-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path04_run_classification.py
187 lines (171 loc) · 7.21 KB
/
04_run_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from pathlib import Path
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import make_pipeline
from tslearn.preprocessing import TimeSeriesScalerMeanVariance
from src.metadata import l_datasets_classif_bench
from src.segment_feature import SegmentFeature
from src.segmentation import Segmentation
from src.symbolic_signal_distance import SymbolicSignalDistance
from src.symbolization import Symbolization
from src.tslearn_interface import (DistInterfaceOneD, DistInterfaceSAX, MyOneD,
MySAX)
from src.utils_run_classification import launch_grid_search_acc_datasets
def main(method_name, date_exp, l_datasets_to_compute):
"""In the classification benchmark, there are 86 data sets from the UCR
archive which are univariate, equal-size and have at least 100 samples.
"""
# Check if the method name is correct
method_names = [
"sax", # our SAX implementation
"saxtslearn", # SAX implementation from tslearn
"1dsax",
"astride",
"fastride",
]
err_msg = f"Choose an existing method name, not {method_name}."
assert method_name in method_names, err_msg
# Verbose
print(f"\nMethod name: {method_name}")
print(f"Date of experiment: {date_exp}")
n_datasets = len(l_datasets_to_compute)
print(f"UCR data sets under consideration: {n_datasets}")
# Define the parameter grid of the hyper-parameters of the symbolization methods
param_grid_n_segments = [5, 10, 15, 20, 25]
param_grid_n_symbols = [4, 9, 16, 25]
param_grid_alphabet_size_avg = [2, 3, 4, 5] # for 1d-SAX
param_grid_alphabet_size_slope = [2, 3, 4, 5] # for 1d-SAX
# Define the pipelines for the symbolization methods
pipe_symbts = make_pipeline(
TimeSeriesScalerMeanVariance(),
Segmentation(),
SegmentFeature(),
Symbolization(),
SymbolicSignalDistance(),
KNeighborsClassifier(n_neighbors=1, metric="precomputed"),
)
pipe_tslearn_sax = make_pipeline(
MySAX(
scale=True
),
DistInterfaceSAX(),
KNeighborsClassifier(n_neighbors=1, metric="precomputed"),
)
pipe_tslearn_1dsax = make_pipeline(
MyOneD(
sigma_l=1.0,
scale=True,
),
DistInterfaceOneD(),
KNeighborsClassifier(n_neighbors=1, metric="precomputed"),
)
# Define the parameter grid for each symbolization method
param_grid_sax = {
"segmentation__univariate_or_multivariate": ["multivariate"],
"segmentation__uniform_or_adaptive": ["uniform"],
"segmentation__mean_or_slope": [None],
"segmentation__n_segments": param_grid_n_segments,
"segmentation__pen_factor": [None],
"segmentfeature__features_names": [["mean"]],
"symbolization__n_symbols": param_grid_n_symbols,
"symbolization__symb_method": ["quantif"],
"symbolization__symb_quantif_method": ["gaussian"],
"symbolization__symb_cluster_method": [None],
"symbolization__features_scaling": [None],
"symbolization__reconstruct_bool": [False],
"symbolization__n_regime_lengths": [None],
"symbolization__seglen_bins_method": [None],
"symbolization__lookup_table_type": ["mindist"],
"symbolicsignaldistance__distance": ["euclidean"],
"symbolicsignaldistance__n_samples": [None], # to be set
"symbolicsignaldistance__weighted_bool": [True],
}
param_grid_tslearn_sax = {
"mysax__n_segments": param_grid_n_segments,
"mysax__alphabet_size_avg": param_grid_n_symbols,
}
param_grid_tslearn_1dsax = {
"myoned__n_segments": param_grid_n_segments,
"myoned__alphabet_size_avg": param_grid_alphabet_size_avg,
"myoned__alphabet_size_slope": param_grid_alphabet_size_slope,
}
param_grid_astride = {
"segmentation__univariate_or_multivariate": ["multivariate"],
"segmentation__uniform_or_adaptive": ["adaptive"],
"segmentation__mean_or_slope": ["mean"],
"segmentation__n_segments": param_grid_n_segments,
"segmentation__pen_factor": [None],
"segmentfeature__features_names": [["mean"]],
"symbolization__n_symbols": param_grid_n_symbols,
"symbolization__symb_method": ["quantif"],
"symbolization__symb_quantif_method": ["quantiles"],
"symbolization__symb_cluster_method": [None],
"symbolization__features_scaling": [None],
"symbolization__reconstruct_bool": [True],
"symbolization__n_regime_lengths": ["divide_exact"],
"symbolization__seglen_bins_method": [None],
"symbolization__lookup_table_type": ["mof"],
"symbolicsignaldistance__distance": ["lev"],
"symbolicsignaldistance__n_samples": [None],
"symbolicsignaldistance__weighted_bool": [True],
}
param_grid_fastride = {
"segmentation__univariate_or_multivariate": ["multivariate"],
"segmentation__uniform_or_adaptive": ["uniform"],
"segmentation__mean_or_slope": [None],
"segmentation__n_segments": param_grid_n_segments,
"segmentation__pen_factor": [None],
"segmentfeature__features_names": [["mean"]],
"symbolization__n_symbols": param_grid_n_symbols,
"symbolization__symb_method": ["quantif"],
"symbolization__symb_quantif_method": ["quantiles"],
"symbolization__symb_cluster_method": [None],
"symbolization__features_scaling": [None],
"symbolization__reconstruct_bool": [False],
"symbolization__n_regime_lengths": [None],
"symbolization__seglen_bins_method": [None],
"symbolization__lookup_table_type": ["mof"],
"symbolicsignaldistance__distance": ["lev"],
"symbolicsignaldistance__n_samples": [None],
"symbolicsignaldistance__weighted_bool": [True],
}
# Select the pipeline and the parameter grid according to the method name
if method_name == "sax":
pipe_bench = pipe_symbts
param_grid_bench = param_grid_sax
elif method_name == "saxtslearn":
pipe_bench = pipe_tslearn_sax
param_grid_bench = param_grid_tslearn_sax
elif method_name == "1dsax":
pipe_bench = pipe_tslearn_1dsax
param_grid_bench = param_grid_tslearn_1dsax
elif method_name == "fastride":
pipe_bench = pipe_symbts
param_grid_bench = param_grid_fastride
elif method_name == "astride":
pipe_bench = pipe_symbts
param_grid_bench = param_grid_astride
# Launch the classification
_ = launch_grid_search_acc_datasets(
l_datasets_bench=l_datasets_to_compute,
pipe=pipe_bench,
param_grid=param_grid_bench,
method_name=method_name,
date_exp=date_exp,
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--method_name",
type=str,
help="Name of the method in {'sax', 'saxtslearn', '1dsax', 'astride', 'fastride'}.",
required=True,
)
parser.add_argument(
"--date_exp",
type=str,
help="Date of the launch of the experiments (for versioning).",
required=True,
)
args = parser.parse_args()
main(args.method_name, args.date_exp, l_datasets_classif_bench)