@@ -9,7 +9,7 @@ for JS developers without ML knowledge. It has the following features:
9
9
- ** Easy-to-discover models**
10
10
11
11
Models from different runtime systems (e.g. [ TFJS] [ tfjs ] , [ TFLite] [ tflite ] ,
12
- [ MediaPipe] [ mediapipe ] , etc) are grouped by popular ML tasks, such as.
12
+ [ MediaPipe] [ mediapipe ] , etc) are grouped by popular ML tasks, such as
13
13
sentiment detection, image classification, pose detection, etc.
14
14
15
15
- ** Clean and powerful APIs**
@@ -28,7 +28,128 @@ for JS developers without ML knowledge. It has the following features:
28
28
29
29
The following table summarizes all the supported tasks and their models:
30
30
31
- (TODO)
31
+ <table >
32
+ <thead >
33
+ <tr>
34
+ <th>Task</th>
35
+ <th>Model</th>
36
+ <th>Supported runtimes · Docs · Resources</th>
37
+ </tr>
38
+ </thead >
39
+ <tbody >
40
+ <!-- Image classification -->
41
+ <tr>
42
+ <td rowspan="2">
43
+ <b>Image Classification</b>
44
+ <br>
45
+ Identify images into predefined classes.
46
+ <br>
47
+ <a href="https://codepen.io/jinjingforever/pen/VwPOePq">Demo</a>
48
+ </td>
49
+ <td>Mobilenet</td>
50
+ <td>
51
+ <div>
52
+ <span><code>TFJS </code></span>
53
+ <span>·</span>
54
+ <a href="#">API doc</a>
55
+ </div>
56
+ <div>
57
+ <span><code>TFLite</code></span>
58
+ <span>·</span>
59
+ <a href="#">API doc</a>
60
+ </div>
61
+ </td>
62
+ </tr>
63
+ <tr>
64
+ <td>Custom model</td>
65
+ <td>
66
+ <div>
67
+ <span><code>TFLite</code></span>
68
+ <span>·</span>
69
+ <a href="#">API doc</a>
70
+ <span>·</span>
71
+ <a href="https://www.tensorflow.org/lite/inference_with_metadata/task_library/image_classifier#model_compatibility_requirements">Model requirements</a>
72
+ <span>·</span>
73
+ <a href="https://tfhub.dev/tensorflow/collections/lite/task-library/image-classifier/1">Model collection</a>
74
+ </div>
75
+ </td>
76
+ </tr>
77
+ <!-- Object detection -->
78
+ <tr>
79
+ <td rowspan="2">
80
+ <b>Object Detection</b>
81
+ <br>
82
+ Localize and identify multiple objects in a single image.
83
+ <br>
84
+ <a href="https://codepen.io/jinjingforever/pen/PopPPXo">Demo</a>
85
+ </td>
86
+ <td>COCO-SSD</td>
87
+ <td>
88
+ <div>
89
+ <span><code>TFJS </code></span>
90
+ <span>·</span>
91
+ <a href="#">API doc</a>
92
+ </div>
93
+ <div>
94
+ <span><code>TFLite</code></span>
95
+ <span>·</span>
96
+ <a href="#">API doc</a>
97
+ </div>
98
+ </td>
99
+ </tr>
100
+ <tr>
101
+ <td>Custom model</td>
102
+ <td>
103
+ <div>
104
+ <span><code>TFLite</code></span>
105
+ <span>·</span>
106
+ <a href="#">API doc</a>
107
+ <span>·</span>
108
+ <a href="https://www.tensorflow.org/lite/inference_with_metadata/task_library/object_detector#model_compatibility_requirements">Model requirements</a>
109
+ <span>·</span>
110
+ <a href="https://tfhub.dev/tensorflow/collections/lite/task-library/object-detector/1">Model collection</a>
111
+ </div>
112
+ </td>
113
+ </tr>
114
+ <!-- Image Segmentation -->
115
+ <tr>
116
+ <td rowspan="2">
117
+ <b>Image Segmentation</b>
118
+ <br>
119
+ Predict associated class for each pixel of an image.
120
+ <br>
121
+ <a href="https://codepen.io/jinjingforever/pen/yLMYVJw">Demo</a>
122
+ </td>
123
+ <td>Deeplab</td>
124
+ <td>
125
+ <div>
126
+ <span><code>TFJS </code></span>
127
+ <span>·</span>
128
+ <a href="#">API doc</a>
129
+ </div>
130
+ <div>
131
+ <span><code>TFLite</code></span>
132
+ <span>·</span>
133
+ <a href="#">API doc</a>
134
+ </div>
135
+ </td>
136
+ </tr>
137
+ <tr>
138
+ <td>Custom model</td>
139
+ <td>
140
+ <div>
141
+ <span><code>TFLite</code></span>
142
+ <span>·</span>
143
+ <a href="#">API doc</a>
144
+ <span>·</span>
145
+ <a href="https://www.tensorflow.org/lite/inference_with_metadata/task_library/image_segmenter#model_compatibility_requirements">Model requirements</a>
146
+ <span>·</span>
147
+ <a href="https://tfhub.dev/tensorflow/collections/lite/task-library/image-segmenter/1">Model collection</a>
148
+ </div>
149
+ </td>
150
+ </tr>
151
+ </tbody >
152
+ </table >
32
153
33
154
(The initial version only supports the web browser environment. NodeJS support is
34
155
coming soon)
@@ -78,7 +199,7 @@ const model3 = await tfTask.ImageClassification.CustomModel.TFLite.load({
78
199
Since all these models are for the ` Image Classification ` task, they will have
79
200
the same task model type: [ ` ImageClassifier ` ] [ image classifier interface ] in
80
201
this case. Each task model's ` predict ` inference method has an unique and
81
- easy-to-use API interface. For example, in ` ImageClassiier ` , the method takes an
202
+ easy-to-use API interface. For example, in ` ImageClassifier ` , the method takes an
82
203
image-like element and returns the predicted classes:
83
204
84
205
``` js
0 commit comments