-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathorchard.py
496 lines (370 loc) · 14.2 KB
/
orchard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import numpy as np
import pandas as pd
import tensorflow as tf
import pyarrow as pa
import pyarrow.parquet as pq
from sklearn.preprocessing import MinMaxScaler
import os
import glob
import pickle
from tqdm.notebook import tqdm
from datetime import datetime
from typing import Callable, Dict, Tuple, TypeAlias
from typeguard import check_type
# Don't show tf warnings until https://github.com/tensorflow/tensorflow/issues/62963 released
tf.get_logger().setLevel("ERROR")
# See https://help.ceda.ac.uk/article/4982-midas-open-user-guide/
QC_VERSION = 1
DATASET_VERSION = 202207
DATASETS = {
"uk-hourly-weather-obs": {
"index": "ob_time",
"skiprows": 280,
"columns": [
"ob_time",
"wind_direction",
"wind_speed",
"air_temperature",
"rltv_hum",
"msl_pressure",
],
},
"uk-hourly-rain-obs": {
"index": "ob_end_time",
"skiprows": 61,
"columns": ["ob_end_time", "ob_hour_count", "prcp_amt"],
},
"uk-soil-temperature-obs": {
"index": "ob_time",
"skiprows": 85,
"columns": ["ob_time", "q10cm_soil_temp"],
},
}
min_max = MinMaxScaler()
DatasetsType: TypeAlias = Dict[str, Dict[str, np.ndarray | pd.DataFrame]]
DatasetType: TypeAlias = np.ndarray | pd.DataFrame
def assert_dataset(d):
assert check_type(d, DatasetsType)
# Runs function "f" on every station dataset in the dictionary
# TODO: rename map_all?
def run_all(f: Callable, data: DatasetsType, verbose: bool = False) -> DatasetsType:
assert_dataset(data)
for county in tqdm(data, delay=2):
for station in data[county]:
if verbose:
print(county + ": " + station)
data[county][station] = f(data[county][station])
return data
def get_available_datasets():
return list(DATASETS)
def get_counties(dataset="uk-hourly-weather-obs"):
counties = {}
paths = glob.glob(
f"/home/sam/ukmo-midas-open/data/{dataset}/dataset-version-{DATASET_VERSION}/*",
recursive=True,
)
for path in paths:
counties[os.path.split(path)[-1]] = path
return counties
# TODO: document moving of metadata file - maybe add function to do this?
def get_stations_metadata():
cols = [
"historic_county",
"station_latitude",
"station_longitude",
"station_elevation",
]
metadata = []
for dataset in DATASETS:
df = pd.read_csv(
f"/home/sam/ukmo-midas-open/data/{dataset}/midas-open_{dataset}_dv-{DATASET_VERSION}_station-metadata.csv",
skiprows=46,
usecols=["station_file_name", "src_id"] + cols,
)
df.drop(df.tail(1).index, inplace=True)
df[dataset] = 1
metadata.append(df)
metadata = pd.concat(metadata)
metadata["station"] = metadata["src_id"] + "_" + metadata["station_file_name"]
return metadata.groupby("station").aggregate(
{c: "first" for c in cols} | {d: "sum" for d in DATASETS}
)
def stations_count():
return len(get_stations_metadata().index)
def get_county_stations(dataset, county):
stations = {}
paths = glob.glob(f"{get_counties(dataset)[county]}/*")
for path in paths:
stations[os.path.split(path)[-1]] = path
return stations
def get_station_csv_files(dataset, county, station, qc=QC_VERSION):
return sorted(
glob.glob(f"{get_counties(dataset)[county]}/{station}/qc-version-{qc}/*.csv")
)
def get_station_parquet_file(dataset, county, station):
return f"{get_counties(dataset)[county]}/{station}/{station}.parquet"
def get_station_file_path(dataset, county, station):
return f"{get_counties(dataset)[county]}/{station}/"
def load_dataset(dataset):
data = {}
for county in get_counties(dataset):
county_data = {}
for station in get_county_stations(dataset, county):
station_data = pd.read_parquet(
get_station_parquet_file(dataset, county, station)
)
station_data.index = pd.to_datetime(station_data.index)
county_data[station] = station_data
data[county] = county_data
return data
def load_all():
metadata = get_stations_metadata()
datasets = {}
for dataset in get_available_datasets():
datasets[dataset] = load_dataset(dataset)
data = {}
for county in metadata["historic_county"].unique():
data[county] = {}
for index, row in metadata.iterrows():
station = []
county = row["historic_county"]
for dataset in get_available_datasets():
if row[dataset] == 1:
station.append(
datasets[dataset][county][index]
.groupby(level=0, dropna=False)
.sum(min_count=1)
)
else:
cols = DATASETS[dataset]["columns"][1:]
station.append(pd.DataFrame(columns=cols))
data[county][index] = pd.concat(station, axis=1)
data[county][index].drop("ob_hour_count", axis=1, errors="ignore", inplace=True)
data[county][index].index = pd.to_datetime(data[county][index].index)
data[county][index] = data[county][index].astype(np.float64)
return data
def spread_rain_data(df: pd.DataFrame) -> pd.DataFrame:
"""
Randomly distribute rain data in its sample,
to match the other datasets. This makes it so that,
for example, all rain data from the last 12 hours is
spread across this time.
"""
new_rows = {}
for index, row in df.iterrows():
amount = row["prcp_amt"]
duration = row["ob_hour_count"]
random_dist = np.random.dirichlet(np.ones(int(duration)))
for i in range(0, int(duration)):
new_rows[index - pd.Timedelta(hours=i)] = {
"prcp_amt": amount * random_dist[i]
}
rain = pd.DataFrame.from_dict(new_rows, orient="index").sort_index()
rain.index.name = "ob_time"
return rain
# TODO: currently not called anywhere
def fill_missing(data):
for county in data:
for station in data[county]:
data[county][station] = data[county][station].resample("1H").asfreq()
metadata = get_stations_metadata()
for county in data:
for station in data[county]:
near = find_nearest_stations(
metadata.loc[station]["station_latitude"],
metadata.loc[station]["station_longitude"],
)
i = 0 # TODO: change to for loop
while data[county][station].isnull().values.any():
try:
data[county][station].fillna(
data[near.iloc[i]["historic_county"]][near.iloc[i].name],
axis=0,
inplace=True,
)
except IndexError:
break
i += 1
data[county][station].interpolate(
method="linear", limit_direction="both", inplace=True
)
contains_na = []
for county in data:
for station in data[county]:
if data[county][station].isnull().values.any():
contains_na.append(station)
return data, contains_na
def convert_data(dataset, verbose=False):
for county in get_counties(dataset):
for station in get_county_stations(dataset, county):
start_time = datetime.now()
station_data = []
# First try loading all CSV files from default QC_VERSION directory
# If no files, try the other QC_VERSION folder
csv_files = get_station_csv_files(
dataset, county, station
) or get_station_csv_files(dataset, county, station, 1 - QC_VERSION)
for file in csv_files:
df = pd.read_csv(
file,
engine="c",
on_bad_lines="warn",
index_col=DATASETS[dataset]["index"],
parse_dates=[DATASETS[dataset]["index"]],
skiprows=DATASETS[dataset]["skiprows"],
usecols=DATASETS[dataset]["columns"],
)
# Remove last row "end data"
df.drop(df.tail(1).index, inplace=True)
station_data.append(df)
station_df = pd.concat(station_data)
station_df.index = pd.to_datetime(station_df.index)
# TODO: Currently distributes rain data at random - change?
if station_df.index.name != "ob_time":
station_df = spread_rain_data(station_df)
df_pa = pa.Table.from_pandas(station_df)
pq.write_table(
df_pa,
get_station_file_path(dataset, county, station) + station + ".parquet",
)
if verbose:
print(
f"Converted data to parquet for station {station} ({county})",
f"in {datetime.now() - start_time} seconds",
)
print(f"All data converted to parquet for {dataset}")
def pickle_data(data, path=(os.getcwd() + "/orchard-data")):
file = open(path + ".pkl", "wb")
pickle.dump(data, file)
file.close()
def unpickle_data(path=(os.getcwd() + "/orchard-data")):
file = open(path + ".pkl", "rb")
data = pickle.load(file)
file.close()
return data
def haversine_distance(lat1, lon1, lat2, lon2):
EARTH_RADIUS_KM = 6371
lat1, lon1, lat2, lon2 = map(np.radians, [lat1, lon1, lat2, lon2])
return (
2
* EARTH_RADIUS_KM
* np.arcsin(
np.sqrt(
(np.sin((lat2 - lat1) / 2) ** 2)
+ (np.cos(lat1) * np.cos(lat2) * (np.sin((lon2 - lon1) / 2) ** 2))
)
)
)
def find_nearest_stations(lat, lon, n=100, include_self=False):
stations = get_stations_metadata()[
["station_latitude", "station_longitude", "historic_county"]
+ get_available_datasets()
]
stations["distance_to"] = haversine_distance(
lat, lon, stations["station_latitude"], stations["station_longitude"]
)
stations.sort_values("distance_to", ascending=True, inplace=True)
if not include_self and stations.iloc[0]["distance_to"] == 0:
stations.drop(stations.head(1).index, inplace=True)
return stations if n == -1 else stations[:n]
def min_max_scale(df):
return min_max.fit_transform(df)
def inverse_min_max_scale(df):
return min_max.inverse_transform(df)
def get_time_features(
index: pd.DatetimeIndex,
) -> Tuple[pd.Series, pd.Series, pd.Series, pd.Series, pd.Series]:
# Extract individual time features from index
mins = pd.Series(index.minute.values, name="mins")
hours = pd.Series(index.hour.values, name="hours")
days = pd.Series(index.day.values, name="days")
months = pd.Series(index.month.values, name="months")
years = pd.Series(index.year.values, name="years")
return mins, hours, days, months, years
def window_dataset(data, steps, horizon, batch_size, shuffle_buffer):
# create a window with n steps back plus the size of the prediction length
window = steps + horizon
# create the inital tensor dataset
with tf.device("CPU"):
ds = tf.data.Dataset.from_tensor_slices(data)
# create the window function shifting the data by the prediction length
ds = ds.window(window, shift=horizon, drop_remainder=True)
# flatten the dataset and batch into the window size
ds = ds.flat_map(lambda x: x.batch(window))
ds = ds.shuffle(shuffle_buffer)
# create the supervised learning problem x and y and batch
ds = ds.map(lambda x: (x[:-horizon], x[-horizon:, :1]))
ds = ds.batch(batch_size).prefetch(1)
return ds
def get_params() -> Tuple[int, int, int, float]:
learning_rate = 3e-4
steps = 24 * 30
horizon = 24
features = 12
return steps, horizon, features, learning_rate
def build_station_dataset(
data: DatasetType,
steps=24 * 30,
horizon=24,
batch_size=256,
shuffle_buffer=500,
):
# TODO: add station number as well?
times = get_time_features(data.index)
data = pd.concat([data.reset_index(drop=True), *times], axis=1)
data = min_max_scale(data)
# TODO: split data
data = window_dataset(data, steps, horizon, batch_size, shuffle_buffer)
return data
def build_dataset(
data,
steps=24 * 30,
horizon=24,
batch_size=256,
shuffle_buffer=500,
):
tf.random.set_seed(64)
ds = run_all(
lambda x: build_station_dataset(x, steps, horizon, batch_size, shuffle_buffer),
data,
)
return ds
def lstm_cnn_model(steps, horizon, features, learning_rate):
tf.keras.backend.clear_session()
model = tf.keras.models.Sequential(
[
tf.keras.layers.Conv1D(
64, kernel_size=6, activation="relu", input_shape=(steps, features)
),
tf.keras.layers.MaxPooling1D(2),
tf.keras.layers.Conv1D(64, kernel_size=3, activation="relu"),
tf.keras.layers.MaxPooling1D(2),
tf.keras.layers.LSTM(72, activation="relu", return_sequences=True),
tf.keras.layers.LSTM(48, activation="relu", return_sequences=False),
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Dense(128),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Dense(horizon),
],
name="lstm_cnn",
)
loss = tf.keras.losses.Huber()
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(loss=loss, optimizer=optimizer, metrics=["mae"])
return model
# TODO: remove?
def fit_model_to_station(data, model, epochs):
model_hist = model.fit(data, epochs=epochs)
return model, model_hist
def run_model(ds, epochs, steps, horizon, features, learning_rate):
model = lstm_cnn_model(steps, horizon, features, learning_rate=learning_rate)
model_hist = {"loss": [], "mae": []}
for county in tqdm(ds):
for station in ds[county]:
model, h = fit_model_to_station(ds[county][station], model, epochs)
model_hist = {
key: np.hstack([model_hist[key], h.history[key]])
for key in h.history.keys()
}
return model, model_hist