-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
55 lines (48 loc) · 1.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 17 21:40:41 2020
@author: win10
"""
# 1. Library imports
import uvicorn
from fastapi import FastAPI
from BankNotes import BankNote
import numpy as np
import pickle
import pandas as pd
# 2. Create the app object
app = FastAPI()
pickle_in = open("classifier.pkl","rb")
classifier=pickle.load(pickle_in)
# 3. Index route, opens automatically on http://127.0.0.1:8000
@app.get('/')
def index():
return {'message': 'Hello, World'}
# 4. Route with a single parameter, returns the parameter within a message
# Located at: http://127.0.0.1:8000/AnyNameHere
@app.get('/{name}')
def get_name(name: str):
return {'Welcome To Krish Youtube Channel': f'{name}'}
# 3. Expose the prediction functionality, make a prediction from the passed
# JSON data and return the predicted Bank Note with the confidence
@app.post('/predict')
def predict_banknote(data:BankNote):
data = data.dict()
variance=data['variance']
skewness=data['skewness']
curtosis=data['curtosis']
entropy=data['entropy']
# print(classifier.predict([[variance,skewness,curtosis,entropy]]))
prediction = classifier.predict([[variance,skewness,curtosis,entropy]])
if(prediction[0]>0.5):
prediction="Fake note"
else:
prediction="Its a Bank note"
return {
'prediction': prediction
}
# 5. Run the API with uvicorn
# Will run on http://127.0.0.1:8000
if __name__ == '__main__':
uvicorn.run(app, host='127.0.0.1', port=8000)
#uvicorn app:app --reload