forked from FunAudioLLM/CosyVoice
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
754 lines (668 loc) · 30.8 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import os
import random
import sys
import gradio as gr
import librosa
import numpy as np
import torch
import torchaudio
import uvicorn
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
import matcha.utils.audio as MatchaTTSUtilsAudio
from cosyvoice.utils.common import set_all_random_seed
from custom.file_utils import load_wav, logging, delete_old_files_and_folders
from custom.ModelManager import ModelManager
from custom.AudioProcessor import AudioProcessor
from custom.TextProcessor import TextProcessor
from custom.AsrProcessor import AsrProcessor
from fastapi import FastAPI, File, UploadFile, Query, Form
from fastapi.responses import JSONResponse, PlainTextResponse, FileResponse, HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.openapi.docs import get_swagger_ui_html
from starlette.middleware.cors import CORSMiddleware # 引入 CORS中间件模块
from func_timeout import func_timeout, FunctionTimedOut
result_input_dir = './results/input'
result_output_dir = './results/output'
# 全局模型管理器
model_manager = ModelManager()
# 初始化处理器
audio_processor = AudioProcessor(result_input_dir, result_output_dir)
# 设置允许访问的域名
origins = ["*"] # "*",即为所有。
inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制', '自然语言控制2', '语音复刻']
instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成音频按钮',
'3s极速复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入prompt文本\n3. 点击生成音频按钮',
'跨语种复刻': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 点击生成音频按钮',
'自然语言控制': '1. 选择预训练音色\n2. 输入instruct文本\n3. 点击生成音频按钮',
'自然语言控制2': '1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n2. 输入instruct文本\n3. 点击生成音频按钮',
'语音复刻': '1. 选择source音频文件\n2. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n3. 点击生成音频按钮'}
stream_mode_list = [('否', False), ('是', True)]
max_val = 0.8
def generate_seed():
seed = random.randint(1, 100000000)
logging.info(f'seed: {seed}')
return {
"__type__": "update",
"value": seed
}
def postprocess(speech, target_sr, top_db=60, hop_length=220, win_length=440):
speech, _ = librosa.effects.trim(
speech, top_db=top_db,
frame_length=win_length,
hop_length=hop_length
)
if speech.abs().max() > max_val:
speech = speech / speech.abs().max() * max_val
speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
return speech
def change_instruction(mode_checkbox_group):
return instruct_dict[mode_checkbox_group]
# 定义一个函数进行显存清理
def clear_cuda_cache():
"""
清理PyTorch的显存和系统内存缓存。
注意上下文,如果在异步执行,会导致清理不了
"""
logging.info("Clearing GPU memory...")
# 强制进行垃圾回收
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# 重置统计信息
torch.cuda.reset_peak_memory_stats()
# 打印显存日志
logging.info(f"[GPU Memory] Allocated: {torch.cuda.memory_allocated() / (1024 ** 2):.2f} MB")
logging.info(f"[GPU Memory] Max Allocated: {torch.cuda.max_memory_allocated() / (1024 ** 2):.2f} MB")
logging.info(f"[GPU Memory] Reserved: {torch.cuda.memory_reserved() / (1024 ** 2):.2f} MB")
logging.info(f"[GPU Memory] Max Reserved: {torch.cuda.max_memory_reserved() / (1024 ** 2):.2f} MB")
# noinspection PyTypeChecker
def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav, instruct_text,
seed, stream, speed, source_wav):
logging.info(f'prompt_wav: {prompt_wav}')
logging.info(f'source_wav: {source_wav}')
# 在同时使用不同模型需要清除 mel_basis
MatchaTTSUtilsAudio.mel_basis = {}
add_lang_tag = False # 是否添加语言标签
# 获取需要的模型
if mode_checkbox_group == '预训练音色':
cosyvoice = model_manager.get_model("cosyvoice_sft")
elif mode_checkbox_group in ['跨语种复刻', '语音复刻']: # '3s极速复刻',
cosyvoice = model_manager.get_model("cosyvoice")
elif mode_checkbox_group == '3s极速复刻':
add_lang_tag = True
# cosyvoice = model_manager.get_model("cosyvoice-25hz")
cosyvoice = model_manager.get_model("cosyvoice_instruct")
# cosyvoice = model_manager.get_model("cosyvoice2-0.5b")
elif mode_checkbox_group == '自然语言控制2':
cosyvoice = model_manager.get_model("cosyvoice2-0.5b")
else:
cosyvoice = model_manager.get_model("cosyvoice_instruct")
target_sr = cosyvoice.sample_rate
default_data = np.zeros(target_sr)
# if instruct mode, please make sure that model is iic/CosyVoice-300M-Instruct and not cross_lingual mode
if mode_checkbox_group in ['自然语言控制']:
if cosyvoice.frontend.instruct is False:
errcode = 1
errmsg = '您正在使用自然语言控制模式, 请使用iic/CosyVoice-300M-Instruct模型'
return errcode, errmsg, (target_sr, default_data)
if instruct_text == '':
errcode = 2
errmsg = '您正在使用自然语言控制模式, 请输入instruct文本'
return errcode, errmsg, (target_sr, default_data)
if prompt_wav is not None or prompt_text != '':
logging.info('您正在使用自然语言控制模式, prompt音频/prompt文本会被忽略')
if mode_checkbox_group in ['自然语言控制2']:
if prompt_wav is None:
errcode = 6
errmsg = 'prompt音频为空,您是否忘记输入prompt音频?'
return errcode, errmsg, (target_sr, default_data)
if instruct_text == '':
errcode = 2
errmsg = '您正在使用自然语言控制模式, 请输入instruct文本'
return errcode, errmsg, (target_sr, default_data)
# if cross_lingual mode, please make sure that model is iic/CosyVoice-300M and tts_text prompt_text are different language
if mode_checkbox_group in ['跨语种复刻']:
if cosyvoice.frontend.instruct is True:
errcode = 3
errmsg = '您正在使用跨语种复刻模式, 请使用iic/CosyVoice-300M模型'
return errcode, errmsg, (target_sr, default_data)
if instruct_text != '':
logging.info('您正在使用跨语种复刻模式, instruct文本会被忽略')
if prompt_wav is None:
errcode = 5
errmsg = '您正在使用跨语种复刻模式, 请提供prompt音频'
return errcode, errmsg, (target_sr, default_data)
logging.info('您正在使用跨语种复刻模式, 请确保合成文本和prompt文本为不同语言')
# if in zero_shot cross_lingual, please make sure that prompt_text and prompt_wav meets requirements
if mode_checkbox_group in ['3s极速复刻', '跨语种复刻', '语音复刻']:
if prompt_wav is None:
errcode = 6
errmsg = 'prompt音频为空,您是否忘记输入prompt音频?'
return errcode, errmsg, (target_sr, default_data)
if torchaudio.info(prompt_wav).sample_rate < prompt_sr:
errcode = 7
errmsg = 'prompt音频采样率{}低于{}'.format(torchaudio.info(prompt_wav).sample_rate, prompt_sr)
return errcode, errmsg, (target_sr, default_data)
# sft mode only use sft_dropdown
if mode_checkbox_group in ['预训练音色']:
if instruct_text != '' or prompt_wav is not None or prompt_text != '':
logging.info('您正在使用预训练音色模式,prompt文本/prompt音频/instruct文本会被忽略!')
# zero_shot mode only use prompt_wav prompt text
if mode_checkbox_group in ['3s极速复刻']:
if not prompt_text:
asr_processor = AsrProcessor()
prompt_text = asr_processor.asr_to_text(prompt_wav)
if not prompt_text:
errcode = 8
errmsg = 'prompt文本为空,您是否忘记输入prompt文本?'
return errcode, errmsg, (target_sr, default_data)
if instruct_text != '':
logging.info('您正在使用3s极速复刻模式,预训练音色/instruct文本会被忽略!')
if mode_checkbox_group in ['语音复刻']:
if source_wav is None:
errcode = 6
errmsg = 'source音频为空,您是否忘记输入prompt音频?'
return errcode, errmsg, (target_sr, default_data)
if torchaudio.info(source_wav).sample_rate < prompt_sr:
errcode = 7
errmsg = 'source音频采样率{}低于{}'.format(torchaudio.info(source_wav).sample_rate, prompt_sr)
return errcode, errmsg, (target_sr, default_data)
generated_audio_list = [] # 用于存储生成的音频片段
try:
# 确保文本以适当的句号结尾
tts_text, lang = TextProcessor.ensure_sentence_ends_with_period(tts_text, add_lang_tag)
if lang == 'zh' or lang == 'zh-cn': # 中文文本,添加引号,确保不会断句
keywords = TextProcessor.get_keywords()
tts_text = TextProcessor.replace_chinese_number(tts_text)
tts_text = TextProcessor.add_quotation_mark(tts_text, keywords["keywords"], min_length=2)
tts_text = TextProcessor.replace_pronunciation(tts_text, keywords["cacoepy"])
prompt_text, lang = TextProcessor.ensure_sentence_ends_with_period(prompt_text)
instruct_text, lang = TextProcessor.ensure_sentence_ends_with_period(instruct_text)
if mode_checkbox_group == '预训练音色':
logging.info('get sft inference request')
set_all_random_seed(seed)
for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream, speed=speed):
generated_audio_list.append(i['tts_speech'].numpy().flatten())
elif mode_checkbox_group == '3s极速复刻':
logging.info('get zero_shot inference request')
logging.info(f'prompt_text: {prompt_text}')
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr), target_sr)
set_all_random_seed(seed)
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream,
speed=speed):
# 获取生成的音频片段
generated_audio = i['tts_speech'].numpy().flatten()
# 去除音频开头的静音部分
generated_audio = AudioProcessor.remove_silence(generated_audio, target_sr)
# 将处理后的音频片段添加到列表
generated_audio_list.append(generated_audio)
elif mode_checkbox_group == '跨语种复刻':
logging.info('get cross_lingual inference request')
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr), target_sr)
set_all_random_seed(seed)
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed):
generated_audio_list.append(i['tts_speech'].numpy().flatten())
elif mode_checkbox_group == '语音复刻':
logging.info('get vc long inference request')
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr), target_sr)
source_speech_16k = postprocess(load_wav(source_wav, prompt_sr), target_sr)
set_all_random_seed(seed)
for i in cosyvoice.inference_vc_long(source_speech_16k, prompt_speech_16k, stream=stream, speed=speed):
generated_audio_list.append(i)
elif mode_checkbox_group == '自然语言控制2':
logging.info('get instruct2 inference request')
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr), target_sr)
set_all_random_seed(seed)
for i in cosyvoice.inference_instruct2(tts_text, instruct_text, prompt_speech_16k, stream=stream,
speed=speed):
# 获取生成的音频片段
generated_audio = i['tts_speech'].numpy().flatten()
# 去除音频开头的静音部分
generated_audio = AudioProcessor.remove_silence(generated_audio, target_sr)
# 将处理后的音频片段添加到列表
generated_audio_list.append(generated_audio)
else:
logging.info('get instruct inference request')
set_all_random_seed(seed)
for i in cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text, stream=stream, speed=speed):
generated_audio_list.append(i['tts_speech'].numpy().flatten())
# 合并所有音频片段为一整段
if len(generated_audio_list) > 0:
errcode = 0
errmsg = 'ok'
full_audio = np.concatenate(generated_audio_list)
logging.info(f'target_sr: {target_sr} full_audio: {full_audio.dtype}')
return errcode, errmsg, (target_sr, full_audio)
else:
errcode = -2
errmsg = "音频生成失败,未收到有效的音频数据。"
return errcode, errmsg, (target_sr, default_data)
except Exception as e:
TextProcessor.log_error(e)
errcode = -1
errmsg = f"音频生成失败,错误信息:{str(e)}"
logging.error(errmsg)
return errcode, errmsg, (target_sr, default_data)
finally:
# 删除过期文件
delete_old_files_and_folders(result_output_dir, 1)
delete_old_files_and_folders(result_input_dir, 1)
clear_cuda_cache()
def generate_audio_with_timeout(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav, instruct_text,
seed, stream, speed, source_wav):
"""
执行generate_audio,带超时,防止卡死
"""
try:
errcode, errmsg, audio = func_timeout(
300, # 超时时间
generate_audio,
kwargs={
"tts_text": tts_text,
"mode_checkbox_group": mode_checkbox_group,
"sft_dropdown": sft_dropdown,
"prompt_text": prompt_text,
"prompt_wav": prompt_wav,
"instruct_text": instruct_text,
"seed": seed,
"stream": stream,
"speed": speed,
"source_wav": source_wav,
},
)
except FunctionTimedOut:
errcode = -1
errmsg = "generate_audio 执行超时"
audio = None
logging.error(errmsg)
return errcode, errmsg, audio
# 包装处理逻辑
def gradio_generate_audio(tts_text, mode_checkbox_group, sft_dropdown,
prompt_text, prompt_wav,
instruct_text, seed, stream, speed,
source_wav
):
errcode, errmsg, audio_data = generate_audio_with_timeout(
tts_text, mode_checkbox_group, sft_dropdown,
prompt_text, prompt_wav,
instruct_text, seed, stream, speed,
source_wav
)
# 根据结果返回 Gradio 的更新
if errcode == 0: # 正常
return (
gr.update(value="", visible=False), # 隐藏错误信息
audio_data # 返回音频
)
else: # 异常
error_display = f"错误码: {errcode}\n错误信息: {errmsg}"
return (
gr.update(value=error_display, visible=True), # 显示错误信息
audio_data # 无音频输出
)
# noinspection PyTypeChecker
def main():
with gr.Blocks() as demo:
gr.Markdown("### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice) \
预训练模型 [CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M) \
[CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct) \
[CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)")
gr.Markdown("#### 请输入需要合成的文本,选择推理模式,并按照提示步骤进行操作")
tts_text = gr.Textbox(label="输入合成文本", lines=1,
value="我是通义实验室语音团队全新推出的生成式语音大模型,提供舒适自然的语音合成能力。")
with gr.Row():
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式',
value=inference_mode_list[0])
instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=2)
sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=1)
stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1])
speed = gr.Number(value=1, label="速度调节(仅支持非流式推理)", minimum=0.5, maximum=2.0, step=0.1)
with gr.Column(scale=1):
seed_button = gr.Button(value="\U0001F3B2")
seed = gr.Number(value=0, label="随机推理种子")
with gr.Row():
source_wav = gr.Audio(
sources=['upload', 'microphone'],
type='filepath',
label='上传或录制source音频文件,注意采样率不低于16khz'
)
prompt_wav = gr.Audio(
sources=['upload', 'microphone'],
type='filepath',
label='上传或录制prompt音频文件,注意采样率不低于16khz'
)
prompt_text = gr.Textbox(label="输入prompt文本", lines=1,
placeholder="请输入prompt文本,需与prompt音频内容一致,暂时不支持自动识别...", value='')
instruct_text = gr.Textbox(label="输入instruct文本", lines=1, placeholder="请输入instruct文本.", value='')
generate_button = gr.Button("生成音频")
error_output = gr.Textbox(label="错误信息", visible=False)
audio_output = gr.Audio(label="合成音频", autoplay=True, streaming=True)
# 定义重置函数(用于初始化时隐藏错误信息)
def reset_error_outputs():
return (
gr.update(value="", visible=False)
)
seed_button.click(generate_seed, inputs=[], outputs=seed)
generate_button.click(
reset_error_outputs, # 重置错误信息的状态
inputs=[],
outputs=[error_output]
).then(gradio_generate_audio,
inputs=[
tts_text, mode_checkbox_group, sft_dropdown,
prompt_text, prompt_wav,
instruct_text, seed, stream, speed,
source_wav
],
outputs=[error_output,
audio_output
]
)
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
demo.queue(max_size=4, default_concurrency_limit=2)
demo.launch(server_name='0.0.0.0', server_port=args.port, debug=False)
app = FastAPI(docs_url=None)
# noinspection PyTypeChecker
app.add_middleware(
CORSMiddleware,
allow_origins=origins, # 设置允许的origins来源
allow_credentials=True,
allow_methods=["*"], # 设置允许跨域的http方法,比如 get、post、put等。
allow_headers=["*"]) # 允许跨域的headers,可以用来鉴别来源等作用。
# 挂载静态文件
app.mount("/static", StaticFiles(directory="static"), name="static")
# 使用本地的 Swagger UI 静态资源
@app.get("/docs", include_in_schema=False)
async def custom_swagger_ui_html():
logging.info("Custom Swagger UI endpoint hit")
return get_swagger_ui_html(
openapi_url="/openapi.json",
title="Custom Swagger UI",
swagger_js_url="/static/swagger-ui/5.9.0/swagger-ui-bundle.js",
swagger_css_url="/static/swagger-ui/5.9.0/swagger-ui.css",
)
@app.get("/", response_class=HTMLResponse)
async def root():
return """
<!DOCTYPE html>
<html>
<head>
<meta charset=utf-8>
<title>Api information</title>
</head>
<body>
<a href='./docs'>Documents of API</a>
</body>
</html>
"""
@app.get('/test')
async def test():
"""
测试接口,用于验证服务是否正常运行。
"""
return PlainTextResponse('success')
@app.post('/seed_vc')
async def seed_vc(
source_wav: UploadFile = File(..., description="选择source音频文件,注意采样率不低于16khz"),
prompt_wav: UploadFile = File(..., description="选择prompt音频文件,注意采样率不低于16khz"),
spaker: float = Form(1.0, description="语速调节(0.5-2.0)")
):
"""
用户自定义语音音色复刻接口。
"""
try:
prompt_wav_upload = await audio_processor.save_upload_to_wav(
upload_file=prompt_wav,
prefix="p",
volume_multiplier=1.2,
nonsilent=False,
reduce_noise_enabled=False
)
source_wav_upload = await audio_processor.save_upload_to_wav(
upload_file=source_wav,
prefix="s",
volume_multiplier=1.0,
nonsilent=False,
reduce_noise_enabled=False
)
except Exception as e:
return JSONResponse({"errcode": -1, "errmsg": str(e)})
############################## generate ##############################
seed_data = generate_seed()
seed = seed_data["value"]
errcode, errmsg, audio = generate_audio_with_timeout(
tts_text='',
mode_checkbox_group='语音复刻',
sft_dropdown='',
prompt_text='',
prompt_wav=prompt_wav_upload,
instruct_text='',
seed=seed,
stream=False,
speed=spaker,
source_wav=source_wav_upload
)
# 检查返回值中的错误码
if errcode != 0:
return JSONResponse({"errcode": errcode, "errmsg": errmsg})
# 获取音频数据
target_sr, audio_data = audio
# 使用自定义方法生成 WAV 格式
wav_path = audio_processor.generate_wav(audio_data, target_sr)
# 返回音频响应
return JSONResponse({"errcode": 0, "errmsg": "ok", "wav_path": wav_path})
@app.post('/fast_copy')
async def fast_copy(
text: str = Form(..., description="输入合成文本"),
prompt_text: str = Form(..., description="请输入prompt文本,需与prompt音频内容一致,暂时不支持自动识别"),
prompt_wav: UploadFile = File(..., description="选择prompt音频文件,注意采样率不低于16khz"),
spaker: float = Form(1.0, description="语速调节(0.5-2.0)"),
delay: float = Form(0.0, description="文本音频前的延迟时间,单位秒(默认0.0秒)")
):
"""
用户自定义音色语音合成接口。
"""
text = TextProcessor.clear_text(text)
prompt_text = TextProcessor.clear_text(prompt_text)
try:
prompt_wav_upload = await audio_processor.save_upload_to_wav(
upload_file=prompt_wav,
prefix="p",
volume_multiplier=1.0,
nonsilent=False,
reduce_noise_enabled=False
)
except Exception as e:
return JSONResponse({"errcode": -1, "errmsg": str(e)})
############################## generate ##############################
lang = TextProcessor.detect_language(text)
if lang == 'en':
sft_dropdown = '英文男'
else:
sft_dropdown = '中文男'
seed_data = generate_seed()
seed = seed_data["value"]
errcode, errmsg, audio = generate_audio_with_timeout(
tts_text=text,
mode_checkbox_group='预训练音色',
sft_dropdown=sft_dropdown,
prompt_text='',
prompt_wav=None,
instruct_text='',
seed=seed,
stream=False,
speed=spaker,
source_wav=None
)
# 检查返回值中的错误码
if errcode != 0:
return JSONResponse({"errcode": errcode, "errmsg": errmsg})
# 获取音频数据
target_sr, audio_data = audio
# 使用自定义方法生成 WAV 格式
source_wav_upload = audio_processor.generate_wav(audio_data, target_sr, delay, 1.0)
seed_data = generate_seed()
seed = seed_data["value"]
errcode, errmsg, audio = generate_audio_with_timeout(
tts_text='',
mode_checkbox_group='语音复刻',
sft_dropdown='',
prompt_text='',
prompt_wav=prompt_wav_upload,
instruct_text='',
seed=seed,
stream=False,
speed=spaker,
source_wav=source_wav_upload
)
# 检查返回值中的错误码
if errcode != 0:
return JSONResponse({"errcode": errcode, "errmsg": errmsg})
# 获取音频数据
target_sr, audio_data = audio
# 使用自定义方法生成 WAV 格式
wav_path = audio_processor.generate_wav(audio_data, target_sr, 0.0, 1.0)
# 返回音频响应
return JSONResponse({"errcode": 0, "errmsg": "ok", "wav_path": wav_path})
@app.post('/zero_shot')
async def zero_shot(
text: str = Form(..., description="输入合成文本"),
prompt_text: str = Form("", description="请输入prompt文本,需与prompt音频内容一致,暂时不支持自动识别"),
prompt_wav: UploadFile = File(..., description="选择prompt音频文件,注意采样率不低于16khz"),
spaker: float = Form(1.0, description="语速调节(0.5-2.0)"),
language: str = Form("", description="输入目标语言")
):
"""
用户自定义音色语音合成接口。
"""
text = TextProcessor.clear_text(text)
prompt_text = TextProcessor.clear_text(prompt_text)
try:
prompt_wav_upload = await audio_processor.save_upload_to_wav(
upload_file=prompt_wav,
prefix="p",
volume_multiplier=1.0,
nonsilent=False,
reduce_noise_enabled=False
)
except Exception as e:
return JSONResponse({"errcode": -1, "errmsg": str(e)})
############################## generate ##############################
seed_data = generate_seed()
seed = seed_data["value"]
language = language.strip()
logging.info(f"language: {language}")
if language:
mode_checkbox_group = '自然语言控制2'
instruct_text = f'用{language}说这句话'
prompt_text = ''
else:
mode_checkbox_group = '3s极速复刻'
instruct_text = ''
errcode, errmsg, audio = generate_audio_with_timeout(
tts_text=text,
mode_checkbox_group=mode_checkbox_group,
sft_dropdown='',
prompt_text=prompt_text,
prompt_wav=prompt_wav_upload,
instruct_text=instruct_text,
seed=seed,
stream=False,
speed=spaker,
source_wav=None
)
# 检查返回值中的错误码
if errcode != 0:
return JSONResponse({"errcode": errcode, "errmsg": errmsg})
# 获取音频数据
target_sr, audio_data = audio
# 使用自定义方法生成 WAV 格式
wav_path = audio_processor.generate_wav(audio_data, target_sr, 0.0, 1.0)
# 返回音频响应
return JSONResponse({"errcode": 0, "errmsg": "ok", "wav_path": wav_path})
@app.post('/tts')
async def tts(
text: str = Form(..., description="输入合成文本"),
sft_dropdown: str = Form('中文女', description="输入预训练音色"),
spaker: float = Form(1.0, description="语速调节(0.5-2.0)")
):
"""
使用预训练音色模型的语音合成接口。
"""
############################## generate ##############################
text = TextProcessor.clear_text(text)
seed_data = generate_seed()
seed = seed_data["value"]
errcode, errmsg, audio = generate_audio_with_timeout(
tts_text=text,
mode_checkbox_group='预训练音色',
sft_dropdown=sft_dropdown,
prompt_text='',
prompt_wav=None,
instruct_text='',
seed=seed,
stream=False,
speed=spaker,
source_wav=None
)
# 检查返回值中的错误码
if errcode != 0:
return JSONResponse({"errcode": errcode, "errmsg": errmsg})
# 获取音频数据
target_sr, audio_data = audio
# 使用自定义方法生成 WAV 格式
wav_path = audio_processor.generate_wav(audio_data, target_sr)
# 返回音频响应
return JSONResponse({"errcode": 0, "errmsg": "ok", "wav_path": wav_path})
@app.get('/download')
async def download(
wav_path: str = Query(..., description="输入wav文件路径"),
name: str = Query(..., description="输入wav文件名")
):
"""
音频文件下载接口。
"""
return FileResponse(path=wav_path, filename=name, media_type='application/octet-stream')
parser = argparse.ArgumentParser()
parser.add_argument('--webui',
type=bool,
default=False)
parser.add_argument('--port',
type=int,
default=8000)
# 设置显存比例限制(浮点类型,默认值为 0)
parser.add_argument("--cuda_memory", type=float, default=0)
args = parser.parse_args()
prompt_sr = 16000
if __name__ == '__main__':
# 设置显存比例限制
if args.cuda_memory > 0:
logging.info(f"cuda_memory: {args.cuda_memory}")
torch.cuda.set_per_process_memory_fraction(args.cuda_memory)
if args.webui:
model_manager.get_model("cosyvoice_sft")
sft_spk = model_manager.sft_spk
main()
else:
try:
uvicorn.run(app="api:app", host="0.0.0.0", port=args.port, workers=1, reload=False, log_level="info")
except Exception as ex:
logging.error(ex)
exit(0)