-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathworkflows.py
165 lines (132 loc) · 6.21 KB
/
workflows.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import asyncio
from collections import deque
from dataclasses import dataclass
from datetime import timedelta
from typing import Deque, List, Optional, Tuple
from temporalio import workflow
with workflow.unsafe.imports_passed_through():
from bedrock.shared.activities import BedrockActivities
@dataclass
class BedrockParams:
conversation_summary: Optional[str] = None
prompt_queue: Optional[Deque[str]] = None
@workflow.defn
class EntityBedrockWorkflow:
def __init__(self) -> None:
# List to store prompt history
self.conversation_history: List[Tuple[str, str]] = []
self.prompt_queue: Deque[str] = deque()
self.conversation_summary: Optional[str] = None
self.continue_as_new_per_turns: int = 6
self.chat_ended: bool = False
@workflow.run
async def run(
self,
params: BedrockParams,
) -> str:
if params and params.conversation_summary:
self.conversation_history.append(
("conversation_summary", params.conversation_summary)
)
self.conversation_summary = params.conversation_summary
if params and params.prompt_queue:
self.prompt_queue.extend(params.prompt_queue)
while True:
workflow.logger.info("Waiting for prompts...")
# Wait for a chat message (signal) or timeout
await workflow.wait_condition(
lambda: bool(self.prompt_queue) or self.chat_ended
)
if self.prompt_queue:
# Fetch next user prompt and add to conversation history
prompt = self.prompt_queue.popleft()
self.conversation_history.append(("user", prompt))
workflow.logger.info("Prompt: " + prompt)
# Send prompt to Amazon Bedrock
response = await workflow.execute_activity_method(
BedrockActivities.prompt_bedrock,
self.prompt_with_history(prompt),
schedule_to_close_timeout=timedelta(seconds=20),
)
workflow.logger.info(f"{response}")
# Append the response to the conversation history
self.conversation_history.append(("response", response))
# Continue as new every x conversational turns to avoid event
# history size getting too large. This is also to avoid the
# prompt (with conversational history) getting too large for
# AWS Bedrock.
# We summarize the chat to date and use that as input to the
# new workflow
if len(self.conversation_history) >= self.continue_as_new_per_turns:
# Summarize the conversation to date using Amazon Bedrock
self.conversation_summary = await workflow.start_activity_method(
BedrockActivities.prompt_bedrock,
self.prompt_summary_from_history(),
schedule_to_close_timeout=timedelta(seconds=20),
)
workflow.logger.info(
"Continuing as new due to %i conversational turns."
% self.continue_as_new_per_turns,
)
workflow.continue_as_new(
args=[
BedrockParams(
self.conversation_summary,
self.prompt_queue,
)
]
)
continue
# If end chat signal was sent
if self.chat_ended:
# The workflow might be continued as new without any
# chat to summarize, so only call Bedrock if there
# is more than the previous summary in the history.
if len(self.conversation_history) > 1:
# Summarize the conversation to date using Amazon Bedrock
self.conversation_summary = await workflow.start_activity_method(
BedrockActivities.prompt_bedrock,
self.prompt_summary_from_history(),
schedule_to_close_timeout=timedelta(seconds=20),
)
workflow.logger.info(
"Chat ended. Conversation summary:\n"
+ f"{self.conversation_summary}"
)
return f"{self.conversation_history}"
@workflow.signal
async def user_prompt(self, prompt: str) -> None:
# Chat ended but the workflow is waiting for a chat summary to be generated
if self.chat_ended:
workflow.logger.warn(f"Message dropped due to chat closed: {prompt}")
return
self.prompt_queue.append(prompt)
@workflow.signal
async def end_chat(self) -> None:
self.chat_ended = True
@workflow.query
def get_conversation_history(self) -> List[Tuple[str, str]]:
return self.conversation_history
@workflow.query
def get_summary_from_history(self) -> Optional[str]:
return self.conversation_summary
# Helper method used in prompts to Amazon Bedrock
def format_history(self) -> str:
return " ".join(f"{text}" for _, text in self.conversation_history)
# Create the prompt given to Amazon Bedrock for each conversational turn
def prompt_with_history(self, prompt: str) -> str:
history_string = self.format_history()
return (
f"Here is the conversation history: {history_string} Please add "
+ "a few sentence response to the prompt in plain text sentences. "
+ "Don't editorialize or add metadata like response. Keep the "
+ f"text a plain explanation based on the history. Prompt: {prompt}"
)
# Create the prompt to Amazon Bedrock to summarize the conversation history
def prompt_summary_from_history(self) -> str:
history_string = self.format_history()
return (
"Here is the conversation history between a user and a chatbot: "
+ f"{history_string} -- Please produce a two sentence summary of "
+ "this conversation."
)