@@ -19,7 +19,6 @@ def page_machine_learning_performance_metrics():
19
19
20
20
version = 'v1'
21
21
version_2 = 'v2'
22
- version_3 = 'v3'
23
22
24
23
st .write ("### Train, Validation and Test Set: Labels Frequencies" )
25
24
@@ -82,7 +81,7 @@ def page_machine_learning_performance_metrics():
82
81
st .write ("### Confusion Matrix" )
83
82
col1 = st .beta_columns (1 )[0 ]
84
83
with col1 :
85
- model_acc = plt .imread (f"jupyter_notebooks/outputs/{ version_3 } /confusion_matrix.png" )
84
+ model_acc = plt .imread (f"jupyter_notebooks/outputs/{ version_2 } /confusion_matrix.png" )
86
85
st .image (model_acc , caption = 'Confusion Matrix' )
87
86
88
87
st .markdown (
@@ -96,7 +95,7 @@ def page_machine_learning_performance_metrics():
96
95
st .write ("---" )
97
96
98
97
# Load confusion matrix from joblib
99
- confusion_matrix = joblib .load (f"jupyter_notebooks/outputs/{ version_3 } /confusion_matrix.joblib" )
98
+ confusion_matrix = joblib .load (f"jupyter_notebooks/outputs/{ version_2 } /confusion_matrix.joblib" )
100
99
101
100
# Convert confusion matrix to a pandas DataFrame
102
101
confusion_matrix_df = pd .DataFrame (confusion_matrix , columns = ['Predicted Healthy' , 'Predicted Powdery' , 'Predicted Rust' ], index = ['Actual Healthy' , 'Actual Powdery' , 'Actual Rust' ])
@@ -108,7 +107,7 @@ def page_machine_learning_performance_metrics():
108
107
st .write ("---" )
109
108
110
109
# Load metrics from joblib
111
- metrics = joblib .load (f"jupyter_notebooks/outputs/{ version_3 } /metrics.joblib" )
110
+ metrics = joblib .load (f"jupyter_notebooks/outputs/{ version_2 } /metrics.joblib" )
112
111
113
112
# Convert metrics to a pandas DataFrame
114
113
metrics_df = pd .DataFrame (metrics , index = ['Value' ])
0 commit comments