-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_faster_rcnn.py
526 lines (478 loc) · 25.3 KB
/
train_faster_rcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
"""Train Faster-RCNN end to end."""
import argparse
import os
# disable autotune
os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
import logging
import time
import numpy as np
import mxnet as mx
from mxnet import gluon
from mxnet import autograd
from mxnet.contrib import amp
import gluoncv as gcv
from gluoncv import data as gdata
from gluoncv import utils as gutils
from gluoncv.model_zoo import get_model
from gluoncv.data.batchify import FasterRCNNTrainBatchify, Tuple, Append
from gluoncv.data.transforms.presets.rcnn import FasterRCNNDefaultTrainTransform, \
FasterRCNNDefaultValTransform
from gluoncv.utils.metrics.voc_detection import VOC07MApMetric
from gluoncv.utils.metrics.coco_detection import COCODetectionMetric
from gluoncv.utils.parallel import Parallelizable, Parallel
from gluoncv.utils.metrics.rcnn import RPNAccMetric, RPNL1LossMetric, RCNNAccMetric, \
RCNNL1LossMetric
from data import *
from model import faster_rcnn_resnet101_v1d_custom, faster_rcnn_resnet50_v1b_custom
try:
import horovod.mxnet as hvd
except ImportError:
hvd = None
def parse_args():
parser = argparse.ArgumentParser(description='Train Faster-RCNN networks e2e.')
parser.add_argument('--network', type=str, default='resnet101_v1d',
help="Base network name which serves as feature extraction base.")
parser.add_argument('--dataset', type=str, default='visualgenome',
help='Training dataset. Now support voc and coco.')
parser.add_argument('--num-workers', '-j', dest='num_workers', type=int,
default=8, help='Number of data workers, you can use larger '
'number to accelerate data loading, '
'if your CPU and GPUs are powerful.')
parser.add_argument('--batch-size', type=int, default=8, help='Training mini-batch size.')
parser.add_argument('--gpus', type=str, default='0',
help='Training with GPUs, you can specify 1,3 for example.')
parser.add_argument('--epochs', type=str, default='',
help='Training epochs.')
parser.add_argument('--resume', type=str, default='',
help='Resume from previously saved parameters if not None. '
'For example, you can resume from ./faster_rcnn_xxx_0123.params')
parser.add_argument('--start-epoch', type=int, default=0,
help='Starting epoch for resuming, default is 0 for new training.'
'You can specify it to 100 for example to start from 100 epoch.')
parser.add_argument('--lr', type=str, default='',
help='Learning rate, default is 0.001 for voc single gpu training.')
parser.add_argument('--lr-decay', type=float, default=0.1,
help='decay rate of learning rate. default is 0.1.')
parser.add_argument('--lr-decay-epoch', type=str, default='',
help='epochs at which learning rate decays. default is 14,20 for voc.')
parser.add_argument('--lr-warmup', type=str, default='',
help='warmup iterations to adjust learning rate, default is 0 for voc.')
parser.add_argument('--lr-warmup-factor', type=float, default=1. / 3.,
help='warmup factor of base lr.')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum, default is 0.9')
parser.add_argument('--wd', type=str, default='',
help='Weight decay, default is 5e-4 for voc')
parser.add_argument('--log-interval', type=int, default=100,
help='Logging mini-batch interval. Default is 100.')
parser.add_argument('--save-prefix', type=str, default='',
help='Saving parameter prefix')
parser.add_argument('--save-interval', type=int, default=1,
help='Saving parameters epoch interval, best model will always be saved.')
parser.add_argument('--val-interval', type=int, default=1,
help='Epoch interval for validation, increase the number will reduce the '
'training time if validation is slow.')
parser.add_argument('--seed', type=int, default=233,
help='Random seed to be fixed.')
parser.add_argument('--verbose', dest='verbose', action='store_true',
help='Print helpful debugging info once set.')
parser.add_argument('--mixup', action='store_true', help='Use mixup training.')
parser.add_argument('--no-mixup-epochs', type=int, default=20,
help='Disable mixup training if enabled in the last N epochs.')
# Norm layer options
parser.add_argument('--norm-layer', type=str, default=None,
help='Type of normalization layer to use. '
'If set to None, backbone normalization layer will be fixed,'
' and no normalization layer will be used. '
'Currently supports \'bn\', and None, default is None.'
'Note that if horovod is enabled, sync bn will not work correctly.')
# FPN options
parser.add_argument('--use-fpn', action='store_true',
help='Whether to use feature pyramid network.')
# Performance options
parser.add_argument('--disable-hybridization', action='store_true',
help='Whether to disable hybridize the model. '
'Memory usage and speed will decrese.')
parser.add_argument('--static-alloc', action='store_true',
help='Whether to use static memory allocation. Memory usage will increase.')
parser.add_argument('--amp', action='store_true',
help='Use MXNet AMP for mixed precision training.')
parser.add_argument('--horovod', action='store_true',
help='Use MXNet Horovod for distributed training. Must be run with OpenMPI. '
'--gpus is ignored when using --horovod.')
parser.add_argument('--executor-threads', type=int, default=1,
help='Number of threads for executor for scheduling ops. '
'More threads may incur higher GPU memory footprint, '
'but may speed up throughput. Note that when horovod is used, '
'it is set to 1.')
parser.add_argument('--kv-store', type=str, default='nccl',
help='KV store options. local, device, nccl, dist_sync, dist_device_sync, '
'dist_async are available.')
args = parser.parse_args()
if args.horovod:
if hvd is None:
raise SystemExit("Horovod not found, please check if you installed it correctly.")
hvd.init()
if args.dataset == 'voc':
args.epochs = int(args.epochs) if args.epochs else 20
args.lr_decay_epoch = args.lr_decay_epoch if args.lr_decay_epoch else '14,20'
args.lr = float(args.lr) if args.lr else 0.001
args.lr_warmup = args.lr_warmup if args.lr_warmup else -1
args.wd = float(args.wd) if args.wd else 5e-4
elif args.dataset == 'visualgenome':
args.epochs = int(args.epochs) if args.epochs else 20
args.lr_decay_epoch = args.lr_decay_epoch if args.lr_decay_epoch else '14,20'
args.lr = float(args.lr) if args.lr else 0.001
args.lr_warmup = args.lr_warmup if args.lr_warmup else -1
args.wd = float(args.wd) if args.wd else 5e-4
elif args.dataset == 'coco':
args.epochs = int(args.epochs) if args.epochs else 26
args.lr_decay_epoch = args.lr_decay_epoch if args.lr_decay_epoch else '17,23'
args.lr = float(args.lr) if args.lr else 0.01
args.lr_warmup = args.lr_warmup if args.lr_warmup else 1000
args.wd = float(args.wd) if args.wd else 1e-4
return args
def get_dataset(dataset, args):
if dataset.lower() == 'voc':
train_dataset = gdata.VOCDetection(
splits=[(2007, 'trainval'), (2012, 'trainval')])
val_dataset = gdata.VOCDetection(
splits=[(2007, 'test')])
val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
elif dataset.lower() == 'coco':
train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False)
val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
elif dataset.lower() == 'visualgenome':
train_dataset = VGObject(root=os.path.join('~', '.mxnet', 'datasets', 'visualgenome'),
splits='detections_train', use_crowd=False)
val_dataset = VGObject(root=os.path.join('~', '.mxnet', 'datasets', 'visualgenome'),
splits='detections_val', skip_empty=False)
val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
else:
raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
if args.mixup:
from gluoncv.data.mixup import detection
train_dataset = detection.MixupDetection(train_dataset)
return train_dataset, val_dataset, val_metric
def get_dataloader(net, train_dataset, val_dataset, train_transform, val_transform, batch_size,
num_shards, args):
"""Get dataloader."""
train_bfn = FasterRCNNTrainBatchify(net, num_shards)
if hasattr(train_dataset, 'get_im_aspect_ratio'):
im_aspect_ratio = train_dataset.get_im_aspect_ratio()
else:
im_aspect_ratio = [1.] * len(train_dataset)
train_sampler = \
gcv.nn.sampler.SplitSortedBucketSampler(im_aspect_ratio, batch_size,
num_parts=hvd.size() if args.horovod else 1,
part_index=hvd.rank() if args.horovod else 0,
shuffle=True)
train_loader = mx.gluon.data.DataLoader(train_dataset.transform(
train_transform(net.short, net.max_size, net, ashape=net.ashape, multi_stage=args.use_fpn)),
batch_sampler=train_sampler, batchify_fn=train_bfn, num_workers=args.num_workers)
if val_dataset is None:
val_loader = None
else:
val_bfn = Tuple(*[Append() for _ in range(3)])
short = net.short[-1] if isinstance(net.short, (tuple, list)) else net.short
# validation use 1 sample per device
val_loader = mx.gluon.data.DataLoader(
val_dataset.transform(val_transform(short, net.max_size)), num_shards, False,
batchify_fn=val_bfn, last_batch='keep', num_workers=args.num_workers)
return train_loader, val_loader
def save_params(net, logger, best_map, current_map, epoch, save_interval, prefix):
current_map = float(current_map)
if current_map > best_map[0]:
logger.info('[Epoch {}] mAP {} higher than current best {} saving to {}'.format(
epoch, current_map, best_map, '{:s}_best.params'.format(prefix)))
best_map[0] = current_map
net.save_parameters('{:s}_best.params'.format(prefix))
with open(prefix + '_best_map.log', 'a') as f:
f.write('{:04d}:\t{:.4f}\n'.format(epoch, current_map))
if save_interval and (epoch + 1) % save_interval == 0:
logger.info('[Epoch {}] Saving parameters to {}'.format(
epoch, '{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map)))
net.save_parameters('{:s}_{:04d}_{:.4f}.params'.format(prefix, epoch, current_map))
def split_and_load(batch, ctx_list):
"""Split data to 1 batch each device."""
new_batch = []
for i, data in enumerate(batch):
if isinstance(data, (list, tuple)):
new_data = [x.as_in_context(ctx) for x, ctx in zip(data, ctx_list)]
else:
new_data = [data.as_in_context(ctx_list[0])]
new_batch.append(new_data)
return new_batch
def validate(net, val_data, ctx, eval_metric, args):
"""Test on validation dataset."""
clipper = gcv.nn.bbox.BBoxClipToImage()
eval_metric.reset()
if not args.disable_hybridization:
# input format is differnet than training, thus rehybridization is needed.
net.hybridize(static_alloc=args.static_alloc)
for i, batch in enumerate(val_data):
batch = split_and_load(batch, ctx_list=ctx)
det_bboxes = []
det_ids = []
det_scores = []
gt_bboxes = []
gt_ids = []
gt_difficults = []
for x, y, im_scale in zip(*batch):
# get prediction results
ids, scores, bboxes = net(x)
det_ids.append(ids)
det_scores.append(scores)
# clip to image size
det_bboxes.append(clipper(bboxes, x))
# rescale to original resolution
im_scale = im_scale.reshape((-1)).asscalar()
det_bboxes[-1] *= im_scale
# split ground truths
gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5))
gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4))
gt_bboxes[-1] *= im_scale
gt_difficults.append(y.slice_axis(axis=-1, begin=5, end=6) if y.shape[-1] > 5 else None)
# update metric
for det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff in zip(det_bboxes, det_ids,
det_scores, gt_bboxes,
gt_ids, gt_difficults):
eval_metric.update(det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff)
return eval_metric.get()
def get_lr_at_iter(alpha, lr_warmup_factor=1. / 3.):
return lr_warmup_factor * (1 - alpha) + alpha
class ForwardBackwardTask(Parallelizable):
def __init__(self, net, optimizer, rpn_cls_loss, rpn_box_loss, rcnn_cls_loss, rcnn_box_loss,
mix_ratio):
super(ForwardBackwardTask, self).__init__()
self.net = net
self._optimizer = optimizer
self.rpn_cls_loss = rpn_cls_loss
self.rpn_box_loss = rpn_box_loss
self.rcnn_cls_loss = rcnn_cls_loss
self.rcnn_box_loss = rcnn_box_loss
self.mix_ratio = mix_ratio
def forward_backward(self, x):
data, label, rpn_cls_targets, rpn_box_targets, rpn_box_masks = x
with autograd.record():
gt_label = label[:, :, 4:5]
gt_box = label[:, :, :4]
cls_pred, box_pred, roi, samples, matches, rpn_score, rpn_box, anchors, cls_targets, \
box_targets, box_masks, _ = net(data, gt_box, gt_label)
# losses of rpn
rpn_score = rpn_score.squeeze(axis=-1)
num_rpn_pos = (rpn_cls_targets >= 0).sum()
rpn_loss1 = self.rpn_cls_loss(rpn_score, rpn_cls_targets,
rpn_cls_targets >= 0) * rpn_cls_targets.size / num_rpn_pos
rpn_loss2 = self.rpn_box_loss(rpn_box, rpn_box_targets,
rpn_box_masks) * rpn_box.size / num_rpn_pos
# rpn overall loss, use sum rather than average
rpn_loss = rpn_loss1 + rpn_loss2
# losses of rcnn
num_rcnn_pos = (cls_targets >= 0).sum()
rcnn_loss1 = self.rcnn_cls_loss(cls_pred, cls_targets,
cls_targets.expand_dims(-1) >= 0) * cls_targets.size / \
num_rcnn_pos
rcnn_loss2 = self.rcnn_box_loss(box_pred, box_targets, box_masks) * box_pred.size / \
num_rcnn_pos
rcnn_loss = rcnn_loss1 + rcnn_loss2
# overall losses
total_loss = rpn_loss.sum() * self.mix_ratio + rcnn_loss.sum() * self.mix_ratio
rpn_loss1_metric = rpn_loss1.mean() * self.mix_ratio
rpn_loss2_metric = rpn_loss2.mean() * self.mix_ratio
rcnn_loss1_metric = rcnn_loss1.mean() * self.mix_ratio
rcnn_loss2_metric = rcnn_loss2.mean() * self.mix_ratio
rpn_acc_metric = [[rpn_cls_targets, rpn_cls_targets >= 0], [rpn_score]]
rpn_l1_loss_metric = [[rpn_box_targets, rpn_box_masks], [rpn_box]]
rcnn_acc_metric = [[cls_targets], [cls_pred]]
rcnn_l1_loss_metric = [[box_targets, box_masks], [box_pred]]
if args.amp:
with amp.scale_loss(total_loss, self._optimizer) as scaled_losses:
autograd.backward(scaled_losses)
else:
total_loss.backward()
return rpn_loss1_metric, rpn_loss2_metric, rcnn_loss1_metric, rcnn_loss2_metric, \
rpn_acc_metric, rpn_l1_loss_metric, rcnn_acc_metric, rcnn_l1_loss_metric
def train(net, train_data, val_data, eval_metric, batch_size, ctx, args):
"""Training pipeline"""
args.kv_store = 'device' if (args.amp and 'nccl' in args.kv_store) else args.kv_store
kv = mx.kvstore.create(args.kv_store)
net.collect_params().setattr('grad_req', 'null')
net.collect_train_params().setattr('grad_req', 'write')
optimizer_params = {'learning_rate': args.lr, 'wd': args.wd, 'momentum': args.momentum}
if args.horovod:
hvd.broadcast_parameters(net.collect_params(), root_rank=0)
trainer = hvd.DistributedTrainer(
net.collect_train_params(), # fix batchnorm, fix first stage, etc...
'sgd',
optimizer_params)
else:
trainer = gluon.Trainer(
net.collect_train_params(), # fix batchnorm, fix first stage, etc...
'sgd',
optimizer_params,
update_on_kvstore=(False if args.amp else None), kvstore=kv)
if args.amp:
amp.init_trainer(trainer)
# lr decay policy
lr_decay = float(args.lr_decay)
lr_steps = sorted([float(ls) for ls in args.lr_decay_epoch.split(',') if ls.strip()])
lr_warmup = float(args.lr_warmup) # avoid int division
# TODO(zhreshold) losses?
rpn_cls_loss = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False)
rpn_box_loss = mx.gluon.loss.HuberLoss(rho=1 / 9.) # == smoothl1
rcnn_cls_loss = mx.gluon.loss.SoftmaxCrossEntropyLoss()
rcnn_box_loss = mx.gluon.loss.HuberLoss() # == smoothl1
metrics = [mx.metric.Loss('RPN_Conf'),
mx.metric.Loss('RPN_SmoothL1'),
mx.metric.Loss('RCNN_CrossEntropy'),
mx.metric.Loss('RCNN_SmoothL1'), ]
rpn_acc_metric = RPNAccMetric()
rpn_bbox_metric = RPNL1LossMetric()
rcnn_acc_metric = RCNNAccMetric()
rcnn_bbox_metric = RCNNL1LossMetric()
metrics2 = [rpn_acc_metric, rpn_bbox_metric, rcnn_acc_metric, rcnn_bbox_metric]
# set up logger
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
log_file_path = args.save_prefix + '_train.log'
log_dir = os.path.dirname(log_file_path)
if log_dir and not os.path.exists(log_dir):
os.makedirs(log_dir)
fh = logging.FileHandler(log_file_path)
logger.addHandler(fh)
logger.info(args)
if args.verbose:
logger.info('Trainable parameters:')
logger.info(net.collect_train_params().keys())
logger.info('Start training from [Epoch {}]'.format(args.start_epoch))
best_map = [0]
for epoch in range(args.start_epoch, args.epochs):
mix_ratio = 1.0
if not args.disable_hybridization:
net.hybridize(static_alloc=args.static_alloc)
rcnn_task = ForwardBackwardTask(net, trainer, rpn_cls_loss, rpn_box_loss, rcnn_cls_loss,
rcnn_box_loss, mix_ratio=1.0)
executor = Parallel(args.executor_threads, rcnn_task) if not args.horovod else None
if args.mixup:
# TODO(zhreshold) only support evenly mixup now, target generator needs to be modified otherwise
train_data._dataset._data.set_mixup(np.random.uniform, 0.5, 0.5)
mix_ratio = 0.5
if epoch >= args.epochs - args.no_mixup_epochs:
train_data._dataset._data.set_mixup(None)
mix_ratio = 1.0
while lr_steps and epoch >= lr_steps[0]:
new_lr = trainer.learning_rate * lr_decay
lr_steps.pop(0)
trainer.set_learning_rate(new_lr)
logger.info("[Epoch {}] Set learning rate to {}".format(epoch, new_lr))
for metric in metrics:
metric.reset()
tic = time.time()
btic = time.time()
base_lr = trainer.learning_rate
rcnn_task.mix_ratio = mix_ratio
logger.info('Total Num of Batches: %d'%(len(train_data)))
for i, batch in enumerate(train_data):
if epoch == 0 and i <= lr_warmup:
# adjust based on real percentage
new_lr = base_lr * get_lr_at_iter(i / lr_warmup, args.lr_warmup_factor)
if new_lr != trainer.learning_rate:
if i % args.log_interval == 0:
logger.info(
'[Epoch 0 Iteration {}] Set learning rate to {}'.format(i, new_lr))
trainer.set_learning_rate(new_lr)
batch = split_and_load(batch, ctx_list=ctx)
metric_losses = [[] for _ in metrics]
add_losses = [[] for _ in metrics2]
if executor is not None:
for data in zip(*batch):
executor.put(data)
for j in range(len(ctx)):
if executor is not None:
result = executor.get()
else:
result = rcnn_task.forward_backward(list(zip(*batch))[0])
if (not args.horovod) or hvd.rank() == 0:
for k in range(len(metric_losses)):
metric_losses[k].append(result[k])
for k in range(len(add_losses)):
add_losses[k].append(result[len(metric_losses) + k])
for metric, record in zip(metrics, metric_losses):
metric.update(0, record)
for metric, records in zip(metrics2, add_losses):
for pred in records:
metric.update(pred[0], pred[1])
trainer.step(batch_size)
# update metrics
if (not args.horovod or hvd.rank() == 0) and args.log_interval \
and not (i + 1) % args.log_interval:
msg = ','.join(
['{}={:.3f}'.format(*metric.get()) for metric in metrics + metrics2])
logger.info('[Epoch {}][Batch {}], Speed: {:.3f} samples/sec, {}'.format(
epoch, i, args.log_interval * args.batch_size / (time.time() - btic), msg))
btic = time.time()
if (not args.horovod) or hvd.rank() == 0:
msg = ','.join(['{}={:.3f}'.format(*metric.get()) for metric in metrics])
logger.info('[Epoch {}] Training cost: {:.3f}, {}'.format(
epoch, (time.time() - tic), msg))
if not (epoch + 1) % args.val_interval:
# consider reduce the frequency of validation to save time
if val_data is not None:
map_name, mean_ap = validate(net, val_data, ctx, eval_metric, args)
val_msg = '\n'.join(['{}={}'.format(k, v) for k, v in zip(map_name, mean_ap)])
logger.info('[Epoch {}] Validation: \n{}'.format(epoch, val_msg))
current_map = float(mean_ap[-1])
else:
current_map = 0
else:
current_map = 0.
save_params(net, logger, best_map, current_map, epoch, args.save_interval,
args.save_prefix)
if __name__ == '__main__':
import sys
sys.setrecursionlimit(1100)
args = parse_args()
# fix seed for mxnet, numpy and python builtin random generator.
gutils.random.seed(args.seed)
if args.amp:
amp.init()
# training contexts
if args.horovod:
ctx = [mx.gpu(hvd.local_rank())]
else:
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
ctx = ctx if ctx else [mx.cpu()]
# network
kwargs = {}
module_list = []
if args.use_fpn:
module_list.append('fpn')
if args.norm_layer is not None:
module_list.append(args.norm_layer)
if args.norm_layer == 'bn':
kwargs['num_devices'] = len(args.gpus.split(','))
net_name = '_'.join(('faster_rcnn', *module_list, args.network, 'custom'))
args.save_prefix += net_name
gutils.makedirs(args.save_prefix)
train_dataset, val_dataset, eval_metric = get_dataset(args.dataset, args)
net = faster_rcnn_resnet101_v1d_custom(classes=train_dataset.classes, transfer='coco',
pretrained_base=False, additional_output=False,
per_device_batch_size=args.batch_size // len(ctx), **kwargs)
if args.resume.strip():
net.load_parameters(args.resume.strip())
else:
for param in net.collect_params().values():
if param._data is not None:
continue
param.initialize()
net.collect_params().reset_ctx(ctx)
# training data
batch_size = args.batch_size // len(ctx) if args.horovod else args.batch_size
train_data, val_data = get_dataloader(
net, train_dataset, val_dataset, FasterRCNNDefaultTrainTransform,
FasterRCNNDefaultValTransform, batch_size, len(ctx), args)
# training
train(net, train_data, val_data, eval_metric, batch_size, ctx, args)