-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlink_utils.py
272 lines (224 loc) · 10 KB
/
link_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""
Utility functions for link prediction
Most code is adapted from authors' implementation of RGCN link prediction:
https://github.com/MichSchli/RelationPrediction
"""
import numpy as np
import torch as th
import dgl
# Utility function for building training and testing graphs
def get_subset_g(g, mask, num_rels, bidirected=False):
src, dst = g.edges()
sub_src = src[mask]
sub_dst = dst[mask]
sub_rel = g.edata['etype'][mask]
if bidirected:
sub_src, sub_dst = th.cat([sub_src, sub_dst]), th.cat([sub_dst, sub_src])
sub_rel = th.cat([sub_rel, sub_rel + num_rels])
sub_g = dgl.graph((sub_src, sub_dst), num_nodes=g.num_nodes())
sub_g.edata[dgl.ETYPE] = sub_rel
return sub_g
def preprocess(g, num_rels):
# Get train graph
train_g = get_subset_g(g, g.edata['train_mask'], num_rels)
# Get test graph
test_g = get_subset_g(g, g.edata['train_mask'], num_rels, bidirected=True)
test_g.edata['norm'] = dgl.norm_by_dst(test_g).unsqueeze(-1)
return train_g, test_g
class GlobalUniform:
def __init__(self, g, sample_size):
self.sample_size = sample_size
self.eids = np.arange(g.num_edges())
def sample(self):
return th.from_numpy(np.random.choice(self.eids, self.sample_size))
class NeighborExpand:
"""Sample a connected component by neighborhood expansion"""
def __init__(self, g, sample_size):
self.g = g
self.nids = np.arange(g.num_nodes())
self.sample_size = sample_size
def sample(self):
edges = th.zeros((self.sample_size), dtype=th.int64)
neighbor_counts = (self.g.in_degrees() + self.g.out_degrees()).numpy()
seen_edge = np.array([False] * self.g.num_edges())
seen_node = np.array([False] * self.g.num_nodes())
for i in range(self.sample_size):
if np.sum(seen_node) == 0:
node_weights = np.ones_like(neighbor_counts)
node_weights[np.where(neighbor_counts == 0)] = 0
else:
# Sample a visited node if applicable.
# This guarantees a connected component.
node_weights = neighbor_counts * seen_node
node_probs = node_weights / np.sum(node_weights)
chosen_node = np.random.choice(self.nids, p=node_probs)
# Sample a neighbor of the sampled node
u1, v1, eid1 = self.g.in_edges(chosen_node, form='all')
u2, v2, eid2 = self.g.out_edges(chosen_node, form='all')
u = th.cat([u1, u2])
v = th.cat([v1, v2])
eid = th.cat([eid1, eid2])
to_pick = True
while to_pick:
random_id = th.randint(high=eid.shape[0], size=(1,))
chosen_eid = eid[random_id]
to_pick = seen_edge[chosen_eid]
chosen_u = u[random_id]
chosen_v = v[random_id]
edges[i] = chosen_eid
seen_node[chosen_u] = True
seen_node[chosen_v] = True
seen_edge[chosen_eid] = True
neighbor_counts[chosen_u] -= 1
neighbor_counts[chosen_v] -= 1
return edges
class NegativeSampler:
def __init__(self, k=10):
self.k = k
def sample(self, pos_samples, num_nodes):
batch_size = len(pos_samples)
neg_batch_size = batch_size * self.k
neg_samples = np.tile(pos_samples, (self.k, 1))
values = np.random.randint(num_nodes, size=neg_batch_size)
choices = np.random.uniform(size=neg_batch_size)
subj = choices > 0.5
obj = choices <= 0.5
neg_samples[subj, 0] = values[subj]
neg_samples[obj, 2] = values[obj]
samples = np.concatenate((pos_samples, neg_samples))
# binary labels indicating positive and negative samples
labels = np.zeros(batch_size * (self.k + 1), dtype=np.float32)
labels[:batch_size] = 1
return th.from_numpy(samples), th.from_numpy(labels)
class SubgraphIterator:
def __init__(self, g, num_rels, pos_sampler, sample_size=30000, num_epochs=6000):
self.g = g
self.num_rels = num_rels
self.sample_size = sample_size
self.num_epochs = num_epochs
if pos_sampler == 'neighbor':
self.pos_sampler = NeighborExpand(g, sample_size)
else:
self.pos_sampler = GlobalUniform(g, sample_size)
self.neg_sampler = NegativeSampler()
def __len__(self):
return self.num_epochs
def __getitem__(self, i):
eids = self.pos_sampler.sample()
src, dst = self.g.find_edges(eids)
src, dst = src.numpy(), dst.numpy()
rel = self.g.edata[dgl.ETYPE][eids].numpy()
# relabel nodes to have consecutive node IDs
uniq_v, edges = np.unique((src, dst), return_inverse=True)
num_nodes = len(uniq_v)
# edges is the concatenation of src, dst with relabeled ID
src, dst = np.reshape(edges, (2, -1))
relabeled_data = np.stack((src, rel, dst)).transpose()
samples, labels = self.neg_sampler.sample(relabeled_data, num_nodes)
# Use only half of the positive edges
chosen_ids = np.random.choice(np.arange(self.sample_size),
size=int(self.sample_size / 2),
replace=False)
src = src[chosen_ids]
dst = dst[chosen_ids]
rel = rel[chosen_ids]
src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
rel = np.concatenate((rel, rel + self.num_rels))
sub_g = dgl.graph((src, dst), num_nodes=num_nodes)
sub_g.edata[dgl.ETYPE] = th.from_numpy(rel)
sub_g.edata['norm'] = dgl.norm_by_dst(sub_g).unsqueeze(-1)
uniq_v = th.from_numpy(uniq_v).view(-1).long()
return sub_g, uniq_v, samples, labels
# Utility functions for evaluations (raw)
def perturb_and_get_raw_rank(emb, w, a, r, b, test_size, batch_size=100):
""" Perturb one element in the triplets"""
n_batch = (test_size + batch_size - 1) // batch_size
ranks = []
emb = emb.transpose(0, 1) # size D x V
w = w.transpose(0, 1) # size D x R
for idx in range(n_batch):
print("batch {} / {}".format(idx, n_batch))
batch_start = idx * batch_size
batch_end = (idx + 1) * batch_size
batch_a = a[batch_start: batch_end]
batch_r = r[batch_start: batch_end]
emb_ar = emb[:,batch_a] * w[:,batch_r] # size D x E
emb_ar = emb_ar.unsqueeze(2) # size D x E x 1
emb_c = emb.unsqueeze(1) # size D x 1 x V
# out-prod and reduce sum
out_prod = th.bmm(emb_ar, emb_c) # size D x E x V
score = th.sum(out_prod, dim=0).sigmoid() # size E x V
target = b[batch_start: batch_end]
_, indices = th.sort(score, dim=1, descending=True)
indices = th.nonzero(indices == target.view(-1, 1), as_tuple=False)
ranks.append(indices[:, 1].view(-1))
return th.cat(ranks)
# Utility functions for evaluations (filtered)
def filter(triplets_to_filter, target_s, target_r, target_o, num_nodes, filter_o=True):
"""Get candidate heads or tails to score"""
target_s, target_r, target_o = int(target_s), int(target_r), int(target_o)
# Add the ground truth node first
if filter_o:
candidate_nodes = [target_o]
else:
candidate_nodes = [target_s]
for e in range(num_nodes):
triplet = (target_s, target_r, e) if filter_o else (e, target_r, target_o)
# Do not consider a node if it leads to a real triplet
if triplet not in triplets_to_filter:
candidate_nodes.append(e)
return th.LongTensor(candidate_nodes)
def perturb_and_get_filtered_rank(emb, w, s, r, o, test_size, triplets_to_filter, filter_o=True):
"""Perturb subject or object in the triplets"""
num_nodes = emb.shape[0]
ranks = []
for idx in range(test_size):
if idx % 100 == 0:
print("test triplet {} / {}".format(idx, test_size))
target_s = s[idx]
target_r = r[idx]
target_o = o[idx]
candidate_nodes = filter(triplets_to_filter, target_s, target_r,
target_o, num_nodes, filter_o=filter_o)
if filter_o:
emb_s = emb[target_s]
emb_o = emb[candidate_nodes]
else:
emb_s = emb[candidate_nodes]
emb_o = emb[target_o]
target_idx = 0
emb_r = w[target_r]
emb_triplet = emb_s * emb_r * emb_o
scores = th.sigmoid(th.sum(emb_triplet, dim=1))
_, indices = th.sort(scores, descending=True)
rank = int((indices == target_idx).nonzero())
ranks.append(rank)
return th.LongTensor(ranks)
def _calc_mrr(emb, w, test_mask, triplets_to_filter, batch_size, filter=False):
with th.no_grad():
test_triplets = triplets_to_filter[test_mask]
s, r, o = test_triplets[:,0], test_triplets[:,1], test_triplets[:,2]
test_size = len(s)
if filter:
metric_name = 'MRR (filtered)'
triplets_to_filter = {tuple(triplet) for triplet in triplets_to_filter.tolist()}
ranks_s = perturb_and_get_filtered_rank(emb, w, s, r, o, test_size,
triplets_to_filter, filter_o=False)
ranks_o = perturb_and_get_filtered_rank(emb, w, s, r, o,
test_size, triplets_to_filter)
else:
metric_name = 'MRR (raw)'
ranks_s = perturb_and_get_raw_rank(emb, w, o, r, s, test_size, batch_size)
ranks_o = perturb_and_get_raw_rank(emb, w, s, r, o, test_size, batch_size)
ranks = th.cat([ranks_s, ranks_o])
ranks += 1 # change to 1-indexed
mrr = th.mean(1.0 / ranks.float()).item()
print("{}: {:.6f}".format(metric_name, mrr))
return mrr
# Main evaluation function
def calc_mrr(emb, w, test_mask, triplets, batch_size=100, eval_p="filtered"):
if eval_p == "filtered":
mrr = _calc_mrr(emb, w, test_mask, triplets, batch_size, filter=True)
else:
mrr = _calc_mrr(emb, w, test_mask, triplets, batch_size)
return mrr