-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_planet_data_all_SBZ.py
221 lines (188 loc) · 8.94 KB
/
get_planet_data_all_SBZ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# -*- coding: utf-8 -*-
import json
import ogr
import geopandas as gpd
import matplotlib.pyplot as plt
import geojson
import os
import requests
from requests.auth import HTTPBasicAuth
import shapely
from shapely.geometry import box, Polygon
import pandas as pd
import gdal
import xlsxwriter
import warnings
warnings.filterwarnings("ignore")
# import the shqpefile of your study site and transform it into a geojson
driver = ogr.GetDriverByName('ESRI Shapefile')
shp_path = "inputs\shp_allSBZ\SBZ-Hdeel_Zwin_KH_WGS84.shp"
file = gpd.read_file(shp_path)
for index, row in file.iterrows():
if os.path.exists("SBZ.json"):
os.remove("SBZ.json")
file_SBZ = [[row['DEELGEBIED'], row['NAAM'], row['geometry']]]
df_SBZ = pd.DataFrame(file_SBZ, columns = ['GEBCODE' , 'NAAM', 'geometry'])
gdf_SBZ = gpd.GeoDataFrame(df_SBZ, geometry="geometry")
gdf_SBZ.to_file("SBZ.json", driver="GeoJSON")
with open("SBZ.json") as f:
gj = geojson.load(f)
features = gj['features'][0]
geometry = {
"type": "Polygon",
"coordinates": [
[
[]
]
]
}
# replace coordinates in the empty json file created above by the actual coordinates from the geojson file
geometry["coordinates"] = features.geometry.coordinates
# get images that overlap with your study site
geometry_filter = {
"type": "GeometryFilter",
"field_name": "geometry",
"config":geometry
}
# get images acquired within a preset date range
date_range_filter = {
"type": "DateRangeFilter",
"field_name": "acquired",
"config": {
"gte": "2018-03-01T00:00:00.000Z",
"lte": "2018-10-31T00:00:00.000Z"
}
}
# only get images which have < X% cloud coverage
cloud_cover_filter = {
"type": "RangeFilter",
"field_name": "cloud_cover",
"config": {
"lte": 0.05
}
}
# combine the geo, date and cloud filters
combined_filter = {
"type": "AndFilter",
"config": [geometry_filter, date_range_filter, cloud_cover_filter]
}
# Give API key for ypur Planet account
PLANET_API_KEY = 'c3428a8d40f849a0bf6e59f0c8895919'
item_type = "PSScene4Band"
asset_type = "analytic_sr"
# make API request object
search_request = {
"interval": "day",
"item_types":[item_type],
"filter": combined_filter
}
# Fire off the POST request
search_result= \
requests.post(
'https://api.planet.com/data/v1/quick-search',
auth=HTTPBasicAuth(PLANET_API_KEY, ''),
json=search_request)
# Extract image properties
image_ids = [feature['id'] for feature in search_result.json()['features']]
image_dates = [feature['properties']['acquired'][0:10] for feature in search_result.json()['features']]
image_months = [feature['properties']['acquired'][5:7] for feature in search_result.json()['features']]
image_days = [feature['properties']['acquired'][8:10] for feature in search_result.json()['features']]
image_clouds = [feature['properties']['cloud_cover'] for feature in search_result.json()['features']]
# Determine overlap between study site and each of the planet scenes
poly_hull = Polygon(geometry["coordinates"][0])
crs = {'init': 'epsg:4326'}
geo_hull = gpd.GeoDataFrame(index=[0], crs=crs, geometry = [poly_hull])
geo_hull_tr =geo_hull.to_crs({'init': 'epsg:32631'})
hull_area = geo_hull_tr['geometry'].area[0]
df_results = pd.DataFrame(index = range(len(image_ids)), columns=['im_id', 'overlap', 'clouds', 'date', 'month', 'day', 'dekad', 'deviat', 'anal_sr'])
df_results['im_id']= image_ids
df_results['date']= image_dates
df_results['month']= image_months
df_results['day']= image_days
df_results['clouds']= image_clouds
df_results['day'] = df_results['day'].astype('int32')
for x in range(len(image_ids)):
anal_sr = 'assets.analytic_sr:download' in search_result.json()['features'][x]['_permissions']
df_results['anal_sr'][x] = anal_sr
if search_result.json()['features'][x]['geometry']['type'] == 'Polygon':
poly_im = Polygon(search_result.json()['features'][x]['geometry']['coordinates'][0])
crs = {'init': 'epsg:4326'}
geo_im = gpd.GeoDataFrame(index=[0], crs=crs, geometry = [poly_im])
geo_im_tr =geo_im.to_crs({'init': 'epsg:32631'})
geo_inters = geo_im_tr.intersection(geo_hull_tr)
inters_area = geo_inters.area[0]
perc_inters = inters_area/hull_area*100
df_results['overlap'][x] = perc_inters
else: df_results['overlap'][x] = 0
if df_results['day'][x]<11:
df_results['dekad'][x]= 1
df_results['deviat'][x]= abs(df_results['day'][x]-5)
elif df_results['day'][x]<21:
df_results['dekad'][x]= 2
df_results['deviat'][x]= abs(df_results['day'][x]-15)
else:
df_results['dekad'][x]= 3
df_results['deviat'][x]= abs(df_results['day'][x]-25)
df_results['overlap'] = df_results['overlap'].astype('float')
# Select only the images with 100% overlap with the study area
df_results2 = df_results[df_results['overlap'] >= 90]
# Select only the images with downloadable analytic_sr asset
df_results2 = df_results2[df_results2['anal_sr']==True]
# Select only the images with maximum overlap with the study area per dekad
def func(group):
return group.loc[group['overlap'] == group['overlap'].max()]
df_results3 = df_results2.groupby(['month','dekad'], as_index=False).apply(func).reset_index(drop=True)
# Select only the images with minimum clouds per dekad
def func2(group):
return group.loc[group['clouds'] == group['clouds'].min()]
df_results4 = df_results3.groupby(['month','dekad'], as_index=False).apply(func2).reset_index(drop=True)
# Select the image with minimal clouds that is closest to the mid of the dekad
def func3(group):
return group.loc[group['deviat'] == group['deviat'].min()]
df_results5 = df_results4.groupby(['month','dekad'], as_index = False).apply(func3).reset_index(drop=True)
# Select only the first image if multiple images from the same date
df_results6 = df_results5.loc[df_results4["date"].shift() != df_results4["date"]]
df_results6 = df_results6.reset_index()
message = ' final list of images for SBZ number ' + str(index+1) + ' out of ' + str(len(file)) + ', "' + df_SBZ['NAAM'][0] + '"'
print(message)
print(df_results6["im_id"])
message = 'Starting download of SBZ number ' + str(index+1) + ' out of ' + str(len(file)) + ', "' + df_SBZ['NAAM'][0] + '"'
print(message)
# Activate the assets that remain in the final results set
for y in range(len(df_results6)):
id_item = df_results6['im_id'][y]
id0_url = 'https://api.planet.com/data/v1/item-types/{}/items/{}/assets'.format(item_type, id_item)
result = \
requests.get(
id0_url,
auth=HTTPBasicAuth(PLANET_API_KEY, '')
)
links = result.json()['analytic_sr']['_links']
activation_link = links['activate']
activate_result = \
requests.get(
activation_link,
auth=HTTPBasicAuth(PLANET_API_KEY, '')
)
# Download subarea
if "204" in str(activate_result):
download_url = result.json()[asset_type]['location']
vsicurl_url = '/vsicurl/' + download_url
output_path = 'outputs/Planet_data/' + gdf_SBZ["GEBCODE"][0]
if not os.path.exists(output_path):
os.mkdir(output_path)
output_file = output_path + '/' + id_item + '_' + gdf_SBZ["GEBCODE"][0] + '.tif'
# only download the ones not downloaded before
if os.path.isfile(output_file) == False:
gdal.Warp(output_file, vsicurl_url, dstSRS = 'EPSG:4326', cutlineDSName = "SBZ.json", cropToCutline = True)
message = 'Image number ' + str(y+1) + ' out of ' + str(len(df_results6)) + ', "' + id_item + '", has been downloaded'
print(message)
message = 'Completed download of SBZ number ' + str(index+1) + ' out of ' + str(len(file)) + ', "' + df_SBZ['NAAM'][0] + '"'
print(message)
# Save images lists to excel for future reference
results_path = 'outputs/Planet_data/' + gdf_SBZ["GEBCODE"][0]
output_file = results_path + '/image_lists.xlsx'
writer = pd.ExcelWriter(output_file, engine='xlsxwriter')
df_results.to_excel(writer,'total_ims_list')
df_results6.to_excel(writer,'final_ims_list')
writer.save()