Skip to content

Commit 9b9cb6a

Browse files
committed
format fixups
1 parent bf9fd3b commit 9b9cb6a

File tree

4 files changed

+12
-11
lines changed

4 files changed

+12
-11
lines changed

include/albatross/src/cereal/gp.hpp

+1-1
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,8 @@ using albatross::GaussianProcessBase;
1818
using albatross::GPFit;
1919
using albatross::LinearCombination;
2020

21-
using albatross::SparseGPFit;
2221
using albatross::PICGPFit;
22+
using albatross::SparseGPFit;
2323

2424
#ifndef GP_SERIALIZATION_VERSION
2525
#define GP_SERIALIZATION_VERSION 2

include/albatross/src/models/pic_gp.hpp

+2-2
Original file line numberDiff line numberDiff line change
@@ -681,7 +681,8 @@ class PICGaussianProcessRegression
681681
(xi_lambda.transpose() * xi_lambda - xi_u.transpose() * xi_u)
682682
.diagonal()};
683683

684-
const Eigen::VectorXd U_diag = (K_up.transpose() * sparse_gp_fit.W * Vp).diagonal();
684+
const Eigen::VectorXd U_diag =
685+
(K_up.transpose() * sparse_gp_fit.W * Vp).diagonal();
685686

686687
Eigen::VectorXd marginal_variance(cast::to_index(features.size()));
687688
for (Eigen::Index i = 0; i < marginal_variance.size(); ++i) {
@@ -764,7 +765,6 @@ class PICGaussianProcessRegression
764765
}
765766
Vp.makeCompressed();
766767

767-
768768
Eigen::MatrixXd xi_lambda = sparse_gp_fit.A_ldlt.sqrt_solve(Vp);
769769
Eigen::MatrixXd xi_u = sparse_gp_fit.Z * Vp;
770770
Eigen::MatrixXd VSV{xi_lambda.transpose() * xi_lambda -

include/albatross/src/models/sparse_common.hpp

+1-2
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,6 @@ struct DenseQRImplementation {
8686
}
8787
};
8888

89-
9089
} // namespace albatross
9190

92-
#endif // INCLUDE_ALBATROSS_MODELS_SPARSE_COMMON_H_
91+
#endif // INCLUDE_ALBATROSS_MODELS_SPARSE_COMMON_H_

tests/test_pic_gp.cc

+8-6
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,6 @@ TEST(TestPicGP, TestPredictionExists) {
5959
EXPECT_GT(pic_pred.mean.size(), 0);
6060
}
6161

62-
6362
TEST(TestPicGP, ScalarEquivalence) {
6463
static constexpr std::size_t kNumTrainPoints = 3;
6564
static constexpr std::size_t kNumTestPoints = 1;
@@ -337,7 +336,8 @@ TEST(TestPicGP, PITCEquivalenceOutOfTraining) {
337336

338337
auto test_features = linspace(10.1, 19.9, kNumTestPoints);
339338
auto pic_pred = pic_fit.predict_with_measurement_noise(test_features).joint();
340-
auto pitc_pred = pitc_fit.predict_with_measurement_noise(test_features).joint();
339+
auto pitc_pred =
340+
pitc_fit.predict_with_measurement_noise(test_features).joint();
341341

342342
EXPECT_LT(distance::wasserstein_2(pic_pred, pitc_pred), 1e-12);
343343
}
@@ -358,7 +358,8 @@ TEST(TestPicGP, PredictMeanEquivalent) {
358358

359359
auto test_features = linspace(0.1, 9.9, kNumTestPoints);
360360
auto pic_pred = pic_fit.predict_with_measurement_noise(test_features).mean();
361-
auto pic_joint_pred = pic_fit.predict_with_measurement_noise(test_features).joint();
361+
auto pic_joint_pred =
362+
pic_fit.predict_with_measurement_noise(test_features).joint();
362363

363364
const double pic_mean_error = (pic_pred - pic_joint_pred.mean).norm();
364365
EXPECT_LT(pic_mean_error, 1e-12);
@@ -379,8 +380,10 @@ TEST(TestPicGP, PredictMarginalEquivalent) {
379380
auto pic_fit = pic.fit(dataset);
380381

381382
auto test_features = linspace(0.1, 9.9, kNumTestPoints);
382-
auto pic_pred = pic_fit.predict_with_measurement_noise(test_features).marginal();
383-
auto pic_joint_pred = pic_fit.predict_with_measurement_noise(test_features).joint();
383+
auto pic_pred =
384+
pic_fit.predict_with_measurement_noise(test_features).marginal();
385+
auto pic_joint_pred =
386+
pic_fit.predict_with_measurement_noise(test_features).joint();
384387

385388
const double pic_marginal_error =
386389
(pic_pred.mean - pic_joint_pred.mean).norm();
@@ -400,5 +403,4 @@ TEST(TestPicGP, PredictMarginalEquivalent) {
400403
.format(Eigen::FullPrecision);
401404
}
402405

403-
404406
} // namespace albatross

0 commit comments

Comments
 (0)