-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathMaxDoubleSliceSum.go
90 lines (67 loc) · 2.11 KB
/
MaxDoubleSliceSum.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
package max_slice
import (
"math"
)
/*
A non-empty zero-indexed array A consisting of N integers is given.
A triplet (X, Y, Z), such that 0 ≤ X < Y < Z < N, is called a double slice.
The sum of double slice (X, Y, Z) is the total of
A[X + 1] + A[X + 2] + ... + A[Y − 1] + A[Y + 1] + A[Y + 2] + ... + A[Z − 1].
For example, array A such that:
A[0] = 3
A[1] = 2
A[2] = 6
A[3] = -1
A[4] = 4
A[5] = 5
A[6] = -1
A[7] = 2
contains the following example double slices:
double slice (0, 3, 6), sum is 2 + 6 + 4 + 5 = 17,
double slice (0, 3, 7), sum is 2 + 6 + 4 + 5 − 1 = 16,
double slice (3, 4, 5), sum is 0.
The goal is to find the maximal sum of any double slice.
Write a function:
func Solution(A []int) int
that, given a non-empty zero-indexed array A consisting of N integers,
returns the maximal sum of any double slice.
For example, given:
A[0] = 3
A[1] = 2
A[2] = 6
A[3] = -1
A[4] = 4
A[5] = 5
A[6] = -1
A[7] = 2
the function should return 17, because no double slice of array A has a sum
of greater than 17.
Assume that:
N is an integer within the range [3..100,000];
each element of array A is an integer within the range [−10,000..10,000].
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(N), beyond input storage
(not counting the storage required for input arguments).
*/
// Due to the fact that the first and the last element are not counted just compute
// The maxSliceSum for 2...n-1 and then remove the smallest element
func MaxDoubleSliceSum(A []int) int {
maxSliceSum := 1 - (1 << 32 - 1)
N := len(A) - 2
if len(A) < 4 {
return 0;
}
leftSum := make([]int, N)
rightSum := make([]int, N)
for i := 0; i < N - 1; i += 1 {
leftValue := A[i + 1]
rightValue := A[N - i]
leftSum[i + 1] = int(math.Max(0, float64(leftValue) + float64(leftSum[i])))
rightSum[N - i - 2] = int(math.Max(0, float64(rightValue) + float64(rightSum[N - i - 1])))
}
for i := 0; i < N; i += 1 {
maxSliceSum = int(math.Max(float64(maxSliceSum), float64(rightSum[i]) + float64(leftSum[i])))
}
return maxSliceSum
}