-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbinClassifier.py
60 lines (47 loc) · 1.69 KB
/
binClassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import pandas as pd
import numpy as np
from multivariateNormal import *
accuracies = []
accs1 = []
accs2 = []
#add column names
features = []
#add the number of data points you want as a part of the train set for each of the classes
split1 =
split2 =
data1 = pd.read_csv("./Data/class1.csv")
data2 = pd.read_csv("./Data/class2.csv")
data1 = data1[features]
data2 = data2[features]
for i in range(100):
data1 = data1.sample(frac=1).reset_index(drop=True)
train1 = data1[0:split1]
data2 = data2.sample(frac=1).reset_index(drop=True)
train2 = data2[0:split2]
test1 = data1[features][split1:]
test2 = data2[features][split2:]
right1 = 0
for row in test1.values:
prob1, prob2 = getProbabilities(row, train1, train2)
if(action(prob1, prob2) == 1):
right1 += 1
right2 = 0
for row in test2.values:
prob1, prob2 = getProbabilities(row, train1, train2)
if(action(prob1, prob2) == 0):
right2 += 1
accuracy = (right1 + right2) / (len(test1.iloc[0].values) + len(test2.iloc[0].values))
acc1 = right1/len(test1.iloc[0].values)
acc2 = right2/len(test2.iloc[0].values)
print("acc: ", accuracy * 100, "\tacc1: ", acc1 * 100,
"\tacc2: ", acc2 * 100)
accuracies.append(accuracy)
accs1.append(acc1)
accs2.append(acc2)
print("mean_acc: ", np.mean(accuracies) * 100)
print("min_acc: ", min(accuracies) * 100, "\tmax_acc: ", max(accuracies) * 100)
print("class wise accuracies: ")
print("mean_acc1: ", np.mean(accs1) * 100)
print("min_acc1: ", min(accs1) * 100, "\tmax_acc1: ", max(accs1) * 100)
print("mean_acc2: ", np.mean(accs2) * 100)
print("min_acc2: ", min(accs2) * 100, "\tmax_acc2: ", max(accs2) * 100)