|
1 | 1 | import typing as tp
|
| 2 | +import datetime |
2 | 3 |
|
3 | 4 | import numpy as np # type: ignore
|
4 | 5 |
|
5 | 6 | _T = tp.TypeVar('_T')
|
6 | 7 |
|
7 | 8 | __version__: str
|
8 | 9 |
|
| 10 | +_TLabel = tp.Union[ |
| 11 | + tp.Hashable, |
| 12 | + int, |
| 13 | + bool, |
| 14 | + np.bool_, |
| 15 | + np.integer, |
| 16 | + float, |
| 17 | + complex, |
| 18 | + np.inexact, |
| 19 | + str, |
| 20 | + bytes, |
| 21 | + None, |
| 22 | + np.datetime64, |
| 23 | + np.timedelta64, |
| 24 | + datetime.date, |
| 25 | + datetime.datetime, |
| 26 | + tp.Tuple['_TLabel'], |
| 27 | +] |
| 28 | + |
9 | 29 | class ErrorInitTypeBlocks(RuntimeError):
|
10 | 30 | def __init__(self, *args: tp.Any, **kwargs: tp.Any) -> None: ...
|
11 | 31 | def with_traceback(self, tb: Exception) -> Exception: ...
|
@@ -103,16 +123,16 @@ def count_iteration(__iterable: tp.Iterable) -> int: ...
|
103 | 123 |
|
104 | 124 | def immutable_filter(__array: np.ndarray) -> np.ndarray: ...
|
105 | 125 | def mloc(__array: np.ndarray) -> int: ...
|
106 |
| -def name_filter(__name: tp.Hashable) -> tp.Hashable: ... |
| 126 | +def name_filter(__name: _TLabel) -> _TLabel: ... |
107 | 127 | def shape_filter(__array: np.ndarray) -> np.ndarray: ...
|
108 | 128 | def column_2d_filter(__array: np.ndarray) -> np.ndarray: ...
|
109 | 129 | def column_1d_filter(__array: np.ndarray) -> np.ndarray: ...
|
110 | 130 | def row_1d_filter(__array: np.ndarray) -> np.ndarray: ...
|
111 |
| -def array_deepcopy(__array: np.ndarray, memo: tp.Dict[int, tp.Any]) -> np.ndarray: ... |
| 131 | +def array_deepcopy(__array: np.ndarray, memo: tp.Optional[tp.Dict[int, tp.Any]]) -> np.ndarray: ... |
112 | 132 | def resolve_dtype(__d1: np.dtype, __d2: np.dtype) -> np.dtype: ...
|
113 | 133 | def resolve_dtype_iter(__dtypes: tp.Iterable[np.dtype]) -> np.dtype: ...
|
114 | 134 | def isna_element(__value: tp.Any, include_none: bool = True) -> bool: ...
|
115 |
| -def dtype_from_element(__value: tp.Optional[tp.Hashable]) -> np.dtype: ... |
| 135 | +def dtype_from_element(__value: tp.Optional[_TLabel]) -> np.dtype: ... |
116 | 136 | def get_new_indexers_and_screen(indexers: np.ndarray, positions: np.ndarray) -> tp.Tuple[np.ndarray, np.ndarray]: ...
|
117 | 137 |
|
118 | 138 | def first_true_1d(__array: np.ndarray, *, forward: bool) -> int: ...
|
|
0 commit comments