-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtutorial52_cycleGan.py
263 lines (197 loc) · 9 KB
/
tutorial52_cycleGan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# https://www.tensorflow.org/tutorials/generative/cyclegan
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow_examples.models.pix2pix import pix2pix
import os
import time
import matplotlib.pyplot as plt
from IPython.display import clear_output
tfds.disable_progress_bar()
AUTOTUNE = tf.data.experimental.AUTOTUNE
dataset, metadata = tfds.load('cycle_gan/horse2zebra', with_info = True, as_supervised = True)
train_horses, train_zebras = dataset['trainA'], dataset['trainB']
test_horses, test_zebras = dataset['testA'], dataset['testB']
BUFFER_SIZE = 1000
BATCH_SIZE = 1
IMG_WIDTH = 256
IMG_HEIGHT = 256
def random_crop(image):
cropped_image = tf.image.random_crop(image, size = [IMG_HEIGHT, IMG_WIDTH, 3])
return cropped_image
# normalizing the images to [-1, 1]
def normalize(image):
image = tf.cast(image, tf.float32)
img = (image / 127.5) - 1
return image
def random_jitter(image):
# resizing to 286 x 286 x 3
image = tf.image.resize(image, [286, 286], method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
# randomly cropping to 256 x 256 x 3
image = random_crop(image)
# random mirroring
image = tf.image.random_flip_left_right(image)
return image
def preprocess_image_train(image, label):
image = normalize(image)
return image
def preprocess_image_test(image, label):
image = normalize(image)
return image
train_horses = train_horses.map(
preprocess_image_train, num_parallel_calls = AUTOTUNE).cache().shuffle(BUFFER_SIZE).batch(1)
train_zebras = train_zebras.map(
preprocess_image_train, num_parallel_calls = AUTOTUNE).cache().shuffle(BUFFER_SIZE).batch(1)
test_horses = test_horses.map(
preprocess_image_test, num_parallel_calls = AUTOTUNE).cache().shuffle(BUFFER_SIZE).batch(1)
test_zebras = test_zebras.map(
preprocess_image_test, num_parallel_calls = AUTOTUNE).cache().shuffle(BUFFER_SIZE).batch(1)
sample_horse = next(iter(train_horses))
sample_zebra = next(iter(train_zebras))
plt.subplot(121)
plt.title('Horse')
plt.imshow(sample_horse[0] * 0.5 + 0.5)
plt.subplot(122)
plt.title('Horse with random jitter')
plt.imshow(random_jitter(sample_horse[0]) * 0.5 + 0.5)
plt.show() # added
plt.subplot(121)
plt.title('Zebra')
plt.imshow(sample_zebra[0] * 0.5 + 0.5)
plt.subplot(122)
plt.title('Zebra with random jitter')
plt.imshow(random_jitter(sample_zebra[0]) * 0.5 + 0.5)
plt.show()
# Pix2Pix 모델 가져오기 및 재사용하기
OUTPUT_CHANNELS = 3
generator_g = pix2pix.unet_generator(OUTPUT_CHANNELS, norm_type = 'instancenorm')
generator_f = pix2pix.unet_generator(OUTPUT_CHANNELS, norm_type = 'instancenorm')
discriminator_x = pix2pix.discriminator(norm_type = 'instancenorm', target = False)
discriminator_y = pix2pix.discriminator(norm_type = 'instancenorm', target = False)
to_zebra = generator_g(sample_horse)
to_horse = generator_f(sample_zebra)
plt.figure(figsize = (8, 8))
contrast = 8
imgs = [sample_horse, to_zebra, sample_zebra, to_horse]
title = ['Horse', 'To Zebra', 'Zebra', 'To Horse']
for i in range(len(imgs)):
plt.subplot(2, 2, i + 1)
plt.title(title[i])
if i % 2 == 0:
plt.imshow(imgs[i][0] * 0.5 + 0.5)
else :
plt.imshow(imgs[i][0] * contrast + 0.5)
plt.show()
# 데이터셋에 그림이 없는 것 같다..
plt.figure(figsize = (8, 8))
plt.subplot(121)
plt.title('Is a real zebra?')
plt.imshow(discriminator_y(sample_zebra)[0, ..., -1], cmap = 'RdBu_r')
plt.subplot(122)
plt.title('Is a real horse?')
plt.imshow(discriminator_x(sample_horse)[0, ..., -1], cmap = 'RdBu_r')
plt.show()
# 손실함수
LAMBDA = 10
loss_obj = tf.keras.losses.BinaryCrossentropy(from_logits = True)
def discriminator_loss(real, generated):
real_loss = loss_obj(tf.ones_like(real), real)
generated_loss = loss_obj(tf.zeros_like(generated), generated)
total_disc_loss = real_loss + generated_loss
return total_disc_loss * 0.5
def generator_loss(generated):
return loss_obj(tf.ones_like(generated), generated)
def calc_cycle_loss(real_image, cycled_image):
loss1 = tf.reduce_mean(tf.abs(real_image - cycled_image))
return LAMBDA * loss1
def identity_loss(real_image, same_image):
loss = tf.reduce_mean(tf.abs(real_image - same_image))
return LAMBDA * 0.5 * loss
generator_g_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1 = 0.5)
generator_f_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1 = 0.5)
discriminator_x_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1 = 0.5)
discriminator_y_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1 = 0.5)
# 체크포인트
checkpoint_path = './checkpoints/train'
ckpt = tf.train.Checkpoint(generator_g = generator_g, generator_f = generator_f,
discriminator_x = discriminator_x, discriminator_y = discriminator_y,
generator_g_optimizer = generator_g_optimizer,
generator_f_optimizer = generator_f_optimizer,
discriminator_x_optimizer = discriminator_x_optimizer,
discriminator_y_optimizer = discriminator_y_optimizer)
ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep = 5)
# if a checkpoint exists, restore the latest checkpoint
if ckpt_manager.latest_checkpoint:
ckpt.restore(ckpt_manager.latest_checkpoint)
print('Lastest checkpoint restore!!')
# 훈련하기
EPOCHS = 40
def generate_images(model, test_input):
prediction = model(test_input)
plt.figure(figsize = (12, 12))
display_list = [test_input[0], prediction[0]]
title = ['Input Image', 'Predicted Image']
for i in range(2):
plt.subplot(1, 2, i + 1)
plt.title(title[i])
# getting the pixel values between [0, 1] to plot it.
plt.imshow(display_list[i] * 0.5 + 0.5)
plt.axis('off')
plt.show()
@tf.function
def train_step(real_x, real_y):
# persistent is set to True because the tape is used more than once to calculate the gradients.
with tf.GradientTape(persistent = True) as tape:
# Generator G translate X -> Y
# Generator F translate Y -> X
fake_y = generator_g(real_x, training = True)
cycled_x = generator_f(fake_y, training = True)
fake_x = generator_f(real_y, training = True)
cycled_y = generator_f(fake_x, training = True)
# same_x and same_y are used for identity loss.
same_x = generator_f(real_x, training = True)
same_y = generator_g(real_y, training = True)
disc_real_x = discriminator_x(real_x, training = True)
disc_real_y = discriminator_y(real_y, training = True)
disc_fake_x = discriminator_x(fake_x, training = True)
disc_fake_y = discriminator_y(fake_y, training = True)
# calculate the loss
gen_g_loss = generator_loss(disc_fake_y)
gen_f_loss = generator_loss(disc_fake_x)
total_cycle_loss = calc_cycle_loss(real_x, cycled_x) + calc_cycle_loss(real_y, cycled_y)
# Total generator loss = adversarial loss + cycle loss
total_gen_g_loss = gen_g_loss + total_cycle_loss + identity_loss(real_y, same_y)
total_gen_f_loss = gen_f_loss + total_cycle_loss + identity_loss(real_x, same_x)
disc_x_loss = discriminator_loss(disc_real_x, disc_fake_x)
disc_y_loss = discriminator_loss(disc_real_y, disc_fake_y)
# Calculate the gradients for generator and discriminator
generator_g_gradients = tape.gradient(total_gen_g_loss, generator_g.trainable_variables)
generator_f_gradients = tape.gradient(total_gen_f_loss, generator_f.trainable_variables)
discriminator_x_gradients = tape.gradient(disc_x_loss, discriminator_x.trainable_variables)
discriminator_y_gradients = tape.gradient(disc_y_loss, discriminator_y.trainable_variables)
# Apply the gradients to the optimizer
generator_g_optimizer.apply_gradients(zip(generator_g_gradients,
generator_g.trainable_variables))
generator_f_optimizer.apply_gradients(zip(generator_f_gradients,
generator_f.trainable_variables))
discriminator_x_optimizer.apply_gradients(zip(discriminator_x_gradients,
discriminator_x.trainable_variables))
discriminator_y_optimizer.apply_gradients(zip(discriminator_y_gradients,
discriminator_y.trainable_variables))
for epoch in range(EPOCHS):
start = time.time()
n = 0
for image_x, image_y in tf.data.Dataset.zip((train_horses, train_zebras)):
train_step(image_x, image_y)
if n % 10 ==0:
print('.', end='')
n += 1
clear_output(wait = True)
# Using a consistent image (sample_horse) so that the progress of the model is clearly visible.
generate_images(generator_g, sample_horse)
if (epoch + 1) % 5 == 0:
ckpt_save_path = ckpt_manager.save()
print('Saving checkpoint for epoch {} at {}'.format(epoch + 1, ckpt_save_path))
print('Time taken for epoch {} is sec\n'.format(epoch + 1, time.time() - start))
# 테스트 데이터셋을 사용하여 생성하기
for inp in test_horses.take(5):
generate_images(generator_g, inp)