-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
69 lines (58 loc) · 2.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 15 20:32:16 2018
@author: Tao Lin
Training and Predicting with the W-Net unsupervised segmentation architecture
"""
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import WNet
parser = argparse.ArgumentParser(description='PyTorch Unsupervised Segmentation with WNet')
parser.add_argument('--in_Chans', metavar='C', default=3, type=int,
help='number of input channels')
parser.add_argument('--squeeze', metavar='K', default=4, type=int,
help='Depth of squeeze layer')
parser.add_argument('--out_Chans', metavar='O', default=3, type=int,
help='Output Channels')
parser.add_argument('--input_folder', metavar='f', default=None, type=str,
help='Folder of input images')
parser.add_argument('--output_folder', metavar='of', default=None, type=str,
help='folder of output images')
vertical_sobel=torch.nn.Parameter(torch.from_numpy(np.array([[[[1, 0, -1],
[1, 0, -1],
[1, 0, -1]]]])).float().cuda(), requires_grad=False)
horizontal_sobel=torch.nn.Parameter(torch.from_numpy(np.array([[[[1, 1, 1],
[0, 0, 0],
[-1 ,-1, -1]]]])).float().cuda(), requires_grad=False)
def gradient_regularization(softmax, device='cuda'):
vert=torch.cat([F.conv2d(softmax[:, i].unsqueeze(1), vertical_sobel) for i in range(softmax.shape[0])], 1)
hori=torch.cat([F.conv2d(softmax[:, i].unsqueeze(1), horizontal_sobel) for i in range(softmax.shape[0])], 1)
print('vert', torch.sum(vert))
print('hori', torch.sum(hori))
mag=torch.pow(torch.pow(vert, 2)+torch.pow(hori, 2), 0.5)
mean=torch.mean(mag)
return mean
def train_op(model, optimizer, input, psi=0.5):
enc = model(input, returns='enc')
n_cut_loss=gradient_regularization(enc)*psi
n_cut_loss.backward()
optimizer.step()
optimizer.zero_grad()
dec = model(input, returns='dec')
rec_loss=torch.mean(torch.pow(torch.pow(input, 2) + torch.pow(dec, 2), 0.5))*(1-psi)
rec_loss.backward()
optimizer.step()
optimizer.zero_grad()
return model
def test():
wnet=WNet.WNet(4)
wnet=wnet.cuda()
synthetic_data=torch.rand((1, 3, 128, 128)).cuda()
optimizer=torch.optim.SGD(wnet.parameters(), 0.001)
train_op(wnet, optimizer, synthetic_data)
def main():
args = parser.parse_args()