-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathweight_model_request_test.py
58 lines (50 loc) · 2.39 KB
/
weight_model_request_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#########################
# weight_mode_request.py
#
# This file covers the following cases.
# - getting weight from model server based on available features
#
#########################
import json
import os
import sys
import time
import requests
from kepler_model.estimate.model_server_connector import list_all_models
from kepler_model.util.config import download_path, get_model_server_req_endpoint
from kepler_model.util.loader import get_download_output_path
from kepler_model.util.train_types import FeatureGroup, FeatureGroups, ModelOutputType
from tests.estimator_power_request_test import generate_request
from tests.extractor_test import test_energy_source
os.environ["MODEL_SERVER_URL"] = "http://localhost:8100"
weight_available_trainers = ["SGDRegressorTrainer"]
if __name__ == "__main__":
# test getting model from server
os.environ["MODEL_SERVER_ENABLE"] = "true"
energy_source = test_energy_source
available_models = list_all_models(energy_source=energy_source)
while len(available_models) == 0:
time.sleep(1)
print("wait for kepler model server response")
available_models = list_all_models(energy_source=energy_source)
for output_type_name, valid_fgs in available_models.items():
output_type = ModelOutputType[output_type_name]
output_path = get_download_output_path(download_path, energy_source, output_type)
for fg_name, best_model in valid_fgs.items():
for trainer in weight_available_trainers:
print("feature group: ", fg_name)
metrics = FeatureGroups[FeatureGroup[fg_name]]
request_json = generate_request(trainer, n=10, metrics=metrics, output_type=output_type_name)
request_json["metrics"] += request_json["system_features"]
request_json["weight"] = "true"
del request_json["system_features"]
del request_json["values"]
del request_json["system_values"]
try:
response = requests.post(get_model_server_req_endpoint(), json=request_json)
except Exception as err:
print(f"cannot get response from model server: {err}")
sys.exit(1)
assert response.status_code == 200, f"response {request_json} not OK"
loaded_weight = json.loads(response.content)
print(loaded_weight)