-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
609 lines (514 loc) · 25.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import networkx as nx
import numpy as np
from sklearn.model_selection import train_test_split
from models.models import *
import random
import os
import multiprocessing as mp
from tqdm import tqdm
import time
import sys
from copy import deepcopy
from torch_geometric.data import DataLoader, Data
import torch_geometric.utils as tgu
from debug import *
def check(args):
if args.dataset == 'foodweb' and not args.directed:
raise Warning('dataset foodweb is essentially a directed network but currently treated as undirected')
if args.dataset == 'simulation':
if args.n is None:
args.n = [10, 20, 40, 80, 160, 320, 640, 1280]
if args.max_sp < args.T:
raise Warning('maximum shortest path distance (max_sp) is less than max number of layers (T), which may deteriorate model capability')
def get_device(args):
gpu = args.gpu
return torch.device('cuda:{}'.format(gpu) if torch.cuda.is_available() else 'cpu')
def get_optimizer(model, args):
optim = args.optimizer
if optim == 'adam':
return torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2)
elif optim == 'sgd':
return torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.l2)
else:
raise NotImplementedError
def estimate_storage(dataloaders, names, logger):
total_gb = 0
for dataloader, name in zip(dataloaders, names):
dataset = dataloader.dataset
storage = 0
total_length = len(dataset)
sample_size = 100
for i in np.random.choice(total_length, sample_size):
storage += (sys.getsizeof(dataset[i].x.storage()) + sys.getsizeof(dataset[i].edge_index.storage()) +
sys.getsizeof(dataset[i].y.storage())) + sys.getsizeof(dataset[i].set_indices.storage())
gb = storage*total_length/sample_size/1e9
total_gb += gb
logger.info('Data roughly takes {:.4f} GB in total'.format(total_gb))
return total_gb
def set_random_seed(args):
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
def read_label(dir, task):
"""读取标签
Args:
dir (string): 数据路径
task (string): 任务类型
Returns:
labels(list) , node_id_mapping(dict):
节点预测
labels labels.txt中的信息
node_id_mapping 新编号
其它
labels = None
node_id_mapping 新编号
"""
if task == 'node_classification':
f_path = dir + 'labels.txt'
fin_labels = open(f_path)
labels = []
node_id_mapping = dict()
for new_id, line in enumerate(fin_labels.readlines()):
old_id, label = line.strip().split()
labels.append(int(label))
node_id_mapping[old_id] = new_id
fin_labels.close()
else:
labels = None
nodes = []
with open(dir + 'edges.txt') as ef:
for line in ef.readlines():
nodes.extend(line.strip().split()[:2])
nodes = sorted(list(set(nodes)))
node_id_mapping = {old_id: new_id for new_id, old_id in enumerate(nodes)}
return labels, node_id_mapping
def read_edges(dir, node_id_mapping):
"""读取edge
Args:
dir (string): edge所在的路径
node_id_mapping (dict): 数据中的点对应的新编号
Returns:
list: 返回边的列表[(u1 , v1) , (u2 , v2)]
"""
edges = []
fin_edges = open(dir + 'edges.txt')
for line in fin_edges.readlines():
node1, node2 = line.strip().split()[:2]
edges.append([node_id_mapping[node1], node_id_mapping[node2]])
fin_edges.close()
return edges
def read_file(args, logger):
dataset = args.dataset
di_flag = args.directed
if dataset in ['brazil-airports', 'europe-airports', 'usa-airports', 'foodweb', 'karate']:
task = 'node_classification'
elif dataset in ['arxiv', 'celegans', 'celegans_small', 'facebook', 'ns', 'pb', 'power', 'router', 'usair', 'yeast']:
task = 'link_prediction'
elif dataset in ['arxiv_tri', 'celegans_tri', 'celegans_small_tri', 'facebook_tri', 'ns_tri', 'pb_tri', 'power_tri', 'router_tri', 'usair_tri', 'yeast_tri']:
task = 'triplet_prediction'
elif dataset in ['simulation']:
task = 'simulation'
else:
raise ValueError('dataset not found')
directory = './data/' + task + '/' + dataset + '/'
labels, node_id_mapping = read_label(directory, task=task) #
edges = read_edges(directory, node_id_mapping) # [(u1 , v1) , (u2 , v2)]
if not di_flag:
G = nx.Graph(edges)
else:
G = nx.DiGraph(edges)
attributes = np.zeros((G.number_of_nodes(), 1), dtype=np.float32)
if args.use_degree:
attributes += np.expand_dims(np.log(get_degrees(G)+1), 1).astype(np.float32)
if args.use_attributes:
# TODO: read in attribute file to concat to axis -1 of attributes, raise error if not found
raise NotImplementedError
G.graph['attributes'] = attributes
logger.info('Read in {} for {} -- number of nodes: {}, number of edges: {}, number of labels: {}. Directed: {}'.format(dataset, task,
G.number_of_nodes(),
G.number_of_edges(),
len(labels) if labels is not None else 0,
di_flag))
labels = np.array(labels) if labels is not None else None
return (G, labels), task
def get_data(G, task, args, labels, logger):
G = deepcopy(G) # to make sure original G is unchanged
if args.debug:
logger.info(list(G.edges))
# di_flag = isinstance(G, nx.classes.digraph.DiGraph)
# deg_flag = args.use_degree
sp_flag = 'sp' in args.feature
rw_flag = 'rw' in args.feature
# norm_flag = args.adj_norm
feature_flags = (sp_flag, rw_flag)
# TODO: adapt the whole branch for simulation
if task == 'simulation':
set_indices = np.expand_dims(np.arange(G.number_of_nodes()), 1)
data_list = extract_subgaphs(G, labels, set_indices, prop_depth=args.prop_depth, layers=args.layers,
feature_flags=feature_flags, task=task,
max_sprw=(args.max_sp, args.rw_depth), parallel=args.parallel, logger=logger, debug=args.debug)
loader = DataLoader(data_list, batch_size=args.bs, shuffle=False, num_workers=0)
return loader
G, labels, set_indices, (train_mask, val_test_mask) = generate_samples_labels_graph(G, labels, task, args, logger)
# 到这里获取的是全部要使用的数据
if args.debug:
logger.info(list(G.edges))
data_list = extract_subgaphs(G, labels, set_indices, prop_depth=args.prop_depth, layers=args.layers,
feature_flags=feature_flags, task=task,
max_sprw=(args.max_sp, args.rw_depth), parallel=args.parallel, logger=logger, debug=args.debug)
# 获取以每个点为中心的数据
train_set, val_set, test_set = split_datalist(data_list, (train_mask, val_test_mask))
# 以train_mask获取train数据集,然后将val_test_mask对半分成测试和验证集
if args.debug:
print_dataset(train_set, logger)
print_dataset(val_set, logger)
print_dataset(test_set, logger)
train_loader, val_loader, test_loader = load_datasets(train_set, val_set, test_set, bs=args.bs)
logger.info('Train size :{}, val size: {}, test size: {}, val ratio: {}, test ratio: {}'.format(len(train_set), len(val_set), len(test_set), args.test_ratio, args.test_ratio))
return (train_loader, val_loader, test_loader), len(np.unique(labels))
def generate_samples_labels_graph(G, labels, task, args, logger):
"""获取数据集,数据大小为总数*args.data_usage
Args:
G (图类): 图
labels (list): 节点的标签信息
task (string): 当前运行的是哪种任务
args (类): _description_
logger (类): _description_
Returns:
networkx , list , np.array , (np.array , np.array) : 主要是返回train_mask,test_mask
"""
if labels is None:
logger.info('Labels unavailable. Generating training/test instances from dataset ...')
G, labels, set_indices, (train_mask, val_test_mask) = generate_set_indices_labels(G, task, test_ratio=2*args.test_ratio, data_usage=args.data_usage)
else:
# training on nodes or running on synthetic data
logger.info('Labels provided (node-level task).')
assert(G.number_of_nodes() == labels.shape[0])
n_samples = int(round(labels.shape[0] * args.data_usage))
set_indices = np.random.choice(G.number_of_nodes(), n_samples, replace=False)
labels = labels[set_indices]
set_indices = np.expand_dims(set_indices, 1)
train_mask, val_test_mask = split_dataset(set_indices.shape[0], test_ratio=2*args.test_ratio, stratify=labels)
logger.info('Generate {} train+val+test instances in total. data_usage: {}.'.format(set_indices.shape[0], args.data_usage))
return G, labels, set_indices, (train_mask, val_test_mask)
def generate_set_indices_labels(G, task, test_ratio, data_usage=1.0):
G = G.to_undirected() # the prediction task completely ignores directions
pos_edges, neg_edges = sample_pos_neg_sets(G, task, data_usage=data_usage) # each shape [n_pos_samples, set_size], note hereafter each "edge" may contain more than 2 nodes
n_pos_edges = pos_edges.shape[0]
assert(n_pos_edges == neg_edges.shape[0])
pos_test_size = int(test_ratio * n_pos_edges)
set_indices = np.concatenate([pos_edges, neg_edges], axis=0)
test_pos_indices = random.sample(range(n_pos_edges), pos_test_size) # randomly pick pos edges for test
test_neg_indices = list(range(n_pos_edges, n_pos_edges + pos_test_size)) # pick first pos_test_size neg edges for test
test_mask = get_mask(test_pos_indices + test_neg_indices, length=2*n_pos_edges)
train_mask = np.ones_like(test_mask) - test_mask
labels = np.concatenate([np.ones((n_pos_edges, )), np.zeros((n_pos_edges, ))]).astype(np.int32)
G.remove_edges_from([node_pair for set_index in list(set_indices[test_pos_indices]) for node_pair in combinations(set_index, 2)])
# permute everything for stable training
permutation = np.random.permutation(2*n_pos_edges)
set_indices = set_indices[permutation]
labels = labels[permutation]
train_mask, test_mask = train_mask[permutation], test_mask[permutation]
return G, labels, set_indices, (train_mask, test_mask)
def extract_subgaphs(G, labels, set_indices, prop_depth, layers, feature_flags, task, max_sprw, parallel, logger, debug=False):
"""抓取以各个点为中心的子图信息
Args:
G (networkx): 图
labels (list): 标签
set_indices (array[n * 1]): 可用点的下标
prop_depth (int): 邻居深度
layers (int): 邻居深度
feature_flags (Tuple(sp , wr)): 要获取的特征
task (sting): 任务
max_sprw (Tuple(sp , wr)): 特征参数
parallel (boolen): 是否并行获取数据
logger (_type_): _description_
debug (bool, optional): _description_. Defaults to False.
Returns:
list: 以每个点为中心的邻居信息,每个元素都是一个Data类
"""
# deal with adj and features
logger.info('Encode positions ... (Parallel: {})'.format(parallel))
data_list = []
hop_num = get_hop_num(prop_depth, layers, max_sprw, feature_flags)
# hop_num = int(prop_depth * layers) + 1
n_samples = set_indices.shape[0]
if not parallel:
for sample_i in tqdm(range(n_samples)):
data = get_data_sample(G, set_indices[sample_i], hop_num, feature_flags, max_sprw,
label=labels[sample_i] if labels is not None else None, debug=debug)
data_list.append(data)
else:
pool = mp.Pool(4)
results = pool.map_async(parallel_worker,
[(G, set_indices[sample_i], hop_num, feature_flags, max_sprw,
labels[sample_i] if labels is not None else None, debug) for sample_i in range(n_samples)])
remaining = results._number_left
pbar = tqdm(total=remaining)
while True:
pbar.update(remaining - results._number_left)
if results.ready():
break
remaining = results._number_left
time.sleep(0.2)
data_list = results.get()
pool.close()
pbar.close()
return data_list
def parallel_worker(x):
return get_data_sample(*x)
def get_data_sample(G, set_index, hop_num, feature_flags, max_sprw, label, debug=False):
"""获取子图数据
Args:
G (networkx): 图
set_index (int): 中心点
hop_num (int): 邻居层数
feature_flags (Tuple): (sp , rw) 要获取的特征,sp最短路,rw随机游走
max_sprw (Tuple): 子图参数,(sp_max , rw_depth)
label (list): 标签值
debug (bool, optional): _description_. Defaults to False.
Returns:
Data: 返回一个
"""
# first, extract subgraph
set_index = list(set_index)
sp_flag, rw_flag = feature_flags
max_sp, rw_depth = max_sprw
if len(set_index) > 1:
G = G.copy()
G.remove_edges_from(combinations(set_index, 2))
edge_index = torch.tensor(list(G.edges)).long().t().contiguous() # 2 * shape number_edges
edge_index = torch.cat([edge_index, edge_index[[1, 0], ]], dim=-1)
# 变成了一个2 * (number_edges * 2)的矩阵,左边一半和右边一半是上下交换的关系
# 有向图变无向图
subgraph_node_old_index, new_edge_index, new_set_index, edge_mask = tgu.k_hop_subgraph(torch.tensor(set_index).long(), hop_num, edge_index, num_nodes=G.number_of_nodes(), relabel_nodes=True)
# subgrap_node_old_index 表示子图中被选择的节点列表
# new_edge_index 表示子图中的边(用新编号的点表示)的列表
# new_set_index 表示 原图起点 映射到子图上是哪个点
# edge_mask 表示一个长度等于原图边数的True/False列表,如果在子图里对应下标就为True,否则就是False
# reconstruct networkx graph object for the extracted subgraph
num_nodes = subgraph_node_old_index.size(0)
new_G = nx.from_edgelist(new_edge_index.t().numpy().astype(dtype=np.int32), create_using=type(G))
new_G.add_nodes_from(np.arange(num_nodes, dtype=np.int32)) # to add disconnected nodes
assert(new_G.number_of_nodes() == num_nodes)
# Construct x from x_list
x_list = []
attributes = G.graph['attributes']
if attributes is not None:
new_attributes = torch.tensor(attributes, dtype=torch.float32)[subgraph_node_old_index]
if new_attributes.dim() < 2:
new_attributes.unsqueeze_(1)
x_list.append(new_attributes)
# if deg_flag:
# x_list.append(torch.log(tgu.degree(new_edge_index[0], num_nodes=num_nodes, dtype=torch.float32).unsqueeze(1)+1))
if sp_flag:
features_sp_sample = get_features_sp_sample(new_G, new_set_index.numpy(), max_sp=max_sp)
features_sp_sample = torch.from_numpy(features_sp_sample).float()
x_list.append(features_sp_sample)
if rw_flag:
adj = np.asarray(nx.adjacency_matrix(new_G, nodelist=np.arange(new_G.number_of_nodes(), dtype=np.int32)).todense().astype(np.float32)) # [n_nodes, n_nodes]
features_rw_sample = get_features_rw_sample(adj, new_set_index.numpy(), rw_depth=rw_depth)
features_rw_sample = torch.from_numpy(features_rw_sample).float()
x_list.append(features_rw_sample)
x = torch.cat(x_list, dim=-1)
y = torch.tensor([label], dtype=torch.long) if label is not None else torch.tensor([0], dtype=torch.long)
new_set_index = new_set_index.long().unsqueeze(0)
if not debug:
return Data(x=x, edge_index=new_edge_index, y=y, set_indices=new_set_index)
else:
return Data(x=x, edge_index=new_edge_index, y=y, set_indices=new_set_index,
old_set_indices=torch.tensor(set_index).long().unsqueeze(0), old_subgraph_indices=subgraph_node_old_index)
def get_model(layers, in_features, out_features, prop_depth, args, logger):
model_name = args.model
if model_name in ['DE-GNN', 'GIN', 'GCN', 'GraphSAGE', 'GAT']:
model = GNNModel(layers=layers, in_features=in_features, hidden_features=args.hidden_features,
out_features=out_features, prop_depth=prop_depth, dropout=args.dropout,
model_name=model_name)
else:
return NotImplementedError
logger.info(model.short_summary())
return model
def get_features_sp_sample(G, node_set, max_sp):
"""获取数据的sp最短路
Args:
G (networkx): 图
node_set (numpy.array): 新图中的中心点
max_sp (int): maximum distance to be encoded for shortest path feature
Returns:
_type_: _description_
"""
dim = max_sp + 2
set_size = len(node_set)
sp_length = np.ones((G.number_of_nodes(), set_size), dtype=np.int32) * -1
for i, node in enumerate(node_set):
for node_ngh, length in nx.shortest_path_length(G, source=node).items():
sp_length[node_ngh, i] = length
# sp_lenght.shape = 图中点数*起点个数
sp_length = np.minimum(sp_length, max_sp)
onehot_encoding = np.eye(dim, dtype=np.float64) # [n_features, n_features]
features_sp = onehot_encoding[sp_length].sum(axis=1)
# 按1轴求和就是按行求和,第二维变成1,也就是
return features_sp
def get_features_rw_sample(adj, node_set, rw_depth):
epsilon = 1e-6
adj = adj / (adj.sum(1, keepdims=True) + epsilon)
rw_list = [np.identity(adj.shape[0])[node_set]]
for _ in range(rw_depth):
rw = np.matmul(rw_list[-1], adj)
rw_list.append(rw)
features_rw_tmp = np.stack(rw_list, axis=2) # shape [set_size, N, F]
# pooling
features_rw = features_rw_tmp.sum(axis=0)
return features_rw
def get_hop_num(prop_depth, layers, max_sprw, feature_flags):
# TODO: may later use more rw_depth to control as well?
return int(prop_depth * layers) + 1 # in order to get the correct degree normalization for the subgraph
def shortest_path_length(graph):
sp_length = np.ones([graph.number_of_nodes(), graph.number_of_nodes()], dtype=np.int32) * -1
for node1, value in nx.shortest_path_length(graph):
for node2, length in value.items():
sp_length[node1][node2] = length
return sp_length
def split_dataset(n_samples, test_ratio, stratify=None):
"""分割数据集为训练集和测试集
Args:
n_samples (int): 样本数量
test_ratio (float32): 数据集占比/个数
stratify (_type_, optional): 若不为None则训练集和测试集内各类数据比例同stratify. Defaults to None.
Returns:
np.array , np.array: train_mask , test_mask , 长度为n_sample的数组np.array,若有为1,若无为0.
"""
train_indices, test_indices = train_test_split(list(range(n_samples)), test_size=test_ratio, stratify=stratify)
train_mask = get_mask(train_indices, n_samples)
test_mask = get_mask(test_indices, n_samples)
return train_mask, test_mask
def get_mask(idx, length):
"""生成mask
Args:
idx (_type_): 应为1的下标
length (_type_): 长度
Returns:
np.array: mask 01数组
"""
mask = np.zeros(length)
mask[idx] = 1
return np.array(mask, dtype=np.int8)
def sample_pos_neg_sets(G, task, data_usage=1.0):
if task == 'link_prediction':
pos_edges = np.array(list(G.edges), dtype=np.int32)
set_size = 2
elif task == 'triplet_prediction':
pos_edges = np.array(collect_tri_sets(G))
set_size = 3
else:
raise NotImplementedError
if data_usage < 1-1e-6:
pos_edges, sample_i = retain_partial(pos_edges, ratio=data_usage)
neg_edges = np.array(sample_neg_sets(G, pos_edges.shape[0], set_size=set_size), dtype=np.int32)
return pos_edges, neg_edges
def sample_neg_sets(G, n_samples, set_size):
neg_sets = []
n_nodes = G.number_of_nodes()
max_iter = 1e9
count = 0
while len(neg_sets) < n_samples:
count += 1
if count > max_iter:
raise Exception('Reach max sampling number of {}, input graph density too high'.format(max_iter))
candid_set = [int(random.random() * n_nodes) for _ in range(set_size)]
for node1, node2 in combinations(candid_set, 2):
if not G.has_edge(node1, node2):
neg_sets.append(candid_set)
break
return neg_sets
def collect_tri_sets(G):
tri_sets = set(frozenset([node1, node2, node3]) for node1 in G for node2, node3 in combinations(G.neighbors(node1), 2) if G.has_edge(node2, node3))
return [list(tri_set) for tri_set in tri_sets]
def retain_partial(indices, ratio):
sample_i = np.random.choice(indices.shape[0], int(ratio * indices.shape[0]), replace=False)
return indices[sample_i], sample_i
def pagerank_inverse(adj, alpha=0.90):
adj /= (adj.sum(axis=-1, keepdims=True) + 1e-12)
return np.linalg.inv(np.eye(adj.shape[0]) - alpha * np.transpose(adj, axes=(0,1)))
def split_datalist(data_list, masks):
# generate train_set
train_mask, val_test_mask = masks
num_graphs = len(data_list)
assert((train_mask.sum()+val_test_mask.sum()).astype(np.int32) == num_graphs)
assert(train_mask.shape[0] == num_graphs)
train_indices = np.arange(num_graphs)[train_mask.astype(bool)]
train_set = [data_list[i] for i in train_indices]
# generate val_set and test_set
val_test_indices = np.arange(num_graphs)[val_test_mask.astype(bool)]
val_test_labels = np.array([data.y for data in data_list], dtype=np.int32)[val_test_indices]
val_indices, test_indices = train_test_split(val_test_indices, test_size=int(0.5*len(val_test_indices)), stratify=val_test_labels)
val_set = [data_list[i] for i in val_indices]
test_set = [data_list[i] for i in test_indices]
return train_set, val_set, test_set
def load_datasets(train_set, val_set, test_set, bs):
num_workers = 0
train_loader = DataLoader(train_set, batch_size=bs, shuffle=True, pin_memory=True, num_workers=num_workers)
val_loader = DataLoader(val_set, batch_size=bs, shuffle=True, pin_memory=True, num_workers=num_workers)
test_loader = DataLoader(test_set, batch_size=bs, shuffle=True, pin_memory=True, num_workers=num_workers)
return train_loader, val_loader, test_loader
def split_indices(num_graphs, test_ratio, stratify=None):
test_size = int(num_graphs*test_ratio)
val_size = test_size
train_val_set, test_set = train_test_split(np.arange(num_graphs), test_size=test_size, shuffle=True, stratify=stratify)
train_set, val_set = train_test_split(train_val_set, test_size=val_size, shuffle=True, stratify=stratify[train_val_set])
return train_set, val_set, test_set
def get_degrees(G):
num_nodes = G.number_of_nodes()
return np.array([G.degree[i] for i in range(num_nodes)])
# ================================== (obsolete) Just for PGNN =================================================
# Adapted from https://github.com/JiaxuanYou/P-GNN
def get_PGNN_anchor_set_distances(layers, G, test_set_indices, c=1):
G = deepcopy(G)
num_nodes = G.number_of_nodes()
device = test_set_indices.device
if test_set_indices.size(1) > 1:
edges_to_remove = [[i, j] for set_index in list(test_set_indices.cpu().numpy()) for i, j in combinations(set_index, 2) ]
G.remove_edges_from(edges_to_remove)
dists = np.asarray(nx.adjacency_matrix(G, nodelist=range(G.number_of_nodes())).todense().astype(np.float64)) # [n_nodes, n_nodes]
dists = torch.from_numpy(dists).float().to(device)
anchorset_id = get_random_anchorset(num_nodes, c=c)
dists_max_l, dists_argmax_l = [], []
for layer_i in range(layers):
dists_max, dists_argmax = get_dist_max(anchorset_id, dists, device=device)
dists_max_l.append(dists_max)
dists_argmax_l.append(dists_argmax)
# TODO: collect the two variables
dists_max = torch.stack(dists_max_l).float()
dists_argmax = torch.stack(dists_argmax_l).float()
compact_distance_scores_and_args = torch.stack([dists_max, dists_argmax], dim=1)
return compact_distance_scores_and_args # shape: [layers, 2, N, NAS]
def get_random_anchorset(n,c=0.5):
m = int(np.log2(n))
copy = int(c*m)
anchorset_id = []
for i in range(m):
anchor_size = int(n/np.exp2(i + 1))
for j in range(copy):
anchorset_id.append(np.random.choice(n,size=anchor_size,replace=False))
return anchorset_id
def get_dist_max(anchorset_id, dist, device):
dist_max = torch.zeros((dist.shape[0], len(anchorset_id))).to(device)
dist_argmax = torch.zeros((dist.shape[0], len(anchorset_id))).long().to(device)
for i in range(len(anchorset_id)):
temp_id = anchorset_id[i]
dist_temp = dist[:, temp_id]
dist_max_temp, dist_argmax_temp = torch.max(dist_temp, dim=-1)
dist_max[:, i] = dist_max_temp
dist_argmax[:, i] = dist_argmax_temp
return dist_max, dist_argmax
class ObjectView:
def __init__(self, d):
self.__dict__ = d
# TODO: 1. check if storage allows, send all data to gpu 5. (optional) add directed graph
# TODO: 6. (optional) enable using original node attributes as initial feature (only need to modify file readin)
# TODO: 7. (optional) rw using sparse matrix for multiplication