-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathutils.py
46 lines (33 loc) · 1.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import sys
import numpy as np
def split_num(s):
head = s.rstrip('0123456789')
tail = s[len(head):]
return head, tail
def files_in_order(folderpath):
npy_files = os.listdir(folderpath)
no_extensions = [os.path.splitext(npy_file)[0] for npy_file in npy_files]
splitted = [split_num(s) for s in no_extensions]
splitted = np.array(splitted)
indices = np.lexsort((splitted[:, 1].astype(int), splitted[:, 0]))
npy_files = np.array(npy_files)
return npy_files[indices]
# Generates binary labels (good=1, bad=0) given an array-like of filenames
def get_labels(array):
labels = [1 if "good" in i else 0 for i in array]
return np.array(labels)
# Compute Dynamic Time Warp Distance of two sequences
# http://alexminnaar.com/time-series-classification-and-clustering-with-python.html
def DTWDistance(s1, s2):
DTW={}
for i in range(len(s1)):
DTW[(i, -1)] = float('inf')
for i in range(len(s2)):
DTW[(-1, i)] = float('inf')
DTW[(-1, -1)] = 0
for i in range(len(s1)):
for j in range(len(s2)):
dist= (s1[i]-s2[j])**2
DTW[(i, j)] = dist + min(DTW[(i-1, j)],DTW[(i, j-1)], DTW[(i-1, j-1)])
return np.sqrt(DTW[len(s1)-1, len(s2)-1])