-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathwgangp_64x64.py
445 lines (352 loc) · 19.7 KB
/
wgangp_64x64.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
"""
Training of the WGAN-GP model
Copyright (c) 2017 Ishaan Gulrajani
Copyright (c) 2018 Thomas Schlegl ... modified and extended
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import os, sys
import numpy as np
import re
sys.path.append(os.getcwd())
import tensorflow as tf
import time
import functools
from tqdm import tqdm
import tflib as lib
import tflib.ops.linear
import tflib.ops.conv2d
import tflib.ops.batchnorm
import tflib.ops.deconv2d
import tflib.save_images
import tflib.img_loader
import tflib.ops.layernorm
import tflib.plot
class bcolors:
PINK = '\033[95m'
BLUE = '\033[94m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
RED = '\033[91m'
ENDC = '\033[0m'
timestamp = time.strftime("%Y-%m-%d-%H%M")
filename = os.path.basename(__file__).strip('.py')
MODE = 'wgan-gp'
RAND_SAMPLING = 'normal' # 'unif'
DIM = 64 # Model dimensionality
CRITIC_ITERS = 5
N_GPUS = 1
BATCH_SIZE = 64
LAMBDA = 10 # Gradient penalty hyperpar
OUTPUT_DIM = 64*64*1 # Number of pixels in each image
ZDIM = 128
TRAIN_EPOCHS = 7
ZSPACE_SMPL_NRIMG = 5
ZSPACE_SMPL_PTS = 13
checkpoint_iter = None
run_name = "%s_%s_crIt%d_%s" %(filename, RAND_SAMPLING, CRITIC_ITERS, timestamp)
checkpoint_dir = os.path.join("wganTrain", run_name, "checkpoints")
log_dir = os.path.join("wganTrain", run_name, "logs")
samples_dir = os.path.join("wganTrain", run_name, "samples")
z_interp_dir = os.path.join("wganTrain", run_name, "z_interp")
print bcolors.GREEN + "\n=== WGAN-GP TRAINING PARAMETERS ===" + bcolors.ENDC
lib.print_model_settings(locals().copy())
DEVICES = ['/gpu:{}'.format(i) for i in xrange(N_GPUS)]
def Normalize(name, axes, inputs):
if ('Discriminator' in name) and (MODE == 'wgan-gp'):
if axes != [0,2,3]:
raise Exception('Layernorm over non-standard axes is unsupported')
return lib.ops.layernorm.Layernorm(name,[1,2,3],inputs)
else:
return lib.ops.batchnorm.Batchnorm(name,axes,inputs,fused=True)
def my_Normalize(name, inputs, is_training):
if ('Discriminator' in name) and (MODE == 'wgan-gp'):
return lib.ops.layernorm.Layernorm(name,[1,2,3],inputs)
else:
return tf.layers.batch_normalization(inputs, axis=1, training=is_training, name=name)
def ConvMeanPool(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True):
output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, inputs, he_init=he_init, biases=biases)
output = tf.add_n([output[:,:,::2,::2], output[:,:,1::2,::2], output[:,:,::2,1::2], output[:,:,1::2,1::2]]) / 4.
return output
def MeanPoolConv(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True):
output = inputs
output = tf.add_n([output[:,:,::2,::2], output[:,:,1::2,::2], output[:,:,::2,1::2], output[:,:,1::2,1::2]]) / 4.
output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, output, he_init=he_init, biases=biases)
return output
def UpsampleConv(name, input_dim, output_dim, filter_size, inputs, he_init=True, biases=True):
output = inputs
output = tf.concat([output, output, output, output], 1)
output = tf.transpose(output, [0,2,3,1])
output = tf.depth_to_space(output, 2)
output = tf.transpose(output, [0,3,1,2])
output = lib.ops.conv2d.Conv2D(name, input_dim, output_dim, filter_size, output, he_init=he_init, biases=biases)
return output
def ResidualBlock(name, input_dim, output_dim, filter_size, inputs, is_training=True, resample=None, he_init=True):
"""
resample: None, 'down', or 'up'
"""
if resample=='down':
conv_shortcut = MeanPoolConv
conv_1 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=input_dim, output_dim=input_dim)
conv_2 = functools.partial(ConvMeanPool, input_dim=input_dim, output_dim=output_dim)
elif resample=='up':
conv_shortcut = UpsampleConv
conv_1 = functools.partial(UpsampleConv, input_dim=input_dim, output_dim=output_dim)
conv_2 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=output_dim, output_dim=output_dim)
elif resample==None:
conv_shortcut = lib.ops.conv2d.Conv2D
conv_1 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=input_dim, output_dim=input_dim)
conv_2 = functools.partial(lib.ops.conv2d.Conv2D, input_dim=input_dim, output_dim=output_dim)
else:
raise Exception('invalid resample value')
if output_dim==input_dim and resample==None:
shortcut = inputs # Identity skip-connection
else:
shortcut = conv_shortcut(name+'.Shortcut', input_dim=input_dim, output_dim=output_dim, filter_size=1,
he_init=False, biases=True, inputs=inputs)
output = inputs
if is_training is not None:
output = my_Normalize(name+'.BN1', output, is_training)
else:
output = Normalize(name+'.BN1', [0,2,3], output)
output = tf.nn.relu(output)
output = conv_1(name+'.Conv1', filter_size=filter_size, inputs=output, he_init=he_init, biases=False)
if is_training is not None:
output = my_Normalize(name+'.BN2', output, is_training)
else:
output = Normalize(name+'.BN2', [0,2,3], output)
output = tf.nn.relu(output)
output = conv_2(name+'.Conv2', filter_size=filter_size, inputs=output, he_init=he_init)
return shortcut + output
def GoodGenerator(n_samples, noise=None, rand_sampling=RAND_SAMPLING, dim=DIM, nonlinearity=tf.nn.relu, z_out=False, is_training=True, reuse=None):
with tf.variable_scope('Generator', reuse=reuse):
if noise is None:
if rand_sampling == 'unif':
noise = tf.random_uniform([n_samples, ZDIM], minval=-1., maxval=1.)
elif rand_sampling == 'normal':
noise = tf.random_normal([n_samples, ZDIM])
output = lib.ops.linear.Linear('Generator.Input', ZDIM, 4*4*8*dim, noise)
output = tf.reshape(output, [-1, 8*dim, 4, 4])
output = ResidualBlock('Generator.Res1', 8*dim, 8*dim, 3, output, is_training=is_training, resample='up')
output = ResidualBlock('Generator.Res2', 8*dim, 4*dim, 3, output, is_training=is_training, resample='up')
output = ResidualBlock('Generator.Res3', 4*dim, 2*dim, 3, output, is_training=is_training, resample='up')
output = ResidualBlock('Generator.Res4', 2*dim, 1*dim, 3, output, is_training=is_training, resample='up')
if is_training is not None:
output = my_Normalize('Generator.OutputN', output, is_training)
else:
output = Normalize('Generator.OutputN', [0,2,3], output)
output = tf.nn.relu(output)
output = lib.ops.conv2d.Conv2D('Generator.Output', 1*dim, 1, 3, output)
output = tf.tanh(output)
if z_out:
return tf.reshape(output, [-1, OUTPUT_DIM]), noise
else:
return tf.reshape(output, [-1, OUTPUT_DIM])
def GoodDiscriminator(inputs, dim=DIM, is_training=False, reuse=None, out_feats=True):
with tf.variable_scope('Discriminator', reuse=reuse):
output = tf.reshape(inputs, [-1, 1, 64, 64])
output = lib.ops.conv2d.Conv2D('Discriminator.Input', 1, dim, 3, output, he_init=False)
output = ResidualBlock('Discriminator.Res1', dim, 2*dim, 3, output, is_training=is_training, resample='down')
output = ResidualBlock('Discriminator.Res2', 2*dim, 4*dim, 3, output, is_training=is_training, resample='down')
output = ResidualBlock('Discriminator.Res3', 4*dim, 8*dim, 3, output, is_training=is_training, resample='down')
output = ResidualBlock('Discriminator.Res4', 8*dim, 8*dim, 3, output, is_training=is_training, resample='down')
output = tf.reshape(output, [-1, 4*4*8*dim])
out_features = output
output = lib.ops.linear.Linear('Discriminator.Output', 4*4*8*dim, 1, output)
if out_feats:
return tf.reshape(output, [-1]), out_features
else:
return tf.reshape(output, [-1])
def save(session, saver, checkpoint_dir, step):
print(" [*] Saving checkpoint (step %d) ..." %step)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver.save( session,
os.path.join(checkpoint_dir, "%s.model" %MODE),
global_step=step)
def load(session, saver, checkpoint_dir, checkpoint_iter=None):
print(" [*] Reading checkpoints...")
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
if checkpoint_iter is not None:
last_ckpt_epoch = re.match(r'.*.model-(\d+)', ckpt.model_checkpoint_path).group(1)
target_ckpt_path = re.sub( last_ckpt_epoch, str(checkpoint_iter), ckpt.model_checkpoint_path)
saver.restore(session, target_ckpt_path)
idxx = target_ckpt_path.rfind('/')
ckpt_name = target_ckpt_path[idxx+1:]
else:
saver.restore(session, ckpt.model_checkpoint_path)
idxx = ckpt.model_checkpoint_path.rfind('/')
ckpt_name = ckpt.model_checkpoint_path[idxx+1:]
return True, ckpt_name
else:
return False, ''
def train():
Generator, Discriminator = GoodGenerator, GoodDiscriminator
for dir_path in [checkpoint_dir, log_dir, samples_dir, z_interp_dir]:
if not os.path.isdir(dir_path):
os.makedirs(dir_path)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as session:
all_real_data_conv = tf.placeholder(tf.int32, shape=[BATCH_SIZE, 1, 64, 64])
if tf.__version__.startswith('1.'):
split_real_data_conv = tf.split(all_real_data_conv, len(DEVICES))
print "\n\nDEVICES: %s\n\n" %DEVICES
else:
split_real_data_conv = tf.split(0, len(DEVICES), all_real_data_conv)
gen_costs, disc_costs = [],[]
for device_index, (device, real_data_conv) in enumerate(zip(DEVICES, split_real_data_conv)):
with tf.device(device):
real_data = tf.reshape(2*((tf.cast(real_data_conv, tf.float32)/255.)-.5), [BATCH_SIZE/len(DEVICES), OUTPUT_DIM])
fake_data = Generator(BATCH_SIZE/len(DEVICES), rand_sampling=RAND_SAMPLING, is_training=True)
disc_real = Discriminator(real_data, out_feats=False)
disc_fake = Discriminator(fake_data, reuse=True, out_feats=False)
if MODE == 'wgan-gp':
gen_cost = -tf.reduce_mean(disc_fake)
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
alpha = tf.random_uniform(
shape=[BATCH_SIZE/len(DEVICES),1],
minval=0.,
maxval=1.
)
differences = fake_data - real_data
interpolates = real_data + (alpha*differences)
gradients = tf.gradients(Discriminator(interpolates, reuse=True, out_feats=False), [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
disc_cost += LAMBDA*gradient_penalty
gen_costs.append(gen_cost)
disc_costs.append(disc_cost)
gen_cost = tf.add_n(gen_costs) / len(DEVICES)
disc_cost = tf.add_n(disc_costs) / len(DEVICES)
if MODE == 'wgan-gp':
t_vars = tf.trainable_variables()
gen_vars = [var for var in t_vars if 'Generator' in var.name]
dis_vars = [var for var in t_vars if 'Discriminator' in var.name]
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
update_ops_gen = [var for var in update_ops if 'Generator' in var.name]
update_ops_dis = [var for var in update_ops if 'Discriminator' in var.name]
with tf.control_dependencies(update_ops_gen):
gen_train_op = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0., beta2=0.9).minimize(gen_cost,
var_list=gen_vars, colocate_gradients_with_ops=True)
with tf.control_dependencies(update_ops_dis):
disc_train_op = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0., beta2=0.9).minimize(disc_cost,
var_list=dis_vars, colocate_gradients_with_ops=True)
# For generating samples
if RAND_SAMPLING == 'unif':
fixed_noise = tf.constant(np.random.uniform(-1, 1, size=(BATCH_SIZE, ZDIM)).astype('float32'))
elif RAND_SAMPLING == 'normal':
fixed_noise = tf.constant(np.random.normal(size=(BATCH_SIZE, ZDIM)).astype('float32'))
all_fixed_noise_samples = []
for device_index, device in enumerate(DEVICES):
n_samples = BATCH_SIZE / len(DEVICES)
all_fixed_noise_samples.append(Generator(n_samples, noise=fixed_noise[device_index*n_samples:(device_index+1)*n_samples], rand_sampling=RAND_SAMPLING, is_training=False, reuse=True ) )
if tf.__version__.startswith('1.'):
all_fixed_noise_samples = tf.concat(all_fixed_noise_samples, 0)
else:
all_fixed_noise_samples = tf.concat(0, all_fixed_noise_samples)
def generate_image(epoch, iteration):
samples = session.run(all_fixed_noise_samples)
samples = ((samples+1.)*(255.99/2)).astype('int32')
lib.save_images.save_images(samples.reshape((BATCH_SIZE, 1, 64, 64)), '{}/samples_epoch{}-{}.png'.format(samples_dir, epoch, iteration))
# Dataset iterator
train_gen,_ = lib.img_loader.load(BATCH_SIZE, 'wgan_train')
nr_training_samples = lib.img_loader.get_nr_training_samples(BATCH_SIZE)
nr_iters_per_epoch = nr_training_samples//BATCH_SIZE
def inf_train_gen():
while True:
for (images,) in train_gen():
yield images
# Save a batch of ground-truth samples
_x = inf_train_gen().next()
_x_r = session.run(real_data, feed_dict={real_data_conv: _x[:BATCH_SIZE/N_GPUS]})
_x_r = ((_x_r+1.)*(255.99/2)).astype('int32')
lib.save_images.save_images(_x_r.reshape((BATCH_SIZE/N_GPUS, 1, 64, 64)), '{}/samples_groundtruth.png'.format(samples_dir))
# EVALUATION: z-interpolation ******
eval_query_noise = tf.placeholder(tf.float32, shape=[ZSPACE_SMPL_PTS, ZDIM])
zeval_gen_imgs = Generator(ZSPACE_SMPL_PTS, noise=eval_query_noise, rand_sampling=RAND_SAMPLING, is_training=False, reuse=True )
def get_z_interpolations(smpl_pts, z_dim=ZDIM, v_len_lim=0.5):
z_samples = np.zeros((smpl_pts, z_dim), dtype=np.float32)
v_max = np.ones((1,100))*2 # *2 ... => 2 = [-1..1]
v_len_max = np.sqrt( (v_max**2).sum() ) # vector_length of v_max
v_len_limes = v_len_max * v_len_lim
v_len = 0
while v_len<v_len_limes:
if RAND_SAMPLING == 'unif':
z_p1 = np.random.uniform(-1, 1, [1, z_dim]).astype(np.float32)
z_p2 = np.random.uniform(-1, 1, [1, z_dim]).astype(np.float32)
elif RAND_SAMPLING == 'normal':
z_p1 = np.random.normal(size=(1, ZDIM)).astype('float32')
z_p2 = np.random.normal(size=(1, ZDIM)).astype('float32')
v = z_p2 - z_p1
v_len = np.sqrt( (v**2).sum() ) # vector_length of v
steps = np.linspace(0., 1., smpl_pts)
for i,s in enumerate(steps):
z_samples[i, :] = z_p1 + s*v
z_imgs = session.run(zeval_gen_imgs, feed_dict={eval_query_noise: z_samples})
return ((z_imgs+1.)*(255.99/2)).astype('int32')
saver = tf.train.Saver(max_to_keep=10)
session.run(tf.global_variables_initializer())
isLoaded, ckpt = load(session, saver, checkpoint_dir, checkpoint_iter)
start_iter = 0
# Train loop
iteration = 0
for epoch in tqdm(xrange(TRAIN_EPOCHS)):
gen = inf_train_gen()
while iteration < ((epoch+1)*(nr_iters_per_epoch-CRITIC_ITERS)):
start_time = time.time()
## -- TRAIN generator --
if (iteration+1) > 1:
_gen_cost, _ = session.run([gen_cost, gen_train_op])
## -- TRAIN critic --
disc_iters = CRITIC_ITERS
for i in xrange(disc_iters):
_data = gen.next()
iteration += 1
_disc_cost, _ = session.run([disc_cost, disc_train_op], feed_dict={all_real_data_conv: _data})
## -- LOGGING **
lib.plot.tickit(iteration)
if (iteration == (3*disc_iters)) or (iteration % (100*disc_iters) == 0):
lib.plot.plot('train disc cost', _disc_cost)
lib.plot.plot('train gen cost', _gen_cost)
lib.plot.plot('time', time.time() - start_time)
if (iteration == (10*disc_iters)) or (iteration == (100*disc_iters)) or ( iteration % (1000*disc_iters) == 0):
generate_image(epoch+1, iteration)
if (iteration < 10) or ( iteration % (100*disc_iters) == 0):
lib.plot.flush(log_dir)
total_samples_seen = iteration * BATCH_SIZE
if (epoch+1)==1:
nr_samples_within_epoch = total_samples_seen
else:
nr_samples_within_epoch = np.mod(total_samples_seen, epoch*(nr_iters_per_epoch-CRITIC_ITERS))
print bcolors.GREEN + "\tSaw real samples of %d full epochs and %10d additinal samples .. " \
%(epoch, nr_samples_within_epoch) + \
"(%.3f%% of epoch done!)" \
%(float(nr_samples_within_epoch)/nr_training_samples) + bcolors.ENDC
if (iteration == (100*disc_iters)) or (iteration==(start_iter+(1000*disc_iters))) or (iteration % (1000*disc_iters) == 0):
z_imgs_out = np.zeros((ZSPACE_SMPL_PTS,64*ZSPACE_SMPL_NRIMG,64), dtype=np.int32)
for _zi in range(ZSPACE_SMPL_NRIMG):
z_space_smpls = get_z_interpolations( ZSPACE_SMPL_PTS )
z_imgs_out[:,_zi*64:(_zi+1)*64,:] = z_space_smpls.reshape(ZSPACE_SMPL_PTS,64,64)
lib.save_images.save_images_as_row( z_imgs_out, os.path.join(z_interp_dir, 'z_smpls-epoch%d-%05d.png'%(epoch+1, iteration)) )
print bcolors.BLUE + "\nEND OF EPOCH - SAVING CHECKPOINT\n" + bcolors.ENDC
save(session, saver, checkpoint_dir, epoch+1)
generate_image(epoch+1, iteration)
# SAVE FINAL MODEL
save(session, saver, checkpoint_dir, epoch+1)
print bcolors.BLUE + "\nSAVING CHECKPOINT" + bcolors.ENDC
print bcolors.BLUE + "Training done!\n" + bcolors.ENDC
if __name__ == '__main__':
train()