forked from real-to-sim-to-real/RialToPolicyLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathteleop_franka.py
266 lines (216 loc) · 9.08 KB
/
teleop_franka.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import wandb
import numpy as np
import yaml
import os
from rialto.franka.real_franka_env import RealFrankaEnv
from utils import downsample_internal
from rialto.algo.buffer_distillation import OnlineBuffer
from utils import create_panda_urdf, preprocess_pcd, postprocess_pcd, preprocess_pcd_from_canon
def run(
env_name='pointmass_empty',
num_demos=0,
max_path_length=100,
img_width=128,
img_height=128,
demo_folder="",
offset=0,
cam_index=2,
**cfg):
env = RealFrankaEnv(cam_index=cam_index, hz=cfg['hz'], cfg=cfg)
collect_demos(env, num_demos, max_path_length, offset, demo_folder, cfg=cfg)
def env_distance(env, state, goal):
obs = env.observation(state)
return env.compute_shaped_distance(obs, goal)
def create_video(images, video_filename):
images = np.array(images).astype(np.uint8)
images = images.transpose(0,3,1,2)
wandb.log({"demos_video_trajectories":wandb.Video(images, fps=10)})
FRANKA_MAP_ACTION = {
'\x1b[A': 0,# FRONT
'\x1b[B': 1,# BACK
'\x1b[D': 2,# LEFT
'\x1b[C': 3, # RIGHT
'U': 4,# UP
'J': 5,# DOWN
'u': 4,# UP
'j': 5,# DOWN
'1': 6,# TILT 1
'2': 7,# TILT 2
'3': 8,# TILT 3
'4': 9,# TILT 4
'5': 10,# TILT 5
'6': 11, # TILT 6
'7': -3,# TILT 7
'8': -3,# TILT 7
'O': 12,# OPEN GRIPPER
'o': 12,# OPEN GRIPPER
'C': 13,# CLOSE GRIPPER
'c': 13,# CLOSE GRIPPER
'82': 0,# FRONT
'84': 1,# BACK
'81': 2,# LEFT
'83': 3, # RIGHT
'117': 4,# UP
'106': 5,# DOWN
'49': 6,# TILT 1
'50': 7,# TILT 2
'51': 8,# TILT 3
'52': 9,# TILT 4
'53': 10,# TILT 5
'54': 11, # TILT 6
# '55': 12,# TILT 7
# '56': 13,# TILT 7
'99': 13,# CLOSE GRIPPER
'111': 12,# OPEN GRIPPER
'100': -1,# DISCARD
'D': -1,# DISCARD
'd': -1,# DISCARD
'S': -2,# SAVE
's': -2,# SAVE
}
import cv2
def collect_demos(env, num_demos, max_path_length, offset=0, filename="realworlddemo", main_folder="/home/marcel/data", cfg=None):
i = offset
env_name = "real_world_pusher"
# sim_actions = np.load("all_actions_open_final_drawer.npy")
demo_num = offset
os.makedirs(f"{main_folder}/{filename}/", exist_ok=True)
urdf = create_panda_urdf(cfg)
sensors = ['rgb', 'pointcloud']
while demo_num < num_demos:
actions = []
states = []
joints = []
all_pcd_points = []
state = env.reset()
import IPython
IPython.embed()
joint = env._env.get_robot_joints()
video = []
images = []
pcds = []
print(env.action_space)
print("Max path length", max_path_length)
for t in range(max_path_length):
print("state", t, state)
img, pcd = env.render_image(sensors)
points, colors = pcd
points = points.reshape((1, -1, 3))
colors = colors.reshape((1, -1, 3))
if cfg["presample_arm_pcd"]:
# this is faster (doesn't re-sample the points from the mesh each time)
pcd_processed_points = preprocess_pcd_from_canon(pcd, joint, urdf, urdf.canonical_link_pcds, cfg)
else:
pcd_processed_points = preprocess_pcd(pcd, joint, urdf, cfg)
# pcd_processed_points = preprocess_pcd(pcd, joint, urdf, cfg)
pcd_processed_points_full, pcd_processed_colors_full = postprocess_pcd(pcd_processed_points, cfg)
# pcd_processed_points_full, pcd_processed_colors_full, pcd_processed_points, pcd_processed_colors = process_pcd(pcd, joint, urdf, cfg)
# import IPython
# IPython.embed()
# import open3d as o3d
# pcd = o3d.geometry.PointCloud()
# pcd.points = o3d.utility.Vector3dVector(pcd_processed_points_full[0])
# o3d.visualization.draw_geometries([pcd])
video.append(img)
# cv2.imshow("Window", image)
# key = cv2.waitKey(10250)
key = input("Action:")
# cv2.destroyAllWindows()
key = str(key)
print(key)
action_raw = key
while action_raw not in FRANKA_MAP_ACTION:
action_raw = input("Action:")
print("action_raw", action_raw)
action = FRANKA_MAP_ACTION[action_raw]
print("action mapped", action)
if action < 0:
break
images.append(img)
actions.append(action)
states.append(state.detach().cpu().numpy())
joints.append(joint[0].detach().numpy())
pcd_points, pcd_colors = pcd
# pcd_points_downsampled, _ = downsample_internal(pcd_points, None, 15000)
# # pcd_points = downsample_internal(np.array(pcd_points), None, 15000)
# pcd_colors_downsampled = np.ones(pcd_points_downsampled.shape[:-1])
# downsampled_pcd = pcd_points_downsampled, pcd_colors_downsampled
all_pcd_points.append(pcd_processed_points)
# action = sim_actions[t,1]
state, _, done , info = env.step(np.array([action]))
joint = env._env.get_robot_joints()
# if done :
# break
if action == -2:
buffer = OnlineBuffer(cfg=cfg)
actions = np.array(actions)[None, ...]
states = np.array(states)[None, ...]
joints = np.array(joints)[None, ...]
all_pcd_points = np.array(all_pcd_points).transpose(1,0,2,3)
buffer.add_trajectories(actions, np.ones_like(actions), states, joints, all_pcd_points, np.ones_like(all_pcd_points), None)
buffer.store(demo_num, filename, main_folder="demos")
create_video(video[0], f"{env_name}_{i}")
demo_num += 1
# assert False
# put actions states into npy file
# traj_pcd_points = []
# traj_pcd_feats = []
# traj_pcd_images = []
# for i in range(len(pcds)):
# traj_pcd_points.append(pcds[i][0])
# traj_pcd_feats.append(pcds[i][1])
# traj_pcd_images.append(images[i])
# np.save(f"{main_folder}/{filename}/traj_{demo_num}_points.npy", traj_pcd_points)
# # np.save(f"{main_folder}/{filename}/traj_{demo_num}/{i}_feats.npy", traj_pcd_feats )
# np.save(f"{main_folder}/{filename}/traj_{demo_num}_rgb.npy", traj_pcd_images)
# # env.plot_trajectories([states], [goal])
# print("Saving in", f"{main_folder}/{filename}")
# np.save(f"{main_folder}/{filename}/demo_{demo_num}_actions.npy", actions)
# np.save(f"{main_folder}/{filename}/demo_{demo_num}_states.npy", states)
# np.save(f"{main_folder}/{filename}/demo_{demo_num}_joints.npy", joints)
env.reset()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--gpu",type=int, default=0)
parser.add_argument("--num_demos", type=int, default=10)
parser.add_argument("--max_path_length", type=int, default=None)
parser.add_argument("--save_all", action="store_true", default=False)
parser.add_argument("--display", action="store_true", default=False)
parser.add_argument("--img_width", type=int, default=512)
parser.add_argument("--img_height", type=int, default=512)
parser.add_argument("--demo_folder", type=str, default="realworldfranka")
parser.add_argument("--offset", type=int, default=0)
parser.add_argument("--hz", type=float, default=1)
parser.add_argument("--total_loop_time", type=float, default=0)
# parser.add_argument("--hz", type=float, default=0)
parser.add_argument("--cam_index", type=int, default=2)
parser.add_argument("--interp_steps", type=int, default=0)
parser.add_argument("--start_interp_offset", type=int, default=0)
parser.add_argument("--extra_params", type=str, default=None)
parser.add_argument("--pcd_randomness",type=str, default="default_pcd_randomness")
args = parser.parse_args()
params = {}
with open("config.yaml") as file:
config = yaml.safe_load(file)
params = config["common"]
params.update(config["isaac-env"])
data_folder_name = f"isaac_env_"
data_folder_name = data_folder_name+"_use_oracle_"
data_folder_name = data_folder_name
params["data_folder"] = data_folder_name
params.update(config['teacher_student_distillation'])
params.update({"max_path_length":args.max_path_length})
params.update(config[args.pcd_randomness])
if args.extra_params is not None:
extra_params = args.extra_params.split(",")
for p in extra_params:
params.update(config[p])
for key in args.__dict__:
value = args.__dict__[key]
if value is not None:
params[key] = value
params["data_folder"] = data_folder_name
wandb.init(project="real_franka"+"teleop_demos", name=f"real_franka_demos", config=params, dir="/data/pulkitag/data/marcel/wandb")
run(**params)
# dd_utils.launch(run, params, mode='local', instance_type='c4.xlarge')