forked from NVIDIA/OpenSeq2Seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_wer.py
123 lines (110 loc) · 3.34 KB
/
calculate_wer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""
WER
"""
from jiwer import wer
def word_error_rate(ref, hyp, debug=False):
r = ref.split()
h = hyp.split()
# costs will holds the costs, like in the Levenshtein distance algorithm
costs = [[0 for inner in range(len(h) + 1)] for outer in range(len(r) + 1)]
# backtrace will hold the operations we've done.
# so we could later backtrace, like the WER algorithm requires us to.
backtrace = [[0 for inner in range(len(h) + 1)]
for outer in range(len(r) + 1)]
OP_OK = 0
OP_SUB = 1
OP_INS = 2
OP_DEL = 3
DEL_PENALTY = 1 # Tact
INS_PENALTY = 1 # Tact
SUB_PENALTY = 1 # Tact
# First column represents the case where we achieve zero
# hypothesis words by deleting all reference words.
for i in range(1, len(r) + 1):
costs[i][0] = DEL_PENALTY * i
backtrace[i][0] = OP_DEL
# First row represents the case where we achieve the hypothesis
# by inserting all hypothesis words into a zero-length reference.
for j in range(1, len(h) + 1):
costs[0][j] = INS_PENALTY * j
backtrace[0][j] = OP_INS
# computation
for i in range(1, len(r) + 1):
for j in range(1, len(h) + 1):
if r[i - 1] == h[j - 1]:
costs[i][j] = costs[i - 1][j - 1]
backtrace[i][j] = OP_OK
else:
substitutionCost = costs[i - 1][j - 1] + \
SUB_PENALTY # penalty is always 1
insertionCost = costs[i][j - 1] + INS_PENALTY # penalty is always 1
deletionCost = costs[i - 1][j] + DEL_PENALTY # penalty is always 1
costs[i][j] = min(substitutionCost, insertionCost, deletionCost)
if costs[i][j] == substitutionCost:
backtrace[i][j] = OP_SUB
elif costs[i][j] == insertionCost:
backtrace[i][j] = OP_INS
else:
backtrace[i][j] = OP_DEL
# back trace though the best route:
i = len(r)
j = len(h)
numSub = 0
numDel = 0
numIns = 0
numCor = 0
if debug:
print("OP\tREF\tHYP")
lines = []
while i > 0 or j > 0:
if backtrace[i][j] == OP_OK:
numCor += 1
i -= 1
j -= 1
if debug:
lines.append("OK\t" + r[i] + "\t" + h[j])
elif backtrace[i][j] == OP_SUB:
numSub += 1
i -= 1
j -= 1
if debug:
lines.append("SUB\t" + r[i] + "\t" + h[j])
elif backtrace[i][j] == OP_INS:
numIns += 1
j -= 1
if debug:
lines.append("INS\t" + "****" + "\t" + h[j])
elif backtrace[i][j] == OP_DEL:
numDel += 1
i -= 1
if debug:
lines.append("DEL\t" + r[i] + "\t" + "****")
if debug:
lines = reversed(lines)
for line in lines:
print(line)
print("Ncor " + str(numCor))
print("Nsub " + str(numSub))
print("Ndel " + str(numDel))
print("Nins " + str(numIns))
# return (numSub + numDel + numIns) / (float)(len(r))
wer_result = round((numSub + numDel + numIns) / (float)(len(r)), 4)
return {
'WER': wer_result,
'Cor': numCor,
'Sub': numSub,
'Ins': numIns,
'Del': numDel}
def main():
"""
Main
"""
label_file_name = 'label.txt'
label = open(label_file_name, 'r').readline()
transcript = open('model_output.pickle')\
.readlines()[1].split(',')[1]
print('\n>>>>Label from', label_file_name, 'is :', label)
print('\n>>>>Transcript:', transcript)
print('Word Error Rate(WER):', word_error_rate(label, transcript))
if __name__ == "__main__":
main()