-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path62. Unique Paths
49 lines (35 loc) · 1.47 KB
/
62. Unique Paths
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#Since the robot can only move right and down, when it arrives at a point, it either arrives from left or above.
#If we use dp[i][j] for the number of unique paths to arrive at the point (i, j), then the state equation is
#dp[i][j] = dp[i][j - 1] + dp[i - 1][j].
#Moreover, we have the base cases dp[0][j] = dp[i][0] = 1 for all valid i and j
class Solution(object):
def uniquePaths(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
# if n==1 and m==1:
# return 1
# self.dp = [[-1 for j in range(n)] for i in range(m)]
# self.dp[-1][-1] = 1
# count = self.getUniquePath1(0,0,m,n)
dp = [1] * n
for i in range(1,m):
for j in range(1,n):
dp[j] = dp[j-1] + dp[j]
return dp[-1]
def getUniquePath2(self,n,m):
dp = [[1 for j in range(n)] for i in range(m)]
for i in range(1,m):
for j in range(1,n):
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[-1][-1]
def getUniquePath1(self,i,j,m,n):
count = 0
if j < n-1:
count += self.dp[i][j+1] if self.dp[i][j+1] != -1 else self.getUniquePath(i,j+1,m,n)
if i < m-1:
count += self.dp[i+1][j] if self.dp[i+1][j] != -1 else self.getUniquePath(i+1,j,m,n)
self.dp[i][j] = count
return count