist.pkl.gz")
x_labeled, t_labeled, x_unlabeled, x_test, t_test = \
dataset.load_mnist_semi_supervised(data_path, one_hot=True)
x_test = np.random.binomial(1, x_test, size=x_test.shape)
n_labeled, x_dim = x_labeled.shape
n_class = 10
# Define model parameters
z_dim = 100
# Define training/evaluation parameters
lb_samples = 10
beta = 1200.
epochs = 3000
batch_size = 100
test_batch_size = 100
iters = x_unlabeled.shape[0] // batch_size
test_iters = x_test.shape[0] // test_batch_size
test_freq = 10
# Build the computation graph
n = tf.placeholder(tf.int32, shape=[], name="n")
n_particles = tf.placeholder(tf.int32, shape=[], name="n_particles")
model = build_gen(n, x_dim, n_class, z_dim, n_particles)
# Labeled
x_labeled_ph = tf.placeholder(tf.float32, shape=[None, x_dim], name="x_l")
x_labeled = tf.cast(
tf.less(tf.random_uniform(tf.shape(x_labeled_ph)), x_labeled_ph),
tf.int32)
y_labeled_ph = tf.placeholder(tf.int32, shape=[None, n_class], name="y_l")
variational = qz_xy(x_labeled, y_labeled_ph, z_dim, n_particles)
labeled_lower_bound = tf.reduce_mean(
zs.variational.elbo(model,
observed={"x": x_labeled, "y": y_labeled_ph},
variational=variational,
axis=0))
# Unlabeled
# TODO: n not match.
x_unlabeled_ph = tf.placeholder(tf.float32, shape=[None, x_dim],
name="x_u")
x_unlabeled = tf.cast(
tf.less(tf.random_uniform(tf.shape(x_unlabeled_ph)), x_unlabeled_ph),
tf.int32)
y_diag = tf.eye(n_class, dtype=tf.int32)
y_u = tf.reshape(tf.tile(y_diag[None, ...], [n, 1, 1]), [-1, n_class])
x_u = tf.reshape(tf.tile(x_unlabeled[:, None, ...], [1, n_class, 1]),
[-1, x_dim])
variational = qz_xy(x_u, y_u, z_dim, n_particles)
lb_z = zs.variational.elbo(model,
observed={"x": x_u, "y": y_u},
variational=variational,
axis=0)
# sum over y
lb_z = tf.reshape(lb_z, [-1, n_class])
qy_logits_u = qy_x(x_unlabeled_ph, n_class)
qy_u = tf.nn.softmax(qy_logits_u) + 1e-8
qy_u /= tf.reduce_sum(qy_u, 1, keepdims=True)
log_qy_u = tf.log(qy_u)
unlabeled_lower_bound = tf.reduce_mean(
tf.reduce_sum(qy_u * (lb_z - log_qy_u), 1))
# Build classifier
qy_logits_l = qy_x(x_labeled, n_class)
qy_l = tf.nn.softmax(qy_logits_l)
pred_y = tf.argmax(qy_l, 1)
acc = tf.reduce_sum(
tf.cast(tf.equal(pred_y, tf.argmax(y_labeled_ph, 1)), tf.float32) /
tf.cast(tf.shape(x_labeled)[0], tf.float32))
onehot_cat = zs.distributions.OnehotCategorical(qy_logits_l)
log_qy_x = onehot_cat.log_prob(y_labeled_ph)
classifier_cost = -beta * tf.reduce_mean(log_qy_x)
# Gather gradients
cost = -(labeled_lower_bound + unlabeled_lower_bound -
classifier_cost) / 2.
optimizer = tf.train.AdamOptimizer(learning_rate=3e-4)
grads = optimizer.compute_gradients(cost)
infer_op = optimizer.apply_gradients(grads)
# Run the inference
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(1, epochs + 1):
time_epoch = -time.time()
np.random.shuffle(x_unlabeled)
lbs_labeled, lbs_unlabeled, train_accs = [], [], []
for t in range(iters):
labeled_indices = np.random.randint(0, n_labeled,
size=batch_size)
x_labeled_batch = x_labeled[labeled_indices]
y_labeled_batch = t_labeled[labeled_indices]
x_unlabeled_batch = x_unlabeled[t * batch_size:
(t + 1) * batch_size]
_, lb_labeled, lb_unlabeled, train_acc = sess.run(
[infer_op, labeled_lower_bound, unlabeled_lower_bound,
acc],
feed_dict={x_labeled_ph: x_labeled_batch,
y_labeled_ph: y_labeled_batch,
x_unlabeled_ph: x_unlabeled_batch,
n_particles: lb_samples,
n: batch_size})
lbs_labeled.append(lb_labeled)
lbs_unlabeled.append(lb_unlabeled)
train_accs.append(train_acc)
time_epoch += time.time()
print('Epoch {} ({:.1f}s), Lower bound: labeled = {}, '
'unlabeled = {} Accuracy: {:.2f}%'.
format(epoch, time_epoch, np.mean(lbs_labeled),
np.mean(lbs_unlabeled), np.mean(train_accs) * 100.))
if epoch % test_freq == 0:
time_test = -time.time()
test_lls_labeled, test_lls_unlabeled, test_accs = [], [], []
for t in range(test_iters):
test_x_batch = x_test[
t * test_batch_size: (t + 1) * test_batch_size]
test_y_batch = t_test[
t * test_batch_size: (t + 1) * test_batch_size]
test_ll_labeled, test_ll_unlabeled, test_acc = sess.run(
[labeled_lower_bound, unlabeled_lower_bound, acc],
feed_dict={x_labeled: test_x_batch,
y_labeled_ph: test_y_batch,
x_unlabeled: test_x_batch,
n_particles: lb_samples,
n: test_batch_size})
test_lls_labeled.append(test_ll_labeled)
test_lls_unlabeled.append(test_ll_unlabeled)
test_accs.append(test_acc)
time_test += time.time()
print('>>> TEST ({:.1f}s)'.format(time_test))
print('>> Test lower bound: labeled = {}, unlabeled = {}'.
format(np.mean(test_lls_labeled),
np.mean(test_lls_unlabeled)))
print('>> Test accuracy: {:.2f}%'.format(
100. * np.mean(test_accs)))
if __name__ == "__main__":
main()