-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathbatchnorm.ts
111 lines (101 loc) · 3.85 KB
/
batchnorm.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {ENGINE} from '../engine';
import {FusedBatchNorm, FusedBatchNormAttrs, FusedBatchNormInputs} from '../kernel_names';
import {NamedAttrMap} from '../kernel_registry';
import {Tensor, Tensor1D, Tensor5D} from '../tensor';
import {NamedTensorMap} from '../tensor_types';
import {convertToTensor} from '../tensor_util_env';
import {Rank, TensorLike} from '../types';
import * as util from '../util';
import {xAs5D} from './batchnorm_util';
import {op} from './operation';
import {reshape} from './reshape';
/**
* Batch normalization.
*
* As described in
* [http://arxiv.org/abs/1502.03167](http://arxiv.org/abs/1502.03167).
*
* Mean, variance, scale, and offset can be of two shapes:
* - The same shape as the input.
* - In the common case, the depth dimension is the last dimension of x, so
* the values would be a `tf.Tensor1D` of shape [depth].
*
* Also available are stricter rank-specific methods with the same signature
* as this method that assert that parameters passed are of given rank
* - `tf.batchNorm2d`
* - `tf.batchNorm3d`
* - `tf.batchNorm4d`
*
* @param x The input Tensor.
* @param mean A mean Tensor.
* @param variance A variance Tensor.
* @param offset An offset Tensor.
* @param scale A scale Tensor.
* @param varianceEpsilon A small float number to avoid dividing by 0.
*
* @doc {heading: 'Operations', subheading: 'Normalization'}
*/
function batchNorm_<R extends Rank>(
x: Tensor<R>|TensorLike, mean: Tensor<R>|Tensor1D|TensorLike,
variance: Tensor<R>|Tensor1D|TensorLike,
offset?: Tensor<R>|Tensor1D|TensorLike,
scale?: Tensor<R>|Tensor1D|TensorLike,
varianceEpsilon?: number): Tensor<R> {
if (varianceEpsilon == null) {
varianceEpsilon = 0.001;
}
const $x = convertToTensor(x, 'x', 'batchNorm');
const $mean = convertToTensor(mean, 'mean', 'batchNorm');
const $variance = convertToTensor(variance, 'variance', 'batchNorm');
let $scale: Tensor<R>|Tensor1D;
if (scale != null) {
$scale = convertToTensor(scale, 'scale', 'batchNorm');
}
let $offset: Tensor<R>|Tensor1D;
if (offset != null) {
$offset = convertToTensor(offset, 'offset', 'batchNorm');
}
util.assert(
$mean.rank === $variance.rank,
() => 'Batch normalization gradient requires mean and variance to have ' +
'equal ranks.');
util.assert(
$offset == null || $mean.rank === $offset.rank,
() => 'Batch normalization gradient requires mean and offset to have ' +
'equal ranks.');
util.assert(
$scale == null || $mean.rank === $scale.rank,
() => 'Batch normalization gradient requires mean and scale to have ' +
'equal ranks.');
const x5D: Tensor5D = xAs5D($x);
const inputs: FusedBatchNormInputs = {
x: x5D,
scale: $scale,
offset: $offset,
mean: $mean,
variance: $variance
};
const attrs: FusedBatchNormAttrs = {varianceEpsilon};
// tslint:disable-next-line: no-unnecessary-type-assertion
const res = ENGINE.runKernel(
FusedBatchNorm, inputs as unknown as NamedTensorMap,
attrs as unknown as NamedAttrMap) as Tensor<R>;
return reshape(res, $x.shape);
}
export const batchNorm = /* @__PURE__ */ op({batchNorm_});