This repository was archived by the owner on Aug 15, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 950
/
Copy patharray_ops.ts
1226 lines (1147 loc) · 41.7 KB
/
array_ops.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* @license
* Copyright 2018 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {ENV} from '../environment';
import {Tensor, Tensor1D, Tensor2D, Tensor3D, Tensor4D, TensorBuffer} from '../tensor';
import {convertToTensor, convertToTensorArray} from '../tensor_util_env';
import {DataType, Rank, ShapeMap, TensorLike, TensorLike1D, TensorLike4D, TypedArray} from '../types';
import * as util from '../util';
import {getAxesPermutation, getInnerMostAxes} from './axis_util';
import {concat} from './concat_split';
import {op} from './operation';
import {MPRandGauss} from './rand';
import {zerosLike} from './tensor_ops';
/**
* Creates a new tensor with the same values and shape as the specified
* tensor.
*
* ```js
* const x = tf.tensor([1, 2]);
*
* x.clone().print();
* ```
*
* @param x The tensor to clone.
*/
/** @doc {heading: 'Tensors', subheading: 'Creation'} */
function clone_<T extends Tensor>(x: T|TensorLike): T {
const $x = convertToTensor(x, 'x', 'clone');
const der = (dy: T) => {
return {$x: () => dy.toFloat()};
};
return ENV.engine.runKernel(
backend =>
Tensor.make($x.shape, {dataId: $x.dataId}, $x.dtype) as T,
{$x}, der) as T;
}
/**
* Create an identity matrix.
*
* @param numRows Number of rows.
* @param numColumns Number of columns. Defaults to `numRows`.
* @param batchShape If provided, will add the batch shape to the beginning
* of the shape of the returned `Tensor` by repeating the identity
* matrix.
* @param dtype Data type.
* @returns Identity matrix of the specified size and data type, possibly
* with batch repetition if `batchShape` is specified.
*/
/** @doc {heading: 'Tensors', subheading: 'Creation'} */
function eye_(
numRows: number, numColumns?: number,
batchShape?:
[
number
]|[number,
number]|[number, number, number]|[number, number, number, number],
dtype: DataType = 'float32'): Tensor2D {
if (numColumns == null) {
numColumns = numRows;
}
const buff = buffer([numRows, numColumns], dtype);
const n = numRows <= numColumns ? numRows : numColumns;
for (let i = 0; i < n; ++i) {
buff.set(1, i, i);
}
const out = buff.toTensor().as2D(numRows, numColumns);
if (batchShape == null) {
return out;
} else {
if (batchShape.length === 1) {
return tile(expandDims(out, 0), [batchShape[0], 1, 1]);
} else if (batchShape.length === 2) {
return tile(
expandDims(expandDims(out, 0), 0),
[batchShape[0], batchShape[1], 1, 1]);
} else if (batchShape.length === 3) {
return tile(
expandDims(expandDims(expandDims(out, 0), 0), 0),
[batchShape[0], batchShape[1], batchShape[2], 1, 1]);
} else {
throw new Error(
`eye() currently supports only 1D and 2D ` +
// tslint:disable-next-line:no-any
`batchShapes, but received ${(batchShape as any).length}D.`);
}
}
}
/** Broadcast an array to a compatible shape NumPy-style.
*
* The tensor's shape is compared to the broadcast shape from end to beginning.
* Ones are prepended to the tensor's shape until is has the same length as
* the broadcast shape. If input.shape[i]==shape[i], they (i+1)-th axis is
* already broadcast-compatible. If input.shape[i]==1 and shape[i]==N, then
* the input tensor is tiled N times along that axis (using tf.tile).
*
* @param input The tensor that is to be broadcasted.
* @param shape The input is to be broadcast to this shape.
*/
/** @doc {heading: 'Tensors', subheading: 'Transformations'} */
function broadcastTo_<R extends Rank>( x: Tensor|TensorLike, shape: ShapeMap[R] ): Tensor<R>
{
let input = convertToTensor(x, 'broadcastTo', 'x');
const x_shape = input.shape;
if( shape.some( d => d < 0 ) )
throw new Error(`broadcastTo(): Invalid broadcast shape [${shape}].`);
if( shape.length < input.rank ) throw new Error(`broadcastTo(): shape.length=${shape.length} < input.rank=${input.rank}.`);
if( shape.length > input.rank )
{
const newShape = input.shape.slice();
while( newShape.length < shape.length )
newShape.unshift(1);
input = input.reshape(newShape);
}
const reps: number[] = Array.from(shape);
for( let i=shape.length; i-- > 0; )
{
if( input.shape[i] === shape[i] )
reps[i] = 1;
else if( input.shape[i] !== 1 )
throw new Error(`broadcastTo(): [${x_shape}] cannot be not broadcast to [${shape}].`);
}
const axes = reps.map( ( n,i) => n > 1 ? i : -1 ).filter( i => i >= 0 );
if( axes.length === 0 )
return input as Tensor<R>;
return ENV.engine.runKernel(
backend => backend.tile(input,reps),
{input},
(dy: Tensor) => ({
input: () => dy.sum(axes,/*keepDims=*/true)
})
) as Tensor<R>;
}
/**
* Creates a `Tensor` with values sampled from a normal distribution.
*
* ```js
* tf.randomNormal([2, 2]).print();
* ```
*
* @param shape An array of integers defining the output tensor shape.
* @param mean The mean of the normal distribution.
* @param stdDev The standard deviation of the normal distribution.
* @param dtype The data type of the output.
* @param seed The seed for the random number generator.
*/
/** @doc {heading: 'Tensors', subheading: 'Random'} */
function randomNormal_<R extends Rank>(
shape: ShapeMap[R], mean = 0, stdDev = 1, dtype?: 'float32'|'int32',
seed?: number): Tensor<R> {
if (dtype != null && (dtype as DataType) === 'bool') {
throw new Error(`Unsupported data type ${dtype}`);
}
const randGauss =
new MPRandGauss(mean, stdDev, dtype, false /* truncated */, seed);
const res = buffer(shape, dtype);
for (let i = 0; i < res.values.length; i++) {
res.values[i] = randGauss.nextValue();
}
return res.toTensor();
}
/**
* Creates a `Tensor` with values sampled from a truncated normal
* distribution.
*
* ```js
* tf.truncatedNormal([2, 2]).print();
* ```
*
* The generated values follow a normal distribution with specified mean and
* standard deviation, except that values whose magnitude is more than 2
* standard deviations from the mean are dropped and re-picked.
*
* @param shape An array of integers defining the output tensor shape.
* @param mean The mean of the normal distribution.
* @param stdDev The standard deviation of the normal distribution.
* @param dtype The data type of the output tensor.
* @param seed The seed for the random number generator.
*/
/** @doc {heading: 'Tensors', subheading: 'Creation'} */
function truncatedNormal_<R extends Rank>(
shape: ShapeMap[R], mean = 0, stdDev = 1, dtype?: 'float32'|'int32',
seed?: number): Tensor<R> {
if (dtype != null && (dtype as DataType) === 'bool') {
throw new Error(`Unsupported data type ${dtype}`);
}
const randGauss =
new MPRandGauss(mean, stdDev, dtype, true /* truncated */, seed);
const res = buffer(shape, dtype);
for (let i = 0; i < res.values.length; i++) {
res.values[i] = randGauss.nextValue();
}
return res.toTensor();
}
/**
* Creates a `Tensor` with values sampled from a uniform distribution.
*
* The generated values follow a uniform distribution in the range [minval,
* maxval). The lower bound minval is included in the range, while the upper
* bound maxval is excluded.
*
* ```js
* tf.randomUniform([2, 2]).print();
* ```
*
* @param shape An array of integers defining the output tensor shape.
* @param minval The lower bound on the range of random values to generate.
* Defaults to 0.
* @param maxval The upper bound on the range of random values to generate.
* Defaults to 1.
* @param dtype The data type of the output tensor. Defaults to 'float32'.
*/
/** @doc {heading: 'Tensors', subheading: 'Random'} */
function randomUniform_<R extends Rank>(
shape: ShapeMap[R], minval = 0, maxval = 1,
dtype: DataType = 'float32'): Tensor<R> {
const res = buffer(shape, dtype);
for (let i = 0; i < res.values.length; i++) {
res.values[i] = util.randUniform(minval, maxval);
}
return res.toTensor();
}
/**
* Creates a `Tensor` with values sampled from a random number generator
* function defined by the user.
*
* @param shape An array of integers defining the output tensor shape.
* @param randFunction A random number generator function which is called
* for each element in the output tensor.
* @param dtype The data type of the output tensor. Defaults to 'float32'.
*/
function rand_<R extends Rank>(
shape: ShapeMap[R], randFunction: () => number,
dtype?: DataType): Tensor<R> {
const size = util.sizeFromShape(shape);
let values = null;
if (dtype == null || dtype === 'float32') {
values = new Float32Array(size);
} else if (dtype === 'int32') {
values = new Int32Array(size);
} else if (dtype === 'bool') {
values = new Uint8Array(size);
} else {
throw new Error(`Unknown data type ${dtype}`);
}
for (let i = 0; i < size; i++) {
values[i] = randFunction();
}
return Tensor.make(shape, {values}, dtype);
}
/**
* Creates a `Tensor` with values drawn from a multinomial distribution.
*
* ```js
* const probs = tf.tensor([.75, .25]);
* tf.multinomial(probs, 3).print();
* ```
*
* @param logits 1D array with unnormalized log-probabilities, or
* 2D array of shape `[batchSize, numOutcomes]`. See the `normalized`
* parameter.
* @param numSamples Number of samples to draw for each row slice.
* @param seed The seed number.
* @param normalized Whether the provided `logits` are normalized true
* probabilities (sum to 1). Defaults to false.
* @return 1D array of shape `[numSamples]`, or 2D array of shape
* `[batchSize, numSamples]`, depending on the rank of the input.
*/
/** @doc {heading: 'Tensors', subheading: 'Random'} */
function multinomial_(
logits: Tensor1D|Tensor2D|TensorLike, numSamples: number, seed?: number,
normalized = false): Tensor1D|Tensor2D {
const $logits = convertToTensor(logits, 'logits', 'multinomial');
const numOutcomes = $logits.size;
const origRank = $logits.rank;
if (numOutcomes < 2) {
throw new Error(
`Error in multinomial: you need at least 2 outcomes, but got ` +
`${numOutcomes}.`);
}
if (origRank > 2) {
throw new Error(`Rank of probabilities must be 1 or 2, but is ${origRank}`);
}
seed = seed || Math.random();
const logits2D = origRank === 1 ? $logits.as2D(1, -1) : $logits as Tensor2D;
const res = ENV.engine.runKernel(
backend => backend.multinomial(logits2D, normalized, numSamples, seed),
{logits2D});
return origRank === 1 ? res.as1D() : res;
}
/**
* Creates a one-hot `Tensor`. The locations represented by `indices` take
* value `onValue` (defaults to 1), while all other locations take value
* `offValue` (defaults to 0).
*
* ```js
* tf.oneHot(tf.tensor1d([0, 1], 'int32'), 3).print();
* ```
*
* @param indices `Tensor1D` of indices with dtype `int32`.
* @param depth The depth of the one hot dimension.
* @param onValue A number used to fill in the output when the index matches
* the location.
* @param offValue A number used to fill in the output when the index does
* not match the location.
*/
/** @doc {heading: 'Tensors', subheading: 'Creation'} */
function oneHot_(
indices: Tensor1D|TensorLike1D, depth: number, onValue = 1,
offValue = 0): Tensor2D {
const $indices = convertToTensor(indices, 'indices', 'oneHot', 'int32');
util.assert($indices.dtype === 'int32', 'Indices must be of dtype `int32`');
if (depth < 2) {
throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`);
}
const grad = (dy: Tensor2D) => {
return {$indices: () => zerosLike($indices)};
};
return ENV.engine.runKernel(
backend => backend.oneHot($indices, depth, onValue, offValue), {$indices},
grad);
}
/**
* Creates a `Tensor` from an image.
*
* ```js
* const image = new ImageData(1, 1);
* image.data[0] = 100;
* image.data[1] = 150;
* image.data[2] = 200;
* image.data[3] = 255;
*
* tf.fromPixels(image).print();
* ```
*
* @param pixels The input image to construct the tensor from. The
* supported image types are all 4-channel.
* @param numChannels The number of channels of the output tensor. A
* numChannels value less than 4 allows you to ignore channels. Defaults to
* 3 (ignores alpha channel of input image).
*/
/** @doc {heading: 'Tensors', subheading: 'Creation'} */
function fromPixels_(
pixels: ImageData|HTMLImageElement|HTMLCanvasElement|HTMLVideoElement,
numChannels = 3): Tensor3D {
if (numChannels > 4) {
throw new Error(
'Cannot construct Tensor with more than 4 channels from pixels.');
}
return ENV.engine.fromPixels(pixels, numChannels);
}
/**
* Draws a `Tensor` of pixel values to a byte array or optionally a
* canvas.
*
* When the dtype of the input is 'float32', we assume values in the range
* [0-1]. Otherwise, when input is 'int32', we assume values in the range
* [0-255].
*
* Returns a promise that resolves when the canvas has been drawn to.
*
* @param img A rank-2 or rank-3 tensor. If rank-2, draws grayscale. If
* rank-3, must have depth of 1, 3 or 4. When depth of 1, draws
* grayscale. When depth of 3, we draw with the first three components of
* the depth dimension corresponding to r, g, b and alpha = 1. When depth of
* 4, all four components of the depth dimension correspond to r, g, b, a.
* @param canvas The canvas to draw to.
*/
/** @doc {heading: 'Visualization'} */
async function toPixels(
img: Tensor2D|Tensor3D|TensorLike,
canvas?: HTMLCanvasElement): Promise<Uint8ClampedArray> {
const $img = convertToTensor(img, 'img', 'toPixels', 'int32');
if ($img.rank !== 2 && $img.rank !== 3) {
throw new Error(
`toPixels only supports rank 2 or 3 tensors, got rank ${$img.rank}.`);
}
const [height, width] = $img.shape.slice(0, 2);
const depth = $img.rank === 2 ? 1 : $img.shape[2];
if (depth > 4 || depth === 2) {
throw new Error(
`toPixels only supports depth of size ` +
`1, 3 or 4 but got ${depth}`);
}
const minTensor = $img.min();
const maxTensor = $img.max();
const min = (await minTensor.data())[0];
const max = (await maxTensor.data())[0];
minTensor.dispose();
maxTensor.dispose();
if ($img.dtype === 'float32') {
if (min < 0 || max > 1) {
throw new Error(
`Tensor values for a float32 Tensor must be in the ` +
`range [0 - 1] but got range [${min} - ${max}].`);
}
} else if ($img.dtype === 'int32') {
if (min < 0 || max > 255) {
throw new Error(
`Tensor values for a int32 Tensor must be in the ` +
`range [0 - 255] but got range [${min} - ${max}].`);
}
} else {
throw new Error(
`Unsupported type for toPixels: ${$img.dtype}.` +
` Please use float32 or int32 tensors.`);
}
const data = await $img.data();
const multiplier = $img.dtype === 'float32' ? 255 : 1;
const bytes = new Uint8ClampedArray(width * height * 4);
for (let i = 0; i < height * width; ++i) {
let r, g, b, a;
if (depth === 1) {
r = data[i] * multiplier;
g = data[i] * multiplier;
b = data[i] * multiplier;
a = 255;
} else if (depth === 3) {
r = data[i * 3] * multiplier;
g = data[i * 3 + 1] * multiplier;
b = data[i * 3 + 2] * multiplier;
a = 255;
} else if (depth === 4) {
r = data[i * 4] * multiplier;
g = data[i * 4 + 1] * multiplier;
b = data[i * 4 + 2] * multiplier;
a = data[i * 4 + 3] * multiplier;
}
const j = i * 4;
bytes[j + 0] = Math.round(r);
bytes[j + 1] = Math.round(g);
bytes[j + 2] = Math.round(b);
bytes[j + 3] = Math.round(a);
}
if (canvas != null) {
canvas.width = width;
canvas.height = height;
const ctx = canvas.getContext('2d');
const imageData = new ImageData(bytes, width, height);
ctx.putImageData(imageData, 0, 0);
}
if ($img !== img) {
$img.dispose();
}
return bytes;
}
/**
* Reshapes a `Tensor` to a given shape.
*
* Given an input tensor, returns a new tensor with the same values as the
* input tensor with shape `shape`.
*
* If one component of shape is the special value -1, the size of that
* dimension is computed so that the total size remains constant. In
* particular, a shape of [-1] flattens into 1-D. At most one component of
* shape can be -1.
*
* If shape is 1-D or higher, then the operation returns a tensor with shape
* shape filled with the values of tensor. In this case, the number of
* elements implied by shape must be the same as the number of elements in
* tensor.
*
* ```js
* const x = tf.tensor1d([1, 2, 3, 4]);
* x.reshape([2, 2]).print();
* ```
*
* @param x The input tensor to be reshaped.
* @param shape An array of integers defining the output tensor shape.
*/
/** @doc {heading: 'Tensors', subheading: 'Transformations'} */
function reshape_<R2 extends Rank>(
x: Tensor|TensorLike, shape: ShapeMap[R2]): Tensor<R2> {
const $x = convertToTensor(x, 'x', 'reshape');
shape = util.inferFromImplicitShape(shape, $x.size);
util.assert(
$x.size === util.sizeFromShape(shape),
'new shape and old shape must have the same number of elements.');
const grad = (dy: Tensor<R2>) => {
return {$x: () => dy.reshape($x.shape)};
};
return ENV.engine.runKernel(
backend => backend.reshape($x, shape), {$x}, grad);
}
/**
* Removes dimensions of size 1 from the shape of a `Tensor`.
*
* ```js
* const x = tf.tensor([1, 2, 3, 4], [1, 1, 4]);
* x.squeeze().print();
* ```
*
* @param x The input tensor to be squeezed.
* @param axis An optional list of numbers. If specified, only
* squeezes the dimensions listed. The dimension index starts at 0. It
* is an error to squeeze a dimension that is not 1.
*/
/** @doc {heading: 'Tensors', subheading: 'Transformations'} */
function squeeze_<T extends Tensor>(x: Tensor|TensorLike, axis?: number[]): T {
const $x = convertToTensor(x, 'x', 'squeeze');
return reshape($x, util.squeezeShape($x.shape, axis).newShape) as T;
}
/**
* Casts a `Tensor` to a new dtype.
*
* ```js
* const x = tf.tensor1d([1.5, 2.5, 3]);
* tf.cast(x, 'int32').print();
* ```
* @param x The input tensor to be casted.
* @param dtype The dtype to cast the input tensor to.
*/
/** @doc {heading: 'Tensors', subheading: 'Transformations'} */
function cast_<T extends Tensor>(x: T|TensorLike, dtype: DataType): T {
const $x = convertToTensor(x, 'x', 'cast');
const grad = (dy: T) => {
return {$x: () => dy.clone()};
};
return ENV.engine.runKernel(backend => backend.cast($x, dtype), {$x}, grad) as
T;
}
/**
* Construct a tensor by repeating it the number of times given by reps.
*
* This operation creates a new tensor by replicating `input` `reps`
* times. The output tensor's i'th dimension has `input.shape[i] *
* reps[i]` elements, and the values of `input` are replicated
* `reps[i]` times along the i'th dimension. For example, tiling
* `[a, b, c, d]` by `[2]` produces `[a, b, c, d, a, b, c, d]`.
*
* ```js
* const a = tf.tensor1d([1, 2]);
*
* a.tile([2]).print(); // or a.tile([2])
* ```
*
* ```js
* const a = tf.tensor2d([1, 2, 3, 4], [2, 2]);
*
* a.tile([1, 2]).print(); // or a.tile([1, 2])
* ```
* @param x The tensor to tile.
* @param reps Determines the number of replications per dimension.
*/
/** @doc {heading: 'Tensors', subheading: 'Slicing and Joining'} */
function tile_<T extends Tensor>(x: T|TensorLike, reps: number[]): T {
const $x = convertToTensor(x, 'x', 'tile');
util.assert(
$x.rank === reps.length,
`Error in transpose: rank of input ${$x.rank} ` +
`must match length of reps ${reps}.`);
if( reps.every( d => d === 1 ) )
return $x;
const grad = (dy: T) => {
const derX = () => {
let xGrad = zerosLike($x);
// TODO(cais): Maybe reduce memory footprint by avoiding repeated
// slicing.
if ($x.rank === 1) {
for (let i = 0; i < reps[0]; ++i) {
xGrad = xGrad.add(dy.slice([i * $x.shape[0]], [$x.shape[0]]));
}
} else if ($x.rank === 2) {
for (let i = 0; i < reps[0]; ++i) {
for (let j = 0; j < reps[1]; ++j) {
xGrad = xGrad.add(dy.slice(
[i * $x.shape[0], j * $x.shape[1]],
[$x.shape[0], $x.shape[1]]));
}
}
} else if ($x.rank === 3) {
for (let i = 0; i < reps[0]; ++i) {
for (let j = 0; j < reps[1]; ++j) {
for (let k = 0; k < reps[2]; ++k) {
xGrad = xGrad.add(dy.slice(
[i * $x.shape[0], j * $x.shape[1], k * $x.shape[2]],
[$x.shape[0], $x.shape[1], $x.shape[2]]));
}
}
}
} else if ($x.rank === 4) {
for (let i = 0; i < reps[0]; ++i) {
for (let j = 0; j < reps[1]; ++j) {
for (let k = 0; k < reps[2]; ++k) {
for (let l = 0; l < reps[3]; ++l) {
xGrad = xGrad.add(dy.slice(
[
i * $x.shape[0], j * $x.shape[1], k * $x.shape[2],
l * $x.shape[3]
],
[$x.shape[0], $x.shape[1], $x.shape[2], $x.shape[3]]));
}
}
}
}
} else {
throw new Error(
`Gradient for tile operation is not implemented for rank-` +
`${$x.rank} tensors yet.`);
}
return xGrad;
};
return {$x: derX};
};
return ENV.engine.runKernel(backend => backend.tile($x, reps), {$x}, grad);
}
/**
* Pads a `Tensor1D` with a given value and paddings. See `pad` for details.
*/
function pad1d_(
x: Tensor1D|TensorLike, paddings: [number, number],
constantValue = 0): Tensor1D {
util.assert(
paddings.length === 2,
'Invalid number of paddings. Must be length of 2.');
return pad(x, [paddings], constantValue);
}
/**
* Pads a `Tensor2D` with a given value and paddings. See `pad` for details.
*/
function pad2d_(
x: Tensor2D|TensorLike, paddings: [[number, number], [number, number]],
constantValue = 0): Tensor2D {
util.assert(
paddings.length === 2 && paddings[0].length === 2 &&
paddings[1].length === 2,
'Invalid number of paddings. Must be length of 2 each.');
return pad(x, paddings, constantValue);
}
/**
* Pads a `Tensor3D` with a given value and paddings. See `pad` for details.
*/
function pad3d_(
x: Tensor3D|TensorLike,
paddings: [[number, number], [number, number], [number, number]],
constantValue = 0): Tensor3D {
util.assert(
paddings.length === 3 && paddings[0].length === 2 &&
paddings[1].length === 2 && paddings[2].length === 2,
'Invalid number of paddings. Must be length of 2 each.');
return pad(x, paddings, constantValue);
}
/**
* Pads a `Tensor4D` with a given value and paddings. See `pad` for details.
*/
function pad4d_(
x: Tensor4D|TensorLike,
paddings:
[
[number, number], [number, number], [number, number],
[number, number]
],
constantValue = 0): Tensor4D {
util.assert(
paddings.length === 4 && paddings[0].length === 2 &&
paddings[1].length === 2 && paddings[2].length === 2 &&
paddings[3].length === 2,
'Invalid number of paddings. Must be length of 2 each.');
return pad(x, paddings, constantValue);
}
/**
* Pads a `Tensor` with a given value and paddings.
*
* This operation currently only implements the `CONSTANT` mode.
*
* Also available are stricter rank-specific methods with the same signature
* as this method that assert that `paddings` is of given length.
* - `tf.pad1d`
* - `tf.pad2d`
* - `tf.pad3d`
* - `tf.pad4d`
*
* ```js
* const x = tf.tensor1d([1, 2, 3, 4]);
* x.pad([[1, 2]]).print();
* ```
* @param x The tensor to pad.
* @param paddings An array of length `R` (the rank of the tensor), where
* each element is a length-2 tuple of ints `[padBefore, padAfter]`,
* specifying how much to pad along each dimension of the tensor.
* @param constantValue The pad value to use. Defaults to 0.
*/
/** @doc {heading: 'Tensors', subheading: 'Transformations'} */
function pad_<T extends Tensor>(
x: T|TensorLike, paddings: Array<[number, number]>, constantValue = 0): T {
const $x = convertToTensor(x, 'x', 'pad');
if ($x.rank === 0) {
throw new Error('pad(scalar) is not defined. Pass non-scalar to pad');
}
// Pad introduces values around the original tensor, so the gradient
// slices the original shape out of the gradient.
const begin = paddings.map(p => p[0]);
const grad = (dy: T) => {
return {$x: () => dy.slice(begin, $x.shape)};
};
return ENV.engine.runKernel(
backend => backend.pad($x, paddings, constantValue), {$x}, grad) as
T;
}
/**
* Stacks a list of rank-`R` `Tensor`s into one rank-`(R+1)` `Tensor`.
*
* ```js
* const a = tf.tensor1d([1, 2]);
* const b = tf.tensor1d([3, 4]);
* const c = tf.tensor1d([5, 6]);
* tf.stack([a, b, c]).print();
* ```
*
* @param tensors A list of tensor objects with the same shape and dtype.
* @param axis The axis to stack along. Defaults to 0 (the first dim).
*/
/** @doc {heading: 'Tensors', subheading: 'Slicing and Joining'} */
function stack_<T extends Tensor>(tensors: T[]|TensorLike[], axis = 0): Tensor {
const $tensors = convertToTensorArray(tensors, 'tensors', 'stack');
util.assert($tensors.length >= 1, 'Pass at least one tensor to tf.stack');
if ($tensors.length === 1) {
return $tensors[0].expandDims(axis);
}
const rank = $tensors[0].rank;
const shape = $tensors[0].shape;
const dtype = $tensors[0].dtype;
util.assert(axis <= rank, 'Axis must be <= rank of the tensor');
$tensors.forEach(t => {
util.assertShapesMatch(
shape, t.shape,
'All tensors passed to stack must have matching shapes');
});
$tensors.forEach(t => {
util.assert(
dtype === t.dtype,
'All tensors passed to stack must have matching dtypes');
});
const expandedTensors = $tensors.map(t => t.expandDims(axis));
return concat(expandedTensors, axis);
}
/**
* This operation reshapes the "batch" dimension 0 into `M + 1` dimensions of
* shape `blockShape + [batch]`, interleaves these blocks back into the grid
* defined by the spatial dimensions `[1, ..., M]`, to obtain a result with
* the same rank as the input. The spatial dimensions of this intermediate
* result are then optionally cropped according to `crops` to produce the
* output. This is the reverse of `spaceToBatchND`. See below for a precise
* description.
*
* ```js
* const x = tf.tensor4d([1, 2, 3, 4], [4, 1, 1, 1]);
* const blockShape = [2, 2];
* const crops = [[0, 0], [0, 0]];
*
* x.batchToSpaceND(blockShape, crops).print();
* ```
*
* @param x A `Tensor`. N-D with `x.shape` = `[batch] + spatialShape +
* remainingShape`, where spatialShape has `M` dimensions.
* @param blockShape A 1-D array. Must be one of the following types: `int32`,
* `int64`. Must have shape `[M]`, all values must be >= 1.
* @param crops A 2-D array. Must be one of the following types: `int32`,
* `int64`. Must have shape `[M, 2]`, all values must be >= 0. `crops[i] =
* [cropStart, cropEnd]` specifies the amount to crop from input dimension `i
* + 1`, which corresponds to spatial dimension `i`. It is required that
* `cropStart[i] + cropEnd[i] <= blockShape[i] * inputShape[i + 1]`
*
* This operation is equivalent to the following steps:
*
* 1. Reshape `x` to `reshaped` of shape: `[blockShape[0], ...,
* blockShape[M-1], batch / prod(blockShape), x.shape[1], ...,
* x.shape[N-1]]`
*
* 2. Permute dimensions of `reshaped`to produce `permuted` of shape `[batch /
* prod(blockShape),x.shape[1], blockShape[0], ..., x.shape[M],
* blockShape[M-1],x.shape[M+1], ..., x.shape[N-1]]`
*
* 3. Reshape `permuted` to produce `reshapedPermuted` of shape `[batch /
* prod(blockShape),x.shape[1] * blockShape[0], ..., x.shape[M] *
* blockShape[M-1],x.shape[M+1], ..., x.shape[N-1]]`
*
* 4. Crop the start and end of dimensions `[1, ..., M]` of `reshapedPermuted`
* according to `crops` to produce the output of shape: `[batch /
* prod(blockShape),x.shape[1] * blockShape[0] - crops[0,0] - crops[0,1],
* ..., x.shape[M] * blockShape[M-1] - crops[M-1,0] -
* crops[M-1,1],x.shape[M+1], ..., x.shape[N-1]]`
*/
/** @doc {heading: 'Tensors', subheading: 'Transformations'} */
function batchToSpaceND_<T extends Tensor>(
x: T|TensorLike, blockShape: number[], crops: number[][]): T {
const $x = convertToTensor(x, 'x', 'batchToSpaceND');
const prod = blockShape.reduce((a, b) => a * b);
util.assert(
$x.rank >= 1 + blockShape.length,
`input rank is ${$x.rank} but should be > than blockShape.length ${
blockShape.length}`);
util.assert(
crops.length === blockShape.length,
`crops.length is ${
crops.length} but should be equal to blockShape.length ${
blockShape.length}`);
util.assert(
$x.shape[0] % prod === 0,
`input tensor batch is ${
$x.shape[0]} but is not divisible by the product of ` +
`the elements of blockShape ${blockShape.join(' * ')} === ${prod}`);
const grad = (dy: T) => {
return {$x: () => dy.spaceToBatchND(blockShape, crops)};
};
return ENV.engine.runKernel(
backend => backend.batchToSpaceND($x, blockShape, crops), {$x}, grad);
}
/**
* This operation divides "spatial" dimensions [1, ..., M] of the input into
* a grid of blocks of shape block_shape, and interleaves these blocks with
* the "batch" dimension (0) such that in the output, the spatial
* dimensions [1, ..., M] correspond to the position within the grid,
* and the batch dimension combines both the position within a spatial block
* and the original batch position. Prior to division into blocks,
* the spatial dimensions of the input are optionally zero padded
* according to paddings. See below for a precise description.
*
* ```js
* const x = tf.tensor4d([1, 2, 3, 4], [4, 1, 1, 1]);
* const blockShape = [2, 2];
* const paddings = [[0, 0], [0, 0]];
*
* x.spaceToBatchND(blockShape, paddings).print();
* ```
*
* @param x A `Tensor`. N-D with `x.shape` = `[batch] + spatialShape +
* remainingShape`, where spatialShape has `M` dimensions.
* @param blockShape A 1-D array. Must be one of the following types: `int32`,
* `int64`. Must have shape `[M]`, all values must be >= 1.
* @param paddings A 2-D array. Must be one of the following types: `int32`,
* `int64`. Must have shape `[M, 2]`, all values must be >= 0. `paddings[i] =
* [padStart, padEnd]` specifies the amount to zero-pad from input dimension
* `i + 1`, which corresponds to spatial dimension `i`.
* It is required that
* `(inputShape[i + 1] + padStart + padEnd) % blockShape[i] === 0`
*
* This operation is equivalent to the following steps:
*
* 1. Zero-pad the start and end of dimensions [1, ..., M] of the input
* according to paddings to produce padded of shape padded_shape.
*
* 2. Reshape padded to reshaped_padded of shape:
* [batch] + [padded_shape[1] / block_shape[0], block_shape[0], ...,
* padded_shape[M] / block_shape[M-1], block_shape[M-1]] + remaining_shape
*
* 3. Permute dimensions of reshaped_padded to produce permuted_
* reshaped_padded of shape:
* block_shape + [batch] + [padded_shape[1] / block_shape[0], ...,
* padded_shape[M] / block_shape[M-1]] + remaining_shape
*
* 4. Reshape permuted_reshaped_padded to flatten block_shape into the
* batch dimension, producing an output tensor of shape:
* [batch * prod(block_shape)] + [padded_shape[1] / block_shape[0], ...,
* padded_shape[M] / block_shape[M-1]] + remaining_shape
*/
/** @doc {heading: 'Tensors', subheading: 'Transformations'} */
function spaceToBatchND_<T extends Tensor>(
x: T|TensorLike, blockShape: number[], paddings: number[][]): T {
const $x = convertToTensor(x, 'x', 'spaceToBatchND');
util.assert(
$x.rank >= 1 + blockShape.length,
`input rank ${$x.rank} should be > than [blockShape] ${
blockShape.length}`);
util.assert(
paddings.length === blockShape.length,
`paddings.shape[0] ${paddings.length} must be equal to [blockShape] ${
blockShape.length}`);
util.assert(
$x.shape.reduce(
(a, b, i) => {
if (i > 0 && i <= blockShape.length) {
return a &&
((b + paddings[i - 1][0] + paddings[i - 1][1]) %
blockShape[i - 1] ===
0);
}
return a;
},
true),
`input spatial dimensions ${$x.shape.slice(1)} with paddings ${
paddings.toString()} must be divisible by blockShapes ${
blockShape.toString()}`);
const grad = (dy: T) => {
return {$x: () => dy.batchToSpaceND(blockShape, paddings)};
};
return ENV.engine.runKernel(
backend => backend.spaceToBatchND($x, blockShape, paddings), {$x}, grad);
}
/**
* Unstacks a `Tensor` of rank-`R` into a list of rank-`(R-1)` `Tensor`s.
*
* ```js
* const a = tf.tensor2d([1, 2, 3, 4], [2, 2]);
*
* tf.unstack(a).forEach(tensor => tensor.print());
* ```
*
* @param x A tensor object.
* @param axis The axis to unstack along. Defaults to 0 (the first dim).
*/
/** @doc {heading: 'Tensors', subheading: 'Slicing and Joining'} */
function unstack_<T extends Tensor>(x: T|TensorLike, axis = 0): Tensor[] {
const $x = convertToTensor(x, 'x', 'unstack');
const num = $x.shape[axis];
const outputShape: number[] = Array($x.rank - 1).fill(0);
let outIndex = 0;
for (let i = 0; i < $x.rank; i++) {
if (i !== axis) {
outputShape[outIndex] = $x.shape[i];
outIndex++;
}
}
let splitSizes: number[];
splitSizes = Array(num).fill(1);
const begin = Array($x.rank).fill(0);
const size = $x.shape.slice();
return splitSizes.map(s => {
size[axis] = s;
const slice = $x.slice(begin, size);
begin[axis] += s;
return slice.reshape(outputShape);
});
}