forked from nerdaxic/glados-tts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
125 lines (97 loc) · 3.84 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import sys
import os
sys.path.insert(0, os.getcwd()+'/glados_tts')
import pathlib
import torch
from utils.tools import prepare_text
from scipy.io.wavfile import write
import time
import base64
print("\033[1;94mINFO:\033[;97m Initializing TTS Engine...")
# Select the device
if torch.is_vulkan_available():
device = 'vulkan'
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
# Load models
if __name__ == "__main__":
glados = torch.jit.load('models/glados.pt')
vocoder = torch.jit.load('models/vocoder-gpu.pt', map_location=device)
else:
glados = torch.jit.load('glados_tts/models/glados.pt')
vocoder = torch.jit.load('glados_tts/models/vocoder-gpu.pt', map_location=device)
# Prepare models in RAM
for i in range(4):
init = glados.generate_jit(prepare_text(str(i)))
init_mel = init['mel_post'].to(device)
init_vo = vocoder(init_mel)
def glados_tts(text, key=False):
# Tokenize, clean and phonemize input text
x = prepare_text(text).to('cpu')
with torch.no_grad():
# Generate generic TTS-output
old_time = time.time()
tts_output = glados.generate_jit(x)
# Use HiFiGAN as vocoder to make output sound like GLaDOS
mel = tts_output['mel_post'].to(device)
audio = vocoder(mel)
print("\033[1;94mINFO:\033[;97m The audio sample took " + str(round((time.time() - old_time) * 1000)) + " ms to generate.")
# Normalize audio to fit in wav-file
# make audo directory if it doesnt exist
audio = audio.squeeze()
audio = audio * 32768.0
audio = audio.cpu().numpy().astype('int16')
if(key):
output_file = ('audio/GLaDOS-tts-temp-output-'+key+'.wav')
else:
output_file = ('audio/GLaDOS-tts-temp-output.wav')
pathlib.Path('audio/').mkdir(parents=True, exist_ok=True)
# Write audio file to disk
# 22,05 kHz sample rate
write(output_file, 22050, audio)
return True
# If the script is run directly, assume remote engine
if __name__ == "__main__":
# Remote Engine Veritables
PORT = 8124
CACHE = True
from flask import Flask, request, send_file
import urllib.parse
import shutil
print("\033[1;94mINFO:\033[;97m Initializing TTS Server...")
app = Flask(__name__)
@app.route('/synthesize/', defaults={'text': ''})
@app.route('/synthesize/<path:text>')
def synthesize(text):
if(text == ''): return 'No input'
line = urllib.parse.unquote(request.url[request.url.find('synthesize/')+11:])
line = base64.b64decode(line).decode('utf8')
filename = "GLaDOS-tts-"+line.replace(" ", "-")
filename = filename.replace("!", "")
filename = filename.replace("°c", "degrees celcius")
filename = filename.replace(",", "")+".wav"
file = os.getcwd()+'/audio/'+filename
# Check for Local Cache
if(os.path.isfile(file)):
# Update access time. This will allow for routine cleanups
os.utime(file, None)
print("\033[1;94mINFO:\033[;97m The audio sample sent from cache.")
return send_file(file)
# Generate New Sample
key = str(time.time())[7:]
if(glados_tts(line, key)):
tempfile = os.getcwd()+'/audio/GLaDOS-tts-temp-output-'+key+'.wav'
# If the line isn't too long, store in cache
if(len(line) < 200 and CACHE):
shutil.move(tempfile, file)
else:
return send_file(tempfile)
os.remove(tempfile)
return send_file(file)
else:
return 'TTS Engine Failed'
cli = sys.modules['flask.cli']
cli.show_server_banner = lambda *x: None
app.run(host="0.0.0.0", port=PORT)