-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython-ecs.py
176 lines (153 loc) · 4.73 KB
/
python-ecs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import boto3
import pprint
# Credentials & Region
access_key = "XXX"
secret_key = "XXX"
region = "us-east-1"
# ECS Details
cluster_name = "BotoCluster"
service_name = "service_hello_world"
task_name = "hello_world"
# Let's use Amazon ECS
ecs_client = boto3.client(
'ecs',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key,
region_name=region
)
# Let's use Amazon EC2
ec2_client = boto3.client(
'ec2',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key,
region_name=region
)
def launch_ecs_example():
response = ecs_client.create_cluster(
clusterName=cluster_name
)
pprint.pprint(response)
# Create EC2 instance(s) in the cluster
# For now I expect a default cluster to be there
# By default, your container instance launches into your default cluster.
# If you want to launch into your own cluster instead of the default,
# choose the Advanced Details list and paste the following script
# into the User data field, replacing your_cluster_name with the name of your cluster.
# !/bin/bash
# echo ECS_CLUSTER=your_cluster_name >> /etc/ecs/ecs.config
response = ec2_client.run_instances(
# Use the official ECS image
ImageId="ami-a98cb2c3",
MinCount=1,
MaxCount=1,
InstanceType="t2.micro",
IamInstanceProfile={
"Name": "ecsInstanceRole"
},
UserData="#!/bin/bash \n echo ECS_CLUSTER=" + cluster_name + " >> /etc/ecs/ecs.config"
)
pprint.pprint(response)
# Create a task definition
response = ecs_client.register_task_definition(
containerDefinitions=[
{
"name": "wordpress",
"links": [
"mysql"
],
"image": "wordpress",
"essential": True,
"portMappings": [
{
"containerPort": 80,
"hostPort": 80
}
],
"memory": 300,
"cpu": 10
},
{
"environment": [
{
"name": "MYSQL_ROOT_PASSWORD",
"value": "password"
}
],
"name": "mysql",
"image": "mysql",
"cpu": 10,
"memory": 300,
"essential": True
}
],
family="hello_world"
)
pprint.pprint(response)
# Create service with exactly 1 desired instance of the task
# Info: Amazon ECS allows you to run and maintain a specified number
# (the "desired count") of instances of a task definition
# simultaneously in an ECS cluster.
response = ecs_client.create_service(
cluster=cluster_name,
serviceName=service_name,
taskDefinition=task_name,
desiredCount=1,
clientToken='request_identifier_string',
deploymentConfiguration={
'maximumPercent': 200,
'minimumHealthyPercent': 50
}
)
pprint.pprint(response)
# Shut everything down and delete task/service/instance/cluster
def terminate_ecs_example():
try:
# Set desired service count to 0 (obligatory to delete)
response = ecs_client.update_service(
cluster=cluster_name,
service=service_name,
desiredCount=0
)
# Delete service
response = ecs_client.delete_service(
cluster=cluster_name,
service=service_name
)
pprint.pprint(response)
except:
print("Service not found/not active")
# List all task definitions and revisions
response = ecs_client.list_task_definitions(
familyPrefix=task_name,
status='ACTIVE'
)
# De-Register all task definitions
for task_definition in response["taskDefinitionArns"]:
# De-register task definition(s)
deregister_response = ecs_client.deregister_task_definition(
taskDefinition=task_definition
)
pprint.pprint(deregister_response)
# Terminate virtual machine(s)
response = ecs_client.list_container_instances(
cluster=cluster_name
)
if response["containerInstanceArns"]:
container_instance_resp = ecs_client.describe_container_instances(
cluster=cluster_name,
containerInstances=response["containerInstanceArns"]
)
for ec2_instance in container_instance_resp["containerInstances"]:
ec2_termination_resp = ec2_client.terminate_instances(
DryRun=False,
InstanceIds=[
ec2_instance["ec2InstanceId"],
]
)
# Finally delete the cluster
response = ecs_client.delete_cluster(
cluster=cluster_name
)
pprint.pprint(response)
# launch_ecs_example()
terminate_ecs_example()