-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimpleFocusedRNN.py
603 lines (506 loc) · 24.5 KB
/
SimpleFocusedRNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 10 17:29:32 2019
@author: talha
"""
import warnings
import tensorflow as tf
from tensorflow.keras import backend as K
import tensorflow.keras as keras
from tensorflow.python.keras.layers import Layer, InputSpec
from tensorflow.keras import activations, regularizers, constraints
from tensorflow.keras import initializers
from tensorflow.keras.initializers import constant
from tensorflow.keras import layers
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.layers import Dense
from tensorflow.keras.datasets import imdb
from tensorflow.keras.models import Sequential
import numpy as np
import numpy
class SimpleFocusedRNNCell(Layer):
def __init__(self, units,
activation='tanh',
use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
init_mu_current = 'spread',
init_sigma_current=0.1,
init_mu_prev = 'spread',
init_sigma_prev=0.1,
verbose=False,
si_regularizer=None,
train_mu=True,train_sigma=True,
train_weights=True,
normed=2,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.,
recurrent_dropout=0.,
**kwargs):
super(SimpleFocusedRNNCell, self).__init__(**kwargs)
self.units = units
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.recurrent_initializer = initializers.get(recurrent_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.recurrent_constraint = constraints.get(recurrent_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.dropout = min(1., max(0., dropout))
self.recurrent_dropout = min(1., max(0., recurrent_dropout))
self.state_size = self.units
self.output_size = self.units
self._dropout_mask = None
self._recurrent_dropout_mask = None
self.si_regularizer = regularizers.get(si_regularizer)
self.init_mu_current=init_mu_current
self.init_mu_prev=init_mu_prev
self.init_sigma_current=init_sigma_current
self.init_sigma_prev=init_sigma_prev
self.verbose = verbose
self.input_spec = InputSpec(min_ndim=2)
self.train_mu = train_mu
self.train_sigma = train_sigma
self.train_weights = train_weights
self.normed = normed
def build(self, input_shape):
self.input_dim = input_shape[-1]
self.input_spec = InputSpec(min_ndim=2, axes={-1: self.input_dim}) #never used for another layer
mu_curent, si_current = mu_si_initializer(self.init_mu_current, self.init_sigma_current, self.input_dim,
self.units, verbose=self.verbose)
#print("mu_curent",mu_curent)
self.mu_current = self.add_weight(shape=(self.units,),
initializer=constant(mu_curent),
name="Mu_current",
trainable=self.train_mu)
self.sigma_current = self.add_weight(shape=(self.units,),
initializer=constant(si_current),
name="Sigma_current",
regularizer=self.si_regularizer,
trainable=self.train_sigma)
mu_prev, si_prev = mu_si_initializer(self.init_mu_prev, self.init_sigma_prev, self.input_dim,
self.units, verbose=self.verbose)
#print("mu_prev",mu_prev)
self.mu_prev = self.add_weight(shape=(self.units,),
initializer=constant(mu_prev),
name="Mu_prev",
trainable=self.train_mu)
self.sigma_prev = self.add_weight(shape=(self.units,),
initializer=constant(si_prev),
name="Sigma_prev",
regularizer=self.si_regularizer,
trainable=self.train_sigma)
idxs_current = np.linspace(0, 1.0,self.input_dim) # current previ lazım mı
idxs_current = idxs_current.astype(dtype='float32')
self.idxs_current = K.constant(value=idxs_current, shape=(self.input_dim,),
name="idxs_current")
idxs_prev = np.linspace(0, 1.0,self.units) # current previ lazım mı
idxs_prev = idxs_prev.astype(dtype='float32')
self.idxs_prev = K.constant(value=idxs_prev, shape=(self.units,), #outputa göre
name="idxs_prev")
MIN_SI = 0.01 # zero or below si will crashed calc_u
MAX_SI = 1.0
# create shared vars.
self.MIN_SI = np.float32(MIN_SI)#, dtype='float32')
self.MAX_SI = np.float32(MAX_SI)#, dtype='float32')
self.kernel = self.add_weight(shape=(input_shape[-1], self.units),
name='kernel',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.recurrent_kernel = self.add_weight(
shape=(self.units, self.units),
name='recurrent_kernel',
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
name='bias',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
self.built = True
def call(self, inputs, states, training=None):
u_current = self.calc_U_current()
u_previous = self.calc_U_prev()
print("u_current",u_current)
print("u_previous",u_previous)
prev_output = states[0]
if 0 < self.dropout < 1 and self._dropout_mask is None:
self._dropout_mask = _generate_dropout_mask(
K.ones_like(inputs),
self.dropout,
training=training)
if (0 < self.recurrent_dropout < 1 and
self._recurrent_dropout_mask is None):
self._recurrent_dropout_mask = _generate_dropout_mask(
K.ones_like(prev_output),
self.recurrent_dropout,
training=training)
dp_mask = self._dropout_mask
rec_dp_mask = self._recurrent_dropout_mask
kernel_current = self.kernel*u_current #u'lar la çarğınca sapıtıyo
kernel_previous = self.recurrent_kernel*u_previous
if dp_mask is not None:
h = K.dot(inputs * dp_mask, kernel_current)
else:
h = K.dot(inputs, kernel_current)
if self.bias is not None:
h = K.bias_add(h, self.bias)
if rec_dp_mask is not None:
prev_output *= rec_dp_mask
output = h + K.dot(prev_output, kernel_previous)
if self.activation is not None:
output = self.activation(output)
# Properly set learning phase on output tensor.
if 0 < self.dropout + self.recurrent_dropout:
if training is None:
output._uses_learning_phase = True
return output, [output]
def calc_U_current(self,verbose=False):
"""
function calculates focus coefficients.
normalizes and prunes if
"""
up= (self.idxs_current - K.expand_dims(self.mu_current,1))**2
#print("up =",K.eval(up))
#print("up.shape", up.shape)
#up = K.expand_dims(up,axis=1,)
#print("up.shape",up.shape)
# clipping scaler in range to prevent div by 0 or negative cov.
sigma = K.clip(self.sigma_current,self.MIN_SI,self.MAX_SI)
#print("sigma= ",sigma)
#cov_scaler = self.cov_scaler
dwn = K.expand_dims(2 * ( sigma ** 2), axis=1)
#scaler = (np.pi*self.cov_scaler**2) * (self.idxs.shape[0])
#print("down shape :",dwn.shape)
result = K.exp(-up / dwn)
#print("result= ",K.eval(result))
#kernel= K.eval(result)
#print("RESULT max, mean, min: ", np.max(kernel), np.mean(kernel), np.min(kernel))
#print("U shape :",result.shape)
#print("inputs shape",inputs.shape)
#sum normalization each filter has sum 1
#sums = K.sum(masks**2, axis=(0, 1), keepdims=True)
#print(sums)
#gain = K.constant(self.gain, dtype='float32')
#Normalize to 1
if self.normed==1:
result /= K.sqrt(K.sum(K.square(result), axis=-1,keepdims=True))
elif self.normed==2:
result /= K.sqrt(K.sum(K.square(result), axis=-1,keepdims=True))
result *= K.sqrt(K.constant(self.input_dim))
#if verbose:
# kernel= K.eval(result)
# print("RESULT after NORMED max, mean, min: ", np.max(kernel), np.mean(kernel), np.min(kernel))
#
#Normalize to get equal to WxW Filter
#masks *= K.sqrt(K.constant(self.input_channels*self.kernel_size[0]*self.kernel_size[1]))
# make norm sqrt(filterw x filterh x self.incoming_channel)
# the reason for this is if you take U all ones(self.kernel_size[0],kernel_size[1], num_channels)
# its norm will sqrt(wxhxc)
#print("Vars: ",self.input_channels,self.kernel_size[0],self.kernel_size[1])
#print("out")
return K.transpose(result)
def calc_U_prev(self,verbose=False):
"""
function calculates focus coefficients.
normalizes and prunes if
"""
up= (self.idxs_prev - K.expand_dims(self.mu_prev,1))**2
#print("up.shape", up.shape)
#up = K.expand_dims(up,axis=1,)
#print("up.shape",up.shape)
# clipping scaler in range to prevent div by 0 or negative cov.
sigma = K.clip(self.sigma_prev,self.MIN_SI,self.MAX_SI)
#cov_scaler = self.cov_scaler
dwn = K.expand_dims(2 * ( sigma ** 2), axis=1)
#scaler = (np.pi*self.cov_scaler**2) * (self.idxs.shape[0])
#print("down shape :",dwn.shape)
result = K.exp(-up / dwn)
#kernel= K.eval(result)
#print("RESULT max, mean, min: ", np.max(kernel), np.mean(kernel), np.min(kernel))
#print("U shape :",result.shape)
#print("inputs shape",inputs.shape)
#sum normalization each filter has sum 1
#sums = K.sum(masks**2, axis=(0, 1), keepdims=True)
#print(sums)
#gain = K.constant(self.gain, dtype='float32')
#Normalize to 1
if self.normed==1:
result /= K.sqrt(K.sum(K.square(result), axis=-1,keepdims=True))
elif self.normed==2:
result /= K.sqrt(K.sum(K.square(result), axis=-1,keepdims=True))
result *= K.sqrt(K.constant(self.input_dim))
#if verbose:
#kernel= K.eval(result)
#print("RESULT after NORMED max, mean, min: ", np.max(kernel), np.mean(kernel), np.min(kernel))
#
#Normalize to get equal to WxW Filter
#masks *= K.sqrt(K.constant(self.input_channels*self.kernel_size[0]*self.kernel_size[1]))
# make norm sqrt(filterw x filterh x self.incoming_channel)
# the reason for this is if you take U all ones(self.kernel_size[0],kernel_size[1], num_channels)
# its norm will sqrt(wxhxc)
#print("Vars: ",self.input_channels,self.kernel_size[0],self.kernel_size[1])
#print("out prev")
return K.transpose(result)
def get_config(self):
config = {'units': self.units,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer':
initializers.serialize(self.kernel_initializer),
'recurrent_initializer':
initializers.serialize(self.recurrent_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer':
regularizers.serialize(self.kernel_regularizer),
'recurrent_regularizer':
regularizers.serialize(self.recurrent_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'recurrent_constraint':
constraints.serialize(self.recurrent_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint),
'dropout': self.dropout,
'recurrent_dropout': self.recurrent_dropout}
base_config = super(SimpleFocusedRNNCell, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def _generate_dropout_mask(ones, rate, training=None, count=1):
def dropped_inputs():
return K.dropout(ones, rate)
if count > 1:
return [K.in_train_phase(
dropped_inputs,
ones,
training=training) for _ in range(count)]
return K.in_train_phase(
dropped_inputs,
ones,
training=training)
def mu_si_initializer(initMu, initSi, num_incoming, num_units, verbose=True):
'''
Initialize focus centers and sigmas with regards to initMu, initSi
initMu: a string, a value, or a numpy.array for initialization
initSi: a string, a value, or a numpy.array for initialization
num_incoming: number of incoming inputs per neuron
num_units: number of neurons in this layer
'''
if isinstance(initMu, str):
if initMu == 'middle':
#print(initMu)
mu = np.repeat(.5, num_units) # On paper we have this initalization
elif initMu =='middle_random':
mu = np.repeat(.5, num_units) # On paper we have this initalization
mu += (np.random.rand(len(mu))-0.5)*(1.0/(float(20.0))) # On paper we have this initalization
elif initMu == 'spread':
mu = np.linspace(0.2, 0.8, num_units) #paper results were taken with this
#mu = np.linspace(0.1, 0.9, num_units)
else:
print(initMu, "Not Implemented")
elif isinstance(initMu, float): #initialize it with the given scalar
mu = np.repeat(initMu, num_units) #
elif isinstance(initMu,np.ndarray): #initialize it with the given array , must be same length of num_units
if initMu.max() > 1.0:
print("Mu must be [0,1.0] Normalizing initial Mu value")
initMu /=(num_incoming - 1.0)
mu = initMu
else:
mu = initMu
#Initialize sigma
if isinstance(initSi,str):
if initSi == 'random':
si = np.random.uniform(low=0.05, high=0.25, size=num_units)
elif initSi == 'spread':
si = np.repeat((initSi / num_units), num_units)
elif isinstance(initSi,float): #initialize it with the given scalar
si = np.repeat(initSi, num_units)#
elif isinstance(initSi, np.ndarray): #initialize it with the given array , must be same length of num_units
si = initSi
# Convert Types for GPU
mu = mu.astype(dtype='float32')
si = si.astype(dtype='float32')
if verbose:
print("mu init:", mu)
print("si init:", si)
return mu, si
from tensorflow.keras.layers import RNN
class SimpleRNN(RNN):
def __init__(self, units,
activation='tanh',
use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.,
recurrent_dropout=0.,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
unroll=False,
**kwargs):
if 'implementation' in kwargs:
kwargs.pop('implementation')
warnings.warn('The `implementation` argument '
'in `SimpleRNN` has been deprecated. '
'Please remove it from your layer call.')
if K.backend() == 'theano' and (dropout or recurrent_dropout):
warnings.warn(
'RNN dropout is no longer supported with the Theano backend '
'due to technical limitations. '
'You can either set `dropout` and `recurrent_dropout` to 0, '
'or use the TensorFlow backend.')
dropout = 0.
recurrent_dropout = 0.
cell = SimpleFocusedRNNCell(units,
activation=activation,
use_bias=use_bias,
kernel_initializer=kernel_initializer,
recurrent_initializer=recurrent_initializer,
bias_initializer=bias_initializer,
kernel_regularizer=kernel_regularizer,
recurrent_regularizer=recurrent_regularizer,
bias_regularizer=bias_regularizer,
kernel_constraint=kernel_constraint,
recurrent_constraint=recurrent_constraint,
bias_constraint=bias_constraint,
dropout=dropout,
recurrent_dropout=recurrent_dropout)
super(SimpleRNN, self).__init__(cell,
return_sequences=return_sequences,
return_state=return_state,
go_backwards=go_backwards,
stateful=stateful,
unroll=unroll,
**kwargs)
self.activity_regularizer = regularizers.get(activity_regularizer)
def call(self, inputs, mask=None, training=None, initial_state=None):
self.cell._dropout_mask = None
self.cell._recurrent_dropout_mask = None
return super(SimpleRNN, self).call(inputs,
mask=mask,
training=training,
initial_state=initial_state)
@property
def units(self):
return self.cell.units
@property
def activation(self):
return self.cell.activation
@property
def use_bias(self):
return self.cell.use_bias
@property
def kernel_initializer(self):
return self.cell.kernel_initializer
@property
def recurrent_initializer(self):
return self.cell.recurrent_initializer
@property
def bias_initializer(self):
return self.cell.bias_initializer
@property
def kernel_regularizer(self):
return self.cell.kernel_regularizer
@property
def recurrent_regularizer(self):
return self.cell.recurrent_regularizer
@property
def bias_regularizer(self):
return self.cell.bias_regularizer
@property
def kernel_constraint(self):
return self.cell.kernel_constraint
@property
def recurrent_constraint(self):
return self.cell.recurrent_constraint
@property
def bias_constraint(self):
return self.cell.bias_constraint
@property
def dropout(self):
return self.cell.dropout
@property
def recurrent_dropout(self):
return self.cell.recurrent_dropout
def get_config(self):
config = {'units': self.units,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer':
initializers.serialize(self.kernel_initializer),
'recurrent_initializer':
initializers.serialize(self.recurrent_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer':
regularizers.serialize(self.kernel_regularizer),
'recurrent_regularizer':
regularizers.serialize(self.recurrent_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'activity_regularizer':
regularizers.serialize(self.activity_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'recurrent_constraint':
constraints.serialize(self.recurrent_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint),
'dropout': self.dropout,
'recurrent_dropout': self.recurrent_dropout}
base_config = super(SimpleRNN, self).get_config()
del base_config['cell']
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config):
if 'implementation' in config:
config.pop('implementation')
return cls(**config)
'''
model = tf.keras.Sequential()
model.add(layers.Embedding(input_dim=1000, output_dim=64))
# The output of GRU will be a 3D tensor of shape (batch_size, timesteps, 256)
model.add(layers.GRU(256, return_sequences=True))
# The output of SimpleRNN will be a 2D tensor of shape (batch_size, 128)
model.add(SimpleRNN(128))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
'''
numpy.random.seed(7)
# load the dataset but only keep the top n words, zero the rest
top_words = 5000
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words)
# truncate and pad input sequences
max_review_length = 500
X_train = sequence.pad_sequences(X_train, maxlen=max_review_length)
X_test = sequence.pad_sequences(X_test, maxlen=max_review_length)
# create the model
embedding_vecor_length = 32
model = Sequential()
model.add(layers.Embedding(top_words, embedding_vecor_length, input_length=max_review_length))
model.add(SimpleRNN(100))#cell #layer
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
model.fit(X_train, y_train, epochs=3, batch_size=64)
# Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))