diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml new file mode 100644 index 0000000..71094ba --- /dev/null +++ b/.github/workflows/tests.yml @@ -0,0 +1,50 @@ +name: Install and run tests + +on: [push, pull_request] + +jobs: + ruff: + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v4 + - uses: actions/setup-python@v5 + with: + python-version: "3.13" + + - name: Install Ruff + run: | + python -m pip install --upgrade pip + pip install ruff + + - name: Run Ruff + run: ruff check . --output-format=github + + pytest: + runs-on: ubuntu-latest + strategy: + matrix: + python-version: ["3.10", "3.11", "3.12", "3.13"] + + steps: + - uses: actions/checkout@v4 + - uses: actions/setup-python@v5 + with: + python-version: ${{ matrix.python-version }} + + - name: Install package and dependencies + run: | + python -m pip install --upgrade pip + pip install . + + - name: Run pytest + run: | + pip install pytest + python -m pytest tests/ --junitxml=junit/test-results-${{ matrix.python-version }}.xml + + - name: Upload pytest test results + uses: actions/upload-artifact@v4 + with: + name: pytest-results-${{ matrix.python-version }} + path: junit/test-results-${{ matrix.python-version }}.xml + if: ${{ always() }} \ No newline at end of file diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..d56becc --- /dev/null +++ b/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2025 Benjamin Dodge and Philipp Frank + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. \ No newline at end of file diff --git a/README.md b/README.md index b2ef8a7..93a778a 100644 --- a/README.md +++ b/README.md @@ -4,9 +4,15 @@ ✅ generates Gaussian process realizations with approximately stationary, decaying kernels \ ✅ scales to billions of parameters with linear time and memory requirements \ ✅ effortlessly handles arbitrary point distributions with large dynamic range \ -✅ uses JAX, with a faster CUDA extension that supports derivatives \ +✅ uses JAX, with a faster custom CUDA extension that supports derivatives \ ✅ has an exact inverse and determinant available +The underlying theory and implementation is described in two upcoming papers. It is an evolution of Iterative Charted Refinement [[1](https://arxiv.org/abs/2206.10634)], which was first implemented in the [NIFTy](https://pypi.org/project/nifty/) package. The tree algorithms are inspired by two GPU-friendly approaches [[2](https://arxiv.org/abs/2211.00120), [3](https://arxiv.org/abs/2210.12859)] originally implemented in the [cudaKDTree](https://github.com/ingowald/cudaKDTree) library. + +We wrote this software for applications in astrophysics, but we hope others across the physical sciences will find it useful! Please do not hesitate to open an issue or discussion for questions and feedback :) + +Authors: Benjamin Dodge, Philipp Frank + ## Usage @@ -18,8 +24,8 @@ kp, kx = jax.random.split(jax.random.key(99)) points = jax.random.normal(kp, shape=(100_000, 2)) xi = jax.random.normal(kx, shape=(100_000,)) -graph = gp.build_graph(points, n0=1000, k=10) -covariance = gp.compute_matern_covariance_discrete(p=0, r_min=1e-3, r_max=1e3, n_bins=1_000) +graph = gp.build_graph(points, n0=100, k=10) +covariance = gp.extras.rbf_kernel(variance=1.0, scale=0.3, r_min=1e-4, r_max=1e1, n_bins=1_000, jitter=1e-4) values = gp.generate(graph, covariance, xi) ``` @@ -28,9 +34,21 @@ To install, use pip. The only dependency is JAX. ```python -m pip install graphgp``` -For large problems, it is recommended to install the custom CUDA extension as shown below, which will require CMake and the CUDA compiler (nvcc) installed on your system. It will take a moment to build and there may be rough edges. +For large problems, consider installing the custom CUDA extension as shown below, which will require CMake and the CUDA compiler (nvcc) installed on your system. It will take a moment to build and there may be rough edges, but memory and runtime requirements will be substantially improved. Please let us know if you encounter issues! ```python -m pip install graphgp[cuda]``` ## Q&A +*How does it work?* \ +The most straightforward way to generate a Gaussian Process realization at N arbitrary points is to construct a dense N x N covariance matrix, compute a matrix square root via Cholesky decomposition, and then apply it to a vector of white noise. This is equivalent to sequential generation of values, where each value is conditioned on all previous values using the Gaussian conditioning formulas. The main approximation made in GraphGP is to condition only on the values of k previously generated nearest neighbors. More details to come! + +*Why am I getting NaNs?* \ +Just as with a dense Cholesky decomposition, GraphGP can fail if the covariance matrix becomes singular due to finite precision arithmetic. For example, two points are so close together that their covariance is indistinguishable from their variance. A practical solution it to add "jitter" to the diagonal, as shown in the demo. Other options include reducing ``n0`` (singularity usually manifests in the dense Cholesky first), using 64-bit arithmetic, verifying that the covariance of the closest-spaced points can be represented for your choice of kernel, or increasing the number of bins for the discretized covariance. We are working to make this more user-friendly in the future. + +*What is the difference between the pure JAX and custom CUDA versions?* \ +The JAX version must store a (k+1) x (k+1) conditioning matrix for each point. The CUDA version generates these matrices on the fly and must only store the indices of k neighbors for each point. So we can expect roughly a factor of k better memory usage and runtime performance, depending on the exact setup. + +@Philipp want to write a short paragraph explaining the context? Feel free to rephrase the question etc +*How does this work with Nifty?* \ +GraphGP is not an inference package and will not help you fit your GP model to data. We encourage users to take advantage of Nifty's inference tools and GraphGP can serve as a drop-in replaement for ICR. \ No newline at end of file diff --git a/basic.ipynb b/basic.ipynb deleted file mode 100644 index 07ec6c3..0000000 --- a/basic.ipynb +++ /dev/null @@ -1,106 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "77838a79", - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "77978f9d", - "metadata": {}, - "outputs": [], - "source": [ - "import jax\n", - "import jax.numpy as jnp\n", - "import jax.random as jr\n", - "from jax.tree_util import Partial\n", - "\n", - "import graphgp as gp\n", - "\n", - "import matplotlib.pyplot as plt\n", - "\n", - "rng = jr.key(137)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "de0e5eb9", - "metadata": {}, - "outputs": [], - "source": [ - "n_points = 100_000\n", - "rng, k1 = jr.split(rng, 2)\n", - "points = jr.normal(k1, (n_points, 2))\n", - "\n", - "graph = gp.build_graph(points, n0=1000, k=10)\n", - "covariance = gp.prepare_matern_covariance_discrete(p=0, sigma=1.0, cutoff=1.0, r_min=1e-4, r_max=10.0, n_bins=1000)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "fbba6d89", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAAGsCAYAAAC4ryL3AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXWUHOeZr5+qZu5hRg1JA5JGzCwZZabYseOQ43Vok90N3M1idpO92c3esEOOQ45jtmWSJYuZZjTMzNTM3VX3j1Ykj4UGWVZczzk6R1P1VdU3PdX1q+9FQZZlGQUFBQUFhasU8UpPQEFBQUFB4b2gCJmCgoKCwlWNImQKCgoKClc1ipApKCgoKFzVKEKmoKCgoHBVowiZgoKCgsJVjSJkCgoKCgpXNeorPYELIUkSQ0NDWCwWBEG40tNRUFBQUPiAkGUZj8dDZmYmonjhNdeHWsiGhobIycm50tNQUFBQULhC9Pf3k52dfcExH2ohs1gsQPwXsVqtV3g2CgoKCgofFG63m5ycnNM6cCE+1EL2F3Oi1WpVhExBQUHhI8iluJWUYA8FBQUFhasaRcgUFBQUFK5qFCFTUFBQULiqUYRMQUFBQeGqRhEyBQUFBYWrGkXIFBQUFBSuahQhU1BQUFC4qlGETEFBQUHhqkYRMgUFBQWFqxpFyBQUFBQUrmoUIVNQUFBQuKpRhExBQUFB4apGETIFBQUFhasaRcgUPtQ4PQFkWb7S01BQUPgQowiZwoeW1t4xfvnCQZ7bWXelp6KgoPAhRhEyhQ8tGclWEiwGZhakXempKFyESCzGoweOcLi3/0pPReEjyIe6sabCRxurSc+nb15ypaehcAk4AgH6HS5UgsCivJwrPR2FjxiKkCkoKLxnUs1mvrJ6GTaD/kpPReEjiCJkCgoK7wtJJuOVnoLCRxTFR6agcBXywp56Xt7feKWnoaDwoUARMgWFq5DmvlGa+0av9DQUFD4UKKZFBYWrkC/fsQpBuNKzUFD4cKAImYLCVYhBp7nSU1BQ+NCgmBYVFBQUFK5qFCFTUDgPbw628y/HttLtnrrSU1FQULgAipAp/NXhD0cIR6Pv+TwiAipBVHxRCgofcj4wIfvud7+LIAh8+ctf/qAuqfAR5T9e28n3t+9/z+dZk1XEt+ZtIN+S+D7MSkFB4XLxgQR7HD16lJ///OdUVVV9EJdT+IhTkZGGSae90tNQUFD4gLjsKzKv18u9997LL3/5SxISEi735RQUuGfhbDbPnnmlp6GgoPABcdmF7JFHHuH6669n/fr1Fx0bCoVwu93T/ikoKCgoKFyIy2pafPLJJzlx4gRHjx69pPHf+c53+Nd//dfLOSUFBQUFhb8yLtuKrL+/ny996Uv88Y9/RK+/tIrY3/jGN3C5XKf/9fcrvY0UFBQUFC6MIF+mPvIvvPACt9xyCyqV6vS2WCyGIAiIokgoFJq271y43W5sNhsulwur1Xo5pqmgoKCg8CHknTz/L5tpcd26ddTX10/b9uCDD1JWVsbXvva1i4qYgoKCgoLCpXDZhMxisVBRUTFtm8lkIikp6aztCgoKCgoK7xalsoeCwiUw6vPyeP0JgtHIezrPy7sbePqNmvdpVgoKCvABV7/ftWvXB3k5BYX3jVc6WwnHohwfGWJZdt60fbIs87sdx0mxmbluftkFz9PZP0Eg9N7EUEFBYTpKGxcFhUvgnplVHBsZZElW7ln7ZBk6hibx+IMXPc8jd69AujzxVQoKH1kuW9Ti+4EStahwtRCKRFGJImqVYq1XUHg/eCfPf+Vbp6DwPqDTqC8qYpFIjJ0H2/AHwh/QrN49fn/oSk9BQeGSUYRMQeED4lBtNyMTbrbubb7SU7kgJ2v7+PWvdrNjR9OVnoqCwiWh+MgUPlL88rVDGHRa7ltb/YFfe2FVHk53gNWLiz/wa18Kv3z2ACpR5IZls7BY9OTnJ1/pKSkoXBKKkCl8pJjyBTBFY1fk2jqdhhvXVV503Ctb62htG+Zzn16D0fDBtaOJxSRkWSY11conHlx52a6zv7WHKa+fG+fNumzXUPhooQiZwkeKr92+5kpP4aKoVSIqleqCnan/EqMlvI/tqz935/JLGidJMg0dQ8wqTEetfucVeg639+MOBLmheub7On+Fjy5K1KKCwlVGLCbx/f9+lYwMO/fdf2ni836y/0QXHf3jWE16blk/+x0fP+nx4w+FyUm2v/+TU/irQYlaVFD4EHPoYDvPPHWYd/sOKYoCKSlWkpIt7/PMLo3ZZVmoRJHl1TPe1fFJFqMiYgrvK4ppUeGqQZZlHnvuIEl2Ezeve+crgQ8Lrc3DjI64iIRjaHXv/CsoCAKf+OTl82FdDLNRx303Lrhi11dQeDvKikzhqmJsysuEw3elp/GeuOe+pTz0N+tQa0TeeO44Q72TFxzf1z/Jn589QigcfUfXGR13c+xk7zn3tbaNsOWV2ne9KlRQ+DChCJnCVYMgCHz90xv41G1LrvRU3hNarRqb3cjooJPB3gl2v3byguMPHOrA4wnS13dhwXs7L2+vZ//RTjzes0tnHTrSSVf3OG7PxctqfVDsbenmpeN/Pblr/aMO3L4Pz+f714wiZApXFYIgnBXpFgxH2FvTSfQKhdW/WzJyEpm9qJBr71x4wXGrlpdis+gpmpH6js6/fkUZFWWZWMxnd2i/eXM112ysxGY1vKNzXi5e2t/Iy4ebOdY1eKWn8r4Qicb47atH+cPW41d6Kh8JFB+ZwlXPq/ubCYQiSHI3q6qLPtBrHzjZjcWko7Io810dX7304snR27c1EApFGR52kpmZcMnnzstOIi876fTPsiwTDkfR6TTYrIbTIna8rhdREJhbGS+I/NoLJ2hpGuKzX1yP6Rwi+H4Ticao7xoiVW/k7nVzL/v1Pgg0ahXlhelkp9qv9FQ+EihCpnDVs3ZBMdsPt7GwPO/ig99n9tV0otdp3rWQXQobN1bS0DBAS8MgHmeA0llnX+vAznjZq6VrZp73PE89d5TO7nE+/9BaolGJZ184xvzqfPYd6UAQOC1kOr0GvV6D+AEVQNaoVdy9di4JFiOJVuMHcs0PgltWVV3pKXxkUIRM4arHbjZw+xWKYrxuRTkm/eWtvpGWbiMhwcTPfvAGPd3j5xSy2qPdIJ8RspFRFy53gNLi9NNjcrITCQTCGPRahkacuFwBxsY9XLeuAlE8Y65de00la685dwUSfzBMIBwhyWp6X3/HGVlKOSyFd4+SEK2gcJXQ2jREYrKZlNSzvwtjw05kGdIy7QD84rHdeLxBvvzIBlTnWVlFYxJqlUjX4CQdA+NsXHThpqAAP35uHxMuH996YAODU26eOnCSVeUzWDAj+/SYlqFx0m1m7KYPh/9N4epESYhW+EDo753kt7/azfiYG4j7YGIx6QrP6vLgC15a65V3GiL/TiidlTlNxGRZZmDIEa+PmGE/LWIAyxYXMW9O3nlFDDjdduaNIy3UdQxfUmPQqhkZlBekoxJFAuEIwUgUX/BMyxdPIMQzh+t44kDtO/8FFRTeJYppUeFd09E2gt8Xoq9ngpRUK088cZCBgSm++tVr31UNvveTaDRGc8Mg5VU508xm7wSnL0BT3xj+cJijHf2sKp/B0rLz++FeeLWGto5RPn7XEjLSbKe3B0MR9DrNu5rDhTh4tJPGliHyspPYuLacSCSGw+UnNdlC+aysSz7PzSurONk+SNfgJLOLL3zcytlnqnmUZqbwj7etm7bfrNdSlplKSYZiKlT44FBWZArvmjUbyvnYA8uZt7AQgJRUK6lpNkTxyt9Wb7xaR2N9P4f2t73rczyzr57arkG0ahUWvY7cFPsFx+dkJZKUaMJqORPp19U/wQ9+u5MtO+rPeYwsywxMut7V/EqL0tFp1ZQUp+P0+Hn6hWP87k8HmJj0XNLxTe3DeH0h0pMsdA1N8vqhFgKhyLuay18QBIHbF1VSlZvxrs8hSTJvHGxhyuV/T3NR+OigrMgU3hM2+5kos40bKq7YPE4e7mL/9kbW3jiHsqocliwvZvvWBmbPffeRjNfOK+VQax/LZuazsrxw2j5ZlglHY+g0Z75C82bnMW/29Osl2owk2kzknids/qVjTXSPOVgwI5tlZfnvaH5JiWbuv3spP396H6OTHm5YGm+LYrddPPJvaNTFjkNtWIw6HrhtMWvnF9M7PIXhfVo5NgyMsOVkC9dUlDA3751FdLb2jDI45mJ4ooEHbrxwjp2CAihCpvBXgkanRqUW0Wrjt3RCopk77ln8ns6ZlWzjtuRzR+89sbuG1qFxvnTD8gtG8NmtRj5z17Jz7vP4g+Qm2hl2eijNSjnnGEmS2XOsg+pZOVjPk9M1a0YGdouRuZW5VFddmnCnJVvISLEytzwHgNLcVEpzz51w7fQH+dEb+5mdm8Hm6kvrISbJcbGXTsWS+YNhntlbx8Z5paQnXrjYcUl+Kn2jThbMyr2kaykoKEKmcNUjSTIpmXYe+tr159w/OuYmJdnyrn1lAH3jTlSCQKLFiEGnIS81Aac/SCgS5b9f2M2i4lxWlBecHr+3sZv8tIQLVnl//LWjTHkCfOv+DWfNTZJkfvvqEZBkVLLAwIiD+zafvTqRJJnlcwvP2dcrHIqg0arPuU+lErntmktLPhaFeMV91TswGVflpFOVcyb0v65nmEhMYlddJ3evnnPBY1WiyKYlF4+gVFD4C4qQKVwVjE158AbCFGYlnbXvlRdPMDQwxYo1M5lVkT1tX0PTIHsPtpGVmcDma+e86+v/budx2nvHyU2286371rN8VgHLZxUwOOnCH4rgCYR4ct9JrEYdK2cVsL+5h7qeYR65fiknugZp6Bvh3pVz8flD/Pb5I8wuy2JuSTYTTt85BTYSi9Ez4iAz2Up2gpUlswvOMSv430e3YTLp+NwDq6Ztd7v8/Pz7W5lRksZ1ty9Aq1GfV8gb+kd4/mgjK8ryWT3r7NYsVoOe/7N57bv41M6wqDQXvUbDrPOs+hQU3guKkClcccKRKN5A+IJVHZ56oxaPL8jXP7n+rBVGRVUOLqef7NwkIpEoKpV4OuAkNycRU52OqvLsc532kllUkoNdp8Os06F5S0RmVpKNf7prPQDf+tNW7CYD11WXsbgsl4LURACOdw0y7HDj9AWQIjJefxCPL8j1C87vU9Rp1Hzj/nVo1ecXIICMdDtGQ9yvNenwYTHr0GrU6A1a0jJspGTY+a/HtpOTnsAnbznb1FrbOcibJzvQqVTYjNPzvvqmnLQMj7Ox/OJltC6GIAjMmRH3lfkCYdp6x5hTmnXeDtE1zQPsPt7O5tWVFGYrEZAKF0YRMoUrzu9eP8bguIuv3rMas0F31n6nJ4DRqKE4N/mcD76CGakUzEglFo3x/X9/kbRMO/c/FF9BWC0G7r976SXNwx0IYtRqT+dXvZUNc0rYMKdk2rYpjx+bSX/a5Pb1W9acPnZ1RXxl86Mt+1GrRD61bgFJlrgv7RsPbbqk+ei1GjyeIGaz7rwP/I/dGjc3en0hHn1iL55giKXzCtm8upL7P7cWSZLp9HjIzTgTbNI34WRrXRv3LJ1NXfcwoVCUT2ycT2aSbdq5X6ptxhsKMz8/i0RT/CUjJklIkjxNzN8pz2yvJRSOYjbqKM49t28wHIkSjUmEI1dXIWiFK4MiZApXnIqCdPRaNUbduUs9PbenjogsMyP3wm/mokpEr1PTVtNHR+MgGXlJyDKYLRcvfOsLhfnPV3ZRkJzIQ6svHik36vDw89cOkZuawCfWzwc4Z6mqkSk3Hl+Iz1179mqoa2iS1ATzOcUb4n3Innn2KIUFKYQFGUmSufvmcze0NBq0FOQkUdM+SGvP2OntoijwiZsWTRu7r7WHYCRK6/A4H1tTjcPrp3twipd2N3DftfNPz+eW6nLaRifQqFQMOlxkJdj44ZZ9OLwB/u3eSxPjc7FuYQkH67rJz0jg0RcPkJZo4ZYV04NqFlXls6gq/11fQ+GjxZVP+FH4yLO4Ip/7Ns0/rwntuiWzyEyyUph5YSETBIFVa2eRmWYlFAjzm1/s5H/+4yVCwbNzoyZdPv7w+rHT1Sz0GjUzUhIpu8RE3gSzgcwkGxV56dO2S7JMVDpT3STPbifdbMbrD3G4sx93IH49h8fPUztqefLNmvNeIynRTHKSmfz8FMbG3YxNuM87VhQFPrZ5Af/+hev5wj3Tu0fHYhLtPWOnm2jeubiKTVXFVOako1aJJJiN/Py5/Rys78F9qnfZ84caaOsfZ01pIY/tO8ZPdx0mHI3SOjRO3yXmvdV1DePwnJ0Llp1m544Nc1GpVIw5vUw4PxyNUiOxmNJo9CpFqbWocFmJRmM8vbWGBZV5FJ3HjHS5+P2vdtPZOkzF7Fxuv2+6efHFPfU4vQHy0hNZfar1S8+Ug8cOHWdJfi7Xzio51ykvyg927GfU4+U/Nm9EEAS8/hATbh9RQea12lb0WjWfWbMQWZb5845aKgrSqSg8f/LwyJiLX7x4kGS7mYdvX0ZD5zANzUMEA2E+cceS0ybHvcc6qGsd4oFbFmE2xldUgWCEp7bVEAlEEYCZM9IoyEthz4kOQkh0DE3yd3eswmzQ8fPn9pNoN6G3allXVcT3ntuNzaTnKzet5EBnL/1TLu5aUMXvdx1HBu5fPe/0HA939VOSnkzCKR9ba98YNe2DDEy6sJr0fPb686dByLJ8XrPpB4kvGOa/ntxBcVYKH98w7+IHKFx23snzXzEtKlxWhifcTDi9HKjt+kCE7MCW4/jcATbcu5w771vKlmeOsmz12aHc1y+dRX3XMLOLzpRk0qvVGLUazOcxcV4K2Ql29BrN6Yez2ajDbNQRkyRSbSaWFMfzvARBOG/vrXAkyt4TnSQaDRw81onPHaR6Zg7hSIxXDzTR0zlBToodSZJRqeLXcbj8ON1+gqHIaSHrH3Xi8gTQa9ToVWrKSzJ5aU8D0aiEoBVISzCj18aDSR6+fTlv1nUwOOXi9ROtfOGGZaeTvZfOyINTwYwfXz39Id876eRAZy8n+oZ4eHXchLmrpoMptx+DXsvqqumJ5G/nL5/TwUMdHDnaxeYb5lJQcOH7xOMO8MoLJ1i7qYLUU6XA/vTiUQDuuencpteLodWoSE+0kJmkvDBfjShCpnBZyUlP4NoV5WSn2S/bNZ75+Q48Tj8Pfu0G6ve1EvAF2XDvcnR6zVkrsb/w9O46Rh0e5ryltmC61cLX16865/hL5YaKUvqmnGdtV4kidy2+tFYze453Mj7lweH0YzLpeWhtBYV5KQTCEcKCzAN3LOL48V627W3mmtXlAGxeV8WNaysRBAFfIMzBum4qCzO4ZV0VGcm200Eot6+fQ1PXCNVl2WethFbMyufNuk5WlRcwPOnGatTjCYR4/M1jON0BNswtZkP19JWq1x8iGpW49i3bb1tVxZNbT2BUa5iY9FGSM/33+9NzRxgZdfGlh9afNifrdBo0WjUa7cWDSJoaBonFJI4d6uS6m6oBmHB4zzl2yuUnwWq46KpPo1LxN5vPnbj+UWfbcB0nprq4v3AVGYZLb+z6QaIImcJl53KvxKLRGNFoPLrtnq9tJhKKMjHupqtjjIVLzt0xOhKNXVJEXEyS+PZTb5KZZOUzGxZddPwfDtcy6fVza3U5Raln57xd6Hd4+uUTzCnPZtmcQrYfamHtwhIah8cIq+PW/4OtvYz6vLx2sg29V6a5a4SVi4sxngoy+cvD+sXd9Rw40cnLOxr4r6/eNC0K06DTMG9mztkTALRqNddWlxKTJJ58sxabWc+tq6qISTGm3H6GJs/20b16ooVwLEZ+0pkHXLLdzB3r57B1fzMVxdPNpl19E+w53ondpOet2lI9N4/qt5UTC0eiuDxBUhLN07YvXDKDxCQThTPSTm/7wifWnDW3ps4Rtu5roiA7mZvXKU0u3y16lQa9So1GvLKFwC+EImQKV4zQqQK1undR3y8UjKDTx4+7+5ENOKZ8yLKMNdHM1LiHJ36zF71JS2FRKskpZ5uL7t8UjzT88RsHicSi/O21K6btH5p0oVWrSbIaSbQYSTTHw8+nfH5+ffA42VYL9yycc9Z5VxTl89ihY+xp7+a14y08sHoeVsPFoybHp7yMjLs5Ud+H3xfGPeZDp9Ow9WQbBq2GsqxUFhfn8McdJ0jJNLFxeQm7j3XwzPZa7r9hepTlpiVlDI+6yEiwoFGLnGjqZ9zhZdOyeNPNXdsbqa/r474HV5KQcHZ5LZUoYjRq0Bs01DT2kRDT8tAD15CSYCYak/h/f95NXnoCd6ydw3XVZfjDZwfTpCVZuX/z2cKv12koL81kydyCi66SnthyjKFRF5//+Eqs5jM5boIgUFx68aLEWak2rGYDs2akX3SswvlZkTqTFann7zz+YUARMoUrxk9/vRNBEPjywxve0XHbXqqh+WQ/19+xgBllGZw40sWRA+2UzMxk7aZKXvrDATzjHmZWziQp+cJ1/bRqEUFQ4w2F+fnBoyzIyWLljHwee/0oRp2Gr9y+ii9cf8bk9Hx9E/VDI3SMTnBbdSXat+VTlaQno9Gp2dfdS47GwsCki6xEsBkvLGYZqTbuuKGa1GQLTz9/jIFhB15vkE2zS7Do4z4vo17HTx6+FY1aRJZkaloGWDbnjA9qy656xqa8fPKWxTx853K+/6vt/Pnl4zh8QdzeIJ5+F2q16pzi9XbCokzvuJO6ugE8ngBDbi9VxZlsXlbOycZ+YqdWs+U5aRc503Qy02x8/v5LM99WlGSiVaswX+SzOxdub4BoTOJTty15x8cqXH0oQqZw2fD6Quj1mnMmGAMUz0i74Fu5yxfkz7tqWTorn4qC+Ft1NBojKy+Job5JElPiIpWbn0zDyT6Ky+Jv6dXLi8kddrH22oubkz67Nr5qGHZ76J6cItVsxOFNo7o4C8s58rtum12B3WBgQXb8IftGbzvFCUkMeF0sSMtBr1JTnZVBokZP0Bvmj3trMek0fPPWtbQOj3O8Z5C7F80+Z6pB9qmk5btuW4jXG6S5f4yOgQnu3XgmwEJ/qigyIty1qXra8aOTHkYnPchyPHghLdlKeoqV9ctn4vEFee2Z46hUIjffvoBV6y5c/PfeFXPwBcI8v+0kG29cyI6THYiiwKGabgjJeByBi36275X5FblUFmfw55ePsWpRMZnvwM/6+HOH8QXCfOOhjZdvggofGpTwe4XLQiAY4X9+tZ2sdDsP3v7u3orbBsZ5dm89ujBU5qZhtxnZe7CdFUuKWVB97tqDb+X5Z4+Smmpl2YrSi47tnXDwxwO16EU1AXeYwvRE7ll74aK6EwEfP607zHjAQ2VKOk5fkJBDYtTjJRSOkqOzUpCSQKLZyPXVZTy64zADEw7kgExRSiIb5peSnWo/7/l/teUQA+NO/u6eNedNmpYk+bQo/uqlgzg9Af7u3nPXRYzFJARBuOTiyc9vO0lj2xAjIy7++cvXk5JkweHy89SrJ7hm5SzyshIv6TzvhbqWQY7X92LQabl78/xLPm730XZ8/jDXrSq/jLNTuJwo4fcKAEQliV/uP0ppWjJrS84uBns50WnVFOQkkXeOIr+XSkl2Cn+zeSlPPHmQmrp+7rh5HmaTjpSLmAsBYlGJ9tZhHFPe8wqZwxegdXicxUW5ZNgtpNsszMlN50TzILPyLm4ySzaYWJSeQ57Vzv7hbnyuKOMeH6lGEwlJejKtVsrSU6jMiq8m7106h3/8w+v0jjgYH/cQDUt85uYlNLQOoVKLFGYnMTDiJCTF2F/bzc2rK1GrxfOK2CsHm6hpH+TjG+eTl56AKAjUNg7w3PaT3Lr+7AhJ1XlWxn+hrmmAiSkvJ/tGKMpJZs2iYg4c7cDlDPD867VkZyQgyTIP3bOc3/xqN5Ik8anPruHVrXUcO9HDA/ctIy/n7L/3vz/0GBNDTv7nuS+hUos8/dheUtJsrLnh3FGcbm+QF7edZMPymVSWZiIKAsUF76zY8KoF770+pMLVgyJkf8UEwhF6Jh2oRPEDFzJRFLj3pvfeFNFm0nPnLQsIBCNkZybw2U9cmn9FpRb53Oc3oH9bIInXH2Jk0k16kpWnDtfhD4Wp6RlkUVEu2Yk2GgfH+PR1F49O/Aub8uIPzHxzAh8/8jRqQSTPamPA6cbpCzHq9p4WMotexyfWzudE1yAlyUmU5sUfztv2tyCKAsk2E32Dk3RNOkhNtXGgqYfNS8sZdXqY9PiZkZ40rZGnTqOmb9TBrpMdPJC+gHs2zMPvDWG3GM6e6CVw4GgnQ+MuOl1OmrpHuHFFBd/92i28sLWWBbPzefbVE0iyzA3rKtFqVUixuDCeONJFX9c4vZ3jvP5CDelJZvxOH3c+tAaVSiQSihIJR+P9ySSZvs4xgv7QeefR1D5MNBrjcG03N22YTUXpO2vMqfDRQzEt/pXjC4cxaDSIH4LqCeciGIrw0s561i0uJcl+8SCE98qvXzjEjqOtZGclsmZhMZOhAG0jE6RazURiEqMuD5srypiZl4bDHyDFYjq9IvKHwnzvxd3MyknjjiXT/W9PHq9jS0MLvkiYR++8CUmWcfgCZNqsJJjOCMtP3jzIsd4Bvn/X9SScKsRb2zyAWiUSjUk8seUoXU4nGpOGlXNmMLswgz/srqF/0smtiyp4cH084VeSZP7td2+w92QXeWkJPPb1u6fNx+MLYjGdCZIYGnbidgcou0C03+i4G6fLx/GOQRaW51GUMz1tIhiKIMsy0ZhEKBwlOcHM6IiLnu5xJic9JCVaOHygHVUoQsAV4JF/vhmD6ezVZDgUQaVWnXeFKMsy7d1jFOalnNe/eiHaBybQa9XkXMBsq/DhRzEtKpzGpL20KhWyLPPU8XpmZ2dQlv7BlZKqbRkkHImy43Abd2y6tEaP75axcTfD3ZMQlnE6fMwryibFbqZzbJIUiwm9Rk3H0CQ7TnSwvb6DkyMjGDQafv/IXQCIgohBq0GvObPKi8RieAIhGoZGUatFsm02fn3sODeVz6QgOYFITJo+B78PjVpF3eAoq0rifr45M7OJSRL/9vgbZM9IpkiTTmaqjQmPn+2HWmkfHMduNVD0llqToihQUZCOxxekujjeomZkws1ruxtJTbXS0jvGwoo8VpyKatzy2kncngB7j7QzqySTzGQrr7x0gkVLi1mwKL5aT0uxIsRksgwmslPsZ31+f1nd/uiJ3bi9QR68YSHPPH2EtDQbd90dL0O1aGkRkiQRDkXRG85972kvkm4hCAIlhe8sGvKtPLv7JDqtmr+9470ltytcPShCpgDAhNdP5/gUE17/ZRWyWEzC4fKTfCrJ1aBWkZViZ8klBG9AXHCdLj8J51i9bXujHovFwOLzJEF3906QYDKwsrKQlUuKOXGil/WrZjLjLYnLZdmptPaNsS6viKldAYrSkpEkmdr+ISqz0/mHm1dPO+dPXz/ImMvHZzYuxG7S0zg6xhvtHRzu6+e/3tzDlD/AP6xawdLCXDQqFV9cu5Q3mtpZXDg9KVklipQXpJNiN7Nmbnz+3/z9a7xZ305+kp0bF5Sz41g7TpefG5fEAxhuXzWb21ed8TPVNPbT2D6MWqPCYtRRkHEmGGP5kmL6ByepaehnaMRJdpodlShOWxV1to7wi5+9STAWw+MJcsMN536xmF2ahcsbJDnZgkatYnTYSSAQxnBKuERRPK+IQfxv+Opzx8jJT6FqXv55x71bllbkn2VSVvjrRhEyBQBSLCZuqCwjJ9F28cHvgadePkZD6zCf/dhyNGoVf/zzIYpmpLJm8aUV6X11RwNdPeOsXFzC7Lc1yzx5sh+TSXdeIVs0v5DSonTsdiNPPHMYSZJp7RihdniU9sEJblg4k/2NPdy+oorMJCtfWr+MV/Y38eeDJ/FGw3SMTXLngrhJMRCJYNBoKM1MIcFsJD85Hjq/LD+P6qxMfrTnIBMeP5IscaR3gEmfn1vnlJNkMnLPgnMHOdy5Zs7p///jE6+zraUDg1nDV25bTU6yjS17GzHoNNy4pJy6tkG27W/hlg2zTzeezEi1YTHpmZz08uUHz0QuTjl9BKIRrllfyarlpeh18VqQD39pemh6WqadqAggUFCYwtCEi20n2ul2TFGRm8HtS+KtVlbOK6K9c5QXX6klOdGM2+Wnr3eC0rLpvqx9e1o4fqybm2+dT17+mZejUDBCW9MQk+OeyyJkK2d/sP5ghSuPImQKp6nKfv8rIOw+3oHdYmB2SbymoT8QIRAI09IxQqLFiF6nQY5eupt2VnEGY+NucrLOrvl2y23zGBpx8dJrteTlJDG7Ir7qkWWZ/sEpsjMTsdvjfqnrN1ZRU99HWXEGHQ4HFqOWcZcXtz+Iw+snM8nKmMOLxx+kWJeCX4qypixupjvaN8DTNQ10Tzq4d95s7l9VzfamDmr7hnlo9UJiSCzMyybDZmFjaTEv17ewqvjSVpx/adbpCYYxGDSkWczIyCRaTSycmcvM3HiAyK69rdSe7GV2SeZpIasszeQPzx3G+LYk7ee3n6S7b5KnDtXTNTbFt++/hrKcVJrbh7FZDafzs8wWPV/9++s5eqKbstJM/rD9BL5QGJ8/DLLMr7YcoqooA7vBwOEjnbg9QTZfPwcpHCPvHIV+DUYdOp0GrXb66khv0HLnA8uxJZy/I/jVzL7Gbuq6hnhw40IMysrwA0ERMoXLyqH6Hgw6zWkhu/WaOeh1GhZXF2IyanG6/Ex5A7R3j50VYt09MEl6shWDXsOvXz2MXqvh3vXVFJynwea+o114vAEmxj00tQ2TlZlAcqKZg0c7aW6N/3zNugqck15siSaWLJjBn186yrIFRWxeHDfXbaguOd3xeeGsXMwmHf/2uzcoLU7jsdAJPr1kPpk2KzIy7eMTfG/7Xpbm5+LyB3H4/ISiUX5w+BA7uzopS0xGVIl8aun0/KdnTzTQODTKF9YsRaeJV9yHeFmsx14/Sl56AmsqZqDVqNBKIjtOtNPYMcLDNyw5XVdxzZISzHotC9/SfFIliswtyKCteYi+7nFyT4lLZXEmLR0jTEyGEEWBhsZBfvjjbUSlGBqjlv/9x9vRnoqGzMywc9P1cZPiwpm5HG8f4P/eeD3Dk25+/fJhuvsmKMxIpKgohexkGzlZieft4VVRlU31vPxzJr1n5b67tIxILMbLR5tZWV5wuuP2+8n70VZmYNzFqNOLNxhShOwDQhEyhcvK5lWVmI1n/CUJdhP33nImLH9edT6/f+4w//vTbSydP4P77ooHDQyPu3l+x0mSbCYeuGlRvC3IWx4KL7xxkux0O/OrzhSaXbOslNqGflCJvL6rkbq2QR77/gPMLMmgo2uMOZU5dDQPse3FGiRJQq3XQIqRA0c7sduMNLYPs+NgKzOL0rl14xwA/v13b9A9OkXb2CSaVA0WlZbPrFzAt6/fwOHuAWIxiT2t3dy+sJLb5lfEf6fMTLqmpjBoNCzLzwWgcWiUcCzG3JxMDnX30zk+xcNPvcisjFQ+u2QBqRYziRYT6YkWKvLS6Z50MOrwkGmzkZVgZVdNJwadho9tiFfzqJyVTeWsbF7cUceE08cnb1nMydo+xgYcZCRZ0GjPfLXnV+YxOuFh7qxssjMSePbVE7jcAUSdiiSbgUmnj4yUs03K22rb8PpDxCSZzGQbf3vnKty+INsOtDB3Vg5Wk54XtpygpXWYRx5ah+UtnbiHx1z85rlDlBWmnf4s3w8aekdweANsOdrMJ9ZeeoL0pfDGm42crOvjnrsWk5357qu837VqNpFo7PTLgcLlR/mkFS4rMwvOjj6LRGJ0tI9QNjOTRLuJDStmIkSkaRUnUhLNZKbYEGT41ZP7+eKtK9CdejiHwlGaOoYZn/RME7Lc7ER2Hm1jZMpNZpqNRJsJlSiSYDdx/93xdi4evRar3cjEiIuAN8SmayooKUrnl0/uw+2Lr1gQ4YdP7WFReR4JCUYYnkKtBZOoQYVAy/A4ldnpfGPDSna3d5NptUx7k7+2uJgci5Uf7DrI99/cxw9vv5F/e30HI04Pn1o8n88sX8BzNY0kWU2EI1Ee338cOSpjV+u5b001FoOOtAQzz++po2tkgm/evobGnlH8obOL845PeRmb8gDQ1DCAJMtcd3M1e3e3sOGaShISzYiiwI3rKk8fc9t11ZQXZfDo47spyUieJmIjTg99E04WFuVgMGg40TvEvz/7Jt+6bd3p3moP3HQmzy7BbiQhwYT2be1XrGY9KQlmck+V3ZJlmTf2tzBrRnp89er2s2LuO/dlzc7PZMobYEFR9sUHv403DragVousXXBuf2xighGrzYDxVKCKLMuEo7FpuXuXgiAIioh9wCiftsK74rV9TTR0DPPwnctPN3K8VF55uQavN4TfH2be/AJmFWcw623tPtQqkbuvncefXz7OyISbQDCMzxvi9a11XLOpkk/ctpiDRzr535+8wcOfWoNer6GlY4S65kHyspP49lc2n/PaFquBez+3hq6OUZ76wwGGeiaZWZLB2KSHltYRHv3Pj+HwB3j+568hRWLcvWouY+Me0hKt6C0a3L4QxzoHyLCaeX1HEyFJol4/gkmnZXZBJsf7B/nxnkPMzEile2IKWZbZ2dbFooIcXqxp5neHa/hTXR0Lc7L5zNL5jLu9fO2J10g2GoloY0y6fVgMOvbWdzPlCYAAe2o7WFsxgzWLi3l861HmFmUxe0Ymsixz87oqkuwmBEFg9bpZbNtaz7NPHqazbQSfN8iDn53e3iQUiqDVqhmd8DA15aWmvo87b16A6dTD+9nD9bgDIXq6J2jtG0fUiNiN+vPmIa5aUcaqFdMblz63q46sFBufuetMseUJp4+23lEGxpwEwhG8gTDL5xS+YzOeKAqsqzp3MM/FqG0dRCUK04QsGpNAllGrVcyvLmD+W6Jnf//6MToHJvjax9edNukqfDhRhEyBgSkXWxvbuWfR7NP+movxF7eI0x1Ao1adXi0BhKJRtCrVeR9SS5YWs3NHEzNnxaPcJp0+vvZ/X2DlvBncf9viaWPvvL6acCSGTqtm165molGJmto+1q2dhUGnRRRFItEYo11Oahr7wRdl7cJiYjGJmppeqqpy0J6a2/iYm6efOkwoHGXOnFyS02wcOdJFY8sQGQlWJnROvvu/r7Jm9UxK0pJJt1l583gbBZlJrJ5dxIn+QdoHx5k0G3lm90kmnX4EtYBfjrCkIo8f7TpIKBZlyOnGYtDx0zs383JDCwdaephw+FhelMe+zh40URVLCnJx+AM8e6KRdIuZSaefBbNzyE9LpLF3hMb+UVZXzsBs0PL0iycYHXPTPzTFeDTE5JSPrXuaaOkdY3DMyebVlTxy5woOHezA6Q6gMmgomJHGDTefKSrscgc4eKyTmoY+SovSufW6anRGNTVtQzyzvZYHboybe6+ZXcrJniE6WsfIN1v5580bThdPrmsf4oWdddy8tooTjX043AH+9uNxoTzeNsDWIy2sqCyksWuYts5ROlpGuPX6uRj0WlISzCyoyGdGbjK+QJg/76jhP365lfWLy1j8Fj/fu8HhDfD0vpNsqi4lL/X8JsFP3bwYQRAIhiO8uruRtYtKePyFw0SiMf7+k+vPGp+TaicUjiqrq6uAd542r/BXx86WTsKRKE1Do5d8zHUrZvHFe1by+DMH+cPzh09v94ZCfOvV7fz60PHzHpuWZuPue5ZgPLWSO97Yh06rYmji7MaNgiCcFsmVK8tYsngGa1bHeyNdt7GSLz28nq0v1rDtlZMMdU0QCISpr+3j0KEOOjvHeOONhtPnCoej+H0hurvG6Oub5JMPrcFo0iLIICCTYDcyOe5hfNzD1x/ayF3XVzPu8eMLR5hTlMm9K+eyojAPz1SAVJuZ3IxEctMSKExL4hdvHsHpD9A1NoVaFilPTaUyM51vbFxNx8AkHcOTdA9MclP5LD6/cjFrSwp59ngDWo0ak1nP4ISTN2vbcfmCHGjooa13jDmFmTx8w1Ly0xMQiedvrZ5ZQKJGS3fvBAF/iFAoiozM0Zoelq0oYdzp5WhdL341HDzRc/p3f2nrSXoHJtFo1ORkxvPL5lfkkWQ3seYtdQlnpCehlVSkJVswqjQcPt7Nk1uOEY1JvLmvhY7OMYZHXWg1ajr7xvnVcwcA+M3rR3j9WCuHmnr52MZqhJCE2x2gb9DBn7aeYNvhVhbPziclwYyEjIRM98gU51uQ/aVR6qXQPjhOMBzleMfABccl2U009I3wf37+KuNOL9sPtZKXlUj+eYofr5lXzGduWnK6usjrJ1r5yasHiEnSOccrXDmUVw0F7lpYRfPw+DsOv9dq1RTlpZD7lgeBXqMhx24jL9F+0eP7B6dQq1WsXVyK3Wpk7swL+z1EUaC4OJ0je1s5sreNuz+1iuQ0K/MWz+Do/nZ6O130t41R+ak1ZKTbaGwaZNOmM76hrOxEymZmIkky8+cV8qtf7uT1N+rRaNQkpVrIzEnku9++g6RTfiWAf7hzNcfaBshItCKKAi+7m8iwWXjk1mU8u7+B5bPyOdDUQ2AghCGqZl1RIcZKLTl2G9GYhCDAx1bMpmt0ijG3l6bhUaKyRP+Ei94JB8vLCkjW6unun6AyP4MjbX1odCp0Zi1GjZr/+sOb8cAKow69RsPho12caOonPctO2BOmKj2FFbMKOHysi+bWIVatmcWTW47SN+JAo1Oz+Zp4ztqGVTP5wU+2kZluY8GcfADUahV3bjw76bm2fQCfP4x3MkBtYz+ZaTYcTh/XrSonJcHM6gXFOJw+BkeceH3xmokrZxei06q5d0M1O/a1kpRkpig3BUEr8uedNdiMehaW52IzGyjISGRxRT6f3byEJOvZkYfP7DhJU9cID9+2jJQE81n7387C0lwyk6xkXkIOZDgSxWrVc7Spn1Xzivj4DQsuesxfGHa4GXa4iUQlVFplDfBhQqm1+FeELMvsbepmdn4mNtP0ZoSPv3gYQRB4YPOlFfINBCMcrO1m+bzCs0wrwXCER184QFleGtcsKjvPGc49v+b+MUqy4jX0/vdn29BoVHz+02sJR6KEQlEs5os3Ufzvbz1Ha30/X/jHzVTNP+PT+O53tjA64uLOexbT0TPOkZoeEhKNpCRZsGg0bNpYidsV4MihDm66dT67d7fws5+9SXKiicLSdO6+cxFlFylQK0kykizTNTLJS4eaSE+0cO/quTQPjPGnfbVMBgJcP6+MngkHiSYj6VYz3eMODg30M+X30z/uIs1swiRrqCzI4Os3rEYUBWo7B3nlSAtfuXUF//jkG3SPTKGOgm8yyBfvXM6mxbMIR6I8v+UEVZW5JNiM/ODRbdQe7sagU/PAp1cxNeJmx75mjNlWCrOSmDkjnfr2YT5x62JGB538078+B8CKJcV85avXodGomHT6iMYkvMEQY14fJ3uHuWHuTHYf62B0zI1aI7Kvrovlcwv54l1nSj796LGdBEMRcvOSWT6vkKy39AobHHVy4EQXt2yYzZ931LLtSAuRqMRd6+aweUUlk24frxxs5ublFVhP3aeBYIRdx9rp7Z9Eb9Dgj0Z54PqFp313b8UTCBGOxkiyXFoeWjQaQ/2W3LpoNMajz+ynODeFTUsvvfOxLMvEJPld1X98t/zy4FEc/iD/sG7FxQf/laHUWvyI0jo4TnP/GO1DE3xqw3TB8gbCXGIbKgC27W/GHwiz/0QXaxZNj/KKxiQ8/hDewJkK5pIkMzDuJCfVPs03NurwMDzlZs6MLA4299LYO0pT3yi3L69i/pz80/6rX/92Dz29E/zHP9827aFzLjbeNJeMrATaGgapO9LFfX+zDoAvfHEjJ2p62Xu4g5gkMTbpZmDcSWluCjlpCezb28qNN84lLz+ZX/5kOwlJZl599e+mndvjC/JvP3qNkoIUPnPXcgBq2wdxegOsnluEKAoIMhzvHiQpycRdy2cz7vTRPTTFnKIseqcchKJRNCoV8/Oz6RmbQiUIVGSnMezysKqggLa+ccacXhJ1BkRRwOENcLJrGEmS+MW2I5SkJDM46KQoPZHasX627mvBPR6gs2OUdJ0O+0Id6alW8jISOBxuR47FKMhKov5AFxZBzdrqInQWA8ca+zjW0kfviIPrq0tISjIT8IVobR7m5ZdOcMttC/j5U/voHJlkYVU+XQ4HPaNTGAU1d62bQ23bIBqNiqOt/dMCehwuH2XF6YxNevD6guw81MZ9b+l0kJVm545r4/65g0c7iXmj2BOM9A45GJ1w89yuOvRGLcda+1lbHTdrvr6/mfEpD40dI6xZVMwnLhCy//PXD+ENhPmXj23gj9uO09IzxtLyPK5denaz0N0nOjhU38uGRaVUl8VX/DJQXZXLgtKcs8ZfCEEQUKs+2OLbsgySrJgyL4YiZH9FFGcm09Q/xtKyvLP2ff7uS3+j6xqeZEl1IYdqulkyZ3pFih3H2wlHonzrE9PLG2050MjAhIvq4myWlJ+5/rP76nH5gpRkpVCRn07r4DjLZuXH51uUxqETXdQ3D9JYN8DIsIs9e1pZsqSIpqZBZpZlMDLopLAkbvJ85Y8H0Oo1bLhtASajjjderOFkfR85Jek4RlwEYjHKq3Jpah5kbMyNXq9h5swMvv1/bqG1bYSDr9bx4399gc98/QYaGwYxWXT4IlHWrplJcVH8GjsPtFHfOkh33wSfvnMZgiCwu6YDfzDC6lM1ECc8Ph7ddRhfKEx6ooXhIRfeQIj5JdkkGPS4fUHuWzqXrz79CgX2BJYU5pJsNfHS8SYmJr3kWqz4JoIszM3icFsfuxu6KMtOIcluYsTlwesLsaK8gE3zSvmNX+LGVeX89o8HGBt2kqnTk5WfTEZ2AmOTXhLTraRn2mnoHuGzX1hP3Yle1m6qRBQFzGYdO4+30+UZJ/PWJdx05wJcngCCJ4LerCMak3D6gqgEAbVKRYJax/4+J78ZOMSNi2axqCL+d/zdv9w77eXk8WcOEYtJfPUz6znZMkhJQSqhcJRt+1sICxI9Yw4euWUZOo2ahZX5tPWMcfP62eRnJvLc1ho87gDzynOYXxrPsXt5dwM2ix6VSuDua6sxGXTEYtJ5q+PPKczEGwgDMDLloWNwAotOe04hy0i2YTbqSEk4Y8LcerwVhzuA2xfkmgVnWxQkSebHv99FRqrttCBfKT679NJNnx9lFCH7K0Ility6pOI9nWPM6eXp3SdJtpn51LVnmyFr2gYIRWJcs3i6SWZeaTbjLh9ludOrc6ybU0TXyNTp8OUHN5z5Ym7b24zD6aOpeYiUrPgDp7Q0nS0v1RCORNn3ej16rZpb7ltKaoadbc8cIegLUVKZzetPH8Zg0pNXlMb+XS0MDUziD0c5fqyH2IQfDQJ+b4j2hiEmx73MLMtkrGsCmz2eK/T1f7qJ116vY2LMTX39AMVF6fj9IV7ZUgthCXO6nm99fwueST+fun85PinKF5/YgkYU2VBZRFFqEu1jk5RnprEoP4cv/fQFDjb1smR2Pu5AiOz0BDITrbSOTOByBwjFYhh0GgKhCIfb+vD4g2w92c4nr1nIT1v2sX9/B9955AZsRh0+d5Cy/HS0osiDNy6iKD+FrCQr//HfrzDY72TfkU42XDebgqJU2kcn6fG4UNX2ML8yj/XXxmtBHqrvYcub9aRodERCMZ544SjecBi/J0SqzcxCu4E9B9q4c9NcRqc8LCrP47uPbUMMS0jExeUv3Qj0b4tknTMrm1gsnjc355Rfc9+xTjzeIE29o2gsGmIxCTRw/+aFvLyzgZ37W3nk4ytZtaCY3uEpFs6Mi6QkyZxsHcRuNfDI3SsB+O6jbyBJEt/8m2vOeY+un30mOOUrd67C4wtyvqiRktwUSnKnl89aWVHIK4ebWVaef85jAKKSrAR1XEUoQvYRxxcK89zRBq6fU0ai2UiS1YjNpGdo1EHn4AQzsqaXg/rkDYviD6m3kZ1i59PXn92QsjQnldKcuLg5vQH6Rh1UzYj7oW7ZNIeG1iHaO0bITbezamVcHFevmcmB/W3M2zyX1roBklLj9vHbP7uazvoB0nOSCOnVWNMspGpUSJJMWJboG5giGAgztzqfrIJkmlqGESIxdu9sZt2mClZdd6aHWH5BCsNjLsKBCHNm5+D1BmloGMBg0JBgjvcP6+2dJBaKohZEMlJttA6P4wmH2d/TiyzDV9cvJzfZDsSj/TqGJ3D6ApRmpTI/LwtfKMTulm786jCf37iEvJQEhsZdnGjsxx+O8MqxZsbdXiLeKAF/mK6BSZ7bVousgqyMBGKuMIkWI3//8EYy0xK4747FPPabPQz0T/Lzx3axfEkJI0E/e2u7GHV7yclKJBqTkGSJx58/xMCQg6wMGw5PgGvWzSIYjPGj3+8iHImyRBRZMDefp1+vYWDESVleKsk2Ex+/dgGtHSOYNVp+/MQekGX+7sHpoelrlkzvuH24pY+2yUmy7BbypETmlGRh1GvpGZ7iT68fRyeoEFUCAgKlhWmUvqVFiygKPHjzIt7Y2sDu3S2sWlVGz8DkJfuhBEHAaj5/I9Exh4fXDrVw26qq0+ZRq0nPPWvP3zJIFAW+8paiywC76zo50NTDbcurKMm+eHeI32w9ijcY4gs3Lb+k30PhvaEI2Uecwx39RGMS2xs7uHNRFSpRZH5RNjvdHXQOTp4lZAmX6GA/F0/vOonHFyI90UpqgpmpKS/VFTm0nuijtq+H+fMKMZl0pKZaufmWePmh/Xta+dn/28rnv3oty6+dw/Jr5xCJRJGMWia8AUR3ANeUn099ZSNvbm3A6wlwzfVzmFGcRkf7KK+8XEvXwATul06Qm2Th9RdP8PDfX0t2fgoRrYDXHeEHP96GHJOZWZrBlz63jsQkM4/859MEVDHuuX0+SakW/vWP28jXWRnS++iecKCRRBr7h7nzWANz8jP4zI2L+T9Pvc6u1m5UGhW/PXiC15vaiMgSGAWG3B6WFOfR53SSnWVH7BcIRSNMuf388+c2MTTmIcViQCsLJCVaaOoYoSIvjQVz8gmHovzvf79KapqVUDhKLCpx4FAHYw4vX/mbjTQPjBGTJCY8Pp46WEfH0ASRSBQhLCFIsGxeIRuXzeLPrx7HZDNQVZ7DnTfP51hDH/WtgxgNWvKzkvj6p+Pm4h/+8k36+icpKYq/gHgDIVp7x6guzZ5mYuwanOT53XUMTrroHXRw86oKnt5xkpa+cebPzOWF3XUcb+3n2kUz+dQtS857X6QmWhgZdEJMZtWqMm7eOPt00E80JhEMR043N307oXCUXzx/gLL8NLzBEMFQlHs2njEH7qvrJiZJ1HYMsryq8F3fuya9Fr1Gfdbq9HzEJImY9KGNo/urQxGyjzhTfj/H+wb5zu2bTm+bV5ZDSqKFvLQzyaWyLPP8rnpK81IoLzx/l+GjzX1kpdjITD47FHrN3CLqOodIsZvo75/i5S21JCaaWLysmO7OMUzn6CYsCAItjYO88XItG2+YA8Dvf7aT0KCLz33tOna8fJLxqV5Ghpx84tNnoup++tguamt6wB8lMdlMdqqd5586jMfp53eP7+XzX7mWB+5aSigY5ic/2U4kKqHVaXD4gjzxWg16lYqxgJffbz3O0f5BJk+1QtElajHHNKyfOYNhp5fekSkcUz7qG4fwSxGqCjO5c1kVL9Y1I4oim2fPJBKMsrejh0UzctjR1kV+QTJiELo7xhAdUYLBCK/saaCve4Ikk4EEo4FUqwmzVU/PpJPFyHgCIaJjbkStGrNdi6gRQSWw7WALS4tzmV+VR06KnaKMJLzeIO6ASMQXxRUJIYZk/vzCUXpGpphfmsXf3rcagASbkYgkceO6SnbvaGZywsPtdy3imrUVOF1+wtEYzlCQh//zKRZV5mM26Ei1mU73gvveH3cwOOZieWU+KlmgpWeMjGQrK6riftVrlsykvDADZzTES8ea2Dz/bB/WkZY+irOS+dKXNqLRxIN8rll5ZtxvXz1C34iDz96ylL2N3dy0uHxazU2PP0Rj1wjJdhOjDi+Bt5Xx2rysnJa+McoL3ltnh/klOcwvufTgkE9fe7Z1QuHyoQjZRxwZSLWa0ajP3AqvH2mlpXeUxeX5pwM3PP4Q7f3jTLp85xWyQCjCzuPtWE16PnfLsrP2F2UlU3RqhZeWZiUxycy86jyKi9MpnTk97H1q0ssLzx9j5uwcRFEgNSMujFueP0531xiuCS8Twy7mLS1iyh3AZNLHw/u7Rnn2pWN0dY2zemkpnnEv3V3jPPPHAxi0GtILksmekcqxE91cu7GK5rYhBLWIEIpx6Ggn7aNTDEw48QUimHRaCrOTWTqrgE+sX8CbNe3sb+klz2bjeOsAGkFEHxXRiAKOiJ+8tETyE+009o9SlJlEb9CJqBfwRCN0BKbY0dPF7XMqeOpwHYMBN8FolN4JJ/tqumgeGMMTChILRklIMpFg1mPQqhkcd/L7Jw/S2TtB4YxUMmckUVaYhsWk43BjHwOjDjp6xqnrHELQqvi/j9zA4uI80uxmvvj9ZxFFge6xSSZcPvqGpijITsZ8KuR9ZMyFKibT0DrEYO0QPR1jzJmbT01ND9sPtFBUkkbd4BiRmERMkmhuHuL1oSnWL59JeUkGs/LSiESipCRb2N/YgyTLfPnOVaydH/dhleWlUZaXxr89vR1JkpmVnkJWiv20EL1xvJXdNZ1Mjnn4zE1LmFeee/rvv/VAM6IgUJSdwsn+Yf57yx7m5GZwtL2flRVnVlavHGhkaVUBqYkW1DYNWQlnwrRlWUalEql4y/0alSR+e/gE1TmZzM2+cKqFwtWDImQfMZ4/2kjTwChfuX4FBq2GOxZUnjVmVl4a/aMOirLOtNqwmvTcsrqKtMTzJ6gadBrml+WQmx5PkJ5w+giGI2Sn2s8a29E+imPcc7qG38SYmx2v1nHdbfMwWww4XX6cTj9DI0423DCHHTuayMlPobV5iJ6OUQQZHv/xdlLSbXzln28GYN+JTmpbBmjoGsGm0xNTAWYNkkomFIqgV4n0NI/g90dYOK+A5qZBnnnlBBOTPtJsJlasKkNWwU3XzOax5w9RnJfCP3x6AwAv729k0uEjHIoy7vYTjcaQQzJ2vY7FpXnkZiYw6fdzpKufF082UVmQzpQ6SLoUZjjmZhwvrwy2kJpgJKKSwKqiqCwNi0nPzt4eRL0KtawhyWxlcNJNKBqlc2CClfOKeObZ40iyxLUVWTz98nHa20eorsqjs3ccvxhFK4gc7h9AK6r49pM7CEYifHnzCiwWPQePdbGqLJ/JMR9jox6GBhx841vP8PmH12HRashKtJGg1pI4O5eG2j7+41vPYjDpGBx3Me7wISdqMOl1fOnuVfz4x9to6RzhgdvjZcQ+d9sy9tZ1sb+1h6gok5Nkw2LRc6xjgJ9uO8TqmQVMTPlYN6uIlw828s1fv8bGeaV8+oZFyLLM0dZ+RhweUs0Ght9W1aWubQhBgK/ev5b/t/8AsgduSpl1OuL11RMtHGztZWDYSSQS49Ev3Mq3ntmGwxukIjcdq0HPt7fsxKzT8rebzvipJr1++h0uojHpsgqZLMvIMtMKYStcPhQh+wjxSkMrIx4PMvGVGEB95xAFmUnTfBB56Ql8dvPZPo2/RH/tPtSG0x3gpo1ndzpeO/9MztkTrx/DGwjzzQc3nDUuFIoQjcYIhaK8/nodtUe6yMtKpLG2n0UrSigsTCWzKIXm7jF2HGhDKwu0tAyxfHUpN986j5pDnezf0UzUHw/DDkeiPPtqDW5/kK9+ej3tXWN09U8wMenFoNaweNVMurrGMIoCq9bM5JVXTxKNxEjKsDEjL4lbN89n8aIZ/PnFYwgCzChIYX55Hu394xRmJvHLVw7hC0ew2PR4g2G0WhG1RQS9in+8Zx1/89iLDDvdbJxdzOMHTtA5OsU/3baOb725nd6wA0mQaByN8M8TOyjUJGI26OgKuPANjaOXVKQYjES9MQIaiby0BFq6xpBiEi3tI6g0KgwaLZs3VjEy5eFITRdjbi8htUy/04UuSY/OrEGKyvSOTzLaPMUPJyIcGxrGE45wqLmPa+aW0tg5TDgco7ltmB3bGti0qYpbr59LQX4KzY2DSDGZyWEnKp0Gs1lHdm4y2DRUlWRx6FgXY6Muqosy8fhC/OfPtlJdnsOCOfkMOt3c+nBlPO+woYdxn49INIbbHyIciSHJMkaTDrVWRK+Lmw8FQWD17CJmF2VyrGcAtXW67+mzty09Pe4L65Yy4fWxuupMtXxvMETH2CTRSIycFDtmo57i9GScviDdYw5m52WQZjVj0mrZ39nL7rZu7p5fRWFKIp9aMp/U97mXWWvPGEl2I8n2+IveT7ccYNLj55/uPfveV3j/UYTsI4I7GORE/xA2g45/vCUekdU74mB3bRfHWgZ48PpLq/gB0Ng2jNPtP0vIuvomaGwd4ob1lQiCwILyPFzewDnPMbc6n7nV+QDs3NmE1qRlzoICSiuyzoypzKW+fYhxVRiLqMLvjlDbNMCCeYXc8YkVrLtxDk+/UcvJlgEmJ7zEJAmLUcfC2fnMr8zj8MluMpKteKf8/P43+8ifkYLBqOXWOxbwf//3NU62DJMfClGYlwJqge/97A32HG7HFwqTUGinxRkPr7cZdIgIpCaYuWV1JS+fbCU3xU7D0CgajYpvPbeNiBzDFw5j1ulItZrJT0rgSOcAI04vsgZ0Wg2RqEQwFiMQiyBLMhq1ClmMBzRkZthoV0fR6rVEozKCAEZUjPY5WFydz7IVpfzdd5/HGwsT1Ys4gkFsNgOdASehIS8Wk46QRqJ+agK7XkSv1qDyxhBiMiablpq6PgySgEpUUT07hyMHOuhoGsIx5mHZmpmEQ1GWLCnC4wkSi8bwRaP0dYyzfFkx929eyFf/5WlUKoEHPruK3sEpmjtGONzYy29eOcIjd64gN8VO9/AU/lCE5WUFrNaJhMMx1m0oRqUS+OWOw3RNOHhmbz3hYIzkZDNZKTbmZ+bwZnsXdSOjXMOZaEib5Uwk4tqZ09u9dE1MkZNsZ9WswnjKycJ4ysnn1i/meNcAzkCA77yxixsqyqjMTGdPezeSLBM7lVick3DxUlbnor5pAL1eQ/Fboi6DoQhPbj1Be9842Wl2Hr4jvvpLT7RMK6StcHlRPumPCFa9ng1lReQn2U9vy0qxkWw3sWhm7rSxsizzk1cOkJZg4Y5lVbydT9yxhHAkyk+f2ktMkrlmSRkFWUn88bkjOFxeGtqGuH5dJUsq8y86r6FRJxk5CfR2ThCIxPD7wphPNWgsnZHG/Xct4ecvHyQ91YZJqyZB1JF8yrwZkmRc/iANHcPcun42T2w9TnKSBYibdJbMjftSdrU2UlKSxpQ7QEZmAu1tI9xx6wLqO4dp7xpjYsLL4fpe3N4AFpsBKSLiCgTRCTrqh0ewCNq4QFblkZNsRzKC1qTh23du4j/f2MnBwQFkX4zZ2RnIyBQkJaASRDJtVqwmHXIMNHK8z5naLyAYIDPJitakITPFSveYg+PDw2hFFdesnMmON5rx+EOkJiag0uuZX13Aky8fY3TMRfnMTIYnPfSOOEhKNqEWVGg1au5bOodf7zmOHJPJzUvGZjeSajZjCIQI+iOYVSJmnZb5s/MQdCrqxl0MDjsxqVS88Js9qHUa1t8yj8//w3WcONRB95CDnuePMTA4xXOvnWBo0s2iOfloNWqK81O547pqXj3QhNMXZMTh4QfP78Nq0nP7qiq0OjXH2/o53j3Igc4+/uOeTWSn2PEHIuCJ0dIzijw6TkaShb+9eSW5aQmMebxEYjE0qviKbW9rN/vaevnYkjnkJtk43NlPeXYaJ3qHeLqmnnm5WSwrzacsMwXNqUowoiiw9WQbDn8Qe7IBTzCELMusLC5gZXHB2289nt9fT0PfCF+7Yw2TUz4OnezhxrWVvHm4lfa+cT53+7JpVWa2725Gp1VPE7LuwUkCoQiiKLB8zhnf3W3Lz/7eKFw+FCH7CLG4YHrUlVolcve6s/NpZBmmvP7zvlEaDVqMBi0mg46hUSc7D7exRxQZGXIw7vSRkDDdbPObPx9ArVbx8dvOjuTa8kYd/X1TZNhMbHujju1v1PP3X7/hVLuNKHsbu/nY+mpcwRCjPi+v1rcSPiDyiWXzSLAb2byhiuLsFCRJxkuUqfFJajsG2VnfSYLFwAPr5rNoRQkRNbzx4iHK9XBv+VIkSebhB1bx1J8PE/AGGQ8G8QcjRKxqMKoRVDFGfV68wTBqWSQQCNG0Z5J9bb2IyRqsJi1FKXETYcTtxpag459uW4vdYOT3NSfRiCI/mHMj+0Z76PZPMR7xYoxpKLIkoVOrmYoFKE1NomFkDKNei6iSMYpaVhTlM9XnpqooA18gAqLMln0NdA9NolercUzGayOqRYFYOEaB0UJ2biKd3ROYIirmpKfy4IaF9HZP0KRWM+R0kluQzMKZORx6o5m2lmFSk8xIgkBeYTK331zNn//3dRJSrMwsy+D5PxwgEpXYs6+NVKuRr//DDTS1j1BdnsMDty1GlmV++9IRstJtPPm9B/nVSwcZd/lISTLTMTDOL149RE52AokmA85ggK5JJ//07DZm56ZzXXkxP/vzAXQqFbetncNv953g8d3HeWjlQvzh8GkRA4hJ8ik/k8yRrgEe3X2Eqqw0aroH6Zlwcve8Kipzz45EXFSUi06jZk5hBv/+5i7e6OnkK8uWYdWdHRG75VATkixzvGOQ9pYRIpEYXf0TOD0BHC5//HN+i5CtXl6KXjfdBDqzMB21WkV+ZuJpQVX44FGE7EOALMsMuz1k2t6fwsieUIg/1ddxY2kZGRbLOzrWGwjx2AuHWFmcz+r5xRcc+8CNC/EHwzz7Ri2rFxQhhCWCwQh5hSkcaeiloiQTURQIhqKoT0W+CQinHeBjEx5m5KfQOzxFn8fLhvlFeD0h2rrGyMlK4GdP7KF+dBy9Rs196+dR2zvE08frGXV7AXh89zG6Rqf4xk1r+N2BE0iJKjRekR9t2U9uqh272cBjrx3h1YPNyJ4I/kCEQYeH//erHZw43o3NYuCOW+bz6O934/EFUWlUyFEJrxDFnmhk0OchIklkW61EpChBOUanY4oSawplySlsr+tgyOUmFIsyGYryi33HCKlimOw6glKEg8N9HHB0MhH0oxbVFFgTSU0wMTLuxREKMhHx8dgdt7C/p49Htx1izOvlP1/cwcMbFjM04OIPrx1jeNyFKxgkJsq4wlEcXQFEixq7zQABGHO4GJhw4RdjCHqBnjEHX/nlFuYXZpGem0AkFiMrwYLNZOCGm6vxTvlobRgkLzOB3KxERJWKT3zlWl59fDe//+5LzJhbQOaMVPyhMEaNjpMtgxj1Wr72N/H0jF+9eIAXttcxf2Yuu4+2M+X2MbMsk8UlubR0jFCSl4Jap2HFrEJWzirkk796ht0tXZzsHiJRY2BGdhLL5hRSnpdOUXsSWYk2Htt/DLVKZNPMYlzBEN96dRslqcn8zy3XAdA6OoFeoyLBbGRTZSm1fUMsnRG3IvjCYX53opZ1MwopSUlmw6mqH+FYDLNew3DAy+/qa/j8/MVvv3355/s2Uts9xMKSHCpy0mjuHKE4L4WS/NSzxkLc1H0uinMvniCtcHlRhOxDwPP1TXROTLEkP5flhWfXSXwnTPkDfGfXbhLNRt7s6uK+2WcHZJyPYCjC4386QMfYJHkZ5+7R9HaMei0fP1VR/5MfW87x5n5+8ex+ksxGYpKEKKp4+P546aH//s12dFoNX7g3nu/17GsnaO8aIxiL4vIEWbKshO6+CfYfbkejUXO0pR+NXk1ZVvxBUZqZwu3zKnD6g0iSTF6Sne217Xzt969SXpjOmtlFOBx+hsfdXLd4Jiatlh+9tB9/KIxJoyI/MZHijGSGxlwEI1F8E26e2V2HLxojYhQxJxmZNzePmu4hIhEJo06L1aQj02alNDuF2oFh7Ho9o1Methxqwh8KMTTkRGNWo1OrqR8dxUsYPxFC2gg/O3EYVySMJAgk641UJ2XyzIlm9Bo1qwoLODjZw62v/ZGfrt7MypkFHGjt5VBHP/vre9AFRRK1WpyeAGhAUImoBFAFYlg0WpbPKcQx7GXM6WXU7yPHZqIv7GY84IeQTM3JPhKNBsw6LbGIhMPpw+8NcXB7M2FvCL0o0Fc/yM7f7MZu1KKKRYgi4nF4qTvgwmLWs2r9LH73h/2kpFpZMi9uNmsfmMRsNWAx69hzoB2tqGL9PAvP7q8jJdHMyqoZp3O2frXnKDqzhsX5mQQdYVaVF1KcnMjPXzrE3pZuPr5+HpPhAMdPDOINhRl3++iamGLSF6B+eJRht4cMq4WN5UUYDBra3ZPcUVXJfcvn8quaY4z5fGwuKsMdDHKgr4+SlDPJ+1qVin9cs4Y/Np5kada5BSgvLeF0rqTFpGfhe2zwqXDlUITsQ8C87CyGXB7KUpMvPvgi1A+PkGm2EBNk7qx4Z3UXff4QHk+QVRWF3LQ6HpbvD0f499d2MCs9lY8vOn9Zn7/gcPvJz0zitvVzzjK1ZKXZiUUktmyrY+OqWRTnpdLfN0VeRiLXbazEFwgzIz+FuqYBli8qomZ0lCPt/Ty66zBzx4bY3tyBEJMpSkkiFI2yrrKILYebGZp0YVRr+H+f2YwnEOKXbx5GQOClw40Mudx8avNifvPkAQK6CBqdmvKyTIpnpFJb14/bG0Q2qbAIejIz7dy/fj6WI420joxxdGQYpyOAqBJZnJpDksvI+JQPnydEq38MWRDQCipsGj1uOYSfCGadFiNq3IJItsFGr96CIMJCex56vxYheKqieVDC7QszGfTz0GsvMd+SiUWrxa1W4whHIBJjzBcBGQxRkf/4282MTLjZu6eVztEpjh7rxRsJoVKryMlKJDXVgmM8QkSSMGvU4Irh94QIuULkJNoY753CPepGAFQaFUF/GKtZRywcYWJwFFuqhRseupYDr5+kak054e4JepuGybWZUQki3//x65hLE7BnmvnbO1fyo6f2IooCbm+Qva09TISCOEIBnHKYb6Wvw6zXEo3GWFmQz99dtxK1GC859ZPn9jHq8OAPR/jpjkOkp9lYVpjHupkzGHJ5qA5kMuzy0OaY5HfHaqjKTudAXx/tjklyE+z819692PR6dBoVUUmiIj0NjUok65Q1Y9jj4Yf7D7EgO5NbK8q5v/LMPRuNSWxv6WDZjDws+nNXCjkfbb3jvLyngZXVM5hffm5hVLhyKN3hPgTkJdr5/IrFJJvfe0jwysJ8bphVxleWL0OrOr/Nvqt/gp8+sYeu/onT25ISzHz1bzZw/cZKdtd2EonGUKtEEo0G7Mbz17N7K+sXlfL1B9efVagV4J7r5qMRRLz+ELWN/axbUcb4iIvRIScjE26efu0EB2u6mVWZzZvNXRgSdZCppi3q5HfHahh0uSnOSOZfblqPQavh+aON2G0GBL1Iv8/NQ0+/wGsNrUx4/Oxp7mZxSR7XzSkjUdSRaDIwPubieEMvm1bMZOmcQvKyE0lLs6HSqdFatBTnpVLbNcTCshwmAgFkSUKFiBiC5YV5zEhNoiglkcwEK1W5Gdy0qBwBsGl1hJBoGB6lZmQIMSbgk8LUuAfRyzr83hgDLhc7h7sRifu29nf3ofepsEYN+EMRGgZHqO8aYcoVQBZBHYEEiwGtDEJU5n8e34HLF+T662aDSkCtV6E3aslItyFJMY7W9RIIRuJNQXUq/EIUg1aNPcFIQ+8IRxr76B9x8Z//czdGi46wKDARCCNHw6hUKnzeCD1tQ8iyTMOBNgRZZnzURdOJXvbvamHPvnbauscQRYGmgTEGHW5kUSAnK4GPb5qHzawjI8nClNvHXf/7R+74wR8Q1SJZdivfe3n36QK8t6ysZOHMHLKzbQwFPLQOj5OflkhecgItExMkmo18evkCzGYteoMafySCMxAkxWQmQa/HotPhDgb53LyF/NPKNQD8rvEk3zu0D4ABt4t+txPzOXxih3v6GXS6eb6m8ZLu5XOipIV9KFFWZH9lCIJAcXLSRcdNOLz4/GEmHF4Kc95iktGoeWl/Ix5fkJ01HWxcUMrfb1h5wXMdrOsmPzOJjGTr6Tm8HbcnQCAc5XjXIN5JP7dcO5eBYSfj4x78/jAl+am0dY+xt7mHPSc7kUwiJWVprJ9dzLHhQfSiiQSVnr/fsBKjLl5JP81m4XDXETyhEEGtxMCAB5czQGVaGncvnU1mopXVVTPoG3FgtupRaVWkp1j5+YsHKMlN5cZrZ7PtSCudTgdjYoCt7e0UxZy0HZkgHIyilVXMSk9hcszHCwcb+Y8HrsWo1bClvpnfHDiByq3CFQ7jGhhDtIjIakACdyzMwJgHq0VLusWCXqOmbWISfzCMKIOISNgdRVQLLMnLYlleHj9+4QCCCoiCJgzpSRYevm05P3/pAOMDLoZdbn77+lEwqkjLspCVZmfc6cUZCBGYCiGFYywtLKBhaBynP4xOrcZqNzHl9uP2Bkgya8nOSSYt3U52QTITvgCEJMQUO1IoSkyj5ciuFjQmAxULMyivzsM16aa9cxxBkikuSuOmebNonZhEkmWGXB6MVg3/883b+NYftlJdnM3mxeU8d6SBx3YfYzzop3fKiVmt4WT3ED/Yso8vXL+MCZ+ffb39TPj8mE1aBEHg128eobl7hDdbOwlVl1CemcaRiUEkWeal2+/jtvJyGsZH8EUjLMqIByw9cbKO5vFxvrx0MWqVwKykuF/ryMgAs7JTKT1l3Zjw+dja0cHt5eUsyMtm1O1lTWncTDrl9dMxOsnCGRcvPVWSl8JXPr7mouMUrgyKkP0VIsvyOcXkrSysymdeRS4q8exF+Zq5M9h6pJVllWeHLP+FUCTKM/vqWFicw6G6Hurbh08nsT751GESEkxs2lDB9sOtNHYO4x73k5VuJ+AKkpFio7NnjJzMRJYuL6FqVhZGnZZP3bGU37x2hPyxRGYVpPGxjfMYC/qw6/S81tBGSWYSf/PHF7lxdhkfX1JNeXYqVqMejUaF1q4BFczOSMds1JOeEA9yicRi/PcLe5gMBLl/0zxGp7xs39/M6Iibj22ah9WkJ2iWefpIPcFoiJaRcUa9PlQimFVaxt1+1CaRHvcUn3jyGe6cXckP3zyA2x9gyu3DYFAjCgLBYAS1DlJ0Rvp6ppAM4HVGsJh0eFwhgoEI4YiEShJINegZ9/sQwpCuMvPmvnZ0MRFBViEAeoMKk17HC0ca8ahj+MwCYkhGjkTRxATGpjz0TzhRa0SIyOhlEb1WzVCXk1sWz+J4Sz/9ww7MZh1DY07EgIRPDNM/5uJr//4svgkfsgwWuxF1LEbIaARBJBqV0YsynQ39nHzlKGabgbJls3CLAq5QiH0nOtnf1ktKihWvP4RgAH8oTN+4k2A4yic3LkSWZJLMRkwWLVsb27mhsgQ9mtNNX60mHUgyOrWKiXAAtzuCVdDi8gWpTE/n9jnl/NfePQQCEXRqNS+0NnFz6Sxe6mzBH42wMD1euFgtCmhEgadaG2hzjzMe8XLXrEoeqKym2zlFns0OwJbWViKxGC+1tNA94eDGWWUknLIuPHmojkA4QnaSjUz7B9uB3hMIodeolUjH9wlFyD7EhGJRflJ7iKqUdNbnFl3SMS2T4/y2voZl2bncUHR208C3ci4RA7AY9dy++sJBIo29IwTDUQ619lFVkkVxTtyUKMsyvf2TeH1BAAZGnIxMeCjJSGJmUQZ3XF/NyaYBZhZlIIoC//D5TfzhqUP8+Jc7+Pxn17KwMJvbV1RhMetpGhvjlfY2EkwGylNSOdE2QFSW+PWOo4xPevnKDSv51Wduw2bQ4wmFePjFF3mtt4P56Vk88tSLFCQmcVvlLHRaFQ4pSP+EE1EUUAsizmCQgw09LKnIZ1NlCQkWI6+ebMWk0aAVREa8Pr5373VsqWumfWiCViYxeLT8qbaOqXCAqChhtxgosiTQ2j1GLCpiNmqRAhJyVEYtCWhUKsYcPlYXFtAxOEndyCgqIEmlYyrqA1lmz6FOErR6TBotaWYtg2NOVKLA7PIsXm5oRSUIqCQQwzJqUUAniDhCISQBZAkMajWhUAyjQUtvzzhPtk+gtekIijHq+p2YdRpkjYgUlZkYduMd95ObZsNi0pM3IwWSLbS5QljNOvIyrTz0L7fy6Df+RM+wBldQJtEfYTISwjslIagEStKSsduNDI27KM1JxeEOsG5mIQtn5dE4MMrM7FS6RybpmJzCpNWQabNyy+YK+scd7K3voqognUXFuYRiUboDLkwaLaJHor1vnE+sW4BRp0OrUrEgI4tRn49Rr5eTo8NsLprJZMB/+gXtzsq4D3fM76NuapgZCfGgDbNWS2XqmbD8OysqODIwwKjTy7HeQaqzMpmZGr9Xl5bk8syxBlLeB5P+OyESjfG9P+8kI8nKwzcu/UCv/dfKZRWy73znOzz33HO0tLRgMBhYunQp//Vf/0VpaenFD1YgEI0w4HVh0er4TeMJ5qVmUpVy4SreVp0Om05PsvH9/XLGJIkfvXGAvOQEbplfztwZWcQkmYr8dAxvaW0hCAIP3L+MwKkOvoERL/aQwIN3nvnCLl84XZRn5KdQW9PLjh1NDE95MBq13H/nEvLsdux6A6VJyeyv6UaIgRgDXyDE84cb+eSaBSSZ421lEowGNKKKLLuVTJOZbf2d+P0RvrxmKR9bPZdsq4Vj7YNMuH2EgxFkQWZ3TSdl+WlsO9yGzaonHIhSnZWBOCUSDsV4+lg9xiQdIbtMoT6J3jEXHd5Jwkgggi8aoWfSgRSNoZIEClITaO4ZQ5Jk8k1WPNEIHm+QnbWdLM/LZTjswhsLMeR3I/pAFQZJE0PQgCYqMunxYRN0BIIRdjZ3EZMkko1m9FoBt9OLoJIJh6LIgoQYgIgBglKUdJsdjz9IwBcmGhNQaVVMxYIIQCASJSvbRtAbQRcGs07LP33rZgAyMhII+sN8/x+foX53E42HxvjB3/+JRetm0T/sQQxFGR+aYsymRaUSWDSngIERJ6GpEHcsqODa1bN4bk89B+t7OdI7gJcovWNOrGot5WmpfGnjMrKT7Qw53LQPT9LRN05j9ygTXh9RWeLWlVVkJVj43ZsnyE62kWo3YdZqKUhOoH1qkkfKFzHi8zInLeO8L11JegMzrEkUWZLZPdzBY62Hub1gDjfmlQNQPzLKge4+hCjMSUmnOPGM2f143xB5KQk0DI0yN/eDKyCsVomUZKeQdY4OEQrvjssqZLt37+aRRx5hwYIFRKNRvvnNb7Jx40aampowmT7Yt6CrEbvOwH8u24QzFOBnJw/jCYcuKmSZZitfX3J+n1Y4GkWjUk0zPY64PNT1j7ChvGja9v9+ahdatYov3roCSZaZ8Piw6vVsbW6npneIr25YPi2J9S+89NpJnJ4AX/3cBirKs3G7g0yMu3G7AxTOiFdFGBt1cXh/O9dunsvsimyef+YoBw+0M39ZEfNnx1MQTFotazLzOdY7SE6aHXNUzcz0FPpdLrJT7NiM8Yr3T7c1MOzz8PObNxOT4fsv7yVJbcCu1dMyMsarrW2UFCajsWt5ZU8Tsl1kwuHjYFsP94fmM+b0crijD41W5NjgEAMBFzFJJqSL4fF4sWp0qFQiFm0ATyRMapIRlzvEiNtNVJZRG0CKyZzsHkYOASoYn/Lh18WQYhCKwMGufvwTAWQVGMw6QlIUUYZwKMrImBuLRU8oGMYTkdBoRHCFsOq1hCZC2GU1MypzQQ0n24bQhOKfsyiBPdlAqs3I+IATlVFNWWYqiSkWpmo6iAkyBp0GhzuI0aglpoEQMs+9WsPEkIvUZAvZGQkkJFuIBCNIMnQ29tPfMYKYaEUWJdKLM/AFfKgFkYIUG9t2NuEa93CgvptX9jbypQfX4PUG6Xe6mQwEMes1JOkNFKQk0DswxaG2Pup6Rlg2K5+bV1RQ0zpIgZhAy8A4zf2jbK9pY0Z6Ercvq2Lc5eWFgw2kJpl4preBu0srWZtfyG9P1nBtUTHOUIjSxCREUaRxcpSnWutZkZXPiM+DRatDr7cwFvRydLyPG/PKcYWCTPn9hGMxbi6fiV6lZmdjJwsKsynPTuPW6nIOdfVRlX32d+pkxxB56QnYzQYONfWy52QXm5eVn9UB/d0gCAL3rZ/3ns+jcIbLKmSvv/76tJ8ff/xxUlNTOX78OCtXnv2wDYVChEKh0z+73e6zxnzU0KvVpKstfKxsNlnm9/YGN+X18z8v76EsK5WPrzjTfPD5Y42EozHKMlLIfUsJq0Sr8bRQaVQqvn1HPCn2oT++wKTPz8t1rSRp9CwsyUX/liogc6tyeX17A8frepk3v4DaI9386zefIacgheVrZ1LfNMBY7xQjw06MZh3rNlYyqzyLiUkvKqOa7bUd3GQ3UNM/xKtHWki3mPnadSv48QsHmPD4+Mc712M/1RX4vw/v5c9N9RhEDYdb+knWGvn0gvn8z5a9HKrv4XjPIOkpFvb091KUmkjWDDvDg25kWaZ/0s0XHn0BnU7DlC+ATlTTH/AQlWW0OhUtwxP4QmGSDAbm5mTxDzeu4FcHjzIjPZEnjtTjFoIYVCLqAEQlGUElI2gBGULBGHIUUIEkwOzcDOonB3EEg3icQfQhMJm0BIMRREHAYNQQCEaIhMII3hgWux6zSovb78cXiXJtcQ5/rqknKEioT1V8Fv2AN4ZfFSJJo8frD9HeOoJuxEEsIqHVqAiFo0RCUYLuEHa9Fv9YgG198ervxGQS9FrStCoEUcSYYEJQiXjDUcSYjGgy4Bpxs37xDJwuP7/9+W68vgCiRiTpVMX6f3v0NQQJQsRQW7WUpCdz55rZ9I86GXJ4yMtKQCuqGBpxsag4m7q+YVzBIDkpdlItJmRJRopJdAxN0Dk8icMbIDgcY3TYw7df3cnD6xYTjsX43oF9OKIBgnKUL1YtYdDrQSWImDRavjxvGT+sOUiK0cQPltxKks7IkNfN947v4XD/AMk6E6uCBZQmJjHs9HCgvZeyzBSeO9LAiNPD0oI8bKda20C8q/SO4+2YDVo+s3kJWrUKlShcctdqhQ+eD/Qv43K5AEhMPHey7Xe+8x1sNtvpfzk5l97I7q+d0sQUzFrtezqHSaclI8FKzlvECuCW+eWUZaaQkzhdKD95zUIiKonf7To+bfs/X7+WdSWFaKLQO+bg5aNN7G3s5rtP76RjeIKSwjQMWg2/eHo/P/7THlxOP1aLgZmzMplyeOnoHMOeaiE13cbMimwAMvITCQgxesYcHG8f4J4fP8G/PbcdWSVTlpfKc8eb6HU5GXX7+OxPn2XE4SEUjbJ/sA9HMMCE10/r6CQtYxPkJduRYhKiIOILhNGr1VSkpOILRXD4AowEfahUIhoE3P4gA14Xo/jpirqIqCV0sogchhGvF3coxMCUmwSVjs/8+ll2Hu/kcEM/gjuG2g82jZ6SxCRMARGNF4wegWRJDzFQB0Ebgk1FxTgmfFi0WuyoUXkkCEroiVe1N6hUuBwBIsEIagmEsIxzxIt/IkAwHMETidDpcDDh9iMLMmhFbDY9ggBBbxifN8Tiijwi0Rh+JDzhCJpw/Box6VQwSExAHgugDUtI/gixUBQ8IVyjblQGLbJei6k4A1+6DdlqQlKrEFQCU+Metj5/nM7GQYam3PgkCZ1dj1WjQSeLxAJRYsikJloIh6L0jzl57UAzfSNTuIMhdjd08cqhJo53DPDiwSZ8oTA6rYbO0UkOdvSRlmghKsnMK8pmZmEq1kQD/WNOtIKK0owUXm9sI81o5vMLF1M3PsqI18O21k4aB0f5pyVr0Qtq/lBby7jXh0mjxR0M8XJ3C3adnmyTFbNGR/+Um1+fOM6Qz8Ndi6v4+PJqHnvzKNtOttMyMM7/vLSHEYfn9P2dYjeTl57Amupi6tuH2L6/hSWluad76Sl8+PjAgj0kSeLLX/4yy5Yto+I8ibrf+MY3+MpXvnL6Z7fbrYjZ+4hOo+bzm6Y7lz2BEI/tOEplbsY5Ix3HXF78b+u6m2m3UpyRwq62LlJUBh5YNIuW/niOkVoUMZl0CIkaZljSmFWYzrWrKrh285nE1N6BScLhGP/8b7ed3rbnQDvd/ZNkaKI0DI/gV8XQaOIm0HUVM/jOq7uoKMqgpmWQSZ+f7XVtbJvqZtTjJcGsJ8VgJDlqwRcIsbu5m89ft5SMBAv3/+wpegYdVGSk8Y0Nq/jU754lHI1i0WqIxKI4A368GpDFePCEXqNCr9UQkyTCxECIpw61DY8jxwAZSpOTGR1xEwxFcAf82PQqjJKKiD+CBHiCAXQqiJkF1D5oaBrGHQoheqLoYio0p1ZUkVCMsBBDisRALSKoBCRJRhIFREnGGwxjTjbgCIfY09pNLCQhqwQktUzejGTq2oYIhmVGVX5e6GxHMoM6IBATZdRaEVmSsduM5FitjHdNYYiJeGIhIsEoMhBVC2jCMr6oRO6CAia8QTSyhFmrRaVRY7br6W4cQohKDHv8hMxq0jLt5OYk0VI3QGqSmZVryhh1ekmwGdh5pB2PO8j+2i40GhWFeUlIepFgNIbZoMdq1lOak8q/3rOBX+w4QigUxWbSM7cgk8aBUZqHx3mzpQMZGb2gon/CSbfXiVmjZVNxMXadjmS9iduqyglG4vfksaEhtnd3YtBqCIaiHHD1Muzz8HRDIw5HiHsKqjg5OkKqyUxFehoGTdyfOyM9iebeUaIRiRSrEVEQeOyNI1y3YCbpCRZuXRUv+tszNIVepyEYjb23L5/CZeUDW5E98sgjNDQ08OSTT553jE6nw2q1Tvun8P7SO+rgJy/sp3t4Coh3zI0LlXzO8flpiSTZTRzrGkCWZeoGRghGoph1Wsx6LbcsrsBuMrC4LI+v3LyStvZRxqc8uAMhMtNsXL+ynH1HO5l0+ACYnPQSDcaYHHfz5b97Aq83SFfvOBqVyOpFRXSNO/BFoySYDBQkJ+L1hjjQ1svmubPIN9vweoLo1Cqum1dGssFIvtXOqtx80rFwR1UFtpiWR18/yGsnWnns1SOEPRF0gsjC/Gw+/8wWQlKMpAQTQYOEbBWJqgTUKgGtScQcViO5ZbRqFWajDpNOS7LBSKrOSPeIAzNqEiQtsifGzfNmoVWpiEkwMOUmFI7Gw7pjcUFUBWRMIxJqt0RgyEeq3oAqKiCqQatWI8nglcP4hCh+HYSRQS0iAahBVgkE5BjOSIhgNEogGAE1RLUQMgg0Do+DVcSfBm5ihKMSUa2AbBAwGrQIehX2DCtJFhPjAy6C0SiTxPCGokiApBXQ2w0Y0y1ETFoaJx0MhgNokwyY7AZAZmDEhSrBSGpRKrJeg1atIhqTmFOaiUmnJtNuZmFpLhq9Cn8oQklmCnkZSWjVKiRBxmY1YtBo0KhVVOWnc8+KOXxm4yL+z0vbqB0bYTji42Mr5rKnuYd/f+5N+sedfGzJbOYUZFGQkEhd1zAeb4hhj5dPP/M8C5Jz+JdlaylKSkSlEfhp7WFmZ6ZRkJSASaNlSXYun5w1n89WLKQwIYFuh4MTQ0NYNDq+uXbVaREDWFtZxNrKIrKSbHxq3ULaBseJSTL7m3qm3/+ZiaRm2KjrHaGhe+R9/z4qvD98ICuyz3/+87z88svs2bOH7OzsD+KSCudhcNyFxx9iYNxJQUYiW443o9dqqMqNt4Pf3drN3tZubptfwczMVJYU57K1vp2SjGQaBkfZ09rNsZ4BPrl8Povzp6+W95/o5Jlttbyyt5Gy0gw2r6igb8jB0y8dw2418tBdSzi4u5XRYRcn6nvRiiqOHu9BVoHdbmTenHxUaXoOtvayaX4ZaYlmHt19mFeb2ijJSImbJA16hCB8+qfP8rVbVrOoOJcvPLuF2u4ROnom0QXiKxF/OExd6xBalYpkjYEEg4EpX4BJjw/JE0MtQ3VuNsMeD6JWYMjlRRAAQcYR9JOqN2NUq5GRmQoG0ERVEJaw6/SgEnjlSDOSK4paBo1fRhRkXKoQ6AQsohpvNEJMBG28gD3jzQ4EQcCnAUQBUSUQJi56RGVCWpmwIKMygy6oJiZHiakgEoiASkBv1CBpwRUII0vgj0SI6gG1gKwHQiCG4oEErmAIGQi7vMxIshOzhkEn4PQFCai1qAISokogKcPOzIpMao71Eg3FQBRwuvz4EVDFwGDVY7EZsGq1BDUC7mAIs0nPsdca0E8GcGi9/PBn23GqI7hDYcwmPRaDlvuumc++3l7apibJSbJjtxlQG9QkWIx85+VXODQwSJgYSQlGPvvk85TYkkixmdjV2Eld9zD/fs8mjnb20zPpQGtSQVQmL8GG3aDHqtPz7Td30eadoDIzjS2dLWTbrfzN3MWknIrUnfD68YTCVKalY9XpuK28/JzfhRsWzeKGRbNo7RtjbNzNsln5lGSdXZFmQWk2u2q7yE9PeJ++hQrvN5dVyGRZ5gtf+ALPP/88u3btoqDg/Am2Cu+O+rFRXMEgy3Mvrdjw0op8qkuyTwdnzM7LIBiJkmqL9/gyajRoVCr0GjVTPj8ZCRbuXFLFpNfPm00dgEBxcjLdY1MUpE73dSYmmBiacmEQ1egMGkYmPeSk2Aj4I7hHR/nB914jN81OYW4SfT0TWCw61IAxxUzQKJKQYuZTsxdx87IKfvjyfnyhRLIT7Og0apqcY3zh+iXk2Kzc+8Mn8QfDtI9McLx3kAcXVFPbN0w0FMOoVjMzM5Xbl1TS0DdKyBti0OPh51sPsSgji5PhYdyxIKWpyfikKF1+J/hkVKKKvCQ7nb4pwhIMhLzkC1b6p9xIKtCZNGRoTTjdAfa1djPp9yNIoI5CaoIZSQYpEsJk1GLW6vANTYEgo5bFuOkQiCETNguIYRmNIEBMRpTipktJjq+21BoVERHUqDCr1HiIIAkQTRRwRsLxqMeIiqAUgygIAmj/EvxhEvBqZGQBjG4BfUSguW0Ye4KJ7OIURk72IOlEVCEJOSIjqKAgNQHLUg1v7mzCF4qi1akRghKiRiAqy4yMuujzhYmoBFRqkcCIB68MKo2aohkp7N7XRtiuIWIScfgDDAd8DO2uRZ+gZdTrwxsJk55gpaZvkK/9/lW6phyoYwKxCEy4fIw4vAzonXzvtmv5+9++wrjHx6+2H+HRz97KsooCvvjCy4wGvPz7jTfzWN0Jjg4Pkmm1UpGeRrrNjBoBi0l/WsQAfrb/MH0TTr62YRVP1dSzt7OHtcWF8ZX220pXtXaP8l+/3k5ikok11cXEYhI9Q5MU5ZwRtBmZyczIVPxjH2Yuq5A98sgjPPHEE7z44otYLBZGRuJLc5vNhsFwabX7FC7MlrYW/JHIJQtZTJLQac6EzM/Oy2B2Xsbpn+fmZ2IwaEixmviP13ah06qR1QJyVEIvqVhYkMOTe2vJSbLx9VvPlOxx+gL836d2IptVuHxhdGYtZXmpCIJASaIVh0rN2vXl7NnWyNTAJN/65838/o8HOdrcx0xdDiebB2jqGGZ5dSGzclNJs5spy0ph0OtmwOWmelYWLzY0Yoxq+cS6eRzpGmBPby+eQIjcZDtqSWDcF8RNkMSAif+7dQ/oIElnxuH00+GaotUziTcUIRaO0u1yMhkKEJPjKmDRahiN+ggLMrIgoxIEJvx+kEGMgjYIfeNOZBkEPcRL0csIkkB+bjKNjYOEghF0xJCtKtKNRiStgGvUS+yUWIkCCLG4WU+QBGRJBgkQQT7lntREQKdT4/WFCQpxP5BKFnC5Q0RMoAICQgxZHR8rREFUiUTEGDHi50aEzOIE5IkoIyMuQkNO3P4QMRHkmIxJq0aMSiSg4uU/HmS8b4qYSoVg1ZGTmUhH1xjRcBSVN4qkFVBr1Px/9v47zo7rvO/H3+dMuW3v9gosgMWigyBAAiDB3osoqlBUlyXLRYlLbMfJN07iFscldmLnl8Rxt2I7lmXLkiyRoiiRlNgrSDSi98Uutrd79/Z7Z+ac8/vjzC4IkZRkyYpkCc/rxbL3zsydmXtnPvM8z+fzeRxjSKQ8MkkP3/d4xzuu5I/+11dQjZCwycGpQcMz4As6W9IMzS2AB17S5bYtazg9Ycfx/NA1V3Bg2A7cFEqiHcOW/l5eHB1lzbJOCsPjzDaquI7kufFhhCM4U89x/+f/jss7e3nu5DCukmxb3svBsUk81+FX7rjlIjcbTzv0NmVRkaYpkSDte/yPJ16gOZXg33+N3Voy4bFpdQ9rB7poa07zN1/eQ75U4203SAaXf2Ort++VmFso05xJ4ns/mB4X39Gj/pM/+RMAbrnllote/6u/+it+5Ed+5Dv50T8wcf/GzRRfI1l44sxZXh4d5V9efRWdX6PVCyPFb3zqcQa62+hrzXLk3BT/6r7rySQvsCEfPHSMmXKFqWIH63s6SSc8Hh8a4l9cvZOedBO7T4zQmc3Qlrn4QSTle2wY7GHfqTGUMdRURD2McIzg2OEx0pkEp09Ps1Bt0NKW5oGHX+X0VA45v8BHP3A9KMNjr5zkxUPnOHpmimqtwf49I1QaAZdtXEZuqsz4dJGJfJH5sMba7g7OFPNEWvOZ/Udo8nyktpnN/rFJ6/KelBBoXCPJFxsWLFzIGIfxQpFIYqc2C0j4DsKXNITCM5JqI0Jj8CSoEEqNANcDZUB7gozr0YhCHA0zU0UalRCpDbUgRJcWyHZmqGlFpiNNrlyFCBzHlhL9ikF64CYs4UJjcCJwK9BwNBUVIFwLfkaAIw1pJaGocTUWGJWhM5MmV68RaI1JgEgK/KSkEWmGCnnaAw8n4dDT1cy6/k4QcPzwOAuNGis6s3hJn/mFCiaySJsMNXK2jK4EyIYiYSCqKUygcTF0tzTxQx+4llNHxzm0b4SunmZGJhbwG5oAu79trsf1GwaITp5Dphwu29DHmZl5fv5tN/LysREODk2yqrud1V0dbF5hNVnD5QUeOXKKm9auYrRSxEkITs3O8crEGCZtv7+paonNUTd+JBkvlLisp5vV7W30tzbzKw99lU293fzItVZS8stvuYVT03NcvryXY8PTdCcybOvvpSWV5GvDdSUdXVlu27UegOu2rmb34WH6u//5iJUL5Rp//MCLLO9q4cff9vrhtT8I8R0vLV6K72xs7Ly4pl8NQ2phRKBez7JypKSvLUtve5Yw0ISRQn/Nd3TD4ABfOHKMnSv7uWPDWv5q336uXtnPI4dPIupw387NALzj6s0XrZfwXH75/bfz6ecOsq63k/X9naR8j3K5Tld/G+vW93L8yBgmVKxY3s7VN64jEIaW1jTJhMc912/m7ms3MZMv8X++sJvz5TojI/M0aiHleoNVG7uZLpdRDly5bBld2Qy71q3kb144wMT8AknPZ/uKXg5OTlsGkwOh1hgJRBphQDtY5mFCEPoGaiARDHa3s2v1SkpBg1dHJzk/v0BkV8NzBCYyaGNIJ30KYYBSBiU10giEJxg9Ow/G4CFIS5d6I2ImX0alLIVdINAuRI7AUQahQWuDk/EJ6qHNygBtDGaRJulBJMH49s+G1qDtMUhtMzvfcfCQKK0xnkADYWhBSSkouyFuSpDpb+LQyDS1Up2gGGAizWy+xPR0ASKD0BpXQVoKgnKD5lpIsi1DFBpKhSoohXQdlDY8/vhRxkdzSGXIFauQkDSnEiSaEyxU6ziR4PDpCT50wxW8964r+d9ffoGRiTzHzk8zOlcAAw/uOQJpyf7iFFt6u+h00rQlkuQqNTxPogz82hNPsH9+AteVaDQeDnsnJtCzioTr4IYCLxDctm4Np6bm6c6m+W9PPUvCOPzUTbvoaEpTrNb56qHTHBud4nc+/NbXXQ9/9sCLnBufZ2BZOyeGZ9i1ZRVr+jtZ0/9PU0bM1ar81ZH9NDk+mzu6uXHVwD/Jdr82mtIJVve1s3HVty/W/ucaP5h56PdxvH3TRt6+6Y09FqUU/PTbLtDv33n965vgvc1N/MR1Vy/9/b7Lt/DK6BhXdvWy7+w4a/s62fqaUuRrQwjBzPkFhk/NsONjdy29vmxVB8Oj87R0NDExPM/kfJH9R0f5xZ+9B9eV1GoBpUqdZ185wx3Xb+RXfuwuzgzP8sCjr3L0zATdy1qYawSMFgoIX9IWpNh/apJcpUrWS5Ar1mlJReTrVXAFfU1NXL1mBQ8fO0EjUIRJQIMwkHQkUVbgOy5RUtPf3EJPKsvJmVmGinlmyhVkDCbKgYQj6PJSFKoNqjpCCcvvrDQiPA1hBEkJbmBIYpmGkQfalwht0MKAI5EypvgjCNIG4wCNCKFt1mUkmIQ1B6YOUUqgfTAuCCMwoQERL+uCQDBXrxA5Bh2XJn0tiITBhPbvMCkhKygTUPc15ShAGGP1Z9UQIqtJcz2JA5Sn8zQmFas29DHV0JQKVRIJl6AW4kiYni8xV6jQuayV/EQBpyWBqgcobXjr3dv44uOHqGtFb2eWRMrnz/7vMzy7+wSmM8HybJZae4PBFR0cmJ9kulGhPqXJ5cu4oWRkLo+7SnDnpnVEWnO8OsvKsJV8o0opCsh4Psv9LAW/RrPvc2J8hon5AjdtGuS9Oy7n1x5/nGMzMySky9quDk5NzbGivYV6PeD0xBxzxQqdzRdXKKq1BquXd3Dn1RtYvcz2ew+eGifhu2wc6LloWaU0f//FvWwY7GHn1m+ujD9XqzJfq7IvN8FMqfIdAzJHSj7ylp3fkW3/c4lLQPZdiloY4jvOm3rIfTtxYm6Wl8ZG+cjWK5YGGn6rkfF9bl1jx17sXH2BcToxW+DhZ4+yZmUnt+xYu3QcWzcsZ/eLZ/izv3yamYUKZ87Pctv1GxAGjp+axG9OcH6+wImJOdqa0nz50YPUaiHt3U1EwiCl4OToLMu7W/iFn7yTXKHCL/7Vlzk8NUUgDB2JDIHWSBmbHkvwXAfHleAItIKNq7p5z5VbmFZlnjs1gghASwNGkEi5XLd2FV8ZHiJwFOdq80xXipgyBEbhCkG2yWeh1rBlQMdlQlQxCUMSBx0CGmQIwhU0eS5BUqMdSbVqMB4EKQnCZl+OL1jWkmW2WEH4kiBUqMBYcggaHIEjLLhpCbIW99MMsAhIGKQr8D1BQ2mkAichqEU2mzYSHAM6NMgIVNxvS/kulSjgfHEBqQ0mKRENhQgN2hXIyFi5QDaFWaihNUSB5uRwDi0chCvp7mmhVKhQrQbIeojxHEpzZfpWdjCWLyEiTW2hyif/7gXKCcikfPbvG0EWNeMTOUTDEOQD/v3vP4T2BbLXw0u79HpNrOhqYbxSolauEWnNkZlpLl+7jH95zZWUw4D/8sTTnFqYxwnLbM52U58NuKp3GT9y6w7+dvchtizvZnVXGydm52hNJDEC7tqwll0DKzgyPk2oNR+68UrG5goXOXc8fWyIV4cm+OA9O5emJCzGV3efxHXl64CsXG0wMpFDafNNA9n69k7+03W3MlYsIsUlV5DvZFwCsu9CNKKIX3nyCVa1tvBzu679J9/+U8NDLNTrjBYLrG61lOEgjBibKXzDBvb5wgJ/e/ggt69eQ5uT5OD5Se7dtpETYzNcMbhsqaF++PQEj7x4nK6TGTSGO6/awJ9+4UWODE2RzWvysyVqSjExtcAjTx/l3/7EHaQ70zy5+yQSwaY1PaRSHn7KZWQmT9lRoDTDw7MEOiJXrPBnn3uBt1y7iV0bV1E8G5FJeCw06nSk05SjgEIY0JXJMFrNE9YVNR3h+5KXh8c4MzHPnFPDa3EInRBdgUToYLKCL4+eRDSBrivQkrpUpJs9KGkcIylFIcq3YFVSDSIHhAe1UCM0+FULHsoYamGE8K1DfUtHipII0Y5GS4iMQACjpRJocLW1qxLGkjSEAKMNxhdoJTAGGs0CKexyGAtsUoHxDCE2k5OuJIz7WkJh2ZMSIoDAbpc0+EhKERQboQXHJCSEg5OWJEIf8g3EQmRBVdgs1GTTGFdiHAdpYGq6QCLlogApBFGoqZQajAdzlslYi/AzCeqBwk05tKZ8Fuar7D80wvJlrSAcIhTFeoMkLp0mxfJsG2t6OzlTy1MuBlQSIWETzAY1Hjh0lJZ0gt2jY5ybmqcp6bNz9UZWes0cCaZAw0f+598Tas3h1Z3UtCLQEdeuWsnG3m6akwm6shmaUj5jhQIfvXo7Pc1NS7/vz+8+wp9/9WVam1Nct3YFj371MAv5Cldevoqbr1vP2v5Ojp6eYC5fprPtwnot2RR33biJp18+ze5Xz3HNFd8cAzvpeqxt/8eTRl46M8ITR8/yjis3LUljvjaOHx3n+OEx3vneq3B+wO2zfrCP/rsUvuOwtr3tW/qBf704lZ/jjw7u5t2bLuMd6zcugRjAZ554lYdfOMrp0dml10rVOv/js8/wxP7TAJybz/EzDz7M/vEJFuo1vnrkDC8cHeb/9/ln+MtHX+HxA6eX1r1u22qiSDE5XWDnhhWUag3OTswznS9x1a3rueqqQZTSdHY1EWnNy4dHKBOxUGtQ1wo35TNXqVJ2NUpCNpukL5Vm/6HzDJ2dIV+sMZ+v8Au//wWeeP4Ev/2uu2hNpFiYr+EGhnqxQdiIWChUCAJFqd4gaChqQYQ2mslyiUTSQbmKBgrRbMj0eTS3JVC+phFe6CFGkaHZS+BKaW+MIm5aSVteVJ6xhIwauA1L2BCRbW0FaJSAWkbg9CbRji3TeWWDW7GsRBPaLClUGoPBYPtcTsMuY5TGqxrcqkEYWGpbSrucG4FTA1MD7UNgNMoAMYihIQhBurYXJ4CE43Dvjk10NqVJaHDLBtmA0DU0ElBWikrWpbWniVTKJUp74DpIz8X4HiQ9mtrSBEFEcb5KWA9RAvxsEhKSmlKIhiLtOmRchyYlaS0KZD5C5xrU8jXGzs8xX6yyrLuVRDaBk3Q5PZXn6YNDfOrAIaJAcXV/P3UdoR2NEIbRfIG/2fsqJ8ZnmKtWOTo9w+nRWcbnCpwYmWZoMkfYUKAta/PBV44wX64y2NpOk+/TlkryW88+zbu2bWZ7/zK6mtJMF8tL33UQKlpSSX705h3oiqLRiDh5dpqZudiiShuqlYCZ+QuWVYvR2dZkZ9/9P2AGpn2fhOuQ+DqfdWDPEBNjORZyle/4/nyvx6WM7LsQQgh+6qp/enbRc+PDlII6U9USW7svfoq7ZssALx46x4qe1qXXwkhTqQdU6gGR0vz6g0+QX6hw5brl3LVmHds6evmv556iUKlRrgfsPTnKndvX85U9J+lsydDenEIpQ7kW8L8+9Rz7x8YRjuDo3AzXdPaRySToXN7C1VesZmRqnlfPTLJyXRerWlsIqiGfffQAkdEkky5pLUk2eZSikHK1zt4ToxhlyBUqZLNJvrrvFI6wGc7+U+MUa3UcAaWkdW3HBS0hlXDZvmI5k+USzZ0+lXoRqRSOcsk2S6YXSkRxSU4oYYFAwWSubMuw0izV5gygEhbUjG8/2zhYcFo8ia5AOwbjCUYqRdwkeFKgawZkzFR0wHhghGDz8m6On5qymVlknyRlDUzCIBRQApO0aZsWgBJobftiyrdZlyPj43XBrVrgQmL7Y54FXx0onj50liblUM3bvhjSYAKsILpucANNrtbAMxIhBarZjsQxQkDaIdPbYkG6HhAJwcqVHagml3NjeTTgIXADQ2mmhFCaKOXRqIe4UlB3oFqPWLa8lbuv3cC5J16h0VA4dYNIC6q1Bi+fG+NX334rbckUjx87w2SlBBj6mrIUq3Uq1YBIKSaKJT502eXsPT5Ksd5gZV8bM+UK8wtVdq1fie85/P3eQ3z42m188IHP0uR53L9pM3dsXMun9xziq8fOkE36/Ld3v4WWliRvuXojd1+xAWMM7W0ZfuT915GIdZWlUp3u9iYyqYv1ZmB7hAZDR9s//eQOYwyPDZ1ma3cvy7LNbFvZx7Y3ycQW4/4PXMPsdIGOruzXXe4HIS4B2fdIaGN45Pgpdq5YTk+26Ruv8Abx0c3bGSnmWdN6caY3nivw0pnzvP/OKy96wmtvTvOrH7lz6e87N61lR1DjY9dfBUBPa5b3Xr+VntYmPv7wy9RrIflSlT3Hz3N+ZoGP3ncN29f3k0i4pBIuodY4QrK8NcvTR86RbE/huJKXz45yfHiam65cwwdvu5KWTJKP/odPEChFOQrp29DGzv4BDpyd4PjUAqs6W4iUIp8rs6Knlfvu3MZLo6M8eeQMCe0QVBVGwsZ1PYwsLBAKRSgNRkI26bO6o5W8qDFVLRL6FSIE6USSja3dTOaG4xMO0khcIzARiBCMr3GaQFVs1iQ8EdtFGVwj8JISVbQMSAS4riAK4wwrMihP0PChAciWuNjhg0mCDGwGd3hyGkcIjLDlSq1tf8uUNDple34yErgK6hiQhigFxrNA6tXsZo2MS5R2NBo6EZMfjTUdxoHxXJFURVjQFfZfjgI3AIvZAiMEDuBKaTNGE4NuaBgdz+G6kijp4noON75lCy8eHEYkrXtKTUM0X8WpBvi+S6QMOggxWd96QvqCrev72HXZKs6em+PFY8NkMg5u2kW1S5o70jxw9BjlIKCzJUMjUiilee+2LTy8/wQtHQkCo5gtVPjs7sPcduVaXjo1Qqke0Nmcpqc1y6+873a+cOgYM6UKf7BnN0QQKUOxage7XrlyGU+fHCLpeRgDXzxwnGK1wUdv2I6UgvWDF/fCbti5hr2HzrO8t/V115fWBqPhyMgUf//CQd529SYuW/X1xyp9szFWKnJwZopT+Xl+buc3125IJj1WrLok1IZLQPY9E2fm5jkzl+P8QoGfeg1r8B8TrpSvAzGAxw+eoR5GnBifwUPy2Csnedt1l1lt0Wvih6678qK/G2HEloFemtNJ3n/LNv76y3v488+/xFWbVhJGivG5ArftWAfAv3vvLew6tgoTah7Zc5LcZIl337qVt9ywmf/8148xUynzwNMHOXNiknUrukklPUTdegtWKiH/4odv4jf++qscmptlrFgiqIaIyDA+W+DBZw6TixqIGuDam3dTwmNdbwfdHU3sG52g6kTUiJgNq3zuxFEaSYWTUJikwnEl85UaD8+f4aaeVRzNzVCsNvBdl+WJZophlZmmKsbXtgfVIlguWpkqlXGURGKzruZ0gly1BnEmhbaZjhFYsfHi1aRtCVB7gAEnAjDI2NIyTNpyoTY28/JCQAtk1SB8Bx+HqFlgKnY4qaNtJmakXV8AROAHIOugHYMUtqlmNHj1OHOUhgCD8aG7OUM+V7WlTRek62CCCDxBUFV4RiMLVYwB1d2E0AajDaG2FYQIxSc++zImUhAZm3Vqg3EdTNIDzxJutOeA6xC5GjzBQy8f5+HdJ9g00MNgTzs7dqxiz8g4+/PTTM/P0SQ8sokk/R3NqKyiHmkOjE7Q0ZzGRIbJQpE1La1MFkp85dRp6rWIhHQopiJa04aU7zFRKOG6Du/bvIV6ELG2uQNXSu79s08gBNywehX/8vqrSHguvdks3U0ZpBSEkWK2WGFZ+wVP19UrOlm9opNPfXEv8wsVfuYjNy+9d+2Vq0lkPF44NowU4g1Ntv8xcXR8mo6mNL0tWfqzzWzt7mVb9z8NMP6gxSUg+x6JdZ0dnO3KsWPFhUm11SDkb14+wE3rBtjU+3qNiDGGSOs3HG752njf9Vs5PjbD1lV9vHL8PI1QUa5dEFHnylWSnks64fPogZMcPT/NT99zLR9/7GVmFsr8+g/dRX9HCxntsLK7ldJ8leUtWaJ6xBeePczwfJ59o5NcPdjP6fOzpBMeb3v3Lu7avp5nDw2xtr+LPafHyCQ8HCkplGp0tzcTNgkKszm8rEu+UuPn33sTlTBgeqbAuYkcISFhqBidzJFtTdOWTFGXEdKFZFuCLx06iSsl2fYUDaNxpEQ5mrLbQCQivOYaSalpKIGqO4Dh+bERjI6JDVGEkxHMJ2sYV2McjRCCtPCZK1ZAgcagI4OrJblqjWTGRSgBgSaoKWRgy44GCzSugFDbjAcsoLmxO4hQthyo/DjrcWx5U5YNUmF7cuWIiowIpAQHsq7PupWdHBybJFgsaUbgaoNfjMkjDWh2fRZUA40FeqFiYI3JJbVKQIdMUJmvoASIRgihQdQsMEXGauqEL3G1QUca4QgMGiMEQko8KQjrGhFqhCuQvoNJeWhH0lg0PFaG/q5m0vWARlZQKtcxBoZn8rS3ZQjripHJPAvFCmErrOpooS2RYmR8gdlaGQOcacrxv9/7Nh45dIrZYxWisuLsWI729jROwqG7I8tUo8xUuUyp3uCmdauZKBS5fXAttw/a6ePn5vMs1Oo0oogXh84TRIr/dM9tvH3bBmrxNIe/eWY/k/kSP3b7TvraLjYoV0qjlX7dtfTo3hO8PDTGD9+xg9W97Tx3cpjr1q38uuxjYwy/9/hzdGeb+JFrrGg7VIrP7jlMayrFz999PUII7lmz/utex5fizeMSkH2PhBCCezZd/EMezRfIVWu8fG7sDYHsE3sOcGxqll+68+Y3dC0AexFVg5BS0GBiociuzavYtfkCfbgehPzExz/Pqq42/vuH76VUa1Co1qkFIc8cHqJUrrP3+Cjz0yXWregi7biMTeY5MTpLNpvk/CunmAtq+G0J9p0eY1l7M//u3Tfz2JHT/OcHHufDV1/BE3tP8c5dm+hqyfLRe66iUm3wvz/9LIfOzdLQiqliiX1D45wYm+GFMyNEtYi+tizL+jJMzhfJBXW01vR2NDHbqKJdyLQkmayWiaRB1hpUnIBVHa1sWNnJQ+PHSSTqmFg8Jh3L8HOlRL3G6F84cK6cI3LsC22pFPWGohyG4AqchgMKvIpACLPEQowiRcNoJLGmS4BwrVi5nrQsQ+oWvKQBHYHw48zMgJAQeQIpDF7e2P1JCGgYhAsmIZENK4auhxH5XBVds24gQsWEE9dmRMJYv8Zqvo4f81eq7YAv8At2H4xrqEYhqhYghMCvKhJjJStXSMZlQEdgWpLW0Dg0SGPF4FFkH5ZkqBjsbeNUoYF2BJ2taQqRIlIanXWoCRCBxgs1Y5MLCFfS29nO8s4WDo9OUxQhtXyR5w6eZXquiIMgWZTsWN9HWQccH5+mHkR4nsOhqSkePHqcp46fBWNYqFVwpWTrsh68jIeSmvbmNGfncvzaFx9n56p+PnT1tot+9y+PjPL+7VsYmsvhCMm7tm3mwOlxfuaPHiCR8njst/4FO9b0s29o7HX6MoAP33ehKvLgM4dZ2dvG9g39vP/WKwkczbK2Zj6/9yiNMLJZ3/qBi9YPleJvXz7INatXsKG3k1ApwteYFHiOtXtb/jUAeim+tbgEZN/leK1H3NfGhp5OPnL1FfS2vHEzd3lLC7lqjYTrcGx2ho2dXXGJ6UJ8+qVDHB+foRaFrOxs5WfuvCCIrtYDJnJFkq5L0rU/hfdet5X3XreVaiNkbDKPjjQPP36Y/q4WVi/vYGV3K2sHuvnw/bt49ego+4+Oks74yDafTf3dTOSKvHjmPI8eOsnqrnae2XuG/rYWjp2bojWZ4uOPvkw9CFm9vpujhTlC17Css5nz8wv87XMHqDRCWj2fazau5OT4HGvX97D78DCFSp2btq5BdLo8ffocM/UKrd0Z6rUQ7YKjJacXcpxszGOEpGF8ZGtEpAHlICSsaG5mJCxAKEELImWIhEEkwE0KAm1vzKIhY7AzyEhaEoZN6KjVIvu9STAJa4klTFz2i2eaqQQ4CoiZjcIDHdpNOspmUCiNE4ATYMkj2th+nBC2ZIlABHbq9OjEggW9SrysI4gSdnkngsgFpMBpGIxjCRg6FmA7jiBUBq+ucUsKtxwhq4GlRjY0TlQn7MxgBGgEwliGpjSasBKAEbj20Dl/aop0Z4a6Mdz21q088eQxJnQdnRA4QlIXmkAbUrMKIw0TuSJe1bVWYABJmIgqNLUkqFdrqIbmcy8cZutgH7VGBBEYqdHC8CfPv0xPpom+lizX9XRjvGEWwoDieIGGVtx39RbWtbezd3SC87kFAF44NcKR8Sl+7KadHJyYYrJYZFV7K31+lhYvyecPHiLj+wwu68BzHLYN9LFtoI9PPnuAYyNT/Md330pz+uIHwnoQcuzcFFPzRbZv6KdYq9OcSiI03LZpkCePD7FjYPnrrs3JQompQonnTp9jY18Xv/yWW1+3zFu3bXjD6/pS/OPjEpB9h+PU7Byr29vesPz31y/v59jUDL92z+2kfe8N1ob+tjf3fLtjwxru2LCGB08eZ9/4OOV6wO/ceRcLtTp//uIrdGYy5GbKBJHihg0DFIt1fu4PHuCd117G7TvX8/GHdrNQrvGv33o9UwuWovzHn32eKNL83AdvYueafuZzFTKex4mz04wOzdHbkuHDH7meVNJjPl9h6+Z+JuaLZFNJgkBxMj/PF588Ri2IOHl6hh39y7j18jU4QtDTluXPn36FQr3B//nZ93BkaBKpBZMzRUab87S4PqEI2dzTycDyDoam87S2pMk2JZkulvni6VP4sx6TpTLZlE+10UC4ILWgJZOgRAMRSRDQYbIUcjUCfBwpaCXJ+UIBHEuscXQs1hLWlBdtiJKapPCpYG+qwsQAI7DOIAiEbw0xtAciiEki8fvG2JKibkDDj0kccXmPwLIQHQVuWeOH1uDXIDDSGgojrW2ICEEaS8XXrsZRVtOGsplSkDAIJVGuJYHgWL9GlO3dGWHJJYuEEDcwyJqxIKkU7kLNOnwA2khMI4KUh1gkkCQdUPKCvVfM8gy1gVrAwOXLmSxVidIOumr9J8MMuNpB1jQqbbPEMIpobm3CKQcoCU7aYbZSRSYcjA92jg0cmpoilfRIuoaOpjTJbIKdA/08duIUa3rbqSYVp4Icbk7Q09LEstYsa7vbkVLguA4pzyXSmv/5zAtMFctsX72cFe0ttGdS3Dw4wON7T/OFPUfZtn45TtLhp+65hr/66h42rejmmo2r+MqrJxmZyvN7n36K3/zRey66xpK+x4fu3kFb1nqLnhid4amXTzM5UeDywT5++K43dtRY2d7K/VdexmcOHuZPX3iFn7z+W+t7X4pvLi4B2XcwDk5M8cSps7SlU/zo1dtf935nJkN3UxNuLGb8zPMHOXJ+mn9//800JV9P/32zuK5/BQ8dP05/upnj0zM8eOgYw7kFRuYXyOer3L5mkHds38zvP/Qcw1M5To3NcvvO9Wwa6ObFw8M8dWSIQClu27KWTMpncrbAfKHC7//suwjCkKdeOMW7VncjIs2pk1O0tKQ5cHSUuYUyn378AH3LWikFAZvX9LF5sJvDo1McPz9N0AgRruDeGzfzZw+8yH9/4BmkK0k1uTx7eIiR2TxHR6eRRnDw7DjzjTqBhEPTMww/ssD1O9ZwZi5H1veYElCLQoJAIxyoq4i6Z5/8m1M+121eyQNnj6HqkJQug6kODuWnwA1RISyYhgUVB/CwN/3Yeb5ZJFmo1DEhhDK0AAC2Zpi0GY8xBuMZaq5CCoGsCGTkoOObP1wge0iDZWcIW9rTwpCZsaQNJQ1+zDxUxpb9lCdQrkBqgREWrIw1IsENwK0bjDE4kQEhSNUNQUOD54CEemssF0gKK4hWcbkzMgSAg7CNM2OQ1QCJwfUdonoEoVoqtWpXknAlKjJEWuEIaYd96hASLhowruTEzBwzNMj0Zwgma3ZfJaxob6Yx16Ac1giNwSQEhUqNzrYmNq7sZqpS4dzUPAnPI3RcXAnlIEC7gnIQcP1lq6mriLVd7UwXS+SqNV4aOc9co0ZkFOmsx2B/J1kvwUtnzrOstZlHD5xkarpAi5tgplqhYSIOjE7wqacOUNQNKuNVbrlyLSs7W/m9h54l4buMzxcZmc6jtOGajav4jQ/cxccffonyQp3nDwxxw5WDF11fA33thJHiE4/v4+XDw/Rkm1CRZtemlW96TYZKoZUm4bo48tsjhVyKbxyXgOw7GOs6O9g9MsrNawbe8P17t2zg3i0XygvZdJKWdBJXfn3yxtdGd6aJP337O5koFHlw71FePHOeH7l2O0nPo6+piStXWgLJv7r3ej58y44lu56uliYGezuoBAHXbl9HOuFx9cYVPDBX4NOPH+AdN27hsVdO8u5bttKU9PnCU4c5U8qTffUs06MLLJRqXLF5BYfOT2Eygrt2rWfP2TFK5Tpb+ntYqNWp+IpP7z7Ml/afoBgEeFqSCF2+/MpxqipCSIGbcpgIKjSUvanWdYSjBU8cOUOhWEVWYxGyMqxuaqMiQs4W8xhhtVq+67Ln1BieK9EZRRgpzlbmWdXZwsnZ+Qv0c41NkxyDTitwBKLqsNCoW1JEJEklHKr1ENmQSCXIZjzKhFaALA2kbJakMwZmIFl2MHE2hrSfo51YIxZPivYiq3EDg/YEgQC3YdHKaq8Fxo3p8wq0iskhWuPVLdvROLHJo9YIBIkqBNm4dNmwZUYZ2ff9ssG49uapHXvejCeQpRDSSULfR1Ub0ORYv8eki9EGpxJaJiLGHkqkQQhLDIkUMpOg6glCY5hcKKNM1WaE8UNBGCg62jPky1VExiFEU2mElEohxXMBf/ZT9/PwvhN8+tmDaGNo6UyRSvh4SYcZVeX58RGkK9k/NUGrk0SHitlcGe1Dm59kc283Z3PzbO3oIZPx2TGwnL947BUq9YC/f+5VBlpaWKjXuWlwgE8+vh+vJihXGtxy2Roq9YDmVJLzY/P87t89ya/+8J10tNje2EB3O//2/lv4o888x0zu9UJogJGZPIVKjbUru0g5Dj/+tmuYWShz/Pw0m1b2vG75z7x0iHylxu3rB9m++vWlx0vxTxuXgOw7GGnf4yeuveqbXv6e7Ru4Z/u3Vjf3HYeB9jbWdnVwn9jEB3dsQ37Nk6DrSDpi0SvA1nXLyBWr7Ny0gpamFKdGZvil//UQQko2r+7lc4+/ipfyODU6S5Pvc3ZynqePnOXo8BRNJVDa8B9//i08+Refp1oK+fzeo+w+NsJ8pUql3KBSD2jxkjR5HmUnIkqD2+xgPMFYWKE9leInb7iGT+4/SK5SxbiwvreDtONyZiKHMgrHc0AopCdIJ31OTcwSJSxRw/Mcmh2PfLFGThtECty0xChLrnBdB19IAmXBSwiJcSJImCX3DCMjqEmc0EFKCLW64A9lBFoZm+XEJA3tgfE0QgIJCCI7gsWIGGgW/xG2HOjEJUqdABkKkIIwI8A1FoBi+r7U2IYb8f9jdV7C2EGZxJkaYCn0WiDrCp118EKDCQVCaWTDUvtFaBCRXdc4IKsKLwDjSFv/VBojJaopYa2wtEYqS4uUxoDSCKPxtCYKlWXIOgJhBF7Zjm2RJfCbPQKjcR2Hjet6OXjkPNqxPpLasTPXIgW6GvDv/s+XGOhqRUeGyIOZwGZzi88YRmp0oEFBWK2Q8T38pEtFhbxry2U0qiErky2M5gocH5shJV12rFnO7qFRqq7CrRhWt7WCgZ+6dRd3bl+/NKIok/T52Xuu43c++QSlaoMzU/P8xgNPsGvtSj568w46WjP88sfuelP24Zq+DqqVBpcN9PG26+zkh3949hDlWoNf+lA35+cX6G9vWVr/xo2r+erh02zoe/3E6UvxTx+XgOx7IOZLFVrSqaUS4z826pElICRdl7dduenrLqu05m++uo+NK7q5ZvMqbr/KMiXPjs/xe596ilIUsbw1y4reNt5682UcPDvOiweGaBg7EuW+Gy7nirXLOHpojNxChRfOjFCJQqQrePeuLUzPFNHK0NCKhOPyru2XcWp8ll1rVvDC1CgVQkyiAdLQ3pXhzm3r+dKJU+TrNaKM4Uw+R1dTBpWwmcE7rtnM7hPnma9XSaUTLJQCdGTQDqA0lSC02KHBBBAJS6HPFWtUg5DA6Dhzs0Dj4mCMRmEsuSAUtm+GQTsxgnjYcSqRplq2DvXSE6DBqTnothBCYbO6EBwlbXlR2RKbjNmJRlo2qjHG9sMcO7RTJSRoQ6JuHzTcugUPLayZrzDCjpzRgiglEKEFS5sWgnAu9PZUZBBIm91FMXBil9UScGIWoiMxKIwUUI9ZKMZYvYAB4UlkqFCeA45ExAgb1UKM1hjfQ1YjEmmfMDIk8oZaUlKrRERNAicJz58+hyskWgpEiHUSUbak2tTsUyjVOK8EyYxHKRlhhFlyS9ECmt0EriPIVRoICZv7u8nrOm0C7rt8E/+w9wj379jEowdPMTQxz4snh8nV63gpl+HiAlf29pHB4xNf2UtLOkW+UOVjv/UpVva18zPvuoHn9p/llz50G0PTOTzXZbZY4fkTw3z05h0AF4FYpPRF16NSmlo9ZGKusPTazVsHmS9V2XtunBdODdPXmuX911j25MrOVn781m/+IfZSfHtxCci+yzG9UOZPH3uJlV1t/Oht39ooht9+8WkM8Js33QHAxHyRv3rsFXauW8HdV12c4VVqAcNTcX/gNTT8lqYUW9cv446dG3jHjZtJJeyT7H/768fJlaosW97Git5WfuId1nVAJCTPHT/HXLlKVybDrrUrODQyhXJhzbIOkimXZNKnu6uJT+09yLa1ywinDSo09DY1kfZ9+ttbOJ9bIFLKsuwi6yhRKNapEWEUPLD/KFes7GNksogrAlZ1tuJ6DqP1AgUdYISdeB26GukJGiJCx16JNR3a+WM+LNpxRA3wHI9IxXd8ZYVWxo3LaNpquzCxWa82CGtBj0qAcjVU3LgRJlBNBj8PGKsZk8r6KwpltWVaglSWto+DzdTiuWLKj/8OFt1BWNKjCQUytJmk27BlPrE4rwxQvv2vU9HotFjqx1mmJSjXkki0EIjI4MQz2ZxKgAhjYAecwKATmmSuEdPzffAchLDMFdOcxEjHArJSuNUALSV24qgBX4AxVANLQ3drERLwhUSH2s4kdASqrkmmPQyG3p5mBpMuN20Z5LlD53h1YYpIQC2KaHdTJAjJpDym8iXy5Rp3X7GBZ06d4/HTZ3j40HHCkmJ5WwvpRIKW5hTpWoVEUAMH/EiSzSa49rIBMkmPahAxNDbH//rLJ8lkEuzaOsCNWwYxxvD/ve1Gtq68oNtcjM8/9irHzkzx0z90I+2tGf7mK/soVur84kfuuIi0dcVaWzIsVOvsHx5n15o375l9q/HisWFm8mXuu37LP/m2v5/ikmnwdznam1Is72jh8m/D6mZzZzfdfgal7Q3cdx2Svkcq6REpzbOHh6gFVgR6dGKaHZf188N37bhoG50tGX72/ht5/x1XLIEYwC071rJ+oJupYon5UpXZQok/feQlvrD3KE8ODdHRmuZPP/YuNi3rZrZSYSxX4MD5CaYWynR2ZPiTp15meCHPg/uOYiKN3xCMji+Qr9e5amU/f73nAPNBDRVqTIS92WPIOC5CQxQa9g5NoBXkG3W6O5toCMXOFcsxxvoL1lRE6EXUnRCdVOBrXF/YX3cSSESxa4fGSEOgFSKyBS0hjGXruTHDom7ZjEKLuK8VZ3vEfatIWHQKHVDW8smJBG5oJzwTgahbEJRx2RBhy4Eau6pKQJiRhE0CnYAoKay9oxA4BtxA4wQ6zqzEUh9N+dLOKYvtpXAE2rPHaeeP2YnTkbvI3xDIUOOXIkRNW+DJ20GZKA1GY7TGKdQwFSuQF1oj6yGECqMN2reC5yghiVoSBNpagQXtHjoprUuIttmqiayoWgpDWkg8BZ4WOHWIyiEZ4dLWk2Z4MsfwWJ7nDw4zli/SKdO0ywTLRJriTAVV1zihQDc0WsGeY+cZns3TiHt2RkJ/Z5b7d17G5mXd/PZ9d3FZpoPCaJmk73LD1kH+9LHdfGHfcX75h++gO9vE2NwCzZkEL586zx/+w3O8cuw889MVPvOV/RhjGJvM87mH9xNFip7OLF1tGVJxWbIRhNQaIQnPXSrXf2XfSR584QiFUo2P/81z9JPhk0/v55NP7/+Wr+PFmCtV+PjTrzBXqrDv1BgHhyaWru1L8cbxA5ORGWN46OVjXD7Qy2DvP63r/LcTnuvwsTu+NWquMYbpYpnBVDvTk2U+s/cwH7x6G50tGf6/91hrnWcPDzE8nWcyX+L9N23jEy8cYDxfYHVfO1uWvzl4fv6xVxmdzPMzP3wzyVcSVA5GDPS2I4RkPFekq7WJW9oH6eto4TeefZpm1+fetRvozmb4r489w9H5GZpnUozlCgjACQUyhFAZImVICZdz4/Ocm8tRDoN4CBdIR+Ial6TrkBQu9SCk3lDW/d3A7rExHCEZLxUxftxjcjUmbcXPQoAw0k5hrghM0sRjlbEgqQ0ENosQvkE4ll4ohLDTspN2IrTSAuNZ0oZXiUuNRiADgS7FzEAjkEYQOXZEi3Fj/ZgAlM2ehB08ZkO+xtlDgopAaIFwDY6KhdGx/ZVBoDybURlh8OuCKCkwjkA0TFzKtAJqFCgPcIQ1Hw6xk5/ROKEt0QpARBEyiBBxqVAEESKM0AsFwiBAtLch/Sa0xpYFHSsJMUkH7VuGZtjk2XJn1mrzdNzgkrE0oM9N4yIo5it4WuNlPBqORhlDrlKlcKYGRqOVolSpkytVac4keeU//TS3/eqfYSrWFLlSryNcn87WFK3pJIMtbZRa66zqaOEn7rqGUi3gv37mSUqVOu+9eisnhmdZyFdo3pbkN//2qxQCO0TUr0BPR5aejiZ6Bto5N5mDSDM5X+TBpw+BgXfedDn/888fx3MdrtjSz/U71nD9jjUAnDg+gR6r8t57tl50fRwemqLSCLj9irW4roPnSVwpXjdx/VuJPefGiJRmz7kxPnrnTsr14Dsyt/D7KX5ggGyuWOHMxBxT+RI/cc/3DpB9O/H5V49xdmaenauWk3Rdrluz6nXLXLVhBVMLJW64bDV/8/R+bt4wwNHJWdoy6dct+/fPvsrwTJ6fuHMXI6PzttxnDPfu2sRAbxuffHw/QRDxi++5jVTsFn54fIrxhQKHFmr4dcFYoQS+JO24XL28n32nx0DDWy9fx96z48yUKnRk03iR4NDkNFknQS6ogJGsaGmmHDTwlUO1FlCuB0gFm/u7GMsXKamAemRoeNFSX0VqcDxJ6EUIR2MiAZFAlwRSgxIxkOgL2ZR0BDiaREsdKQ31hovnWneLoAEiaUt9uu5AIDChxA1tCdImTgKkseVDB6JWg6nbzzCBzZDchvVBFBoEBhHarMsJwHgWtLyyZS2KKLao0pZQAlh2opaQEuiEQ901Vk/WsL0vgSV3OKElVkgkRthtysAgaxFuaAXSUhmMMohqgHAdjOsglM1uCEM75lpYIoqJ+3AqlQBXYjwJaZdMyqchNGXLk0QFhiglMH4sE6jbUmhutkzCdYgChZtwSHkeYaOB7zn0dLYyND6Pq6G7OW0FeZHN2j7z/KsEtdB+nxIS2iVqKAa72mjJpNANzcxMgVKuxv8Rr7D31BiVSoPBzjaU0izvaqGjOc1Te8/QpF0QBqdkeHHvWdau6mR5Zyt7Xxqmva8Z6Uru2LmeT31lH/MLFX7zzx7l5NgsTa7HyUPjHN07wr3v2oHjSArFGtVqQLlcv+ha+cm3X0ukNNlMkp//8dsA2P/QDGdzuYuWU1pTrge0pN/YeeeN4u4t6zk5NcuG3i6kFDRnvvl1f1DjBwbIulqauOnyQQZ72r/bu7IUkdb87tPPMdjexgeu2PoNl3/x5Ajrl3XSmbW04Sv7+5gqlNjW38dtG9e84Top3+P+6y5n75lRgihCCo/fvP+C473Smv/++WdY0dm6VDb5wqOvknQd3nH3Nn75j7/E6HSe/v52ZktVHt59nESHTz2KWN3cypGxaQb9Vtp8n1Pn59g40MOy1mZuXLuK2y9by2deOMhctcqTh4fIuB7LMk2sXdbNS+PnKTQCUkmXsMl6GdbqATUVUTEhKzqbKYznkA04NTRLc1cqnuQVswcdmwFILXCNRDmxxYZn3TBwHdLCo6ZCIgcIsaQIbYkdImHQWuK4EY5r0GiMKxFGkUk41FVIGH+Y1tblngiQBp3AZoKNGIik7VkJxRLAocCtWRYhsV5NRLas6JVioXJoR7fIusYJbM9t0ZFDxzR+FevU/NDY7Mpg3Te8mJFqLDvSSIMOQSuDG2mEtO7zMtCYurJjXBph7JtIPIUTTDKBSCdBSku8MAahFE5NolKAA5HRFOoB0pO4aWmNiGMnE6GF7b0JC+BBE6QjQaglftJDJCVRXbNpdR/rNvYykytRrDaYLJRQRQtaYaD4iyf3UAlCBrrb2DLQw6nxOUxoCGoRx+amKcoy81NlMukE5yZzjM8vkE0nSbYm8DyH//Gjb+Mzzx9idqJAX0czI+M5jhwdIyqHjDQMa3o7mS9WOJabZ1VfO77ncPvO9Tz64nFas0nuvnEz8+fzfOVLB1m7voeZqQJ9y9vYtWsNu3ZdfG19+YVj9HZk2b5xBQDVRsDnXjzCQGcbvnehhxYqxV8+vZex+QL/+p7rl67bbxRSCjYte70l3aV48/iBATKAq9at+G7vwkVhjKEWhtQj9Q2XncwXeeHkMJ/bd4Tf/cA9OFIy2NXOv7rlmq+73nOHh3ju8Dnu2L6ObQPLLurFvTo8QUs6iYidvD9w0xU8c+AM//DVVwkLATdct5725jS5QpX2tgy5ao0FGjz4zAF6WrP8m1uu45XhMW7dPMie6fP0t7bz1q0bGC8VeWlsFM93iAKNiTS9Lc1IA07K5dDYFMLYUSY1FRJhe12hB9v7l3N4aIKRqQWkB1ESMDBbq0FGoDyFToMjBaHSKNeWF1VdgAeOF5McPEO1bu/WMiZeAEsmuiY0yMgndAxCGoyW1qLJMTRMaMtx0jrHi4BYKGbZhEsUe9dgjLDvi9imKrC6LbdkAUbo+POMQWtrOyUjW+5zGjbDchsatMFIgYw0Ku2CJ5bGxWBsKRMFTmhQCYGIiKn1NisUAhxllrIw49nUTknwhGtFy53N6HqIrDYsccS1JA6amzHCoNMJdCqBiCLr9gE4noMODTotCBIxgcURqJQFLqEMjhDoGJSNgWrVnpBSI8B4EaEHeycm2TM+CYCfdmxGGWmasgkGezrYMzaOSMBIeYHCUIMWP4EpR4wuVEmnfeZ0BcdzqJqQ546cAxcWGg2mDpb5sduvYm1fJx+760KJfmh0jj3LOjlybJypsTz79w+zaUs/MwfP4DgC33PZPNBLOuGT9F3ec/sVjJ6f5/DBUQYGOuhb3vb6a+nAWY4OTTGXL9PenGH7xhU8su8krw6N09OWxVcO77xmM1/ad4Jr1q/k/z6/jxOTs1w10P+mXqiX4p8mfqCA7HstPMfhN+++45tatrc1y5HZGaom5H88/QK/cNuN39R6PW1ZsukE3a1NDPReyEa1Nnxx73Gakj7//t238PFHdvM7n36CgfY2HM+hd6CDc8OzXLa8m5//4C386z95kOHpPD09WdZ2dnL1uuU8PjzEsvZmhmZzbN7cy4OHjqH2w96JCTzPIem4tGfSJFyH2XyFZMpjS38706NlfOHgx5OGF0kCYOhJpTlcNZiaRmRi3dYiYSKyQt0Ig9ZWDC3iYyF0bLaEgcA+FWtpcCKBlIJoUZxlrJ5LRYKaJ3GkZNGeUgiDdA2OMERRzKAQBuNrFu0+bNYCIowzm1g+JqSBSODWYrr74vRmYtajBq9mWSPCYP+u2InRaDvPTESKIOuCI3AWy4GNmPFoDEJZ0JYNjdA2K1OL4vmY/h85FuSNIM6+LBAtHj5SYlI+1EN00kMohVx0PnYExpHoRAKyKevGL0B5Vi6AMShX0GgWCFdglEbW4rE02BKqMYaE6+L6knKzoGas8HxJXCewTEchMFVNrRAw3VkhjMfzSGUoFWr8q/t38cBTR5ibydOeSjKZK7Gsq4XVazt5cv9pXOkgkpLB3nbW9Haw5/AIe46PsmFFFxK49doN+L5Lc3uGF144xZYNy7h6xyCZlM89N1kd2M5NK5icK3L7Vev5wz95nI72Jso64kufPEpCOOy8YhUf+sC1NBohDzx8gFzYYLZU4V23XM7y7lYAjo1as+Mtq3q5YnUfx0ZnePrgWb6y9yR37FpPd0sTH/ma8UjfToSRIl+o0t1xaZjma+MSkH2PRzkIeOLsWe5eu5ZfeOtN/M7jz5BXdfZOjLNz2Td2DFjf38X6/otFmc8cH+LZk+dY0dnCzsF+AA6em2R2ocyHbt3O2ekc1XrA5x49QLUWcGxoGmOgWK8zlivyi++7jV/+8leZrVb42PYdnJvO8eCpk+TCOo8eO02T41FLCD5/6CidMs37rr2cv3hiD9OVMmp4gmojQEjBypVtnJ6fRyuD5wj8lMPDR09Z5yXHGu26nsUlI7E3/FDiLmhUOr7xhYIopRG+rcWZmPCBtkbC2YSPEYaCamCEwavYp/EqYCKFrrngGqSrkY7GcTRR4F4wKoykBTIHW44LJCKyxBWksP0u7Oe51ZgtGO+vkuAF4EQGY+J+lgTjCpya9TC0IGqzMd3kxZlYTPzQBs9YcAAsaJpY4Kzjsl7c/0MbZKis9sux+ybiYWmRL/BrtnRqHGGPqSkRg6OLiQxojfEdwpSdvyZiANZxdqcdQZAWNFrseBmhAUei01ZfGAkL7okGrFrfxcJ8heX9zRwYn7ZsSQXGMaSTHhEGE2lCYwidiNHZBfDih5YQgtDwW599irZMkqqMGFkogjQM5fNc2zLITVvWUGuE3HHlOt6yfQN/+bmXeGnfEPPFKkMrO5g4n2d2tkxRB5wZmWN4Oke2LcMHVnRy/eUDPPXUcWY3F9l22Qp2bVzJJz71IvOzJXq6W6gWqpw+O4MrBFGomMmVGVjZycHDo2zc0MePf/SOpWnSAP/qrdcRKUVTKsGpyTl8zyFoRKR9j12r+hmezH9rF/6bxKe+vJfJ2SI/dv+1dLV9awN4vx/jEpB9j8eXT56k3Ah46tw57lm/nl95y6188tCrjBWLFwHZfLlKazr5OnbT2al5xvNFbtq0eum1wCiKUYObLxtkdZfN0j56504ODk0Shta/cKFS551vuYJ/ePQAx+fnyLSlWN7Xxp1XrON3n36O0/k5WjNJHhk+zVW9y/mldTfya59/nOZkgoz0mFgoodNQSYR8dvdhshmfYqNBsVInlfQpBQ3mFypIBdoVVFGM1Er4gBYSL+lgIk0UGaRrM4NFMHMb0rprxLTvJRGJsv0qs6TjstR633UW+eikjEvWSVKLypiGxCgPfI1OhwghUEZi3XhjywkTo4erQFn2o3Eu6LlQlnjh1OxkZxwDdYNoWJGzjIXHbtUgQo2DQQQak3CsOBksQDnWOVhGtjdmMyB7vHYbdlE7edlmLjZJNPF50LaUCThVRZiV6PgzdLMLnrbMwroGTxKTNW1JUWoMDlHWs96KEmQ1sh/vS4ImgXIEOmHzZrQFMkv7kDgC2ltTNPIBWgWcHprBdR30nMQLzJJvpDZQb0S4vmNJMm3CngPXMj6Vz9LU68iFnKpjJFSlIiM8HGP4yr4TbOzo5LrLB1Da8LN/8AC1uRqTw3makh6bV/bQlkrR3pahJUoyEs0yuLyT1rY0uWKVQrHG1GyR8v6AFw4MIV1Jvdygq7+Vobk8H77vas6cnCLte7gJl6FzMywsVFnW10pLNnURiAHsPz3Gs4eGeOf1l/HAgWMIIfj377uFQrXOA88eplILWL+ii9bYdPhbjdGZBc5P59m2fjlSiCUT40th4xKQfY/HWzds4PEzZ7h1tQWiTV1d/OdbbrtImDldLPOHT77IstYWfuqWXRet//D+4xQqdTYs66KnxT7BHcrNkGzxWfaaWUhXrVux1EP82Ft20dVizYyTzQlGZvMcPj/Ff7z/FnatX8nf/eVhTAJmoiozUxVGpvK0bt9BViYIQ0W+HtImE2RTSUrlBlMLRYyATMpn84puKrUGI/OaSrFhM5KYRg8WK0gJXOEiaoqoHlkdV9qWE40lDCJD2wtDCBwlUEIglUQH2lpBhYCEhXoD4xpEzdLla0bhlW1GKI1BKzAJMKGD0RITgtDSlvwCAAEJ684hFueRaMCLM8K67Rs5gWVJCmXp+hKLfzoGG8eSAnEqESIyKGMwCQ8joNHq2vWqGu0DQtq+l7GZWuhJHAOEr6F2BxoHTeS4VhxtpPVG1IBv3UFkpFG+ZR7qxfWN7WvFRU0LTqFE+1aygLIu+caXGGUIMzL+W6BdFrUBKA9M0mrHml2fUr0BdYULhAIaaUOhVkZqO6aoqTlBqdJAuALhQt3VhElbanRd2yM10pI/jCOWLMEM0N/Vwr952w08tec0+w+P8vzMMM+fGKanuxnfdUkKyGYSdLU1kW3P0NHbzMmxGV589hQt2RR3v+Vyntl3hi88c5gfffsuhs7PcfTkBPlanUhrlnW34tRdmjIJDp8c5+d/+k6+9Ngh8rkKH3zPLlpaU5wfzXPLDRuIIoXjyKXRS0nfxfccEq7LrZsHEULwmZcOUajW+egN2zlxfubbBjGAh186RrFS52fuv4FtG/u/7e19v8UlIPsejybf577NmzHG8KlTr7K1s4/L2i82KW1LJ5mpVJmqVJgplenOXig5vGPnZv74id38/lef5xfuuQnfdbl9zSDnFxZIuC6z5Qp/vPtlrlrRz1s3WLuqvnj0uzGGioxoaU7xuz92L7//4ks8cOYEv/2Wu/jpxx6iFkX0NjWx3M9y99Z17D09ytBUjkotoiwaVE2EI+10YdeThEbz8vkxe3PXMNjdxnytRjLtU5UB+XoNz3Xo8DIUi3Ui1+B0OggMjaSySYm0gyrdqi2taQ9kJMkIl5oOkQ3Htra03X/HCJRjkMpmE1JDOYqQns0EraMHS0AqpLDCbB03wBBWd+bI2FLJshOFsiQPGQhksNgPw5I5BOBYoTTGoB2JtRjBliMdqLXFY1OEtHo1IQgy0tpPRdadQywCYdyHw7NkExmZONszBK69qRoJKimRgeWvy8iaD7tGoxxB5EuEo0jEo1OMFGjXAiYy7tEJQBuUNraH5dt9UU1yyUtSaNsn04lYJC6hULUblWlwawJjILTcUAt4CQiCABICmbUZlk7FmTOL4u5YAwikhCTt+gSNCCEM67o7OXJumpZsCi/pEsSArD3BnTvW8+gjh6m5mt/+xfv4iwd3MzVfpNnzQRmu3THI3GyJRj3k9h3r+D9/8Qz79w1x+c5VPPTwq4SBwgkN/+J917F6RSd/8ImnGR7LMTNfYqFQ5bLNy/mT//sMHe0ZXFfyX/7iq/R3t/Lj77Ikq/l8he2rlzO4rINBYlmPtlPXVy/rYPWyb0/qc3x0micOnuGajSup1IIl78hLcXFcArJ/JpFr1Di5MMdMrcJl7T3Uw5CkZwWrvuvykWuu5NWxCZqTF7OjVne389YrNjCWL/D7j71AwnP5xbffyhV9fW/6WWGk+KMvvEB3e5axWpGR3AIvzYxxODdtn5Dbmvnx7Tt4ZOgUH9qylfvXbeHZs+eoOBEzUQXVbA1r29p9XNdls2zl2MQMVa3sHC/rWkSLl8RFUleKeh2choDAWsn7vkMu0UAlTXzjtdmIYyTa1+jA+huKmDWoSpEdfxL/ooURVjcmwRUOKqbJm1h4LbBgJBsC7cc3cYH1XlRxKiBNPHuFmA9vb/AyEggllgZjSgUEGrdhN6I8q6kSEBMoIGySmDKoFp8oKdGJWLcVM/8wsT5NmyVxsTDgF0PLEnQlqsmBQCFi30XlCKS2WWXcarNsxbgsKuLSqAVejRePjxHClgyjlLQMy6p1EdEi1sWlpBV2Y8+nltad38jYmSR14fMWSSZC2lJu1GynSpuYPMKiTCCuAofGzmUzxI5ddWs+7RqQSfvGVatXsHl5D88dG+L09DyvjIzyzLGzSATNrk/k2e9wvFzgi8dOEHiKbDqFkfBD9+7EdSSPfuUwM0M5sk1JNmzoI51N8tCTh3n5pVOIUHPTNet55pmTlPJVNi3vYsNgD0IIbr1mPT2dzYyN23WbsynG8kWOT87ywfBq+rtb6e9pWbpW9p8Yw3UkV27s548fedGCsoGfvPfaf8zlvRQnR2cYnStwx5XrADg/s0ChUsf1HG7e8MYSm0txCci+61EPI/7oud1sW9bLHRvXvulyHck09w1upifZxAsjI3zl9BluHBjgjrX2x33VquVcP7jyDadN37rJLvP5vUeWSpLjuQKZhE9XU4ZtXb189dgZUo7LrWsHUdrYXlbCo1INuGH9AC+PjdLVlOGK5b3UnIBHR0/Q15zlS+ePkUpK/mTPXuYbNQotEZ6ypa3pqEqyKpkuFHCk9SIUDiQQJD2PUGvOTc8T+MSlPkFbKsnyzmZO53O2dAjx6BVsliMFLSZFUTUQFRANSNcFpmIQjkAlTVyWi/8Rtr/mKOxTvLPIpBfQMLiRgwkcVJNGezq+IuISnm9AaoQPJrDiLhHERIsGOGG8fxF4dQtsxon9FUN7vNq1mYORNktayv7iaqqIsy+bRRpkXeHVNSKy7vSyoXA0SN/Bry4OGgOd8CyBpKFxGjbDMk6cmfmCi34GngU8g2Uyamkp9LzWdcTYHpX2JFJZOy0hYrmBZOm/xP1A41qPSLm4SzqWBAT2u9Qu8dBTkIuuKdK6YyWSgnqsRXPi78g4Aikl2tHM16oM9rVz+9a1/NQnH0QrjVt3MBjm3MZS+zJyYaxYxGuWzDYa/JtPfYnIMUyM5smUBf2JDM/vO8upkRlOj84xnSvhSsG//slb2Lq5nz/9nx/hP/zcJ8lNLCxdN5mkzwuvnOHd927HdSTHT00yN11Ephxcx+Hy9X1MzBaWTm13S4bzU3kaYWRPp7bl3a+8coIgVPzQ11jBfaP4yv5TlKoNbtqyGt9zuXvHBm7ZuoaEd+lW/fXi0tn5LkctDJktVZgqlTkyPU3SdVnb8cbliNxCnQeGjtOaTvLk6BCX9/Wwe+g8g13t/N4zz+MiSTouH9qxlXXdnQCMzS7w54+9zP3XbeH+ndZ4VGvDn3/lZTIJn5+55zpeHDrPqZk55spVwNb9/9MP38VnXzrMQ6dPcmBykjuuXEuq7nGwNEkuV2G6XuLMwhyr2pr48+MvMaZLlLVGuHau2kCmlXI9oD1KcKIyg+c49LQkyZfqRBgyCZ8Tc7P2hioNgTAIB4o02JefpGG0pa1HBhNryTCQNA7NKkHSccjVrVFsGNPybZ1qUZhsl1eLGUOsccKxmRnainiNMihpLBMxcqxXo2e3JaS2d1oFuJZeL+vWh1FqbEkxistycdZopAUR7VkAs0QO7OiZpMBrmAtyAmVwAoMb2J6VW43w5+t2x4MIISUm4WMEOJGy5U3XscCoNW4QobVjhdyhIUrFsgPPEihsVhmfGG3At+VCEVr0EMbg1q2GTXm2fCqVib0TDdV2S/BAg3QFWoFTj0GsxlKWJSPAMciKwW2Y2BBZ2unayk6vFo51l096tpQaSjuFO+m5GGDLyl7yhQqFoM6ZmRx/8sTLvP+6rWhtqNRDPnzDFewZGePQ3HQsdwDfk/S1ZBkvFVFS09yWYP+pCWpEyIzPxg3LuWHLav7ukX0s72khDC2BJZm2Q2ubMgnaO7MMDF5g9e45OMLMfJF/85v/wIbBbpZ3tLBxoId1A108t/csf/C3z7ByRTv33nAZ0/kSrdk0+WKNtqYUv/ze2zh4cpx9x0YZny2wUK79o+8H919/OdMLJfzXANclEPvGccnA67scbekU/+Xtd/Lhq67gHw4d4TOHDr/psv2tzWSTCcarJdrTaV4YHuHI+DSPHDlFf0szy1ua8R2J71744X9u92HOTM7x0MvHODs5D1jngCtXL2d0Is8fP/giH7t+J3dtXMNspcJDe47xm//wBIVqnd6OJor1OpFQnJ6f55dvvoXhSo6xUhGlDHWlGMtXuaV3HeUgJFQKT0revXkzf/+hD/CRTdvY0N3FH/3Yffzuh97Kz912A8ubm9GhZnKhTBBaD77Iw4KHhLrQhNjmidEGEjpmd9jyVyJwKBbqzC/UbdksziRU0pa+2qRnS32x56GM2Y4m9loUsbhYhHYZ7QAJAdpqwJxiXFYkZg1KjdESArFE7hANm5EtZniLYRyr3yKK+z7EDiQNjYwgbJaECZsxGce+L+saWVckKopEMUQ2QmS+jFMLELUAge2HIYUFLLA9NCEwnoOsR8hahAgtZdHOAot7douZpzEYKYl8EU+jjo9PCFRSolLSOnvE4m273yyJqoU2eHmNW4tLoNGF04MDQhj8orFDQJUFeDCo2Fsy8iH07LNAvRQR5BVOWSAqUDMR2jUsFKtUwpCiCYnSholqkT984kWKjTqhVnzm5UOcnJhjZUsL0oPe5iZ++R5LPko3J8h0J+jsaOJjt13F6u42mlqTnKousHJFO5ONKifnc9z91i1cdvlyrt66CoByqc7YeJ7JqQJf+uwehk5N8d63beedd13BbK7Mo08c5cSRMeZPzjI7PM/4eI625jR9nc2cnZjns88comYi/u1HbuXJg2c4MzHHsaEpZnIl7r/xcu69ehN/++W9/yjD3+WdLWxf+71F5lBa85dfeYXnjp77bu/Km8YlqP8eiEXK/K1rB0nHfa83ivWdnfy7m26gFobsn5pgW1cvn9t/lHu2rL+I4PHaeN8N28gkEoxM5fjUU/vp7Mhyw6YB7tt1GUfOTPLq2CQ9J5o5OD5FpRHy0W1X4MYi4b9/+RCrO9vp6mlCJiUGuLF3gEfPnaYn1cR0pUJa+bxnYBu7j0+yd26cFe0t/Ntrb2A6X+JLe04wuKydLx0+Qcr1WdXZyq2XDSJOn+P49NxSyUpLQzbh40sHH0nNKPJBfWmOmJAGQtvYypk6SenZ3pJnPQ3dCEJttWeFenjR8WuF1Sgl4uypavtaKoE1x03GwBYLmN1IwoxBdWF1aSaufS1OwMQ2+EwSdAMLhm4MkLHtk4x1YG4DRMGWPK2w22AcaQ2GFZhI44YKGRicqp3CLOYXrKYrnYJ0EmEMSgpU1kNLaU2I1WtMgxGIIMK4Dl45JGz28KqxZs21vTAjsFOxU4JIgIu0bE1jh40KrbE/QbM0Rib0BULFpBNlQRoBErNkn2XF5cayNLWt5S722bQPxrP+kiIu6waBxl20CDMsAW89VAzN5DBxe9J1BHWlqWuFkZBIS9pSKWbnK5yvFGjJJvmJm6/mk68eZKS8QGsqxYauDs5O5tlbGqcvm8VNwtYVvfR0NLNj4wqqYcCLZ0bpac0ihGBoeJbPfOolIqU4d2YaWWrw9JcP8l/+9KOsHejiI++4ir/77G6Gx+ZZ3d2M77l86L6rueyy5axb0cXRkSnmFyrce80myrUGn3n6IH3tWX7jo2+hUK7R1pzmiVdOMz1XpFCq097yem/T14bS+nvWGLjWCDk3nUMbuPGy1d/t3XnDuARk30Nx8+oLP5Kpaomk49KaeD11N+V5XL/CPlV+9LrtX3ebfW3N3HvVRn7jM4+T9n1kyWHPmTFaU0n6OpvZMzzKM4fOsmxZC26zw1u3b+St2zcC8NvvuZsnjp7hvu2bkfFFNpdv0EYGRzmsTLXhJWAhrHFFdx+vjk1SqDcoBQF/+thuSpU6j+w7QeTax3yjDTKA5lSCJt+jYEK0p1FJWNANNqU6iAqKej0i5UlqRkPNkieEERjXQAgNoUg4kkgbtI6JHcagDEtkEusVbJZKjELZkqOMXeoXl5ENrK1UrEczQuBqB4oandEIR0IyskCKS9iuccsOQlsjYGGbSZYwgiV+aAf8molF0xDF+yRjZ3u0LSmKwOCWIpyaHZtCuYbRGuE4kLRIq7UBz0EGhqjJDvGMEgYhHZySwgE7Lwzbb3NqCpG0jEuD3ZdFbZaJANe6f4h4/IoIscchFs+JIXKtVo3IbkXA0kgbpMCtWkCzhsfEpUqD8WKAc4UVjxsrqhbCxOJ1g9CSNA5O1iVXb+A2oLk5QSg0iaRLrlazaXQstQAIpWHar5NdkUKV65TDgN954lnKKsS4UNeKtOsxPlnAReAZyfKWZlra0gxNzjNdK7P37DipZo/QN5yemuPhL7/KqfOzuMqwclkznufQ1JSgVg3wEx733nE511+1hihS1EPF8p4WhBDs3Gxnju05Pkra91jf30W1HpBOeLRmUkgpaIunsH/onh3kitU3BTGtDV/cf5xqqcHZsTk+ePuVrFnW+XWv5+9GNKUS/MK7b/meZkxeArI3Ca01B186w2U7VuMn3zxL+k7F/3z1eVr8JL+089Zve1v5ao26VqzraGZNVwcPvXCEp185TSrt05xIUq0GqGpEXyLDD/3237JjXT//9r0305JKLvXVFqMv28SR2WkiR+H5koR2+LWXHmdTtocrVvXRnkrzhy/tZqxe4nx+ASEFUexAL4wlexSjwN4oHTvlWGs7euTsdJ4Ok6BeDzAlSAoHXMg0e+TDEIPGuMKChbI3R09aYonRMSHExbrQx6VFHY9iEdEFYfEiCUNElilpHJs9aUA128RLBgLtSUhECC0wCazGygHta8Sijs0VNrPTApGw/TQRWcq/ic15ZcPe5MUig48YWDyBMBoiZTVtbRlMaxoT2n4YjmOBVBkIFF7JEGQ9dNK1N/omFycIkUqjfOeC/kpZv8UogWVHLp6bRQZIwlLflYkBLSEQdbu/RoPx7L4hbC9MxKVWowWiZj0VVXxJaGkgBVJLdEzKkXXwy/b7DRNY5mjVgreWCq1BzylI2wysFAZcu2Elm1f38oVTJ5gqllBV+9AiEaxYmSVfDsg3anhJh0o9xChlv3tX0N3SRL5cpREplLD9w2eGzrFncowXWvs4MDJBFGlQgheHzjP891/kj+97G9WFKvtPzDA6NMv2K1bS3NtCS1uGQrEGAvKVGn/3yD7akkk2DPZw+7UXhtS++5atVOPsP530+Y8fuI3WposfOhO+S19nM28WZ2fmGc8VmMmXSSdcXjo/yqre9rhFqkgn/t/fd94smv8R7v3fjbgEZG8S+545yfDJCcaHZnjbR274f/75O7v7aXuDbOxbiZH5Bdb3d3F+doFGPeKqDSs4P73A+oFuqmFAox6RySQ4P5NneqHE0GSOqXyJehjh+pJT03PctmENv/X0U+weHaXJ85muFAkrGs+XLLgNZhdqOFpyZGiatO9Rnq6DhJSGm9cO8srZMao6IHRBpqCxaP4XCJqUJDAGN4TAUaR8jwCFqmo8JQiLGulhWXylGASwg58JjbU88iw4seg4EZctjQCVAbduEIHVOImIJXo5wmYyGBCONfXVKZuZyTpo6dsRLX6ESVhA1r5BKoFKWQBUsS5OqhiUXQsgIgCSll2nY/G2wiDqAidp7atqPWmcFp/UeBkAk0qgsoviamMHYIYK47oIIfFrmsCRscuJIExL/CqgLTlG1hTSl2gXXNcjCkxMjY/JKOZCz1CYOGtDozO2v+eElj4uVbzcYnYblwhFrG+Tsf2kTtiU12iryxNGWDNl1wKh9V+0fVmp7IOMSEjqRiMDu42oYXju+Ai7R8YoNDcgBSKpEUXryHI2yNGVyOJEkjqR1Q46gg09XWRTCYYLC1S9AHyIlOFkOY8Ayo0QkXGJ0iClZysDWlCs1ploVPiXP34rv3hknHXr++jqbaGhNLv3DfGJz75EJGCsWgJXMtjTRpQQXB+sIRk7e/R3tV50jS3vtJT8c7M5XNdhRVsL3yjW9nQwuqzA+6/bxoOHjlGo19k/Ms6+U2OMzhf49ffdiec633A7lwKEWTJy+96LYrFIS0sLhUKB5uY3f7L5TkS92uCRT+3m5rdfSXv3/9vPfm2cLk4zVSvxyuw5buxZx1Wdq/iTgy/TnW7iPetfP/786RNDPH9qmBvWD3DLxsGl1z/+xCs4wN3bNrC8s4W5UoVIaX7rgScp1ev83g/di1GG8zN5uluz/OZDT+AKSXdvM4cmp5ACjlXmCF3F6rY25stVKqoBTQoPjy3JPo6MTBPWFEnpoMt24rMfWNaVSEiKBIiEoLUlzXRQxkTgFgWZCK7bOMjzp88RmrikpC0hI+256DSUdETKdQhLyt4Y1WuICTKmxIeW+LFIcVcpiDzLehQheFVbSpMxiOlYUyYD27PRCQt+QRp0Oi6pOWbREReURihLw5fGEj9kcKGcKUMLnF4VRAB+ye6gSsZ6sUU7rbjU5xYVfsP23ZxyaEFIWgGY0AZCaxQsq3XC1hRCWoCKEg46ZcubRhiSuchaPWm7vJ01BkHGJcp6aF+AK5bOq/Kw5Tuse//i8WkH3EpMyZcCjEYqCLIWoJyAmAYaH4fGsiC1WRruKTW4FU3YsjgfzbI2jSdwGoZkwqWc0ajQnjcTg/ziaJx6d4RoApEIMXWJUVbD5ocuRIKeTJauVJpC3ZJAajrCdSSFoEEQKIjADQWiDsmUx52b1vDEobOWcJEUpFyPazv7KdYafPC6bdy2eQ3GwP/9m+dYKNUwjuDIiQkGBruYrlWoKcXmwV7GZgtsGujmJ99x3Rtep+dmcxybmOFv975KZAz/+31vo7c5y5cPnyRfrfFDu674utf5VKHEL37iEXatXcGaZZ2cn1vgx27b+YZymh+U+Mfc/y9lZG8SyXSCd/34zd/Rzzg9N88Xj53g3Zdfxqq21jdc5nPDB5gPKqQcn9l6CYBzhTy1KMQYw1/u28+q1tYlPVmxVufA+QkqYcDa7g7621sYmc3zzNGzKKX50duu4qUz5/n7lw4y2N1OqdYglfSYL1Xpa83y4rnzLNTrHJuZRRj4D1dt4pXzYxTqdVoSSUQGkp7HzRtWcXRuhqFijqzjcWRuijC0pbe6o/FaBE7Zaohc1+GqNf08PXoOg8CP3TGcKiSKBqVhZGLemtfaB3lbAnShbCJkAI4HQUPZ0hkXloGY/o1l17kNAGF9+0KDSdtMYhFkpFpabYmg4cTjVpQfv+di/QuxfSSjDEiDDKwHo3Fg0eNRJVnSrWkZZ4YC3Dg7caILLEnjXMAIoS0RQzeU7aW5DqQkNLQtkyJs6VFHkElY+ykZMyAR6LRjl5GCertnafyVKNaTSSQSN8JmrMKgHOvOYSUBNgM1i1YaMYgpT2CaLmRdwgh0FOvS4nMmQwssGDtShsgsZchOBE5D4zYMyVlDPS4rCiWIPEOUgEJKLendTKzpW5KyGfAXXDIZl5yKkAlDs05TCgICR+FqSSAimjIedRGRa1QJlSKoaXxX0pTycaqSlmSC7q4MY9UCe0YmyDYnWZltoZIIydfqDK7s4OUj5/m7J/fzD199lWXxUM5D4zl+6t5ruHHXOq7efqFfHSnN7336KSZzJV45fp59p8f48J07yKYSS8t8fv9RirU667s7cVxJezy49tjEDLlK9RveC7qzTdy4YQCU4dTZad5/2xWvAzFjDIenp9nY1YXvXMrUXhuXgOy7GMO5PIV6g7FC4U2B7PZlGwm14pquQWT8w/7tG+/CEZJAKY7PzlJqNJaA7B1Xbmb/+CTHp2eWBvl1t2TYOtDH5hU9/PkLe7h+9Uqm8iXCIOKmTas5NzXP7372KWomYqJSolAPSGYcOpuaWCjXuH71KhZqNfaVJwlFRChD9k1PsFCvkxQezV6CshtgMpYl6AENrXHSAh0YEj70tme5Qaxi9/AYE/NlOxCzYTVYjoGWVAp/oYyJFCpmvWknFhZHLI1P0bErh5GWvCBjV4tFiyhLMowzLM++JxvY2V9BfFKdGHwC+7727JiXoN2WBy0jkCX7CTsSxaBdbUkjRmCEIUzp2AU+ZjMarPHwoq2UA8m8LXMu7p+jLGNSSUgEoDIONDTUrPmvdq2ey5j4YFzf9nccW2oUUmKSEqdmM0blxqJiQPt2zpc2NjPRsZJA+cL6McbnTegl/2OEitmbns0ycWOWIaAcWz7FFxDG/bBF5xSt4zKtIO04VLUCpUnk7cpBs3XfN/pCPy1MCFRSxOtbwJeLfBwVA71jqIQBQku8lCTrJqiEAVoaREIz7+XYV8uzNbua21Zv4+OH9xKh8Y1LQrrcvXENL42MMxmVWKg2ULpG0ndpOE1ct3IlDxw8xv9+6SUE0FlKkpIu2zes4KWz55kvV/j0M6/ySx+9MHi2FoT87eP7uWP7etYs6+CJA6eZLVTIl2oXAdldl63j0VOn+Ng1O2lOXjDv/tnbriX6Juj3Ugp+7K6r+fJLx3h1bpxcqUZn6wUmcjkIeOjUceaLVfZPTPAj278+yesHLb7vgUxrw8GT42xZ1/c9V2++c/1abli9itTXodxf1Tnwute8eAZVwnX51VtvWVp/vlxlZC7H0YlpW9Zx7MX0d3sOoRKCQhQQas3TQ+d4z3WXs767g0MjU8wUK4wWCiTbfPKmgXE0Pd2tBFKzZaCXjyy7kqeHz7H/xUlKQQPfQDGoUxV1XB9mTETgKpJZj6yTZK5aRUeghSCRdKjKiJmgwoa+LiYKRU5MzVsCAHFfS8Ho3AKeK2mEylatdJxpLcrIFIQxQUTHpAQByNoFIgmSpflli36LTpWlkScAZpF4tdjjwWZVQbsFKxHGvR0TA2U91oJlJDplrXZlVaI9S2ww2GzLjjzRlqCg7AaMhEZW4FUsKDsKwlZ7w5ZV65ohMAQpCWlBoqCRS9qt+B9lEJ5r99UYjCstKGmDcW1WJOoanXCQiyb/0iXyrY5LpeMhm9L2vpRr+2BCLfn3W5p8fCeQMS3fOAKVsO8ZrIu/E7JE+5daWOalMdRVZLkk8WgbO2TUljKVH/syCuz4msbiPlrZBAIiCco3RGmDShswhhYnRVcizURjgSgy4BoiaW3I6qFh78x5jo/PkfI8Ols8Btx2Xpoe5XOnjzOYamO2UEakoS/ZRLHWoJ4I+ezwYbSnbb9PwuqBDnqzWSqJiGlTIVer4k5I/tvfP8U1l63CSTi8cvo8Ke2R9Ge5auMK3nPTVupBROpriBhFFdDalOZfPvoFLu/p4T9df5u9Rj2XBN98vPXazdx51YbX3av++ugB8rUqMpLct2bzP2KLPxjxfQ9kLx08x9DYHMMT87zr9m3f7d15XbwZiL0yPcr+mQmu7unn+clhulJNLG9q5qZlF+s4Wl7jrfgXT+9htlTBkZJQKYq1Om2ZNF5SEpQU77liM+fmF/iHI0c5lZ/nYGEaaQSHyjOsWNHC9oHlJCbGGSsUKRLQlPZ56OwJrlzWx+hCgWu6VzATlQjcAC8BtUoNadv5JKSDZ1zqQYTbkHb8iiPw2j0apYhHTpzBl5JM4C6516eFS90JMRJKOkDFgycxhsG2VkamC0viWyQ21XPi3pYPfsF6JEoTZxFxiTD0IMrabEEuasTMBRkYxP/v2OzIyJht6AmUr+2NPhD4Ffu50pXo2gVCifEMSz6DMeBgsKSKFERCo+oCJxQ41cVszJbXdOwasuiIoaM4A0RQ7RZkpixyaxkP6JRWtqC82PhXWoGzSkurP1MG48uYoRmDh2vd+E0CgqZ4BtmiKFzbY0gsGKJUbFcV24dhDDK0k6tVIi5vLsoSkqBDO1vNjQXPSzVaBztdGzChWKL8h55ApS+UJUX88OAIm7kLYTNDnYz7kwmsalqAMobpSplqpJBpRTodkPAEpbqLERplIgq1Gp5w0dpwamEOTzr0tzZzRUcvO1YsJ5l2eX7yHOVUwPHyDEGkEErQ3pGiJZVkdXsHQzPzpBo+EwtFRItg1YpOVnW1s6y9hXO5PKdm5nnvNZdz48bVHBqbYmt/L6mEF2vw7JG9OH6enuYM06UULcmkNV3+mvjLV/ZxZi7Hr955C+NzBdb0drxp/+uNHrjvHljLc2MjfOQyq/O8FBfH9z2QXbFhOSMTOW7c/s/DcPPgzCTPjA5jHM10tYwyivl6laO5aQaa27hp2WqU1kghXnch7Bzsp9oIaE0nOTAyySMHT/H2nZs4Vpwjm02Q8Dzrr5hKs3PFco7OTXN8cpbu9gwlE/DgmeNs6OokHXp0JFN0N2fY2NlJsV7n44dfIVeps7KjhXs2reGKjuX81v6vMlrJ4QjJ+zdu5dR8nnol4kh+Fqk1sgpVFZBwJRpBQ2si3YiNMwzptAeRoepFti+kQTQMrobaZI2kEQQYPBcaMu4zyZhnIOJsrooFsEV2nbEUeutsb3ACgaNfs7yPHfIYZ13aNZjF2hzYbAJbihShBQALFgJRk4ikib0asVopYdAJE2/PlhxxAM9WBsMWg0pbCj6GJVNZPDAJYUtmehFoBUGTwK0awoSwDPzQipFVStpSq1pkHtp90wkn9mWEKClRifj1mt2uSsWWXZql7FYICxpOYNBNVn4gy7FvYqzJw7X9PWOw06CNJWaYRZq+Y5cT2sTmzAYRQeQKjAeNtEBnpc3SxAXMw7GMQz/tUHEiohhAo5S2rFCgxUuwqqWVIzOz4BlcVyI9TSSgvyVFsaaYrxtkyuCEkkoQUo4iUo5LqdjgcDTD/3r7W2nLpPj0516lHDVQyk5AQEEkDX2pZkaLC5yYneXQ/DRdHWn6E83cvXMDb9m6nqFcjsfHz7IQ1Xlg/zEeOnqS6WqJP//guzg6M8NTw0Ns6+3jfZdv4dGhU7QkkvzUlbt4ZWacFj9JQ0V8fP9etvcu47oVK2lOJmlNJvniK8eYLVS4YvUymj2fywb7LMHnG8Tatg7Wtn17Tvrfz/F9D2SZdIIP3bvzu70b33Q8evY0+UaNH95yJe2pFD3pJubrVUphg4zrUwkDPvDIp7i8o5ffvv7ui9Ydms0RKc2G5V0ce+UgP7puJ7/9/DOUg4CPXWHNSz+97xDPnj7H1Sv7OTEzS3tThsv7etkzPU7QiAiUopZsQCbF6vZ2tnb38vTYOQI0Kd+lM51mINlBApcWL8m879LQIY+Pn6Za19RKCpkCWYz1VUA91CSTLr4wZFMJwmKECTTFcsN6HQJKGhIx+00oKOcbuAlBSzZJzjSsuNmNkyAX3MCy01TK2BIVcZkwEffXPAtOkWugFmcrvrGlv4TNNExsZKsToJLKXg0N8IsSJ5AIEU9njunrMhIQxFmZqy1d34glivoSGGqb/lnGo8EISZSyOqZEPiZYhNbMWMTO8iiDU48JF2kHnRKImrZZqI5F1RrrTUmcacbZUqPJ1mmVZ1FeRgbtQ9C0SOYQcRnUEMXlR8/IpXO5WJZ1G1gyi7HAG6aEJTdqg1u3IKiTgkjFU68dgUrZEqOMBELoJZG5k9RoI5ZMlDFWPG4UhK6hbiJUvC9WDmAfAKS05+3I7AwGg/BAoYgiiQYKWlOLBEYLtBEoo1HGNmZd6ZN2PMYLRVKeRz0MqVQipCfRkcZXDk1+krZMkrl8lTY3iQ4h6TuUKwFN7Qn6+1r5mUcfZjiXZ65SZXVXC6VcnXIU4TiST+w/wLJsM7lKja5MxpoT9K9ioKWVtOfx0zuupi2VolCvM1oo4DsO161YyXu2XgbA2HyBx/afZHQ8T70WkitWuXn7m5uFX4pvLr7vgeyfU8zXqlQaIS1eks2d3Uuvd6YydKYsceNYbhrfdSiG9detv1CpsX98gldzUwz2dHB4YoptPb0kXW/pae6dWzdxZHSaL+89gXahv0fx1sENKAc+dPnl/OHBl6jOhWhH8/mzR3hxfISf3X4tA9k2Wv0UY8UC//qxRzDSIBMaJ6VIeQ6ZhM9ksIAxkqyT4LJV3UwslNjY2cFLZ0aoRxFJx2GwtZVU0mH/mXF7I9aGVAimYnsXUghkzAqMIkO+WCNM27LfYiYkNUt2RjiCSrfBX7A3xTBjH/9FrCpZLLXhxKUwYUt1iy6jkdSYlAHPgo+MJDolkcYQxsa/IrIgYHVV5gIJxLUSAxHFTbn4ddsjska5CFCZ0L4eCaKqtDd6E7et4iqSXJQMJK0ThozsmBYTu43YeqwFVCVtNoUnCBKWAk9o5QZIiIxAhNadQ2ibkdnSoc3WhLGlQ+tKYj/fyLgX2Ign18QuIPakWmE0iz1KHZske/H+J4SdNbpIxw9MfF6stMH4Nv0VWixi+AXSiWs/xw0coqSiNZEkF1YgYSww+oZMKsD1QuqhS6EegZEkPRfVcAj14pw6QUDEitYWbhvs4Jef/CqnSrPohs3aUtIjQnHV8mVM1cr4nssNy1dBCKMLBTxHsFCpcXhmCqMNDaNIuA79fa1092RY29NBIuVy8+oB/vszL7CitYXuTIbfffI5/KTD8yMj/NzV17KypRWAahQy2NXKPYPrL7pGs+kEb716E54RfPmF41y54XvLV/Gfa1wCsu9CKK154vQQ165awRdOHufE3By/evMttCdTZByP3mT2Tdfd3N7De9ZsYVmm5XXv/bu33sRz50Y4MzfPjr4+1vd0kXyNc/avfuVx6rWQa1atoJCrkkx6/Po772SgvY3Dc5P8weHd9GWb6a1mGKvNIzzJWJDnweFj3LRygFK9wXytSowUJISLxKHTaaLW0JiGQQQQaMWR3Ax3rVnLTLFMUNU4AWhHMWoWqC4EhJFGKENrMgHzIY3AegrqhEFbUz8gFhZj7CiwCLzQOsnjASkra3IDLBU+jSVqNGwPTqeMdbqPtWVKaPDBCSVoYzOrlAFPITwLcEI7KN+gHFtSU1Lb0hsWTIwA42hI2nqlWPRukhrSxnYMlbTAg4gzTCt0E6FEJ2waJYSd2SVjV/5Fev4iuBhjiSnKFXGmKZbGwNghmrYf5saygiUZgLCvy0WmZMwaNH5MSgFk3U4L0NKSO5TL4mSZC/8TMzelMngVu7wpapx41LVUBh074oNlNxpP4jZs5pysQagUQghExRCmwPi2PGrH89j9XJoRJ6z2K5eoxDRMK3PI+j7ZVIO6NkipLeHFGASKHqeZiaCMSFq3kQx2UsDuiVEGe9uYnC0SScO61g7OlwsYCS9MnadRVLT4ScbmCvQ3tWCyIB2H//yuO/jq2bMkHIe/fPt9fOLgq7x34xY2dF9wxwe4eqCfl86fJ1+tUQ4apB0fR8glVjHA3xw/wOPDZ5gol/j16+9Yev0vntvDfLXGb77jTn743qtedw0bYwebus633wd7aO8xIqW5f9fr9abfb3EJyL4Lsef8OCO5BcYWCmQyPr7j2As+vpjPLMwRXanftKl7PD/HmYUc1/SuACBQlvKcTSS4cfUqbly96nXrNKKIl0dHKZUaNK9J8Kf/4n56mpv49SefJNKaoq5zZHaKIT/HQGcz07NFepMpBrIdTFQKzFUr9LjNZFMemayL1IKB5nYWqnW8hkslqNPipWlJJJmcLCJcSWsywb5To/FgSvA8h762ZoqmxsTCAjLETnUWymZXYrEMFc/oiktSizO4pIYotSikNRAKaNjlopRlyLFY5sMszdBa8lH0AWlJFyYGNds4Ygl4dEoh6w7GNWhfL2nEiCnpAgN+3FeTYFJqia5uB3EapDToUNobrrZ3atFwQVzooWnnwjwzIWw2pQOBX7WjYHRMRtGLXCDHkigMduimFnGWFQjrTOKwpO+KOSiWkr/oKxmPttGL58dYsomM+3PasaC4+LcQWFAyluGIBq9qiJotp3/RB9Fq+OwL1r7Ljm3xI/CC2NLLtcSXyLGTvaN0/PkG+/15YCJjv3sFfgq01EgRIfyAuopQRqC0i+9rgoZEukAECe0iS7aUrAPN2fIcN2waYFtfH18cOgES6lHIps5ucvUq4/kipm4o1+us6+5koL2VZpMgFIrHRk5TiQI2dnXRmcqw5+w4u0+N8ncfft9FA2uHZnJkvQS3r1vDnevfuCx4R/9aJool3rl200Wv7xzoZ6ZUWeqLjS8U2Tsyxju2bkIIwV89tZczU/P8p/fecdFD6LcSR0enLwHZpfjOxfYVyzi/sMAd69YsCScX4x2Xb+K/PvUsv/ro4/z2PXe+IbPphzZsYzi/wH2f+ltWNLfQl2pGAP/5Lkv5fWF0hOdHRzi3kOPseJ6PbNvGD1+9nV+46QbSjsfnXz3OLz78FX7lrltY29FBoV4jLCkCpQijKrMLPjd0DHK6OEex0WC4mKcSBDSZHAEhbiokK5vIpCTDhSoRCYqNBo6U/M7/n73/DrPsvOp88c8b9t4nVq6uzrmlboVWS61gyQqWZMs2DjhgGzCDhwwzZpjrSTABmOHOcGeY3+9yx4YxDDBgsMEG2zjjIMlyULJkqbvV6qTOqaorn7jDG+4f765qN5KxBehijNbz+LG6zt4n7HP2u9611jfcdQ//9VMPUE9iPv7wATpZBjXABaWFmXaPbjtFENBrb7nzGv70K3vJjQ2JQYNIQyWghMCW6vVLHKei9g3ADOmRUuB9OWdSoWpbUvXwOqzqrgLChkrCy9DiQpeLsQvKFD4v50mEhZjkYtvPRwZMUJlAgVAOqQIUX1U8SlmU9oELJcAUEh9paEUhAUpRkqg9yggoytlcBUQ7tBKRYBoeU/1GNYwlQArkjTCn8gpsFCrDqEQISlu2NSVB6NeFRLQ0f1JZuCbLnycBm5etTRvaicL78tqF66AsQWTYXfRYM3UZuGRSYGKBdCJ4seWh8hWlYLKIZWgZpm65giyBnaFi9mLZ/ka6kicoS91NPLVI07UOGXuMd8TSEwkoirDR2TQ8wO7RdZxd6BD1I0zm2Dg0yKnpBRY6fUaSKt2iYENtBIXghhVrGGvU+cTRg4w3a2inGKgkbF4xQq0Z01Axr9u2nftOH6Njcy6vjxEpxWLep58Znjh/nts3buQ9n3+IXpZz1nU43V/kD/c9yTt2Xrt8Xx6fm0cI2Dg8zGf3HyFJNddNrLnk3r39sktRxx/fc4DMGE7OLbBxdJhVwwP08mKZOvM3iX/+mlv5DhZu+luNFxPZ30HESvHWXVcv/3u20+Wn/uhjXLFqnP/4+peTRJp2lvHE2fNct3b1s86v6oiK1ozUa2wcGkKhWEj7y1YQJxcXObIwi3WORVKKEnXxim3b+NLRE5zvtpnr9vh3936B69esZnygzs2D6+nFGY9PnqWqFI/OnGa+6HE2bfELu+7gfU/vIc8tNSJuWLmFNaMxf3ToKdLIkguDqECl0Dx49iQ/8z0v4WsHzrBvcgorYN1gk+mZLrbraIwldKIUrQS1SsQjT50iL+wyss0CVEBZERyflQ/66z64Cy/PbZbADssVWFnNlcABlwRE4pI9i41dcHw2Zd9uaQakSwSgIKzeDQ+JDNJNUL6ACHOqhHK4BUJ6lHII4VE6VGFLzGzvJN45rCpLFx8MR8nBCxUks0rUox0N78XHJWDCgy8rNVe2RE1cthnL9+PqYWYVzDs9Ii1vZFd+lhIYsqyJGIcE78oqRpoSuCFLYAZ+mZ3sfKnUIQUqBVMJ19Q6EYw5ZVDPJwquzyoTRMXFJOZh2b5F5Rcvoa+wXIlSbk6Asn0ZgDgyF5ArVqkRTvsZHBbrPIWRZB7iKKcmBphKF/j4yUWKjoY8YshXOLWwyGyvS6HgY089zZf++U/xpu1XcODcNL92/5c43J+lGSe8Zvvl/LvbX0Y3y7nrD36X9omc9WODrGjUuXPDJv7bV79Eg5gtQ9Osqg0wWbQ5eGaaCwsd/mzvUyx2Ul5z9Xbu3rqFG1ZfmqTe9/UnkEKwaXCYNYMDbB27iDLMjOG/fv5L7Fi5grdce7FCesvuq9h3dooNI0MAvPray/nbimr8ty863O5n/P7nvsauLWu47apN3/qE/4/ixUT2HRDGOVJT0MlyhBD8wt138PnDz7D9L/Xml+J3nv4aSgje/6a38MUTx/ntxx+jEUUcmZtl+9g4P3jVTt60fQdPXDjPzvGV1KPAAp7stPnq5Em2rhhhzlTZM32eW+P17J++gFIC4x13rN3EaFTnscOn8HjW1gdInWOsXqPSjDg6N4vQns+dO4Qt7TPaec5Ytc6oaPLhQ0+zZ2YKmzquWb+KJ86e41SnFVpcBZBaBnXCXNUyT4EoekgbFmthS2i9hjwB4z2qnIktIdxkX+AiX7bARCBVl7t7YaGo2bBoSgGRwyX+G6QvQkWFFIhC4kUJwihnMipyoc3nBUI5hPS4VIVVP3FhAbYlkEOEKsQ5j5KWSFqqUUFmNUWhkdojBnJMTyNKBCVdGXQPHQHxEAtEFhI2PoBKlp2sdUi4NgoVlY9CJeXLz7mkVC8EUPHYArQNiD9XCYlM9cVy29OXsymhuDgDI8zSluS2XHltrAnX18ahVSht2eL0kI2GVqHMS7WU8jFpyg1HFJK+dQ5bUejCLyc4gS8rY5YpAbJseRaE144zzdxMhhvyRC4hE47caJQyaOnxahFtamQuOHv7xNLtFnSLPCBRJSz0Mn749/6UQ7Mz7Bgb4/D5GXwlJPDzky1aWUpWWAZ0hSwzHGvN8Z59D/OadAurR+scmJtGPANvuHoHc60+37tzB60sw1iHRnB2YZHN48NsHhy55L68bdNGZjpdTs4u0Ehifmj3LgA+9PV9VKMI5/yzKqSxRp07L9/8fJaLv9PopTmzrS4XFtp/12/lkngxkf0dh3OeiYEmn3znO5b/tnF4iJ+46ZtTBm5ZuYGonJ/tnFjJromVPLhwjPc8/RX+j123s2VglIqOuHn1eiDI2zTimAu9Lp2i4MZNa/j9A4+zKFOSRPHPdtxM4Sx/+sw+VtTr/OnxJ0mkZFV9gFdt2kKiJdetWM0967fwG/u/yo6RFXxl5ii93GFthrMCm8K5XotWmjE110EYyUpVQ3qJFRZi6BWWZ1rz7F6xinOLbbwLigi18YSWzbEGIgN5pSQ99wNwwFbKltXSTCcPQAEfOn4A5SzGY0dLUnUm8VW7jCIUJUhDIKFQOGUhAaEssmxB4j1jg21i7Ti3UIJphMVbFSo0ERIYQmCL8IYqFUM9KRAigFS891TjjF5awQsJ2iFUIG67qNRtBEQlzLvQgZ9GGqoxFwdgi1ziX1VKJZNSBST8aIAogIaWqi90qc4REarNyGOqftmqRnUJlGVbOlQTlEKypkAWAd0oXXldK2X1pwiI0bK6MzqAT4QANDhXqvkXgA86jr6c/Xgd2r12SS3fhupvCT0qnFge5OVVj22GxzLtmc7bSG/JLUQ6fHmJCnuBNBf0stCKjITEZJLYS9LcBPV/YKJew3pLPy84OjcH3pO4iNWDg5zrtflnn/wUt6xbx6u3bePk4gJPds+iY3hmdo75fp+ttRV87dxZsiHHL95zJwAraXLz5nUcPDfDTZvXMdvpcXpugWoc8cDR43TynJ+65UYAnjhz7pJq7Mkz5xmoJPzya+5+HivDd2ZMDDf5D29/xXecCeiLiezvKLpZznu+8BCHJqe5+4qtvP3mXd/2ua/acBnT/S7v3f8Qb9lyDa/esZVPfukpJqfbTPXabBm4eBN95PB+nrhwnlds2MrD0ye5a8tG7l63ld97+jGsddSimE+eOMh4tc6/2n07T89P8b8OPsjO8VXctW4Tnz69n91j6/kP172aH3vw9ziazjB7ts1EtUmv5+gby/rGMMLABdcjRmKK4DQ82++hhCQRMujNSYH1nj3nzocKS0JWOHLy0BaMIY1ZVpsQ1ZIvlZbySFlIAJbQdlNFSHhBV9Hh64TFX/tyyBO2+iIOivk4GWSolvqYqUAP2VClULYKJVR0QRLl5CYiij0ei82jwGsS4GxYrIUIyhsCcC6QvqWCSBsEOVmhENIjiLBOIBOHxyGFx3Tisp3qsBWHtApTCy3OPPIo4wK52QpEhdCe8yUM34GveLwuPc88EDlkqoLyxxIyUJRzNhE2AUKEa4wLyhqI4L5to/Ak0oLIwceiBJkEuLwsQSBWQtQNc0zvSkWOWGDkxbncEupSlFw3X84HrfDEbcLGpNxcSOEDT1sTUIrCl6la4nOB0oKi0CSJxSiLM5puFpYsm+rlRNh1BUNRgm/ChuFBjs8sUlUJWd0y5XokShIpyZqhJpl3HG/N8T++9jBCCq5dtZI/ec0P8u/u+ywPnT3FWFTHavjl2+8mLcwl990br72Sj+dPs6YxwMHOBe7d9wxn2i0Oz82wZuiiOvu1f2kc8K9efhvxd5g83t8kvtOSGLyYyP7OopvlQU5KSMZLcd/nE1+dPI5xjoemTvKa9dv5vi1XM15tcOXwyuVjMmvQQqKFoBlHzPR7zKZBiXvzwAjnWm32XZjkZH+eqazFfVMHGYwTVjUavGHjVXzmzFN0bYoU8InTe7DeIpwkiRLOtxZRWcy6WoU7t2zk0bNneMWWndw2toF/+mefoGsDErGQBky5IEZhh17EgQQtKKHfSwg8CaJPUPjQZVWWgEoJC3kJIVee4Oqsws4cGbT/rLQBFUj55EvghaV5lyewkCMDUiGrNkDghS0rLcisxOZVapWCyHisC2CM1IuLVZmUoZqSAX7ul57ch0SUKMtAs4MA5tMK/VzgvIMy2XkrsHHZ41Meco0TJdhCAzWDawT9wqVZoFuMQ3JS4K0IsHXpEZELHy/xOBzS6PAZvS+h/uB9mPmpIlRK5OXMygG5CFSEJFwb6XzZjhQX9R6X2pBlC1KUdIdiCVCqQ7LygMy52M4sL7sT4JWgPwxSemQUqrtc+aC278LsMsDww3P7VoStWaKqpPCWBEdhFRLIU41Elu7ZocVYGYi40OmyrzVNIjVnOi0skMQKZQRSCo7PzfPWa6/mZ9fexGs/9Id46zkwe4GZTo/hpEbUi+ljETXPv/7cZ7ll3XoeOHqcnyiFgK9es5J742d46sR59pyeZPXoAC+5YgOpNWipyApD8hxIw+Hat+8ruNDuU0k0lRdgvvXdHN95qfW7KHJr+e8PfoVPHzn8rMceP3mWZjXhp++6iXuu2gbAqYUFjszOflvP/boNV3D76s18z/rtHFi4wPl+iw8d3cOvPPaF5WN+d/9jvHfvo8z0e+xasZr/cvMreeu2nQD84s138k+vu4lqVSMix4l0ms+fPcjR3lmuGF7BuVabITHIbSM7eMOGXaS2YENtnJ/ecg9p5pmZzckLRypTPnT0SaqxZqrT4ZbNG3nf29/CjtWj2LrHV0QJZQdbKVtzUhDXJF55ioYnG3Dk9VAN2fgb2ogm7PyDHmL4TKVsISIKahf5kCcfhLxRyj8tyf1YEJFHJGHwJiKDqhTogQw1mCNqISMKQRDJReKsJFIBQRJJS6OSMlrv0qz0WTsyT63aRyqHkDZoIHqwVge9RxkqNC0N1aigpguUtDSjHCUtAogii5IeZwUiciSNnEo9C59KBMCHVw6UQLrQllRVi24U6JV9aLrgVFo1+IqFagGJQyiHrlr0eFFWow5f8VDxiIaFusXpJbUTH2gIJTXBETYRXhGEeatg6gElWdTKKkleFGxeyjXCg2oTrHpKPUwvWRYfFlxETZbFMF5DbxTSobJqLsEsshDoXKBMSJ5KS7QKrt+25BDmhUSqJdFMiXdBBWTJH61VZEgpqEcRawabdG2OkrChPgB9S7eTMdPvcWxuHulFkHhzQXj7fU8+QZZbKihUIXj89DlOLSzwkaef5qOP7+fn/uSTAAxUK7zz1beQOcvVa1byzntu5muHTtPr5Vy1euJbVl3OebKyyrPO8f4HnuDA6SkAelnO0fOz/I8/eYD//bFHvq014MW4GC9WZC9g5NYy2e4wUq0967FNYyMcmZxl1dBF8vMf7tlDagp+5e6XM9Pr8cGn9vF9V1zJRKPBV86c5HynzVu2B8STkpJtg2PsmT3Du596kPm0R6e4FLZ708Q6TizMc+34Gr5y9iSfPHaQt15+Nbsn1nDv6WN8+Jn9bBsZ5aqRlexfOEcthpW1Jj975e28e++D7J09z26xnslOh6dn5njo2Dx/2rqPlAIhBJuGBjllZmlGMXvOXuBr2RT7z05zttNCLU10ZEhishxdOS3Incdbj6/4QOQtN58pjojSwmRJGcIG7pOToEuhWVeukj4KCMKlVdM7Qt9xifslPShDVHF4HyqrSmJwTlAoi9KEysWDwBFFAWmRaEczyYI/lrQIPKnVjNW7eFKsE7TTmH5eIY5MeT5I4RiMM2JZoATECoyzKGFpVHPqkWG+XyXPquXcLLg3RwM5+XyQl6KUvAqkX48Qlkps6GcRRMGeBSkRwqFiSxwX4MGUXilupMC70PJ0NoBWfAy+6nCZRDpfkphZ3jiIqARjRGXbUpWO0hpyDboUT/YZ6BIp6gUoSYDnU0pLCS6iRJd0LV2ZJAX4UjnEVwJ5XeQC2fXIsuVL+RuxLsxUvQJjABQ9m6CX3icOhAyvF3uw0FY9pIZbV67niROTWGCsWuXcVJvchdfuFgX1RPPJQ4fYpkaY6nfRi4JiyNItCiZqDYajCndv38L++SmaosL+k5OkuVkWCf5fn3+EB546SmRDq/JL+48xUKvwnh/63mdRZc612nz4qad4wxVXsG5okPfe/win5hb4T298BXPtHmdnF+nnBTvWTfCHX/w604tdNqweZtOqsUue58P372H/8Une9f0vo1G7VEt/CTzyD9mAE15MZM87vPc8Mz/H1uGRb/njacQx//UV9zxnT3n7qnG2r7oUlfiyTZvo5gGz/NjZs1jn+Mqpk6weafDJowfZM3ueXRMr2TYcfui/f+QR/uLUQc60O6yuDfD/u+V11FTErz/5FV6/6Qp2T6zhsuExfnfvYxyZm+Gp6Sk2NUfYPbGG1fUBmnHCWFQnKjT3vfZneHp+imtGVvHBU1/jitFR9s9N8eDMUb4yc5j5liGymqJwVGXE6uEmHTK21MewBSyYeXBwfH4uaAg6lqWRRAI1H+Gx5IVb5hNJL0B5SueUsFhSqorLkLB0FgTRvxFpR5nM7FLHZkm8d2m/4ERYcSUIIREE3ld49pBA4lgihUUpT2EUHqgnOVKClJaKKnAOjNe084D6bCQ5eEfhFJVmj8xkRNLhsUghsV7iETivSZ3HWEk7ryCUwEtF30mSKCi5Z7mjmuQYpzFGIJsF3kh8Hnp0HvBOYrzAxh4deaxzGCcRpYdNtVIglUNJR144iiKQ6YSApJZhjMIWqrS8Ebg4cMJkCZZYupy+1MRcBpWUIswuFM+4JGwoRAS+KEEb5ZxsWWPSlIhI+Q0kbldC8kuzUUlZUC2TygAvsMLjYxfanqXqh/UubDQkOOGIhKauFRrBdBYyng5lMFIJhqKYVOQsmj6FtKgInPFUYo23njxyFNJyvt9l08gwL9myjqdOX2Cq3eGmteu4Z/sWXv1b78PVHV8+cJyzrTbfv/tqfvytu+mkOVlh6fQzXnv9Dg6fmaa9mDK10GG0UmXNyNBzCv8emL5ANy/YOznJuqFB6knExtFhIiVZOdzkDS+5krWjAVR002Xr2X9ykh+4/VpmFjr82Ree5Por17Fx1SjNeoXBeuVZah95YfjVP/wCm1aN8sOvfrZKyD+keDGRPc/49DOHOTw7w7aRUV572fZvefzzGYzuXDHBx586SCfLeOXWrWwYGuKpxXPsnT1PtSLZPjrGExfO85VTp3j7Vdfw0onNtPKUJ/U5JvstznTnGdA1OkXOnpnzbB4cYT7tc77XZm1jkLvXbeXlG7fw+aPP8J7HH+btV13DfNbn0NwMNR1z3fga/tPeP+fxmbPUqEFa4+qxFXztwpkAvc4MFRExmtQhl8z6HjNpF2sdXgmqWRy4X8ZhrcdKhysRi6riWbQ5Ac0gl5Fy2ilsqZcn8zIHUe7iJZCFBdaUOoKiXIQhgBBc4rFNV86FCPBuQZjLKR+Qd7kiSgxSCoR3aBWqMF9m1GBEAw5BJCxaOPpGo4RjIUuwThFrS0UUIKFXRGjlaMY5UkBNpkgp6BlNu4hxVmE8QTdSOGIJ1oFSoKSjGadolWCswrswFFLaYaxARIFTJyRIFbK3MeEY70vJLQ8qMkgZkliiHJH0ZCoYTWd5uK2FACE9y2WqDrM9KxzSyuUqw6uSJF7O3ZZUhIO7dUAfOgsyGGQHAnPZYwxVdih+RUFIcBEBJVmATAKVAnnxWIBKBqkKbyt8+SVqRwWSu5MQxYLIKnppEH+e75atV4I02I7hCdYMNrl+1Vo+cWo/hxcvcKg1iYskMhVUKxE4WDM6yLmsxUza52MHnmai2uDjP/xDHJueY+PIMGONOgcvTLNuZJBEKY7PzNNJM/admeJVV13O5avG+Z8ff5Dzsy2u37SGf//Gu9mweoSPP7CPvU+d4c03XPmc9/PdW7agEGwZGeGJU+eY6/cZrlb5zU89xNUbV3L7VRdh97s2rWbXpgAS+eQDT/HAnqPsPzHJL/34q7jnxsu558Zn88uUkowNNRgdfP4z9u+2eHFG9jzjhtVriJTihtV/PbHPJ06f4z9+4j4+uefgsx679/BRMmO4//BxhBDsGB/n7rXbUELymvU7iJziodOnmc/6fP74M+wcWc2/uebl3LBiHfUoSF3dunojP3nljbxhczDfWz8wxC/efBdXjI3TtimfOXGY4/PzpMbQyjJ+ctcNvG7HNr564Ti5s6S2YDRustiGVi/n53e+nFuHt3HlyAqM9fTSnGYl4tjiPMYEBKAUYKwlF5axWo1tE6MMDyWIGEg8xI5528Mrh684fFzqHLqQjKpCo1KBtBJVlErzSWhtFZWLYrg+Al8tk5wKxF0z6EKlUQoDe+UQqUDmGhY0vqfwuSbvaJyD3MRE2lKPM6QMvB5ZlhWFCTD7WLlgoSJhMM5oJil1nWMQFBZyG9HNE5yXaGHwIszUxpIuzSgnkpZIhtZgIg3GCpxTaGGQwqEUaGkxVpDmER5Q2pFUSySLF3gjcS4ATNJ+Qr8bYfoKbwXOCpyTZHlEUSgcAusE1goKG2CU1kqktEjl0AMOPZFCVITr3/DY2OJjcDWHr3tc1QUOWtXjGqWgsGIZPON1aBfaOPz3RXWVJW4DoTW41OYVBCqAJyBHS8yNKgADRfkd+tjjo/A/EcOKwRr1JGKgEmH7gs6cwPYibK6WwSPEDiXg8IUZDp+f5TMnDnF0cZa+tbTznL4oYMBiqoZGPabjclbUGkEs2Xtmej0e2H+MA8cusNhJ8d7zyKHTVIzC5Y56NWbV4ACtfspvff5hnjk/w87Nq9g4Mcwzp6b5wiOHkFIQaYWxjpNT88v3cFYY/vDhJzi/2MY6x31HjvEne55i24pRanHMFStX8ODeYzxx5Gy4rt5z8Mgkxrrl53jVrVdw4xUbePmNlwoO/+VQUvJP33Qrr7nlRaNN4b+DNUxarRaDg4MsLi4yMDDwrU/4O4wlVY2/HK0sYyC52Nf+/v/1x5yYmefObZv51e971SXH5sbwlWMnuXXzBmJ9abF8ZG6Wf/fFz/OGy7bz0PkzHJi5wFt3XM1P7roB7z2tImUwfjY66nxvkY+deIqPHjzITL/PSKXGtROr+NEd17N9NLQ2/+PX/4JnFmf59ZvfwD/50p8DnrdMXMNjZ8/x+qt38Jmjh+nZnC8eP07NaHra0DUF1VjRlRlOWKwDcklFK3Q1YLX7zmB8wCcORglWWLLCU7UJqi/ozRVoK1CdoBZhyp07y7wp8LaEfpfADLwonYiD3mExbAOwIafUTgTVUsvIPheXwAdhiQYKpPQM1bpI6SlsWJE9kOaKesUghGO02gUPkfJYB8ZJ1tfniJUD7zm0OEHhJY2oINEGJRwrkxZaOmbSKm1TwziIVKjEJrsDIDyRMojSirQwkBYR3bQKQqB1gD/2OjFLmk5CEBZ7HBQaMoK6iAQZGaTyKG1pVDOMVeSFDhYs0oXvoyyDhAhJzrkAa3eFKg3eCC3B0tvM+5KXlklkP3iJCSNQJWkZCzIL4sXSXESdwkVitC8VTFS5LgtbVtRNlhXvg/yWx8S+rLyXACgWVREoLwM6sSvwJiRTUfegLTJyuELgUo1MBfVaxJrRBn1rONmdRyiPRFAVMZuao8zPZUz3u0gh2N4c59DMNCZ1XJ6M8LLNG/niE0e5+5qtzJiUVp5xpt1i/dAgmTWcnF9AtWG4WuE3f/pNNKsJjz99mg2rhhkbboT7u5vywLETfGr/Qe7Ytolto6M8fvIciVb845fu5jMHD7Oy2eDaNaHaOnF+jg8/sIfxoQY//Kob+Oqjz3DsxDTDw3Ve+4qd33R9+etEp5/xO598hJ1bV3PXtTtl0d4AAQAASURBVH//rGKez/r/YmvxbyHef+hJnpg+y7+67nYmahfBG4+ePcOnnjnEdStX89J163nfU09w4+XruXL1BD96y+5nPU+sNXdd9mwD0Nxanjh3jt0r15BZx1u3X8Vvfv0RtgwFZQEhxCVJzDrHbx94mMuGxvnwqa8jkaxo1JFO0TMFWWH48JGn+InqDayoNdg1spZYRHzk2D6c81S15s+fOsiR2VkK5fiXt9zKykaDM61F/s1nPseB6SmcCwtGkZTwbxXmNkJpkopgrFrj+OIc4DBZRMtkpW2JJxWeuqxiE7C5J6bUSvzGnb4rOWKC0v+LEglQLnoCbFQmKU9QwhChJLCJC62yYgn/HYY9RS8iqRYs9GpI6akneSAyO6gmAbThnWSy1aBZKWiKlMJJlAi6kN4Lqipn1+gZukVEVRku5AMBDOI0dZnTiAqU7NJ3CVJAZgSxtihhwuLsJZFwDNVznM9YTAytrIKxAmNV+AhLQ0QPEAAhHqAarrOQQXXEe6jHObG2WKfQ2pZSiQ6NxBpLpC1SQCeNwrwrkuFcacPuYYmmkBSI2IXZUk/iEolc1EGeyosAb1Q+SHCUXDX8xa8LF5KbVeX3VX4E1Q8zNr/0PZRzM1kIokJgBlxJnjahUi8rVmkjnDThwmvHmsEqc7Tp5w4vFHEFjHJ0fcZ0qmh1s/DiyhJFEUO6Ttq2zCz2MMKRVDTrJgY40ZnH5gW5s3zswf10ejl/9pW93H3L5RydncVkjgXfZ9dlqxlp1nny4Flmez32n57ipm3rOD45x+ETF5Ae3vo919GsJdx38CiHpmYYSBK+/7qdWOfZuXYl060OsZXsWr1q+d7cuGqEN92+kzXjYTa284q1HD81y03XbfqW68zzjbywLPZSWt1nWz59t8WLiexvIVbVm5ztNJaloJZi3eAgg0mFy0fHON9tM5+mXD0+wVtvDzqL/bzgvZ98iCs3THDP7m+usfbBPftY7KfUVcQPXXUNkVLctm4jJ1rz/OIjn+fWVRu5Z32A8D88eYpYKvbMnsF4RyI1mTW87xVv4z8/9EWOzM0SeY31noNz0/zPfY9w2dAYmxqjzHR7vPeON3GsPcefPf0ULZHx6Lkz/OD7Psja2gC2ZWmLnEa1Qq/VwUlPY1BjZE5mDXJAMFGroyLwOLYOjLPQz2nlBS2ThlkMHtsXLGZhXiYV5COBQ+VVCeW2pbRSCfkOnK2wwAfCrQ8AgoYPor95WPS9lmGx1SWaK3HLKvVkYfE1RqKVR2KJlMU4iS7Xc+cFDoHxim4uSE2ElgVDScZ0VqcWFVgvGYm6rKx06NsILULpIYTHecnKeBEtHcd6Y/RdQiwddZ3hhUAJjy0EWjmUsBQuQkhHEhVUY0+Wh5lO3ld4E+Ejj44sQnqMJcheCU8lKYhji8QyVEsDulIVzHXqWC8RQiJx1CuWoWofJRzNRDPba5J7jZQe42WYz3mBVwKcLAnhHlm34CzWCkQeUDfCgkgFrkpoFZZCxMGrrQSP+LKSlt9Akyj3GZQec0uzT+8cvl4qieDL9xJml+OVepi7OkdqDMSOTKeY3AdlFgSFcwgTXqjbyRFeBqHpfszKWpML3TZ9YVBOs6JW55Yt6znenme4WUVKgZ6DKFaM6jpKwr5D55hcXEQoRWIUL9+6hd9/8OusHG4SC8mhc9NcvW6CQyenOHt6nnXjQxw4dYHP7jlMv5MxJBLu2roZ5z21OKKT5vzbD32WLRMjbFkxysbx4eX7edPqi4IFzUaF26/fjEbgnGN+psPoimdXH5MzLcaGG8/L3mVkoMYvveOeb/v4v8/xYiL7W4i71m7hrrXPrqRWNZq86yUvXf73xsFhmvHFNqMx5Y6plwFwYnqe37//MW7Yuo7XXBeAJMY5Zha7PDFznlo94sf/4qPcvG4tP7TjWpQQaCGJpFyG4X7i2AE6rseWkUEi7RjXQ8xmKR84uIfv3bKDXzn7RXJt2bp6hE+fOESnyDk90+LRydMUPsDUlYapvMVAM+bozBwyh14np97XbF89jlMtJp1HRYI2Kd55KhXYXB+lleXM9VOGohqzrZTVtUFmfRogFXmAG/q8hNgrv6wobxOPysP+PojNeoyAsK0vL9gSQk6UgxjtQlvK69KaRJSEZ7ec+MJFlKAcMjZBjgrHQC1DKxu8z7zAeNDCYbxCijA3M06S2wpCCLSyGOeQMkUrS+oUmYOG7uFLXtJKPcfKpI31imo9Z8HUA4es4XlsYWOA22tHgSY1UUiaVhHr4KxMHMAkOvEUuaXIY8CjlEdUA7hjyY66FudUVOCqNXSBlpa6ymlnVUIBJdDCUdUZVWUZTwKfbV41sE5iEzBZRNZOwIW2rRDBzBJfKqA0C1xHI3KNFxDbUtRYe7JmqMTjeYk0y+JZ5RwrbExESRBHBCCPJ6BYnQyqIKLig0nn0mbDBXBOqluYSpe4qklbCUJClRqZ8HREEWS+itISB4HtenSY1pat3E4geEsBFc9gtcLhc7PUrA5o2txzvtpn99pVvP3aXfzmJ77KiXPzCCCpCtKi4Le+9CgnLswxUK2wa9N6Wv2M4zPzqMGIWzZvY6LZYKrVZt/J81xIu1SSiN964FG+cvIU6+oDzLV6XL5ynF5RoP4KdLO1jo+8/yEGBqtMjA1w5sQ0L/uea7h857rlY46fneWjX9jDqhWD/MCrn93JeTFeTGT/n8Y3JjGAZq3CL/9Q2DE55/itzzzE1GKHe665OOS90O7QTjOuHp3gZLHA+VaLp2anuO/0UV4ysYGf2/lSBisV3v3EQ5xqLfC6LduJI8XexRNol6CEY7rXJXOW9z+xF2EEb91xNZkoqEURb7/sGt735JOY3COVoBFFPDU7BQja3ZSK0lwxPsbGxhAbR4d43e4reOv7/wSpBBGakbhCy/fY1BjC4ej5jFgJBkWDTPW5sNgldSasv5kAL3E6LILSyKDeLgjafTaADcjDjCSQbP3yIgmUppIuEIJjD4W8WIEthRWlun2pOi8c3gVRYIRASU9mA9qkn2msF+hSRknKIJtUOBUqNCdo9SskytDUGQ2dlXMniCQkoqAicgSBuwVQERk9oamqgigYdrG5PkXH1pnLq2AFqQtLbxwVOKcpvCC3Eo8rXahVCQyxVOOcblqhEpWtQumJVcFg0qddREjhUXhGqylaQd8GSayazlmRdANwRRhuqp7BeskTc6vJXUQndug4p7fYRNfC/FBKg3FRcOnGh7kXFtGRy+1Ck3h8FKq0YshDL7SZVUao3kp9RUrnAlEiRIUIJZpQBJscwpwzVJ4OU36FPWORSExRlnR4prpdCiw68riKIxEVumkY1DkDhffB2FJ4rPAMVmKs8qhc0m6nrBsc4sTMHB2bk8lgEXRocY5ISbqmgEQwoCK2rB9nNu3z8LHT9NKCBMn2lePsXLeKqYUOJ+YXeGpyistWjrN1YpR33H09jx8/g9SSTz5zmCcmz7Nh2yA/fueNXFhss+fEef70oX1ct3E1jx06zQ2Xr+OOqy9uepWSXLVrA2MTA0RC8MgDBxkaa1yyTqwaG2B0qM6uyy9V2/9W0U8L/sf7v8iOzRO8/s6/3fnbd1q8mMi+Q+JPH9rH0ek5rt+8llsu34B1jkeOn2b3+jX88I3XsmqwSaI1v/zI5znRXuBVGy7nHR//MGPVGu9+1WuZqDVo5xlaSnaPreFrU2fYNDTCHatG+NfXBs7b/zX1AJEWjDZq7Bgd5+71YQBsxRPI2HPF2AoOLkyzUGTcvXYrk5UuHzj2dWbbHW6/YSONoSoPHD/B9RvWcN/JozSGNXdvuZK9rWOk1tPODH2b09Axi2nKGA1m0x6tXo6LXKiM4pIrFgmcCPwr53wgTtdD6yirW3SnrNqikteUi6BuXgsagzgJPQFR2W9U5e4/J7QmJaFdJUN1Vqv3cQQkYGGCGsd8pwJopM6p1hzSBx1E74Jv2VJo5ejkMdQEc0WdqjP0rWYoCnpaQoASgo5NiHDkqLKV6HBeAo66KqjpFn0bUTiFwuERjMZ9DJrMKOZdFWMVSnp8ZIg0NGo5SllWNaexTtIpEhwwFGfE0jKUhCRmQzFDReckssB6TyOyWC+oioxYBsQkAhpxTisPvb5aBZzJAj9NOLQObUwAm8kArnEyuGqX80qBCK1BHaxcGCRUSBp0HxBBzYVS5gqgLHyX5a4woHKBrwZyvCFscsCzpjHMGXOBvJB4C85IXBTeVF4IfE9z2fAIBzrTAAw1Kiz2U2q10NJzQKcoGFU1+r2MucWcKJdsn1jB4+fPEYSgPRUj+f0vP84Pvew69p2cZM1QE6kV64cH+bXPfYm+L5AqdARefe3lRCpw9M4ttshzx11XbmHlUJM7rggw+pPFIqk1/NjtNyCFYHygTjWO+MLeZ1g9MkBWWNL8Uv1GgJe/5ho+/IGHOHtqlmtu2crTe04zsfpiK7KSRLzje2963muKEBAphVLfPTqP3yxeTGR/y+G95z9+6X5WN5v85HXfPklx54ZVzHX7fN9LruZXP34/VnhWjQxwam6B77/hmuXjfvSKG8idDbtP74MYL/DWy6/mPU8+xIPnT1GLYo615tBS8opydgbwzltfwps+8sf88y98ih/dsZutoyOsGmhyttsiihX75idBCH78yuu578Ax7j12DOega3JO9BbodaZZPzREiqGjMrxO+djpRWbTXpj9O40UirYzzLU76F6GyATSSEQhiXXws0qlQ8QO6cNyjgBfDSRXb8NQxSUuuB97gcrKWUpcogts2bZCgPEXk44kVGnSB1NIGQi8oqwMlLJYG+GsIjUlPFKAK2LSXkGlGrpbCIHzYKzEucDNsl5xoV9jQyOja0Nl3TYJiTREhCqpQDNlYzSWAd1H4im8BKGJlKNvFTWds5BVKLwikQUdk6CwFE6TaEtaRBQ2LDxRnGOCZTaZ1TTjjFpU0LdqeZaHACEsDZXTdxVi6YiURcswhxMeBlSfgSij62K6RuO8QAlDJVJYJ2k2+ujSGrqXxTgHLtWhmhIOimAPs3TtfckVQ5UzSg/e+VBlpUBUIhR9qYwvy41FCZgRzqPSwF+TVmKNX1bFl33FsW4Xr2qI4RxvJdglgIrH98PM7sj8DCqTAT8SeTavGuJEZzEYf7ogB9VOM1Y3Gpybb7Gw0CePM3avXMnZbpuVzQGePnyeOdPlxOk5fvTu6/nEI0+z2E5JlKLXyVk53ODWHRt58vh5fui9H+TabWv4kZt3c9dVlyIAHzl9mienJlk/OsTZdgvrHLJMHptWjHDV+pWsGR3kju2beGjPcTaPj7Bt/UUxBO89x56ZYmikztoNY1x387PHFH+dqCQR7/rHd/2tPNd3eryYyP6G0c4z6lEcEksZsVLLNivfbuxYu4Ida1eQG0vhHBtGB0FKXrFj2yXHfen0CZpxwtbBUf7DbXcyUq3y3774ZRKtWTfU5M+PH+AHt17DmzdfydPzFy6hBTw0dYrBWkK7m/GBvXsw0jFnerx83VaOzc5i52HOpDxaPc3h6RnW1QcYHK1w06Z1fPbgEWbaXV56xwY+cGwPwksGVULXtbE2LPqNSNMtMuJYBLNEYMeqcfaemcQLT44nKqHezgrGGkkQMVZBbmkwqjIqhnhmcTaYYioQ/SURiHKWpixClyg6R1gkS6CAV24Zgh+MyighcoasF3SyvA27fLwKMlHK44XAI8mNwFhHHAXKgBTgReB61Ss57azGYpxSi3K0cDihaNuItq3QVBlaGByKjovomogh3SNRLvh4eknuNT0Tk3mNEuF1QXChO4gUnrxQdPsxOl76xL5MZIpukRBJy0jSI1IqCOgKiyrJ3IWPqKs+3ofEq3AM6TbWS5o6QwmHxpK5iEaUkyhDLSpYzGsoYZF4WnklKPgLj0MGRGJk8UMekUlcqpAdGaqtpZ/3kmK9Kt9xuaKY6kUBYVG6VqP8sgYjInD/vC7J2ISk6JeMN73AtXW5SRG4nFJmJHyvw5UKKlLMdPuMNKqMxnVO54tYC4nUVNFkueW69WtQs7CYZuyfnGa8X6deTbgw1aIWR+T9nCzLeeTIabSXzM12g+GohhGdEDlBNdJcyHp89sBh5vp9/vsbX83p+UWmOh3+/MABvnrqJBtHhtm5aoLBSuWSVvivffIBDp2b5tbLNrFzYoI4UiTxpctuXlh+9l+/Bq0l+jn0Gk+em6NZrzAy+GypuxcjxIuJ7G8QC2mfX3noi2wbHuWndwUvIiEE//bWO76t84/PzfP+PU9y28aN3LEpwG9jrfjFN1z0LTq32OJ3H36cH9y9k2oUsXd6ksEk4Xu37uCK8RVAED6NtSIhYkM0RFoYnpw5z/lei5m0x+/ue4x1zUFm8w4X7AJzLmWzHuPOLZv4+LH9fPnCcdKOxVnBufkWh1bOMOnaiE6oiD6x7yCnWwtM1BsM1RJu27qOI60p1g1XOduDIuujlWZVtcmBxSkKAxaLl559C+fDnMWGlmLe84hIIiqexbSEBZdeWO08p2fnSfKI3Flc4rA+tBGFDFwydKmSHvly5kYAdyQlYWlJVl+UrFwP3gbxxfD/hMXQlwlNOVTNBBzJEvnXe5SCSBY4L5HCMxR3qceGSDk8ksxJIhzOh57ZjGkghKehM6yXOGEwaHIrSI2m6xK08tR0xmCkyKxGSU/fKmJlyI2mnyVlmzKjEvlylicxzpOogooO6ryRMDSSDOMglmU71IfEG2mLwlGRGXVtkDgiYWmoFO8FdZWxICrUIoc0nq4IQsZaOsgC10wE/bDwe1YC4T1ULFhRzic9mJDofCQC1DQBn0ryqkT2A6jHVsMGI+oCJry/PAZTc8srj1hiORfgExtaxP1AQ5CpwsWloLIJHLaop5BOkIxGjI3XWTPR5J4NW/nk3kP4nkB7ha5JFtIcCTxx/BxXb5pg/6kpTN9hnWduscvq4QF2b1jNqcNzXLdtDYfnZ2lnaVA+sY66inC55+DZGcZGG4xU63zpxEkOnJ8iKww/95FPcqazyGizhhKSNc0mw9Uqk90ODx05yc1bNxBrRSWOMM7z6msvZ+VQk91XBBDHR/7iSSanF9mxeSVP7D3FXbdtZ9dVFwEeS2Gd4/2ffozhZo2fedut39a6shSzi10G6hWi7yILmW8WLyayv0HUo5hNg8NcPjL2rQ9+jnDeY12wl//LkVtLrBSfP/QMuTHsOzfFjRvW8os334X+S7puP3frzeTW8kd79vCjL72eTcPDvEpezr0nj/Kerz3EM605RqthLvahEwVxBf79rXfgVMF9549wujvP0LoKQ7MJiYtwAbjG5tERzrYXudDpYnBEFcVoo849lW08vu8YX52cJs0EeQFaGqzz3Lp6Iz2T83S6QKfIKPBILUoRXAE5SCdw0uGLoObhJRih8AMWQ0DneSlCUopKixfhw7wsgA5LcEeJaIzKAdHSXlh/A+y7tFFevsS5WE5wAQbucS5UIfUkw9oggCuFZ7jSR0qIlWW80gE87bxCagVKOgrn0MITSYOSgswp5osazsOg7uGECIlQCgoT0TGShk5ZkbRL1UdFxyQMRDnOSw4XqvQzA2sF3gkCxMJS1UUAdQgYiTsU6FDRCaiqAiUcudNBRkt46rIgEpaazIkpWKsWmMbgnWNRxfR9lYqyTFTbtIsEIQXGhbmkMQqUCconLlSuvnRjlnWH0B7rSjHMXIVVRHp85BBO4mph7iUEuBq4qiCeFRRVgY9Dpe106TywpLiswjzN6zADlUuE7SL8XZfzOgC8J88t161azSeOHeDXHvkqdR8tCxZHTiGUoRpphupVjk8vMNfpE0uJzx1rmk0WF1IW4xTZVOiaQs8IOmlBkUBFxdx82Qb2zk6zbWKQ3evX8KFH90LuSVXBR76+n+vXrWFgugLe06wnjNXq3LpuA6tVk6OTs3zmawfptjNuuWIjf/AzbwVCUtpz5Bw7t6yin+b0+jmtTh8PrBi7yD811vGBT32NyzdNcNPVG7nmsjVMjF58/NuJTi/jNz/0FdZODPEjr3/+87W/b/FiIvsbRKQU77zuJc/6+6HZGebTPi9Z8+wd1jfGltERfunuZ/ewn56+wB/te5IrxydYMVxnLKlz/bqAWGrEoXd2cn6BP9//NG+++krWDg5ydG6OhbTP5555hp+64Qb++Km9fPnUCXIsr9pyGZtHB/jsmYNcPbqSO9ds5XDvLJktAnlZVNg8NMzu7Ws5cHiR2W6PO9ZtYntzjPuOH6fIDJ28wBSW9z70KD9409UsZCm5dWS5XEYXZj6ncJZdo2uYSAb49KmDeFEQ9SuIWIVBtxCldQpYERybvfQIJ8G4sCPWDpGr8DfllwEf3oBwMnCVBKESaNhyIVxSqJXB2kN7xJK5pgMigxSBJ+YLBQqipCCqFORGo3XglTmvEZISYh+hvQvzsoAZYSGvYJ1gIMmJhMVJR0MEdQ+Bp2cTnINYOXomwiNIrSJzAR1pvWIg6uKRFN7TsRWUhG6miaPAa8uNwlhBrCzGCaqJp1XEKGFZMzBPamM80FB9lBJYL5F4qjLDeUFNFtRUTiQMA6rHarXAsO4zHrUYlw3arsaZLMIJyUBUkMicpi6IfMGRuXF0zQbtxzKxpVmCVA4rHN6pIFQchwq+sISWIITrHNuS9yBKpoDADHm8VpCBr1nEQIEogsOmFz5w1ZY2G4VHlDJlwgS9SpGDKgLNpHAO4aDTSfmzh5+ilwRgSy8rgsu1htQaRqs11g8MUDMRZ/Ie1js6iznCw8Jkn0pF8mQnZefalVy9YRXkcOD0BQabVQbqCS1hmOl2OT/fYk8maC+mDFUSFroZM90u20fG2LVqJb/9pa/Rmutzz+Vb2TIywkStwYdmFtBG0u4Fa5nf+IsHecXOyzhzbo7TFxY5fm4OU5e8/nuu4ROf3kujWWH1yqHl+7/byzhw6gK9vOCmqzfymtufW8vxr4paJWbTmtFLZnHfzfFiInsB4iMH99Mt8m+ZyADm0h6/tfdRHJ6fu/YWGlHCWK3GSLXG544+w2Ka8uYrruSG9ZdqOz41OcUHj+zj3rNH+fjb/hE7xsd5YuocSaQ5NDvD1SsmODw3QyXSvO2KK/mVPZ+nXfTYGK0k7wteteVKPn9uPz+2/UY+cPhJTizO88rVO8jzOc7Ntplt93ikfYpGLWFzc5h+ati4YoRbt2/kvzz4JVynQp8e3kuiasFAVaOE4NHzZ9l74QJeuADkwJOF1Q7iYK5JaZeCB5+LZZIzHRm4YUoE0EbJK8OFBdG7st3lCaRcFM4GXlVJhIKlKYw2xLHFOYHJIpQmKGIoMNIGPlm5yVdRUMsAh5aWgUpGJC25VYFXhqdjqkQicLV6xHQLTSMC7QNfq2djOibB+lB1RdIghWdE9ZilivQ9+j5mJOpRURYwFE6xICw9o0ltgLybQpVIR0gLyUSzRaIt/SIiUo7UR6QuQeAYjdsM6TRsDvBUZU6MCQlYWHKhoWwndn1EBUMkHaNRm8wpLBGRKIgiS9clrKkvklpFx1bxXmKdCEleZWRGB7FlF663Ui6ICZegG5fKoK2oHFJ5bO7Ba7x0CARWBd80pEcmnqhaYPse2y89XjJK+x293G4UuQji0oTZWJL5sF9JQVhPf7RAeRF4WoZlMRRrLXPtHosXesROUo00RRE84STlnifzjFZiDhyZ5IYffQ2PPHUSaeH1N1/J0elZ9p2ZYqRSJSok21eNoaWgMhrzxSMnqMQRH3joSbpZTmSCEPP1K9cghKBZTfixO2/gyNkZxgfr7D19no99/gCx1rTbKYePX+Adr7yerx89x8MHT3PTro2snhi85N4ebFYRoxGt+CLCca7T4+OPPc0bb7yKwVrlW64rUgp+6Huu/5bHfbfEi4nsBYjXX7aduX7/2zr2XKfNk9PnGalW+cq5k1wztor/54mvcsPEWl6yZh2/8/XHeena9c867+5tm/nN/Q/T/AYdx/tOH+PE4jzbh8eZzFvcvWkrJxcWONle5Iax9aytDvG7T36dI7NzvG371bx9880AdLKCz5w8xI3jG9ly8wr+bM9+ziwscmRumsX5DNNsMDxU5d+/+k4OXJhmpt2j17dhl63AGUFhPdZKnHUopYiVoO986OJFdlnuoR7HdKQNILW+xJlvINFKgczCgN/VHCLxYYGi1PKrBVkmfNihewX0JUQBlYgAUSlPcBLvApReRkv9SIGQnqgGthClmK9ExUHaKTUxGwdniZXHekFDO1p5gkORW4WTkkqUgxTMZzXmUk1DZ0z6RlDU8I7tA1NUpCV3ikHVR0rPmOySJItM5YNBYxcb9CmkZ0h1SG1EPc6Y71UxVpBEhlhbmnGfShTeW+QskbSkRqNVwWjUpa4NFklhBKNJj4ZIg5WMiOgTB4QghpatUJEGLwRDKmVDPIdB0TI1lCi3Gw4WTRVDFIAeIvirWSFwpe1KXgii2KOkW5bfwpc0CSGR2iH0EgonXpb38OWX5l34zKJELy4xBL0uKRQlL1CkKoCntEemMozrUo9veSoGChUqvqgTXkZJcImg0owZHqoQZ5KTFxYwNrTu1wwP0Er7vO5lV3D83AzHzs3zyt2X8Sf3PUHuHP/xdz5Lr5vTrCYcODXFSKNKLRNsXjPKv/7+O3lo7wn+xffdwX2HjjHWbFCRml2rV7Hv5CSnZxdIhOR3P/Mob73jGi5bGyqgbWvCuGG4XuOKtSto1hK8dVyzYzWTnQ5XbFzBLTs2XuIo/dHH97N5fIRr1q/i5ss20KxeVAr68oHjOO955MipS3imL0aIFxPZCxBXjk9828deNTbBe+56Pftnp7h19UbaeUYjihlMKty6fgO3rt/wnOdVdMQHXvc2qvqiJfrt6zYya9qQWOoyphprZOT5nYOP8FNXvoTbVm1COYWWkkRd/Oq/f9su3rb1Gjp5zsZ1w+xet4bMGH7s/R9hstVheLDC6bzFHe/7HV638TLkjEdbQTwS0XcG14vBRSRNQa49Q7WYq8fH+fTTxwOAYmkOYiWJSug7S2EskRQ4G5BtqHImBgFenwUEnDACIQW1CUmLInDHnMBWyiFXEUjESI/QHlEiE/GCIleo2CFxgYMmAmlZ4kBJjFEB95GHmRc+zMa0dETe0Yhyxio9ZtIaViiEDwLChZVYK8htRFUXdE0F4T07hiZJZNA21MIxW9Soa0PmFQ09z7pkjrarIjHkwUKUemSQOdSUYbjSRYuEoWofh0Iri0fgfbBraRUVrFfUyTE6I3PBB2XR1IhkcIFOCG1O41WY/UWCnq+A6xFJQSEEw6rDkKwxnPTIXMS5fJCOqeAR1HXKQr9C7lT4yrwM7VgL1WpOrD2S8H4gwRSlvJSy5fX3uEKGzOh1aPOK0CJWiUGpkLycAWd0IK8Dwku8sBA7hA3cQq1V+F4LQZRRwvZhxXCd2U4fPenIRsBFgc/Wk0H5flRU2TE8RmosvSzn+Lk5JnSNJw+eJUk0m1ePcOTkBayCoUaVrx44wYCM+envvYWX7N7Euz/0JeSC40hrkpPn53nLXbv40GP7GK3XeODgcQ6emmIg1awcbKKHQivw8PEpVr4xzLE+u+8w1Sji9u2buHr9SlYMNhhv1rHecWxqjs88cYipWHPnzosw/n5esPfUJGdmF7lm/Spet3vHJff791y3nb0nz7Nr4+pve235hxQveCL7jd/4DX7t136NyclJrrnmGt797ndz4403vtAv+/cqxqt1XrY2kCqHK1X+/U2Xzs0+fGwvidS8duOldg2DycUWw6fO7GVoULBz1QTOe/77da8lEpJ/+eCnWcz6PHbhFLet2sSOsXGm+91Lnue39j7Kl4+dZL7d5yeuvZ4j52eY6fVoFxmZsOxYNcHx44tEUtFKMyKnaDrYHI/y5GJAJbpcssaPsKgyqhpaacGGgWHOdhbx2uAcCAUdMnJnQfuAbKwIZFeFuYgs231BTi8ANqIwR9M+Cj2lxOOdDIodXb+slo8MHl3ByoWQkCK7NK7BlCi7YLLpwVuM18sIx4DWK/BeUZUpg7ofdA1lQSQt01m9lLJSeGSQ8pKQuTC7qqs+ximsDK3NkBAh84H87ETwNxtUPXo2Cq1SfMkhkyFBxYYk9kTSUVd9ejYmkg7jBLWoz1TaCJYtCGbzGvNFnZpKiWWAzydY6ipDOU8kHLOujvMSL2DWDdD3OYMqpW01UngKr5gtarRttcS+eNJCkTuN9RIlXFDN94JGPcX5YHNjvEJLQxIZikSQ9WNkSXewmUQokAocrkSIsqzQAaEd6b0I0lhelpWZQHQkOElpSoBRlsgKZBpajDiBxTE71cZGod0c55KifA0nPL7nkdoxp3vM9VOqkaJqJR2T0/cFvYWcqX4X5eCq9StBC07pedbWm7zuzqs4NjnHz77pVt6x5wN0ipyv7jvOZRtX8IGvPcmaoUFc7rA9h1ACaTwvWbeWhV6f0xfmiUt04CNHTzPT64KC27dtCjZHzvJbDzzK2YUWr71iO9vXjvPwM6fYtWE1lUhTjSPeetPVjDcv9RabXuzwp1/cy+07N7N7819tHZUVht/8i4e4Yu0KXnntN9du/W6MFzSRffCDH+Rd73oX733ve7npppv49V//dV75yldy6NAhVqxY8UK+9HdceO+ZTrusqDa+9cF/KR6fPkuiLk1kqS042Znl8sGVAOydP4Nxln95zT1476kojXUBRnzH6q385BUBlPLBw/to5Rm7V6xBCsH5ToeFtE+vnzN7vstvLTyKdY6FXp++MAw1a8x1+7xs5UauXbuazz9+GNMzSCU4d36BilCkJsCpj7bnWDQpsu+RCqyw6KpD2RhvPd46cmMRGnQlqM2LQuMJen3Cga36UoB2CQIeFvy5fhcqlFbDHq8tKBlAIYJgI609Unm8c2hlESK0wYzVF1XaEShhyYs4zGwApQNgxDlJZhRUwKAYjboIQFuLkmCsoGs0wjsacZ/CKaqqIFaWtdUWQkDbVlEYBlRKXWU0VQ9HMNqMhcUhUdIjXQC2nE/Hg3ST91R1QWEDR6zlKkQyzHWaUYp1isEko5tp+iICCZFyCGfYUrvAkO7RdVVSl1CVOX0nGFctImEReJxX9HxCTWX0XA2PxHhFoizewIjq0LUJVR18YoTwJJHBOoH0AutU6A77kIiqkaVbKJqVjEh70kxivQahcEYgdHjdZcNMPK7Q2FSWEmKhFey1hVIrVDgRVEO8L7mGodpCgJUBwekicCUFQ1QUd+/exiNHTtPq9SkEaCPoklFIj634UNkKxehglcV2SifNSa1h3dgQr969nU89cYBaI2HNmhF+4P/8Ixb6KZevHMNllsjB973sGhZ6fdYPDzHX79PvF+xYM07kJOuHBjh09AJSBf7hvY8eZuvlE1SaEXUf88CR41yzZhX/43MPsmZ4kO2rVtCoJLx0+wYeOXqap85McWRyhn9063UA7Fj97DVxeqHLQrfPick5rtq08q9cJ4pyNjjX+fbGGt9N8YL6kd10003ccMMNvOc97wGCnuC6dev42Z/9WX7+53/+W57/98mP7FvFR4/tZ//cFC9bvZlbV298Xuee77Wo6xiEZz7rUtMV/tXX/oyxSp1/sv1lbG6O0y5SnPfP6Un2jfHUzBQfeeYpDs5NMyRqpIuGkajCcLXK146fIRKSeiXmQqvDfJ6yaniA//Tau/nAvr3UopivPnGM2fkeWbsAoDIWs5DkDNQSojHB2U47tBNVmJfoyKFsgjEea6EeR2QiRUQF3guKvoaORs9frI5sJeA2vPZBqUF4RD2owOMdPteh8sqD4gPa4SXo2CB1SH2RDn1KYykrKAnOhaSFwBRRUHqXvnRZzlHSM1LrMphkDMZ9xqMOHphOG/RI6BcRHROjRDB29HiaUU5dZzR1ikUwrtqMJ13miypN2aOiHInMUcKTugjjoO1qGK/JneR8OkzLVBBYGrHBOMH53iCZ09RUSqIMMvReSUsH6sGkoG80UjiuHz7JmmSRMbWI8ZLUJTgBFWEZUW2qoqBNlUVTReBJhKFjYybzAWLtaZuEjq2SO8lM1mQur3GhF1pksbYIZ+ibpJyLeYwP6iSVyGC9JC003TzBWkleKJwFm8XLfL1yfIYvE1dAYwRkqWoYrPeIQpUqIQQZMyPAKmRfIg1U5gKYQ2UeGWiFqBx8RVBLIoZ8RGEDR6yX5jQbCa08x0qHlbBhYJAp26eb5tS1ZsVAE2WDcEG3X1CrROy+bB0PPHGEyYUOG1YP489niESRrKhyzWWreedrXsofPPp1WlnOueNzDEYVphc6aCf4tz/8cv7dH/0Fl29ewdiqAY5Mz7C60eSlmzYQxYpHD57i6rUrecnWi7PutDD86SN7eeXOy1gx0ODDD+7jqZOT/B/fexsDfwnMkeaGSkmiTgtDrBTyL1FwlmLJ9fu7Ib4j/MjyPOfxxx/nF37hF5b/JqXk5S9/OQ899NBznpNlGVmWLf+71Wq9UG/vBYm5tMdI5bnZ99eMreJke57Lhi7lnP3SV7/AQJzwL2647TnP+9LUET5+ag/We8YrVQyWN6+7noG4ikCwrh402ZrRt0YyQZjJ/bevP8Ch+WmuG1rLk8fPIR1csXoF68cGOTO5yDPzs4w1api+o7Ei5k+feIpD09PUkphrdqxhe32M3/zoV7HesbbSRKddoorm5jVr+dTJQ7RNtkz5iVxEJdK0fEbFJ2TGht22DJWWji0mkZi6QfUlXocTvQ9aicIJfGzxdmlBLMVrl3hGgsAbKwQ2jaBikIpgEikkfkmhQniEcmT9SnCBrgQvMiEhjgxaeVbUOmgZ5ksLeYWazDAoarGh6grmXYXURuEYqxDSE4uCWBqMlwghGNB9BmWPgaRL7hQ1VZD5kEgjDA1ZMFkMoWRIsGNJi8G4x2xaw7hyHkUYLSkRzDlzG5eATElFe2JpGK71ME4wFPXCdRaOYdXD06NnNbnXTNkhVqs5QqvTYbzmnGnwZGsDqdNsrM2Q+6DCn7qEno3D58BRlIkSIpTyJMohcFRLNKZzMugzEixxCgfWRCV61AWvs7KtG1yjS0ihAzIQjQIReTSgq3mA8ucyAHMEyMJiixjiAPHXLYGJQotR5WXr0kJ/IaPwOYlSrBwZwBWOxbl+EACJQNUkc/2UrsnxzpNEmtUDTdaMDjK10GGwbuj0cxb6fd73b3+Qf/rujxJpxcprRjk+OU+iFJPzbf7rR+7n+l3r+fjTB7l8/ShD1Qor2012rJtg9fggt1+7BaUk37/7Gn7lc/cx3+/zwKnjfPGZ41w+MsZPbL10nFKJ9HIlBgEuX0si9HPoIi4lsU6a8Z8/dj9bV47yY3c8t/zdd0sSe77x/HSUnkfMzMxgrWVi4lLgw8TEBJOTk895zq/+6q8yODi4/L916741fP07Je4/fYz3PPEwnz526Dkf3zwwwj+/5lZW1C5tLY5WawwkFf7b3nv56Im9zzpvXW0Y531QD6iNMBI1uffESd6+/mZ+dPNt3HvuMHNZ71nnee/58Omv8sjsQdpFn8LZ5ccGqzE3rlnDiK1SUzr4qCnBL7/25WxcM8KCyBgZqnHrlvVMNOuM1etcVh/jjtUb+dVX3cP1G9fgRaiWzi60aHdSFk3Gnx84yGKe4oWlFkviSJJhWSxSvIFeYShs8AhzLgy2lAKkwFcD8VnkBK8rU/43hB26kbiuwuca0ZOIXAaemWVZvcMXCtNVaGnR2qGloxIbKrEpPb+Cl4gQDiGDkkclKqhGOVpaUqPCvMpC7hSLpo51YWGPlCXWloGoRzNKGYo6gQytArjDe0lMEdpuMqcqC9bGCzRVShTge8TSMqj7RBi6JkHgGddtxqIWUkHhA1y+GaVhPoWka2Iyq1jy6tIyUBmqqmA87jKiuoyqDoOqR0WGeduCazLrBnBe0PEVRlQ3tBnJmSvqpRK9Z7YIMzdfqvl6PL08ot2vkBlNYRTeS7T0GBcUSoxT9I2mk2tiZalGBq0dSgmiyCGER8YWjIe+glSWNIoSzRheHG81rijnibKcn5ngkeZsSc7WYIQnH3DBVVqWuVAGD01hPdIGOmHU8UwenkV2LfQdOI9KPYNZxNrhAUThkQWY1LFtzTixlWwaHuIHXrqLjZUGO1etYKRZ51+87jZecdlmvBTs3Laa337XW7hr51Y2TYygpGRls8GFhTZ3Xb6FudkeTxw8C8CPvOx6fvi264iV4kdvvJ57Lt/GnZs3c/XKlVy18luDv4x3dGzB5GL7mx6z98QkU9MtVg08P3L0P4T4jkIt/sIv/ALvete7lv/darX+3iSzbUOjPHHhHDtGn9/s759ddwuZNfzy1z/DYn6xt104QyQ1m5pj/P9vfAu5NcRK874DT3CmWOR39j/G4dYFJhp1jq+f4We237587mLep12kHG6fYTpb4FNnnmJtbYSf3BZAJMNJlURprhhaydeOnaGTZbz+6u20soxT3RZGOy6YPiOr6nzu2FFe07iMq9euYPP4KB99+Cl+53OPUG0mGOmQSmDznJ7NUZkIIAwEg9WYXSNr+dyZw3gjsH0ZNHojh8eV6vSQW0rtw4uK6cqIsOzp4BiMoJREKnlkVgVOWeyCukWmSqi3R8TgEWghwvA/lAOhWqrkjNamObMwUFqoGKqRDYoZZQvTeIVFoFyApRskA8LigLoyGB+xIm5TkQWn+oO0i5hE9lHCMhJ1ERJmbR3nBabUuCy8ZpWeoy5D1q1rg3ZdRqJOIDN7T0OmxCLwvBIZUbhyTqUceVnpRCos+FIIOiZmfWOWuiyoimAt0/cRc7ZO30f4EnDSFH06LkYLx6DKqEjD1sYF5ooGLZOQWU3XxKGyKjUnAzReBA1KESgPxknSIiItQus21hZjA1ewsIHqIGRQOcnT0sOsrMJEGpCm1INsmPci2O+oCBHl5EVA98jI43oqPLaUtWQgxK9Y1WBurocuHE6ClhJjLUoKRuIKsYD51JC1c7QSuAwiLdi+eoxjF+aJeqByT2VY8MYbr+Texw/zyFee4ckvHWW+3eeZ/ZOItuXImRnQgjffeiVrVg/zB198nBu2rqXjc/7zx+/nypUruGl8DQ/sPcoVGyeoJgE1XBjL//rkw2zfMMFd125l02jolFy3+ttDGa4YrDNcrzJQSfjzL+9jbKDOrddsvuSY09MLrB8dZuf6Vc86/4MP7eH8fJufe/VL/0FWZS9YIhsbG0MpxdTU1CV/n5qaYuXK5x5aJklCkiTP+dh3eqxtDvKu3c9PC20pEqX51Rtet/zvj55+mAOt0/zo5pezshpuiLiEy//Q9l2c6Syyf/YCD06e4Hw+x8nuDF+bOcENYxsB+J8Hv8Ji3udfXP1qairhT089ysb6RYZ/pBSnu/Mc4wKzqk3q4VNHDzObpRybm8MLWDB90sLgcscn9h7iXnGUtbUm/+TWmxgerpOYglPpAouxgQqsGRpg3vfIhaCmNFjN16fOcfngCnQ7YU9/MgAX4oguDkXwkBJClARpgU8EZB5fBOkpV3FBfoowB6MIWoleOmQm8V0BFfBxOE7GYY7mnKCfKaxXeO8YrOfUogytwpxnrN4hc0lQdsejhKOmCixLiMOgKNEqKjRVn0xqKqrAeMGA6gZVeeFp6oxIEiomITBIjNd0bYwWMG0HqEhDRRSMqywYYwIr1SLTNKmRkYqEWFiaUYbxoW0n8KyttSi8omdi0IbCBddnR6imLJLpvMG4XsRIwbRtEglHzy+JEju8N3ixROiOaPk6kcxJUHjVoWc0C3mNzEmkgMW8gnUgpUMKgcJSUxlBUDnBe0Gaa3AC1ehTeFmqfygKU4J2pCOKLKkMrd2lrqLIJbQIm5mybewicJ0ImZjQUpRBakx2Q3vNqTLxOc+5fhskxCJslnzu8JEgqSnaCzlKSdavGuTUyXnIPGOjdXZdvY6D07MstFMi44kz8OdSfukXP8ybv3c3zSSht5hxz8uu4NSpWd73gQcprGNgTZOHj55hxUSTBZEz0+nymQOHWUj7HJ2e4007ruDGy9cxOlAPnY8H9rJypMHkXJvB+l89o/5mcdPW9dy0dT3OefYeOcdQs/qsRPbWW3eSFoZqHD3r/HY/o9XPlgref3DxgiWyOI7ZvXs39957L294wxuAAPa49957eec73/lCvex3RXgsTVWhcAFQ8fjMGT535hDfv3kXmwZGWd8cYn1ziFdvvIwDi+f55Ok9fPHCY/Rdm9tXXE23KDi2OE9hoZYkvGPzpfO3n9xxEx889gS/c/hhxErP6s4ou9es4e3X7uQLR59hstPhqpUruGPDJi4fGOMPHv06kZIs9jPeff9DbF0xypcOHSf1Fh8DCv7rPa/kQ089xb0nn2FDdZDz/QVmOxmLs5ZKnIIJSLM09ZA4Cl8qNmBRscSasPBRF/hOIFIvQ7fl0rGEVTEJArfCSOj7IJFUccF7THi0Dvwrm4UBmncZCEgLTTMpqCUWUeRIPFp7vPfkpYJHuP6eWBmEcGQ+ou8sSjjG4i5aGGLhwvEizKsyp8ltzIW0SYEikYaVcZuInGqcUyUjkQYXLhVbogtUVAZCMkCG8ZIZWSfzASTRlUEaKys0xgskjvG4SyQdHRsHlQ3hWDQ1nuhuZFB1EUiUtFRlRk1ZjJd0vGTW5Cig6xSpr1CTFu8dPVHO+lzQu2jnGiE89aQgLRKch+Fqn8xqbPlZlXBBODgX9KPQBo21oaILCi2C6gdh9hd8ffxFQ00NwpYkaL2k1lE6DxQK5x0+C23IZfjZ0gzUCIQVYDxOQQWJLcKmIE0tRkDcLzjWytHOIZHk/YK9j5yg7Q2yKbn28nV0z3c5dXyG84vz/PHvfonf+5N/QpREaCXJc8M7/+X7me33cJEgywv2n76An5BMn3qGpBox4eu86rKtvPqG0r3dOha6fQ6eusD0Qof/8MOvQEnB733uUdaPD/Pyay91rvh2QkrBT7/xluVK7xtDCPGcSQzgx+96/pQm5zzHjk+zZfP4X1nFffhDj5AkEa/93uu+6TF/1/GCthbf9a538Y53vIPrr7+eG2+8kV//9V+n2+3yIz/yIy/ky/69jnP9WaazWebMLJ+ZfIgbR3ZwvJXy5ckjXMjm+L9vesslx+8YXMXa2hDvPvznfG7yEc6n53n5qssZ0FUa0aXVrfOOX3v6MzyzOMuFXsrO0RXcPL6ZH7v8FipK854nH2LO9hlr1sicYbrb5cD8NForlJC8dMsGTs0tsG/uAh1b4D0oC2P1Gifn5rn30FFSZZhq9+h1PRhFWnGkNiMWCiMcmSsQNqhAQBjax0i6kQdrUJWYwgT5KuFC+xFKW/vle83jEs8SKsIrF3b5uURVAhAjfGCJc5K0iFHKUYuKUE0BlSi0vUKFA5kJMP6KMqQmkIETVSCEo7CCwUqPWJiyvSmCfYoPGoxVWdDUKYkomMkbJMqQ+ojMa5ouY0HWOJiNszGaKzlihlWyA0DmFC1fQQnPKr1A7iQdEoqg10RDBcsVLR3Wg3WStqkQy0AZqBhJqiMGopTYGeaKOoO6hxaWhi54sr+BwqllOkBMQcvVWCySUr3DlqLDMcYbMqsZHJ4Nqh1SkdmwhagnGfUYpA2Vqiki8nLOGGtLNbZ4HGmuSXsaUbX4rkIUctlXDnXxO4yRmEWBTSyecgAWCeSiDJqYKlRn3pf7k9QjewLl4MdeeT1nZ1p86rGDkIHVHgto43FCoFPLQE0SVWMWJ3tUMsXh9lkqFc2GVUOcevo8s+2Uf/yP3svaK1bxipdfxehwna1Xr+bs159hpJnwj+65iT98/EmOZvOYIkeIiO+//mp+5M4bMNbxe198jGemZnHeccWKMc5Nt7l/zzO8bOcWjk3OkRvLXddsZa7bY+wvccO+VawYDjOwxU6fZq3yTRGKf9P4/L37mZxa5Pz5BW679ZurhZw5PUdSee4E+p0SL2gie9vb3sb09DS/+Iu/yOTkJLt27eIv/uIvngUA+W6J9z+5h6cvXODf3/kyqtFf74ufqAwzXhli59BmjnbOsKG+il3DTaS0aHUpNiezKWf6x9hc38G/ueJtvO/4J+nblMvHx9i7eJLJ/gLN6OK1fqZ9gTPdeY53ZjFWcveqbfzMjtt4976v0LEZT0/PkCvDXZt28MGn97FneopuN8NmnqqIuPf0Uea7KVIK1IAiNZaRpMpL12zgN+57iG4nR3vYVB/kGTePkkGVwyypLgqPywOAAFUEvT4gcxYVCZyQ5GnJD3MSWfHY0igRJ4JInrSIqOSZlVwzEROynnKYLLT5lAaTK5QP3DLrFLW4R7+IyI2iGud4JM6LQCiOgmKF95LUxZjcoRKHl5KazhlQ/bJV6cl9hAdWV1rMFzUKr4mkpSINE0kHiaMp+3gEhddoPC1XZdrWWSG6eDwjMmPS1FhwFRZtjbrsM6K7ZE5zKqcEe6iAZbGaBENuFF2T0IjyoD4PWDSZc7SKhAEdWo7zpk5NFeS5JvcRxisWjcB6gRCVYPeiIDWCSklTSJQhdiJoNLoIKxSFUeGa4LFeMr9QIzUxMrJ4H6SrrA9tXCmDakqeKmhHoED1JRTBmw4PpurwSQBnyAsCrUCmwapAuKDmokwA/ai6hDSAPSIvgvqLDAnwYw8dYKbfDcIhCegiiIgE8WhQiSJOIhrVmGqiaRcGIz1KS17+iqv4swNTtKSj3c14+vgUj//2WdauHeGabWsYHW4wOtbg1S/ZwR3XbeU99z9ILy9YVW3y0ss38omvPEVaGE7MzXF2doFT0wscOjKJ9bB2xSBxpPl3b7ubOFJ88JG9HL8wxxtvuPISjtgHH93L4ckZ/s333E6sn3sJnppr87sffYgNq0Z4+wukmXjdtRv43Oef4uqr/mqi9Tt/7pXfsIn8zowXHOzxzne+8x9MK7GiNVUdXWKy+XxDCcmb1gbgxs1jVy3//U0br33WsV+Y+jCLxTRaRGyob+NHNr+ezBb84t4/ZDE3bG6Os20gJLLZbIHJ9Dw3jW3gJy+7ja9MP8lQ7Jjstbnv3BGUkJyYbzHRaNDRfUaGq5xvt6AIPmBWWKa7faz3VIVisF5ho6qwmGWcO7dAby4nEmH3fvDsNKvGBtgwNsSXJ09SCEsuLV75YK7ofdDvQ6Ajhxcea1TYeicCkVhEpkMS0w5RyOAcLUEoSaWWIhsZvYVKaE2VKhGkS47JGuv8csVlcsnYUEr5J6QIczAhHbVSvFcJX9qWWKRwYZ5VOkX3bMKpdJS6SvFekijDkFqC1+cYFyxPtHAYESSwEmGwQgbumJdsjNsYJC0XMSItHo/DU5MFXe9QHs4WQyGJeMlMnhCrUF0u2gojokMjyihQFF6jlMGWKhvOCYZ0j4ossDYAJ4yT1LWhZyJapoZ3FWwssR4SYUm9Dj5jAjSOusyIY8dCXuVCrwFSUDhFZhSxDg4AuS39cURwB6gkQTmlVyQID9ZKvBWhijbh2smyskYEigQWRI+y4hZI59Gd0ENc0nyW3fAyzoV2mu4SBKdtsEKZarWDspUAkiBj5ipAIRkcqnLlxlWMbRli733PkGlQBfjM4bVlYaqDHqxRLwybNk8Qbxzgwf0nODvXYnuxgs0bx9mwapiDhye57ysHOTp7gZ50vPnNV3FmcoGDpy6EZPWmu/gX//sTFLll1vfZtnqcR46d5u6ZbfzqB+/j9qs2sWPDBIu9ftB67Kc0KwlCCLLCkBbF8n18/8OHefLAGf7xm1/C8ECNXpbzwS8/Se4c2zf99Tb9xtjnNOn8xhgfa/L2H7j5Wz6X0i8YuP1vLb6jUIt/3+PNVz1/u4W/bpzuHaNVzNIq5hiJL3LTpBCsr4/RTQwrKhdbGp+f+iofPPE1huJB3rDueg60Brhu+DI+f/YQznku9Du8ccuV7J09y70nj2KNIK5JVCZRwrN1bIy5+T7z/T7NWsKrtlzGlaPjfODLT7D/5CRVEbMqqTHT62G9ZWa+w4zv0VMFPnJBfsqV6DUNPtNYBz42RGWbMNIgdEEcGzKtcUVpQKZtkDJSDq/M8u5Q1QpsoZGATVWJyy7BI4owl9OCLIvQKgBKYmWJdc5o1KYQEi0EM1ktcKNKxOJQkgUoupEk0gbQhYtJnWIoSlFlosrRSIII7oBMwxxM9rAOxqM2M6ZJhmJA5hRo8B5jJZt1p5ylORIyFk2CoYrzMFfUmM3q9GxMZix9VwE81kdYb5lI2nRNRMck9GwV64NgsJRB07CiCowLVaQQAl3ykKsqD+MmH+G8Lp8ztEUHVB+PIneKzGtqUcZCWls2/7QeskKjS3Fl78E5QaRsEGUWDucVrq2Dcn/FQS6XHQtc2D0gC4mc9mgTkp2X4KXAJ0AJoxfha8KWX7POQGaeuAtWl7qK37g+C6hqhbSepCLo5YZDc7M8uTBN2ukhnENZHx73hq8//AztxR4qUdz9mp08cXqKejWhyAynJxd4z394K+cuLPAHH30E0zVcs3k1e85PMj3T5rMPHmBqoc3dN1xGPytwfUuC4uarNzCQVHjjS67kk48eYGaxw4mpefafmiIVll/+6BdI0Oxct5IfuG0XFxY6KORyNTa32GXfsfNMzrQYHqjRSXNm2j2uvHwVu3c8f9T2QrvP//MnD7B94wRve8WzN8DfjfFiIvsODeNSTnW/yvr6rWj5bCTnI7P3I0XCHStez9negzT0BKuqV5Pbaf7pZa/nvzz1Cb584RBdNwMIbh3bzYPTxxnUg5ztz/OKiRsYThr8zsHH6bmcIV3HZZ4djZV86MR+vIBKA9aMDlCngvEWpGeoWuVVW7fx0zfewGeeOMSJqXlsAbk0rBlqMrvQKzljBaQgRsFrQSwUuXfLAABsaA26NAZt8c7ipKdaKYi1JS8I6g7SISsOpTyRCmK1uZXLVidSBpQfIqxuwgbZK7ekpu4D3L+dxVSiICA8VuswWumjhWUyHaQeFaRG0y8UA0mOFI6KMvSNpm8jnJfkVlPVlqgEgKRGkwuNlJ4q/aDAATRkymDcxwpBQ6ZEIsy3WrZCIjV1kfFkXmd3vIB0mp7QzNomDoVDM100SX2EFGEWF8kAyfd4tPAsmgodU8W4UI0ZJ0lNRCxyIhQLpkJd5xRe43Al8jCnKnNqKkeagtRVEAQStcDTshVqyjCb1+gUCVp6UhMqQ+cdAk1uI4Rwpelo4OhZG0SFPRKTg0912EDEofImC9+zNAHAoTKQ39BqFDa0Bn1Jai+xIviIUMG5wBXTDiIRppOutJ0TIW+jvQAhEMaROUesFdILfNsQifAbk7EmKmyo8qwPECPj+aM/fojNu9awZqDJydOzmMzgneeXfvMzdNOcH37tDWxYP8rD//skH/niHqo6YrhRZWK4ydhgHa00t2xZz3/6/lcuuzCPNOvsPXiWE8dm2Lp5BSMNRc8UKCf4+rlzTBxssnZsiMo3VEvj4wPcuHMjpybn2bE5iAz//PfdyWznUn7oQqdPJY6WCdLfLCqJZmK4warRv1oNI8sNaVYw2PzrIS2/k+LFRPYdGsfb95PZRU52vsSWgVc86/EdA9dSVTXWVNfxmbMfZmVlE518D30zxfbhn+At62+gomI+ePpjnOpOc8XATq4ZvIp+AR86+TArkiY/ddkreM26K4lszGwn5Ymzk4xUqwzXKqS+oFtknBHz/Ktdd/C/Hnucfm6o9TQf/+I+vvjIETaOjqCcQFqIE00/C9MwUWIMnYGhosI1q1cxOljlz449HYi3LqDWajqi53MKA0iJsx5XukIniSeKM5wHJTxaO7wPLUFvVEiGRuFyVZpMAViIJeTB2kXEhHakhPlOg8Fan8FqSt9GGCfRyhLLPFCcZIqnQVVl1FSBAOLYYjNB38aAp+IlfSvREqZcjaa2JMKENqIXRCItnZolSnmGdI/CSeZtndxr5k2Vq6stBJ77+mtxHmaKGhfsEA2ZMZ0HsnxTdVEClHQ4Lyl8FPQhvcZ5EYSPRcBYpjaiLRyxsqTO0yoSOiZhZaVdVplh7pXIAomnVs4ZNQYPRMLSMRXO95vkLsx1rQ+k8tX1Fs5LZvo1ZCGxPgJMqMAcGBeT5wpnJb4I4sQUhCTkJSoXyDwkLWXD78SLUHkB2CrLgA5R8vV9BC4BKUMLUmUAgrR0NAnuBaFFrHxoN+adgqjnAuVsMKLV6mMKS63wFJkjlx4nBeMrB3n9m6/n/r/Yx4WpFqoRMzvZIm2lDFZihPGcPDtLTWnm2x2mp9vcceM2BhtVXnLlBl5103aa1Zj7v3yIT33yCf7JK29iw/rR5SQG8LU9J6iiaA7VWF2t84PfExQ4zswt8tsPPMqn9h1ibLDOW68NY4PJhTbXX7mOjatHWDcxtPw8H3xoL1OLHX7w1l2sHxvCOc///WdfYmywzs++8a+m+VTiiJ/+vm9NBfqDjz7C1GyLn//Jey75DH8f48VE9gLHuVab+X6fKyeeH1F6Y/MOjrfvZ33juX+Q25pXMJOdYu/CfQzE2xiqXMZ43GTv3Mf545P/F1cNvoIj3Wmk6NIpLA9MPkUsG1w1sBXtE04v5JztLHLbyi3cf+YYTlmagxFtm1JrKlZENY62ZkhURObCylMoi5n19ApDlndotVKyzCAL6Hdyzi6E9pUtFx2tBXWr6bdy7j13HmK/PCeLRRChXdLjo4Tj9/tRAA1kEVGlQIqgm5jogKgrSukjY1QQCRYWVwiEKhdS6QPbSsGSWG2kHXEc5jlauiCq5BUew3CckbsiVF0+o3CKRPZwaHIrqOsiAC6coGtiFI4R1SWSEEsTkiwWg8IRkXpPrEIyKND0XMS0GcR4xaDs4RzMuSYtV8MBF8wQOZqOFbRtFecFA7qgqTNA0C4iui5BEGEJUPxIBLV77wTWliAYEa5fJD0eyXRWpxnlWOcZTXolQ06AdzRFl0h5qiLDoFF4Fk0VawVaeiIKNg4tEAtD7hV9E8wvnbXEuqCdVYK4capwVgWaQ6ZDpeUIEHoZXAiEL7+GEqzhFbiCZaUO4QmGmkU5SyutzISAmtLkvsBGoTqNdUA0huo9SFT53BFZEHkAc2R9Q1ZYapFiOEnIBzXzrT4WaJuCPQfPcOzCAmtWD/PyV13F/V89RD/NUV7wllfsYuvGFXzfy3fxvz/8EIeemWKgVuENu3dw9tw8H/7Y4xw5MsnU+UUalYiX3badq7avodPPaFQTrHM8eegsE0MNbt21hV3b1yzfr0oIBnXC1asnWLAZa4cH6WU5v/G5h1g11ORH77ieTz90gLt2b6OaRNywZS2/9flHmF7ssH5sCCkFV2yYYHzo+YuOf7PYsWWCwWb1WSCyv4/xYiJ7geMDT+5hMe3zyy+/GyW//R9MJGtcNvia53zsVPdp9i7cS10PsLl+LR7H5sb1xLKCkU9i3Cy566OEZCTaCPYcxhpWx2OktmBED7Jv8ST/+uFP8n/e9Cr+0WXXAYKvnD3B7+9/nMmshcEhnSC1loV+TiI0edEnUdBMFTYKPBQRfCZJpKbvDEIKYglxJWKgUeWOyzfy5IWpZU6QEEE/0RoQ3lONY/oiDwnNAEbR7ieoaoFLI6LEUo9SanFOz3gWrbqY+FT4DykIIA1FSGpCB76StOi4IE4MkbTEkSUShrrKSZ2iHvQr0MJjBGhpkAI6RUzPV8F76lGBw1GTOYWPyJwuwRw5FWFQWIRwZWKEAZGVNalDeEEiC0ZUixk7RMcnPNbfzIDqh2oJSSILeqWztCxVNCIZqqWuSVgoKuVnDeTirqngvCpJ2Y5m1GO4khFLi/AepQ1dWyG1MbmLaEZ9rBOlCScMRgVVkdPzCYMqpecjFnxwvx5L2nhUiSTV1ESK8jHNKA+tVJ/gTRRawk5inEJJh67IoGpvwvDSFx5lJWX3N1RbFlz4KJhGCeaIQAaD6/DzMIHOoQpAQl8aZCQQ1iOcZ6RRodfNEV5SjWLm22mY11XBWIkooMjCpsssFvQ1vO0tL6HVT/n0Z/fSme3yxFePIpRkZqHLI48dZ+umCSanWvjUcuTwJK985U5uv+UyPvH5vdTjiPvvP8BnPr2HY6dmGB1vMLZigCK3bNm+mte+9lre+ydfZqbT4/brt3Lq3DxOeLZsGOfA6QvcdM3G5Xu2m+V0s5yBSoW3XLMzXCfluXz1OFsnRvnAF77O6QsLALzmlitYPTLAyoEGjx89y+4tAVX4tjt3LXP1/jbituu3fuuD/p7Ei4nsBY47N29istNZTmJnOov83v7HuW31Ru5ct/lbnP3s8N5xYPGrFK5AioS9rT1c3ryGWAbR4LsmfojWyKsZjkMFOJd1mes/yNHWLL3CcrpzntycZTHPGa/W+PV9X2JDc5g905McX5jD5ZJGHOG8oJsVDOiEV6zbyof3PI31jmhdlc3FAHumpoi9ZKxZo93OuGHLWr566CQYj+xDagpc5jhzfpG1QwPUkHx57gw+hiRXGO8ptMcbC7FAGoUvCKAQ4UrNPYkpwDqF9ZKsCHYsSnoKXxJkS2kqVZo6CqGwpfKGUB6pBdZK6nGBR9ApYuo6Y1CngCd34RawXlCVFus9izYBEWZIEkNNWpo6JXWhcZr6mAF61FRKXRQsmgjpHR1foUqGxGO8DHJTwrAi6gCCWdtECGi5GtbJMO/zEZlVpC4mt4pEGUDSMTF9F9EqajgEiS8onGIxqzKcBOfpRBlqsSGSBuc9Ek9FOXou1G4ST11mDOiMEd0hLzHqSlhWqjkQMvDWTEKsDLGwgAnXRBJmc94yVunhvGemVPJAekwewDXOS3wOIg+kZWk8sh8ElL3yqH6AznsFPve4qsc1HE6BTMM5wgi8FCgCytH4gNsRBCh+BYXtWOYWeySZQEoYrVdo2z7OgU/AV8I8jxxk3yMKx0KRM9nv8siR02y8dg2z+y7QavWpJpq5Vo+nDp3j7MwiIgm/tY2bwj2jpOClN2xhfLTJYw8fZX6mQzWJkEjWrxtFxBIzXmFyrv3/svfecZadd33/+3me026ZXrbN9q5V21XvsiW5d9zoBkJICCEkoQUICSn8SCEJhNDBYEpMdcNNtmX1YklbJO1qe53Z6TN35rZTnvL74zmzsuKGwQQ73u/rtS9pZ+49d+7cPedzvt/vp3D46EXOTzd45317qScRhTE0OxnjMw2yXBOUKc/bVg/zs2+/92XnshCC77jdkzGePHCG6YUmd5RuHoP1Kt9+515GP68D+5NP7efo2Rn+5Xe8gnrlG9MB6e+qLgMZPscn/CKu01+Lum5s3cv+XhhDbjSp0V/08WfbE3x25kluGdrLQCh5rnE/O3pvZqzqs8genP4dumaRG4feRqTqPDjzV7T00qXnK6EugVhXF/zQY3/J7v5R/vuN7+CXnnsEq2fpq1SII8nNoxv5+PhRRpM6rSKnawraFNRMzN6RdawVfWAFHzpylJ4wRFSqXLNqDc9NTJLXwBaWdrOgsIZDZyepJzGLrRTp/B4kNYanTl8giIUnE0ovjg2QGGGQdiVkEaoyoGO1v2UPJbZQiBxYkEzPJMSrWpiS/u2p+n5UJpQrU4ct4PdsQVJgjZ9rGSOIQ0stSrFWUgu117cJcCgyF5Jb7/Ruy+3LQNQlNQGJ0pfGkVIIhqI2HR14Np6Afpn6/VOUMZHHYGHSDLBWNKhKzbypU6HDQJBRVTmL1o81cyOxeI9F66BdxMxmdRpphawI2NAzz3CtS2GU95LE+zUa56/uUqwAa4iShkA4BIaq0lgEo1GTTuBTntcmDaoypyIyKiLDCkVFpMTSE286LmJnZZLzxRDaBUSi8C74FlIXe3MVB4NJSsfEdIuI3JQkmjTw7r0ZOCX852U9uUM6sKq0GpNeQ1j0OWxscZEnXNhQYACReuWFqwpM5neoMoBaGNLuFOTO4mKBSB21JMGkmmajQ5QJtHMEBfyDt91MY6HNU0+d4mKxjFWSkVW9zDbaXJxYYn6iicoMWjg67RQVSl55x04ee+IEzWZGTyXi13/109z/l8/yb3/hHbz9jdcBMLaqj5H1/XzwowcQVckTh86yfscwh8eneVcomV1sMzJQp7mcct1VG9i3az3OObJCk/wfLhzT803mGi32bP1Cr8S3330N04tNemsvpVhsWjX4sscM99cZ7m9fCvC8XC/VNz2QnV1c5Deeepp969byjquu/MpP+FvW5r5B/sOtr/qS37/YPUNucjKT8efTH6drZtlUv4bPTP0W4NlbqZmkrS+yrno3bx/7/pfZy0x2J3l07hlwPWxKtmCd42xrkUgpZjsdTiwu8i/27uENm67gf734EJt7+7l77Ta+bdt1fOTMYX7qqU9QUPBT178C4QR/9eIx/mD/AUbrde69YhvNdkaaFsSFoCpDTN1B7u+cXdcQAZVqRFsVGOFw0mIbnjqtlNf7iMAhIwESpJWEWpFHPlMMI0qdkYQMbDm/7zQryMhbUDnnvO6rHC36e3eJ0YIw9o9RSmO0N8HVWmGtIglypHB0tcLFeMKDC1DCO9j3qBahcCzrhEgKYqlp64i5LCRMchIJLZPQG6b0qS5NG5X7Ks3acBGFYd7UMQhyJz0LTyhaNkYKzZBqEVIQBnCx6GWu6MUJSVNHdE1IYQRSOnJCOqZMfRYZqQ3p6AhjIZI5obJ0TUgoNBaJw1BTBYk0eAMNzaqoRSJzYlEQS8OIajGo2hSl3VTqQnIjSWRBLkI2iHnmdA8FAU2dYJ2kHmRY56NlCuOoBj5DbrmbYEzgKT1a+NkygHOXGIkr418blqzEUmMotcTE2j8nNFgEwoTQAm0dpUsXOGhnXmsVKYU1Bh1CQ6REBYRC0d9TYanRoT6QkDrDi4cvMtzfw/Riy1ugRYqHP3cSbSwyVBS5weQ+jy4C5s8vki9lREC3qxmuRFw4N8dv/sqnWX/lWu69+wq2bl1FI8144NApZmab9AxWWE4zcmP42NMv8qPffy/tdsq+K9fz/k/v58Ch88xNNfnut9zEnbe95JbhnONP7t/P4bNTbFg/xPe89kbWfh6rcGy0n7HR/i977bjnhh3cc8OXduD4Zq5veiDrSxKGa1XG+v7+gzsnu2fo6HPs6atydf8uJtMzDES3sL3nJprFPDPpYQIhGKteSW/p2PF/eqQ9vfg0n5s/wdpkjOsHd/Ize19FTMDPPfIAPWHCxp5+Hrp4muPNaSbTJe5Zs4N11T4+cPow2/qG+PYd+9jdP0pvHPPhs0c4dmGGPhezudpPvqT5yHNH6a0ltE1KHAW859a9/PqnnsI66O+rsnYk4OxCA2sFvZEi62o05f4DEBloLEUd30QZcM6gS8EztrSmyiWUNGwsCC1xClSkqdcygsCQFoqiCLC2pHNLL8oV5a4pCFb2V5Lp5Trr+hcZjFNqQUbbhKQioHAhEkuiMgIBvUFKIgvmizraKjKjiJSjUdQwLqQiCxSWyWKQDdEcgbCE0hALy1joux+DZNkmJKJAlf6P/TJjVHVIpOai7mXAdZnIBxEOMuNPw0A5nLO0iwicozfOqQQF820PjtoEFNaRGU0kDRpJ3eUEAjIbUhE5SnjCRq/qEAtNx4VoG7BWFvQIjVIpuQvop2CKOn106LiYpu0nkYaOjssdomdIGhytIibVgRdgW+n3j07gAhBtb/zstKfWi6IEopLIYULn9WICL2qPHVJKnDCedliD1EKlFXgBeuCfKwswXvHBcLXChG1hlaDIfXeHdWwZ7sVow7zJ+N1PP0N9VmNTnzGHFFycWESGno5vnFdnC+U1bIWxPPncOeIkZKinQr1eYWigxuHnLnB+ZonVehVPPXuaN732Wq7bs4Hf+Nl3M7WwzIcfOwwS1gz2snPDKFdt9t2VtY6j52ZotFKMsSwutV92Xv7cn36ao6emcLllvXUcPHyBP5ue5/pd67ntqs08+NQJ5httvuXV135V14xOJ+PRx09w1x07iT/Pn/GJQ2eoJhHX7Fz3ZZ79/0590wPZQKXCv7zjb+Za/7Wu4Xgdiaqxs+d6hBC8Zs3rLn1v3+DreH6hxUJ+ktuGv+uLassAbh68jUdnLpKbgM11f5KdW2ow2VlmKm+ysb+P9fV+epMQg+HV63bzwsIkf3zyADeOrOenrvNRL+/+zO/RKQyrewbo6yb8q1fdxY//+Seo2IBrV62mUe3y9r1XsrTUJRMGZx2NLGWubWhJgw1AC0stCS4t4AEPSgUvNVLC2xC5MpNKrDAEygsaK4y3QuCU/2OtB++oFDnnhcBoCdLf9TvrQAiKIkQpDUKgrWKk0qEnyFDSUlhFt1TWZjakcJL+oE1FFiSyoOtCJtM+OjYhcIZqkDMQtpBA2yYkTtMoKoxUmlRETuZCMhQd5yNRlKDMNgsZCxeoyYJR1UYAU65O20ZUybBSsrG+yEy3hznbA8LSLSIyHSJVk5m07h0zEF7HJRy5CVDC+Q4osKWxsCeW5KWou2sjMhEghI+/sSIkEI6OjZHC0CsNuSuYLnqY1XUyF2AR5EYSSoMp9VmFkWQliDWzCs00LpmjPqiUOriOvETQcAjPRsQDmFUOG6/sPvHgtWLRbh1WexKLrjqkdhD7v4u2HzcCjC97X0phShak8MbOUwvNstuDnkqEcwasRTpBYBwqUmxeM8j09BJZqjFxwG3XbeTg6SmajQ4UDlNYaj0V9l6zgRMnp0l6E667fjO33rSNLZt8YsRTh87y4JPHmZhfptoXU++v8Nob17Ft3ecZEUhBkoRcffV6fvAtt37BDeaq/jrxznUszXc4eXQKWpquMCy1fHTTkZOTzDfavPW+a74qb8UHHjpKp5vzxOdOcfcduy59/bEDpwlDdRnILtf//QplxO0jb/mCr2ureWTuY2yt7+OqwXd+2WOMxIPsqO9gNOnDOcf7zz3OWGWIqMcStS2v2rCD12/cxUS74VOmheDxmXNs7uvntrUb+cCpwwRCspjmCCeYkU1uv2ozq/t6+InX3MmxmTkOzk4xnbX5laefIjGK/t4qeaoZqlQ5N7uIC733XSGgp1ah3Wh6u8RSLySsIOo4tDeY8NZRoXf+sIFFKOdHUytMx8A7RODApCHtNKAb5tQHU5wVOONZdGhQgSOKDdYJikKhAh9EGUrLZLtOpVfTyr2YWEmf2eWEIDUh8663FBAbIny+WLeIEMIyELSJpKFjfYryfF7BxoKZImV7PM2U7mfZJn7P5hwGwVKpH6vLlHrQIHcSgSARnh25KmmW2jBFJDVSGAqjSgstR6Y9YDnpKIx36ZDCd6/LLmYw6hBJi3SWDck8OQFGh7R1gEFSkzmRzKnLzHs/CkcsNNoJus4xUwQ0XULXxkRSY5yiJjP6ZEZTJpzv9l9iUy53K167JS3Whv4zMv6CKyw4IYja/vN0EmwAVjovbl5JL7BlN2UEIpW4pPyQpUDX/XPDtKTir3z29qX/qhV6fgiVOKJai2kuZojUoSJBMJjQaqRUVUC2nGMKzdJ8h3ocY3PL8HAPRxsNlnOfhrB1yzALJxZoTTc5dnCc3Fn6+iocODLO2YsLvOWN+1hsdVlY6iCl5ML0IkNFnf5VNc7OLjLUX+PExCz3HzzOa/btYqCnyrmLCzx26Ay3X/sSkctax3ffdR3VJOL9nzrA482M3VtW89ZXXXsJtL737beQF/plIHbswgxhoNiyZuhLnu+vvHs3jz95kltuejkD8fV37vmCHd3/y3UZyL4BqlHM0SjmONU6zIbql6fMCiFoFwUHOhd41eqrOLBwhsl4kWWzxI6hQV6/cRe/c+wJ/vzsIe5du5PVYT/7Bse4uNzkj44dIBAB1jpiGzFarbOpd5BtvUN854f+jNmixfddcQMnG3Mc684SWEXaKKiJkL1jq3j2/CRhpDCJJYgkdRHRaHVwSiAV7NuylufHp8gyH7Oy4tsnEZD5RGAhwNW178KMKtdfpVOEwl/IWhE2kBR9BToPsHkApmTTpZa4aqkEFqVMSYWHwknm2j1ICdXQu9g7DT2RD6Vs5hH9ScaS6UGTUlMFtaBgU3WO+aJOXEaj9EpvUSUCh0UwbXppdKoYJLHUVESGEoaazOmTHTo2IpE5HRsxY3tQOBZ1tXQjAWMFOE1qBLUgZ073+DiWICcJLNpzWIikJtUh2oYgJVVRUA9zQqEZDJsE0mCcz01rmoSlQtEmoD+Q9CddFmyN2Gr6pCGQjtxJQmURxo8h/eeREcUKhyIUBRcYwFhBq4iRElKj0CuEk9ChCzyTA4fK/A0KDpzxNzI2KlMLTNmFSxBGYleSDHKJqFlE6skhaBDWYUunD2kEQQ6BglBIRGqx2mKEYCHMWG4X2MLggOU8Q3YtKhJ0Mo2JvBPIcpZzw5XrefzAGaJcs9TMSOKAvdvXs3v1IB98cZbBesLWzaN87sh5RBKQCEGrmfLQ48e5MNNgZnYZZx2bVvfj+hSP7T/D+YUlPvH8cY6cm2Z2scnDR87yFz/xHfzEL3+E937kKTaNDfLBxw9z397tPPHCWc5cnOdHv/UVLLbbrFvTzx03bXsZaCVxSPJ5o8GpxSYffOwFgkDxL99+15c836uViHtfccUXfH33li+e+fj59dQTJ1lYaPHa11/7FR/79V6XgewboIbj1dwx/Dr6w+Gv+FjjDBvr/TQa83z04tPM5/Nc6J6hQHB13zX852ceJowsQ3GNRjvjU5MHuHJ4FftnJmibjCtXjTLdWWYuzTDGcWpxgRdnZnl+dpoUzYnGLFOmyWBvlQGZcGJxHo3l8OwchbQUNUG1ErNtZJAXT0+TW0OchHRdwYGJSbSx3jUjhzTxolahQARgsbjYIKT/2oisstTO0KocdeXCx7bgwEg6jYo3DNYSIq+sViGoEiCCMlEZ4Qhk6X6hQ8CTRZwTpCZAW0lmAmqhJsCy7BKWiyq10tqpHqRkVhELSRLmOKBpKkTSMJP3UtiQvqDDaLSMQSGsoRABsTCsjxaZN3VSDbHM6bqQlBgQdE3AdFpnOu9HKUUlTNFO0cxjKoH20zccyhXEgUNbD+xKeNspU7p2SClIdUjbhaQmoJEnhNKiVIgwknqRl3JtQxy2UM6SOUXbxtRkhpMC6SwFiq4J6frAMGpBRkdXiIOS3m/8sks4528QAofrOmRHlkJ4hyx3ZCby3Zgf9Zbu9OA7udJ3UxSCYC5AWG8wrGyZMC7x6d7GIbuCwkAipRfTl4nftvCpzEqWprZC0D9aY02txuljM0g8IzQvNEeOTxGUWV6RUkRKcvjJMxzsnMAUPula1UO2bl/F8mKHu2/fyateczX/3//4GAuNNlOzy1jrKHBsGV7NYDVhYnyRpCdi+9ohrLNsGhmgnsTs3ryKibklLs4t0exknLw4x/hUg/5ahUocsbDQ4cz4PEO9NdrdnF/900e4MNPgn7zjdnZu8nvvp49f4K+eepFTF2e5ZdtGfuQ//jlxqPjBb7+Tjeu+dHf21dZzB8+ztNThNa+75hs+VfoykH2D1HD8pe+wnms8z8HGIe4evYtnF57ksflTXNm7l8l0HgSsrgwQq5AeVaORzfIt66/kjeuvYqHbodHNuHZ0DS/MT7GpZzXT3UXGWy1G4z5OzC9gtKPSF/mLmIE/fuE5urZgrL+Pf7LvZn6z+TS6MIRScaHVYK6bkqZdnpqeQFlQCOJQsr5/mIl2kyYZEsG64T5MAhMLS1gJWVT4C5ySIDRCCGZbXZzzoygi67uy3Ocke8acgtigKrkXxpajRL8i8xc8KXyGVxLlhIHfqa1oSo2TKAHdIiAzIeOtPlbXWiQlTT1RBU0bUg80Qjg6LsQVPX4PZSWpkd6NA0E368U5Rz3ISO0A/bSQKqNrA9/FIOgRvkNcKkIupCM0dcxS7p+vcERRgXOOWpT5HZgAY8G6gDTze7JQGRyStgmITYGMoFEkaAeZjclsROEChDMo66NgWjYmMNrv7QpBgb/zT21YEg4tHRuwrCsoKSispG0SIqmpBJpuIdE2wjmBFI4gtOS5xGlQqYJAYIUHK1M2Fba075OFVzu7sqv2iQa+GxZSYMo8VeG8pZnsOmTsP1phBaIOroC0VRBoIC9F7AH0JjGpM2TagIV22mV8LkMAq9b00V7oUKtG1KoJOZb1Y4O05ttsGu3nMy9MY40ljgNGRnvR7YLBSkItCJmZXuY3fuXTRFFAqg19IzXarYxdV6zl1OwiQwM1+pMag71VXnvDLm7cvuHSufhD77iDQhvCQNFq5iRRwOhgD5XIB3jeetVmdqwfQSnJQ8+e5MWz08wsNHn26PglINu6ZghtDetH+hnqrTKRRFTikEoSfS0vKbz7O26h2ym+4UEMLgPZN2ydbL3IaLyG3rCfUIYEIuCzU3/FxWyCu0duZHN9J1f0bqRwhkj6j/lCc4lPnzvF83PTHJudZaRaZ/1ALx84d5Ai6nDR5uzqG6WmKlRlzGhYZb6Z8cr1W2mvK3jowhnGm0sgBakp+PdPP8CtGzbyM3fczUSzxT/98IeZzdKXsqGE35cs5Bm6DUVVo6XFtgWnWouQQhIqCmM8jTsAjIOVkdQKI0TASvYYvqHCYRGh9tlY4HVjTpCnAQ5BVMlRkkvRLc1uzEhPm8I5eiNDReU08qQ061U4BMZ6jVccSiqB9uM8G5JZ30WGwtJxMQLLdN6HLS2jtJOkJsI6R79Ly26gh8IGTNNLTaRUlKaha3RtSGZjutYbQWY6QCmHlIZGltApxckr9HXjQjJdMggdRFYRSMfayhJ9Uer9J/HxPxVlKIxnUWZWYl1I28QYoG1jQmboyn5k2ZG2beDHpEKQ2oiLWR85IVWl0VYgcfSEBZ08RkgvDbAW8kz5/ZhT2PCl8bDQpfA5LHdbjkssRlNx/t9FYH3LbMuuLPBMVs9MhaArIHNQ9VZnqYBIOepZSJEWPhrGgCgcN1w5xuPPnyXInR/TKUfazCEUrBnq4fRkC4cnpHTSnAOHziG6holTs4h6hAC2bx4lM5YTZ2f4pz90H2Mbhvj5n/sgp09OM6Mz6IvYvHWUfav6EULw6pt2smPjKj75wnGeOzdJECq2rxlhoO6RWwhBFAacn1rk+NkZwlBx054N7NjgtZ2vuOGl1OhX3rgdAawe7uGaHS9lgg32VPmP3/1aJqYbnBmf513/Yu/fCdj09FTo+X/AMBguA9k3ZDWLJZ5rPE0oIxpFkw3VTXzbxnfzayd/nkBYXrf2DUghmerO82fnH6M3rDMUrGL/7DjDlRqbeweIhGJb/xC1JOBcZ5Z2s8NSvsjD08sst8A6x0A95E9e891caDXY3DvIomuxdL5NZgwGw0Szw/PBNAbHb+1/mp5qwqpqFR06DBZCaLZ8t7RUZJjMEkqJrAm62keCdAONiB1Weksn8PoxSm9EfzX0u5dLTrHCeeeOAJyVJbvAk+FwyruBuIikdNLXxt/yOyAQjlD6zqge5mgXkGtJViicsrSKCG0Fq2WTMNC0XEDkBIE0tE2IAprGE0Cq0tPo2kVEZhQL9ICQBMKhgjbTphchJOeKQXqDjL6gCzi0lVgLs50qzTxGSkusDAJvEtzVEQhHKB2JzDFSkBvlk2msQjhDPUiJZMFg2KZjIqRwFE4x52pkNsACnSxmWSfMq4Qr+maY0X30yhQtvL1Ux4ZYBD0qR+DoCTULRURbR2QmpGliPwaW3kWmFmqarQp2JUfFOVzgY2y8cEv4PZcoST2eiI9JLLbqEIEpufmA9lZlGIEqU6j7TEDb+v2W12oACgKnyDLtx4/OIQtHEEpuuW4Lzx4bp8gMsVLs3ryKhcllljopp0/NkGlNqg3ZRMG61f0MDdRYuLBEpTfhxKkZ6rWYF09OU7QyNm4Zpt5b4TOfPkzfcA17yqcB9VUSIifItOHmqzfx+jt8VFNSDSiMZaHdpf/zRMwrtX5VPxvWDHDtznXUKzGVcv9lraOx3GGwv0YShbz2dr/fSgvNHz64n1t3bOSKMd+ZfeLhI6R5wfaNI6wa/vuXB30912Ug+zooYy2/8fzTXDk0yp1jm7/i4+tBL2OVjaypbODphSeoKp879to1b8c4Tcd0eGj2Ic61mjzXmODKvu0o28vZziw/sudurh58eSLsf7juDfzR6af44Pn9DLkautsB6egLE/7lkx9kutNkz8A63rxpD0/OncUWsCEcpCjm6bqc77j/T5hcavHDV9/C+9wBCmOI8phzaQOZCOpBSDPPwQiuGB7mWLoAHX9Hrin1PVISS0EkA9pkCCROSIzzLhAuKAHMlnf9gMsVIigzsqzw+5ugQEhQ5TgwkAYRWAZrXUJliUXGUNRBYFgqqminMFZ5lqMJSaWkJ0jZUZ+mJjOGjcIQsqSrRNLQNf4iLwVEwqBdQCAdlUBfil4By1TeS2pCQlFQuIiGrlNVOYnSgAfiS4CMB6hAitLx3gO6xRIpGI46tIuQZpagRMHqahONIjNAALUgxyIpCs94DLB+bKljJD79uWsCHDW0VNSDlDPdYTIb0KtSFqjRH6RoJ1goqjgnaBYJSjqsFUy268SBX2Z6Vn75s0feS8opi+t4hxaJ8MGYJQ3fBmAjVxJ2QOQS2ZHevSP3gLfiHpgWmqgu6WB9irSBnjji+k3reHrhDFKDQ5JWAAm//qHH6WYFTnpT3m5acOut2/jMg0ex2hDVInrimNZih/V9PYzUq9z75u0cOHWR+VaH4eFepo5MYY1FLWc05lvsvXYDn33kKDfcvp2Li01ePDyBKByrRnq56/O8Ca/csJoXLkxz265NX7RbEkLwutuv4M/vP8DpC3O867XXsf/oBR5/9gyr++q84/X72LDuJeeOzzx/kk8fOklWmEtA9tq79nDk5CSjQz1/vQvJ11E9eOAk28dGWDfS93/l9S4D2ddBNfOM00sLOOf+WkAmhODGobt4au7DJHKZ6wZuAmBTzav+//j8n5GZDv1RD28c28dr19yOFIrT7Sk+Pfniy4AsN4ZnZ8b5zLnTNDsBhXTs6B9h39A6hms1nlo8wenmHAdmz/P0xYtcO7yGyXYLKQRpYVjKUsY7DQIled+p/YybBlER0hfAhuF+ZpptuoXBAmtqdfp6KmQdQ1yRaO2wyvoBonMUEqjl2LYk0SFFYBC61JcJB1IQSEWhywujAAqfSoy0yMgSJgXVRPvvO0EQOCrSECmDEo6hqIMSlqLcWyWyIJQZldCz8QIMPVFOUA4cewLNdJF45yxhadgAKRyqjG6ZTytQipAjqXGl10a7NAJOXchyHhFJjY0EXR2QBJpGXqOw/v+l9EJoWY5RFZJ2GpDpgMFqFxvCcppgnGOomuGEpK1j+pNFcgIipymcYMlUWS4UxgUs5wnOCaphl2po6OiISHaRAiySSHqJwkzRg7HSp0jjMFYhhf9MmnlAmod08ohMO7IixCGQyvp9WWiwRiFSLytACcgdTooyRNV5IbTDazEkiMx3YZKSAFK6iwkDYaT8KNB54+B+FVNxAS+enkZrhwohjCXKOu/92OlSiSS1IEDnhpMXZjk7PkckJEoqrr9yE2maUwz2oNs5J6ebrB6q8yP/4JX8/h8+xkKR8wPvuZPTT57h0ceO8/M/+wFG+qtYJbjrXTfT6GQsTi6zsNRh79a1PPrsKdJMc/ctO/jjJw9y185NbBju/6Ln6F889ByVOGT7xlHOXpinpxoxMbOMCARDAzVGhl7uYm+MZcNwP5Vc8J/f+2m+7223sHa0j9XDvfzSHzzImtFe3vWa677kNeG///lDRGHAP3nzbV/x+vF3XYvNDvuPjXPs/Aw/8OZb/6+85mUg+zqo/qTCT994Nz3RX98INDMp89kigQxZzKeoBn1UVJ3cFjTzAovg3lU38eDME/zPE+/lvtV3ce+a3YwkLz+B/vj4Qc41Fzk5v0wSKjYPDzAo6zw7Pcn2gSGuG9zMUrfg7FKDigoYCutcLFqcWW5QlzGjcYV1cS9N02Wi2yAMJbnRLJou960Z44CeZNa1sdIxmTeZGm+ilSNMBCKxKO31RUYYqBbkBggVaY5nACh/JRSBRbrAU7Pdyj28w5nSdd0qgkpKoHyAoiyJEq50oxBYYqVJiTDai5ktilBqhio5/c5bSXTxJIclXSEMDcYKznWGkCVxpFkkCOFIpHekyFzkXedlgXIGKQRdG2Ccw1jJuUY/APWkS0fHZFpSGL9ECqQf21kncU5RCzMCB9OtOlkR4Jxgxvgdmii7t05RUItycitpFjGBtLRsTNsm5EZSDRyLmcSVnax1km4RYpQg0JaayslNQl/QIXc9hNaCEJeyyzQS6SS5UaQ6IjWKUFmcgyjQ5IVCSIuQEmsELvQp0baiIVPYuiDo4p1/JbgIlPZEIXJPiXeiBDgJxI6wpRAGOsYQZKACvy9rphntzNvj+/cChbXEQUBhLRZH1xpEItm8YYRTZ2YRocIAYRywacsIT3zqCFvHhpmZWEQ2Mz77J5/jhSdP0rCQNlMemEm5/s4d2MKSdzKyOKDZzlicb3HPfVdy7IUJZmeXefUrr+R//e+HmVxc5snpCYxyPD83TU8l5t+/9l7i4OWX0iPnpqkmEVeOraIqFJ/4zGF+8J2343BfNAXjTTdcwWv27uCRZ0/RWOigPo+a71bCaL9M1ZKYOPr68GAc6Kmyb+cY28dG/q+9pnDuK/2K/v5qeXmZvr4+lpaW6O29PCP+/Lp/6sMUNqMic8a7LzBWvYLtPbeyf/ER1lb2sLm2lUTGvP/Ch1nIlxmrrOHbNr7pC47z3Nwk7z95kBcXp7lldDM/tu9OPn7mONPdNkkgeeWGrbzjk39AO9XcNLqeDZVBjszOUJURq2t1poN5DjUu0OlAo5shhGCsp49Xrt1G2nE8fuY8KRmzedfH2QuBlQ4qBSo2BBKqskLH5uTa4QrPElGxxnRCnBXEfRlOgMkDbC5xRRl0Ja2/89cgjEJUCkgsYaCpVFOcDSgM1JOCSpgxmKQI4TAWDJ52HwpLonIqypNDptMqq+MWI5UWqQlRznCstbr0HPSRL5nx7u6BNDgnUcJ4cbIySGGZS3toFhFTjV5v/IugEhUEylJY6UMjAbAEK6JsBEpYjLF0dUKee4KHFA4hDVFokQJqYcqGviWqQUYkNH1BinGSjgnJXUBHRzSLmK7xJBFtJPU4YyDqsKbSJBSaMlObqbQXbRUGSUBB1yaXIlXaWUBbxxQ28L+vUtOXa4nViqIQWC0QQnk7MSegoxBWINsCWXgQs1HJvkw8E5VCeMJO4fdgMgDRBNX1F3ehIWgJlHaXRo/SOERVYQrrwdF6Z31EmToNJFIRZ76rr9UiAqVYF9XoFYoIwakXJ+mLA+qB5NXvuIknnz3DzPl5hPHOHpMXG+zYs447XnslTz11ijvu2s35mQYf+vB+BnqrfP8/uJvh4R5OzszzyNGz3LJrI22Rc2B8ir4k5uYN61nT28OGoX4Aulnh07QR/OVH97P3yvXs2PZy5vH/+Oij9FUTvucV1/+dXSe+keuruf5f7si+Qn3g6BGEELxl5+6/1XGcczTznN74y3ddxlr+4MhBblg9xp7hLx3GeW3/jRxZPki3OIoSgk21q3l64bMcWXoKJQQ3DN7Ahybup65q5CpnU3UdJ5aneXD6KN+2+WZqQcyLizP8xekXaOmM3UOjvGPHVZxvL5KrlD958RCNNGVNtY/+oEZHLNMjE56fmebHb76D3z70LCc781xkkkbeoRAOXIi1kovtJh8+8yL9UZW2yGjQQSZ+HCiRDFQCmmQI6RiKQ/pUlcmuIcvK9EUsKrCoeo7WkjDURIEmJSYt51EuW7FV5/NysHwydOEUKg+JI4N0kk4eURhJJC1xYLwYGkGqFTYQhCgMAVWVEivDYlElCPz9XTsP/H7JiZL2XfhwRwTGKiqqoBrkBNLfNS/rhNwoltOEbifxic7CokOD1t4uypVMSiUETnjgNc4TQIRSPgpHej6lExJdSMI4JwgcfUlGYSRSgXY+QBN8fpgqd1eRMrSKkHYWEihHqiPiSpOuCWi5GOs89d7h9VfOQVtX6OgQnz4taKQJlO8py0I67RipLDK0nipfeOE01kfusMLjMJ61aOXKXhOc8jtQF9hSNC0usU9t6dRhpSNcFghb3qOUidHC4dPDtUXHAmnL1ykRV0UC1bWY3DDU08NCltJs5dxz3TYuHJtlMu3QWwi6nRzbzth2+w5GNw3zk2/ay+T4ArV6zJOPnuDpR09w8PgkT75wgVVbh/mR6zfzxHsfpN5X4cbrtvBXjx2mXWiGV/XwnXfuY8OKwa8THJma4b2PP0tVBNy4ZT3vvvmal5E7gsGY3/zokwSVkJ/7nlcTh/6yWxjDixdn+KsDL+I6ho8//iI/+72vZvXQl79orwR5Xq6X6jKQfYXaP3UR+TUAsvcffp4jczN8656ruWLkSwPUVLvFheUl2nl+Ccjmsib/69gnuXZgE29e7+/eRpPVjCavITW3I5DEqspUepSu3sTaZBXNosW+/it5ZvF5LJbx9CKnmznNIuVUc4YXls6yvb6WoaTKGzfu5tD8RRIZ8N6TT9DMU6xztIuCDx09wsXpNqEMOd9YxinH99//l7QzTU8Scd3YGKtqixydn2dZAQ4CIenagqXWIqFTGOuzwZLIoUWBiCSbg2HOtueZbVoayQzVxBGbgCwX9AcJmcoRyl0y3HM4LJ7dIEK/R3G6FOj6B0CuIPH+fZ0sJK9khIm/IuZFTF6EjPQu4VDe/NZBLehgnCDVEusSJBYhJFOdOpHISG0FEFgnkcKiBPQmHebSBGsFcVAQCENhIHcJmQ1oFrF3ypAW8gDnlAcx6Rl+wgmcc1gCtBbU47z0sPdmuoHyxsf+NQ1xCEhBRXW8e78JEQU+JbqcQIXCAI5AWDIs2gasJBNFgXfxz6zXRXS0IpAQCIvCoPBdZagUmQ5Y6Ea+A9Veu5Zmfje2YpFYIgkYgTOB33HlPldMGG/46w2hBbZSIo8BgnLfWUiccARKYExpW6U84DnnAUqXkilV+I7MSk8eMcLrzpJIoTNDvT8hJ8e1DamyGOf3Zz09VTatH2J5fIk06/Bd33s7H37/53j84WPIMOAjf/kMp05Mc+Pt23nm0HmuumoMd2EWo73AOs8NGzcMUeuN+c533conH3uRs7OLLHS7dLIcgE5esNDs8KYrdzG5rskvffxRTk7O8+ortzNQr/LBJw+jBEwuNjk+t8Deres4fG6Kfdv8jvrH3nQX/+C3/4LfefBprh9czXIn49NPH+c7XvPyDu2FI+MsL6fcevM2PvfieR48cJK9O8a47/rLTvgrdRnIvkL92C1fG0PhXcMjTLdbrKl/eQbSup5e3rZjDxt7+y99LZEhA1GN/qh66WvWWZ5rHOOxuUMs54JbR/Zw2/BbWZs8z5rKHn77zPsZiQZ5+/o3sFy0qAYVZtJFLnYarEp6+PTUIoU1/PDVd/MzT36C+bRLbi0vzMwzsbzMuuoAN6xZR7NbUAtjppaXaeqcVUMJXZHTW024besq+uMKv3zNW/lfhx7n1154krxwBARELsAUGVIrf3ttJYWyqKoXYG7qHeD40gLOQlTeylcrGiEj7xihFUhNFDmUNFgUcWLJM98pRT0FOpXYblwCmfN+jXrlagu6UKDwkS/lWsJ3IXi6ulVkJkBS0CWmWVCyD6GRVilsD5HU3lVfO6xSpDqgGuZUlEYFsFBUEYUP+0wLRWZC33E5SZzkZFr5UZjzhsgOsNrhkAgpcE7RyjLiEB9a6QzVsKBbhLS6CimgkuT0Rik9kUFhaOkYbRWhNJ6VKRyZVfQGGQ1do1WE3v0EVxJJILchrUKQWQ+slSAnkAaJj5sRCHKrsPhuEyS5lgQKEH4nhvS2VNb490S+ssfxe07fEApEacDhYgcBl4x9hRPeSqx8ji5b0xWavistyFwIiQpIM4NV3uXFlccH//Gmhc+zW2x0SaREGcfCdItKPWZgVY3HXziNzgx7eweoRwFnzi8ytKYfJ5YxxhBGAUuNDp+6/3lqAzUmZ5a55e6d5IVhZLiHJAmZWWgxt9jCOcerb9vNXz5wiP5Kwq71/gbzmXPjaGv5rYee5tqxNfyje27m0LlJ+msVOlnO4XNT9NUSNq8e5Fd++K1MLTTZu/XlJr43b13P8al5/sXbXsFzJy9yzfa1X3BNeOSxE3S7ObfevI31o/301hK2rv3aOXz8v1CXd2R/jerqgvcff47Xb9rJaLX+lZ/wNaiHLpyhXeS8bsvOL/r99535JAcXj7O6UiOzCbcO7wLGuX7wdnqDAX779J/xwtI4I9EqvmPTPWyqr+ann/tNptMGP7T97cQi5kRjkWOLc0y2WxTWEBOwf+4is8tt1lX6+fXXvJkNvf388499lAfOngYFvUOKpkl509ZtBFHG+towp5qzvLg0ydm5gqWmRVqFNII+VaHRyjDSktQCnNCYOGMgrNOiS05OpPwYLQhzpIBCBxSFIlAapbyHR5ZLotB63VknRNgAGRYYrTCdCKvBiVJoqxwycJ4gIkFIh1IWKSxxXNBXSZECtIVMR2gj6I1TosBgrCQzyoONlRQ2KDsVg3W+S4qVJiidR7zMqSAOHZ0ioFPENPOEwggiZTFG0M1jBA6lTGkoLEoZgS3BzBIGlmpU0MpinIM40AhhSfMIbSSh1KztX6YSakJpaeUBXRP7UE2sJ4OU+7uO9mPSQiu6RYAQ0Bul9EcpqREspHWUhJ64SyQNUkJhJF0doq3EWEmnCDAmoDAKsWL1lEaAj2txDr+b7PiQUVZ0Y5ksTaF9Ph3SYQM/UnahHxsLLcoMM3xcSyYuJSLI3Hsu1jJJ1YW0ujlBIFFCUhSaldWos+VksTQRjpuWpBAI4xmTG7YNMbfcJZKCa3au4/TD51huptx+0zb6hmosd3Ou3jPG/PQSzx+bpJ0VrBrtIS0MA4M1jp2d4b/+67dTr8VYa1lsd0mikN/5yycotOHHvvsewK8Bnjh9gYdePM3J+XnWDPSgpOQd+67i6nWrefHCNGfGFzg3Mc973njTpXHjV1vjEwu02hm7dnxhIOfn1/MnLrJx7eDLwjm/kevyjuxLVG40Z9vz7Ohd9VU97+npcTKt+ejZY3zPFV+aAvu1rEcnztItii8JZGPVEaSQfNuGe5BScnhpPxe7jsNLB7ii93o21TZzrr1EU3f543OPsK2+ju09GwhExPnlJh86/QxVFRMpyc9cfw/9cYU3/OXvsdhNuXV4E1UV8lN/9gkyLLds38BVQ6s5sjjDCHVqfYKnFo/SmxT0xgUnmrO0dMqegbU8tjRFiEQISWEMDkeCwnUtuXS4bsR8kmMDS1QRJIEkd8WlkVKoDNoIjBPeAML4aHutA+oxyFpBT5ghil5mmhZX0disvNN3ABZZLlJcKTyuVnKUtEgJmZZEgS27OItzAc0sItI+DiUox1uZ9uPAQgeewh/nxMpT7A2SwkpCaRmKU5xUCKCRVXGly1ZhFMZAoIwHCCcJA8/wq4YZlbhgMEkBQScXVEJDJxvEohBYVKmBsw6UAuME7SIkUZqujkqWofIsTmsJpSvTtgWdPCg1bd5xuFWEGOvdUoYrbZS09IQpoXQsFxFOBhjnrbxaWYS2vuPSGpwJ0F2BWHFU6apLwmep/bgP7RC5JOj6MaHuARdavy8rHy6cz5NDOlxSdmLaZ5sJJ1BdgXQCoaBIHU2To6SgFkdYY1AqZPNIL+fnFsmykqIfCZQGqzybseYUuTY0Zzq88a4r+MPP7OdTjxwj6lqqSrEcWB564kXyZsaFiQW++1tv5cWpBWbOLLF0PuO6vZvIigKlBP/mP3+IV9y8kze9/lr+14ceJ44D7r1tB3vXr6Wb5/ynv3iI737FPm7ftpEczcwLbc43llhVr/O/HztItm8PN2xbz+Hjk8w0WnTS/G8MZGOfpzf7UjU5t8yDz5ykVon43rfc/Dd6nW/k+qYCsj8+8zkWsjavG7uKXX1f2R16pW5fuwmAG1aNffkHfg3rPVdeR6b1l/x+oxUhzQiynJnt7r2WalAnFDX+cuKjrE5G+TdXfg/Hmxf5+MSzHFg4y8baKD931Xv470c+Sdt0eOe2q7hn3U5yoxHAGzdcwZGpGd64fSf/4xOPcb6xjJGW7WuG+We33cLPPfBZppc67K4Ps23NOpTMuW5wC3Op43x7niur65hotlgV9rG9d5THxs/QbBek2niWWQhRKAkCMIRcUV/FslhgJk99B5RJH8KIwBiBNn60FijftRTOEihNagVGLKES74ckAzDad0hJJfd2Tlahc4GzgryQRJEPajQ2xrmcepQjQnwis/bkDOdACr9fAggDg7EBTvvRZCi9qa9zEEiHEpbMBkgEy7n3IvTTMoFbcYkX3rVjZYAmA009TulLCqTwTMQ19YyuDhiqtslsSKQMobQUYU4caJRwNLIqQsByFuOcJC0UoXTU44zCegKHkgZtVBkFA31JB4vEWkFmQlbXl4iVJZIFSkJu/NyvsAptAtq5BzGxQqRQgrStfApBp2QcCiD2QGSVH0ISOlTbd2o2BBtZ/xhlIZNeNB0YCEuAcxKK0mAR4XeGgXfNF3jphAwgCARNMuIgwGof4HnLtZu9G0eusQpM16JTsM5QjWJIc/qimKcePk6lA6lwJH0xP/jtd3L/w0cxAsL+hNNTC+zYtYaBp0/SnG9z9U3buO/O3Zw8O8PU1BIjfbWVCTXXbFnDHz//HPs/O8WPvvIOTpyeZWapxX//8KP88j98M7tXjfLY2fO8efdurl63ml/56OM8fuwc0/NNHjlxlp965z0M9dX+1teEg8cmGBmose6LJEmvGuxh7Ugfe3f/37tGfT3VNxWQ3T66jYenT7C5/tXNl6UQ3LnuKwuVv5a1rv7lW+kXFqbp6uLS36WQbK7tIDUZ/WEf2+tbCGXAnr4N7OnbwB+cuZ9r+n1G0t6hMQ42TjJSjZhoLvHvHv8sd4xtJLSKI6enWZzuoK1joJJQr8XURcQN68Z4/Z4dfOT4Me5bv4t3XHEln5w4wiOT4yRKsqFW52x3ElXJycMmy66HZZPjWNHACIZqCXdv3Mz+mYvs6R1l2i6xrC3GBhSpwjhHteK9/yzerE8pQxQagnK855zAOkGaK7I08oQQVvYwvntzttQdGYkKyuNrQxgYhiotCufHZ7kNCITXmuWFxFmF1QJV+gdaIxDSYK1Aa4EJFZ3CkQTax68IxVSnD+uXTGQ69Lsw4ZOpQ+l3Z9ZRdktehN0bFyRSI6WlP+xQWFi2CZXIYAs/woyUIQksK3Iia6HcaFGNCpRwtLKYpcwzIbVWCGG9Kz2OMDBkWpK7mFAW9MZdqkFRarIcHR1SmIBOEdLSEZn2uWOl0gshBHlbefdeK8q4FpBO4LT1NybWf64AulruyIxPiXYhUJRC6RVXj5KB6Iy4RBhxkYC83KmVGWcr40NrHdo5jNO4zHFqcp6BpEKcSebTDCMcfVHChi0jdDsZ66I68wttZi40SFN/E7h391o6F1s897mzvOVV11Cthvzxh55BF4Z2J2e5k9Ebx7h2wchAnU3rhzhzZhYr4fTFeX7tfQ/xXe++hU9MneT4zAJPnr/AP7r9RqYaTb71zmuxzvHpE6foLGU8snyGV+7cynfdtY+FZoff/dTTTC+2OHZxllWDf3N3jiOnpnj28HkmZpfprSf84Lu+cG8vpeBb7r3mb/wa3+j1TQVk23pH2db7pRmDX6+V6oLfPPQM169ex63rvNP2j++9E/t/rDfPtuYYqw7wtrHXv+zrC9kiTizz6Zn7Od5exwMXJ9HW8CdnnuXEVM5yNyc/p2nPaaabLXrCiHX9PexcNUItjri41GSu3eZXn/gchTVsHhjgpx/8FCQFR5qT9NfnMbIBxVp6w5C2Tvnc4hmMlfRVY1pFgRHevPjQhWnOLy4zNd+mnkS0IghrAZmVOGFJZIyRmSe9Wd8JaSsIywunsYqskD6lWAhP37aUNHJHXniTPuu85KESKjLrmYtKlga/2tPxAbpWXHqOc54aXnQVKjQkVT+mLLS3sWpniihQOCdxWDIdIpwgLYJLDEOlBKHSBNKSad8NFVZijSzBLGAuqLCmp02CLpmQJXhJTVf4SJRKkBMKy3IRYZyHF20ksdKXxNEr1UkDnAsu0dn7eryDR249RTu3AYXVnqmJpGsDmkUFbQVCQCUo6AlTEJLZdg3rJJ1OiG1FlAx9bzxoBU4KXOz1XOQO2Q5wQuBkaSUm/RhRNPGar7AExqjswDSQg+hI72QClzwVRRfCLgS5w5gSJwGEN0auBSGnLsyhnKAWRrR1wWI3pZGmhIGkb6CKcAFRN6G53CbswszkEksXl5mZb2KMIwoU3/XmG/jc8+f57f/9KIePjCMzzYkXL/Jnf/YU1924mWMnp4iSkI0bhkiSgEary5XrVlMIx1uuvII4DPjRt94FwMXlZS40lpCJ4o5N/mb30OlJ/uTxQzTaXXYMDbG6/29nMfXs4fPMLDTZuXGEK7Z9+T3ZN2t9UwHZN0JZ50h1gUTy0OkzLLVSVg/UGW8uIeESkCXBy+fthxbG+czki4wkPXzn1pfPyAeiftZVVpHbLvsXTnBF3zYemT7Lgbkppropo3IIVSi0zOnrqXDLto2cmJzn+YlpXnPlDr795mt54uR5pINqEPK7B5/lmckJOrZg39gqZrPzFFaz2J0m1zGrk37W9/YwPDDAqOohCRUfO32Cd++6ivcdOORHgEHAbNohSDTSacIwwFmJsQVR6EhkQjPPsNaP6lpakUTeOLYaClpaensrB1p7kbHDj/KyLPTGtk6S6owwthjtkMKS6oDCSKzzgZCFVuSd2BvaOoEt/CjMSuc7HOep/wiBtiGhy9BOkhUhaRahlCeJOKPIjSKONJXA+Z0cktR4wojfmUlPWNEhk+06q2vLiKKCsRBJS1eHnq8ifWcUSk1hqj7YskyNbmVVOrkHZq0lWntpgPD8FoKVcd8lQqEHvK6OWMwsibIU1u8gnXMoCZEyBMJhnaUnyphrVcmz0Gu+rIO6KXeYEpEJZEvhlCNoeeAv8RIr8Tq5FZYinpIvpcB1HCL3h5PS68WklUgLhXTeL1GWeWSlhkxH3qtRBjAyVGPf6Bqeef48eQgjQz0EaZeF5Q4WyK3lXKNBb5KwZfdqOscnESan0Iade9aR6YKnD58n7+Q8+9gJCglmMKYnjnA1wTVXbeTcxUU+9d+OcuuNW5GDMf29VZZDza/f/xR7dq9m00A/q3teTvZa29vL63ft5I+fPMixuTleyVb2bV3HBz73Aqv66hjn6K3+7cgX73zNPmYWmqxfPfC3Os7/y3UZyL7O6tf2P8WpxgI3Do6x2OnyubPj7Fu7lrtWb2b/+EU+dfwk9+34wpTobT0jPDV3hrFaPx+bOMTr1l1TUvRPc0XvRu5ZdQe5uZlfPX4/n5g4TCNzYAP2DY/xrVuvp19V+cjhF5mqtTjbWGSivcxItcZdOzczWKty/OIcdw1u4sdefyf/6jP3EyDIneZ8Y5l4qM5cK6SdBwwlEXeN7uJ7d97ELx14nIPNcYSW9AUJn71whk7SIa46lsUSyoGMClAaJa1noFUykJaKSEBpWoVAa2/qa0yIs5KesJeWaOG08BT7FSFZpui0Qt8JOM9gFKHnblcSUwKE328ZZym0xBQlPT4Pvc4rcLjC74C0DgjCEuCsQCDouhhVOLJcISRorVDKgrQoVZIdEFSVJsNrz0zpFi+VRQhLrkMKGyKA4Wrbu384S2YjlDAEwvqvWejoyLv2K0snlxgjyW2A1WWHI3w4qbMeMPJckipDEGpipZHKO5mEypLqiFz7pOtAeWJNIF25E/P+idqJSyDvIlP6SAl/lxBYn+qs1SXXjZVgAou3pLLSUwqFEVjhEw0Ekl4d02kX2Esm0CByTwZZGZ9GCHavG+a4mUVbzzqtRIooUSw2uzy4fIZr16/iyMIcp6fmUb0BtTUVajZgqdWlkWdY56iNjPJdb7iBj37sObpzXa64eoyphWXOzSxhgE4rY9W6Pu564z6SQHHTtZvZvHmE33zvgxw/Nc1ss82Lx8+xdlU/r7vvStYO9vKOa67+kufs1WtW8YlKwmDNR6JsXDXAr//jt/HBpw7z2n27LkW8fLEy1vLRx49w856NjA700O5kvPf9j7Nn51pecZsnesVRcBnEvkJdBrKvs9o2MIR1jtfu2s4njp3kB269gW0jQ3R0wcm5eTYM9JV7GHHpOX966iDtouAf7rqDXz3+GZp5l0QFPDl3jI31Ps60p3jr2O0Y51gquuzoXcv5Zour+jbww3vuZiD2+rTzCw0ePfckneWcVjtjMmjy2488TV1F5MqybriXJ8+eZ3x5Cekk/TJBKUHSXUVil7Gi4HVjV3Lt0DoenTjHyYUFFjsZVw+v5nxnmU6ekUtNZgvCOCcsWWyhMniKGyCsZ+SJ1HsRKkleBPSFkkDFzC05FlNQNibrWIj8hXGAGgt55omL2pMIwJGlAU5ZpDAEUtIupB9TIlDSEYS+o7Ja+kgYASLw+zmjvUWUMxKjFUI6tBZeiA0gHEFkqMYFsnSt1ybAGkmuFWHgsMLinMU6b/MkpbsEbs0soVME/rMsJ4XVqCBSXSKpfTyL9GbCgfBMRmMl1kpMORYU0iGVP57VAqd9rpqwChVrcC8BhRSWviilbWJPTClHsHkhiUvxdGEURR6Ak8iaAVFgs9AfpHTScKkHLROAEN4nhTLZmdKSypv/ClRDIrsC3SoQ4eddcDLP7szKzw/jySMXmsvkdXCFIK4q+vrrVAi4sDSP0XCmuYQFQqUQsSRKAm4Z28gnDxxnsDfBLRY8dvgsa3t60MpRHa1w5VVjvHXzKNOn57lwdIq+3go7dq3lwrFp1o0NstBos5kRjj83weY1A5yfbdDNCrSzfPKzhwmk4o3X7SaJ/BSkmxX82/ffz6uu3cHJqXnvspHDmtpLI8RqHPFtd+79iuf7iQuzzCy2+NgTL/Ke192I1pZON6fTzf/6F43LdRnIvt7q1Vu28+ot25lutTi6OEtfPWG47hlP3379NfzCUw+za2iEf3DV9Tjn+PVjD/MnJ58jJuF7dt3A69dew2zW5MDCGbpa4xzcMXIVAB+fPMS1A5vZWl/Nrr7V/Oaxx/nguefYUBnm9158ltdv2sVPv+JuDo/PcP9zx/1dtoUjszOc7TRo6YL+cwnLeUrR1YQqIM8tUb+i2TW4CAIRcNPoRn7ykU9wdGmGUdnDlQNrODOzxFTaprcW0Ig61OKcKLR08tB7D4rS1QEPQQExWEErBWsFCy1FrEAby1KaewJB6bMYVQW5MZ4RV4pzMQ6hLKpqSi0ZpQ2UJLMQh5oo8FsY4xTaCkypbxLC4nLv/uHHgQ5nSoNiV4KOAKTDGOuBA0cUOAKR0c4TltMEpQzCOWzJdIiDnJ5qRjtNyr2bQ+c1TCEJQm//pK2kGuS08OMo6XxQppKWVJdjLYf/nUlvSSXwllVIh5PGJzFbgdaOJLQYJzGlb6Nx0psoC4s1kOO1Zs54Ikm7m/h9X+iQwiCUI8/xFlQ5mMwhIv87dv5eofzj9WLI8gcEsJ6i7ztkH9vi2TVceh8uKnVhEorM0YhzrAQTOrTWdJaXcAZC6xvCZjcllgHKKUZUnb2r1jE100QZqKIYz1pIDRPzS6hKQLOdM73YYsOaQVpLXSpxyFXXrOfZx04gqhGLy1063Zwd21Zz9sICcaTYc9MmPv70Uc5OzpPEIaO9dd730af5tldfx2cOneTo+Axnphf46T/4BHs3r2PfjnX0JDFbRwd57swkO8dGLtlQOedoZzn15ItbSu3cMMr0YotrtnkhdF9vhR//J6/+W15FvvnqMpB9nZbDW+1Y+9JSvx7GjPX0srXf60osjgvtBa4aWsXNw9v47OQJHp48xXBcpx728CO7b2Qofmmmf3RpgqlOi6m+NseWp1nMO6Qq5Oq+hNlOh4MzU/zC7a/m1vUbeOLFcxhruO/qbfz5kcPoi4sYYznfXMI6R4igqiIyaxBOsqVviCLQdLXhhz7zESY6DXrikDCGt+3azR8+c5BuUJB3DAN9Vdb2RlhSOqGgkRnAEgiFEGCMZMEYCq0IpSR0FRYLh0kFthtCGcToQkAadEeS2qL811z+vhTImEvjRGeB0vZJCEdRhOAMobIsL0tsHiCMBGkReeTxKrCexCDwoEkpBnYSlEEIg1TiEnEkJiMzAdb6NGVj/PuxrjRLRrHcrRAoQ6As2oQYrfxuUAtE4EHRlmAshQf4ro3IugFFEXmGYup3UyqhZHj6MRw4wsj6MW2514sC7c2H8Vq0hW5MZipEQYGzjtyGRIEhkjkL7TpZHvhjOYctvSyFcdD0hsDCCi9yViBSL2AWVmCr7lI3tjLyFEJABDZ1PkCz/P05B0jIQ3AahPVaMpkLSB0m9uNSZSBoQlgRFMphgSI1BEpgM8NMe4n7J5q4Xslwf53l5S6VIGRspJeffs99vPYnfwuN4w2v2MPSUkq1FrN5yygbNw4zfnaO62/bzqqNQ2zdvoo4Drjrrl1s276KIA44OTPPmflFBgcrLOY5eWH4xQ88xPmZBrvXj6JxVOIQJxzfdudefv/BZ3nwhVMsLac8d3qSd951DQcvTHJ8cpYT03N87503sLE0FO50cz7z2FHuuW0X1UrEXddu/ZpfP77Z6rKzxzd4aWsYbze4/+JRbh3dwv3jR1lMM3Kr+fFrXsFHx1/gjeuvYiCu0tU5h5fO8ouHP8tYZZC+qIftPaOcWVxirNbPTavW84dPHWKoWqFXxLR1znBfjQNzkywXGe1WxkIrZbyxxEitxnfecC1/cOgghTLM5G2GkwotU5CKnMJadgwMEQnFegY5PD2NSgQXXIPCGt5777fwy2f/FOcizndmULJgMBak2tAuvKYpUJ7gsDwxjMNRYCAFlPD6MquwsaVwzts8lEQHZ0CE3t9RlA4hSll0yXR01ncnYahpL1YgV8hcITPAlo7tCmxi/ZhRvXSKlJprZGQvZaIlUUoUeacObXzXJ1c8Ih3egcQIwtAipCOOCpwVpHlI3g18pweIwCGVZnSgRay8fmwxjf0ILg/opAlGg81D74YRed8mV0hQmqRWEChPvRfCezH2Vboo4RCe2slyWiE1AYE0KCxdE6GkxVlotislC1T4HZwVyMTvLmmEuI5EqtJ5vtRbq9SDmwtA9xucdVD17104SdAICBa9S30kJLoozbMk5H2eci+Md/iQxv/CbAVkLAmbjroNcQLatkAZQZiBzByBkxSFYXikzne/8UZOzMzz/NGLXL15Df1EPHdqkgOTU6Dgzq0b2TA8wO71Izzz1GkSDTfctBkRBTzy8DFm5pr81M+8maEyI+zIixMcOn6R08tLfOLpo1y3fR2rBnp45swEt12zme+/7ybmmx3+8JH9/NPX3EYnz/n1Tz3J/HKHuaU2//ad9/Hc9DTL3RRrHYU2vOf266jF3kDy/oePMD3XpL+3whvv/dK7t2/2uuzs8U1UgVQ8PH2Kri7omoJ/cdUraBYZy3nKM/PnKazhFw5/hH3Da3jzupt4ZvFZVlcVG2qDLGU5nSJnKUu5uDTO/gtTrE96GaxWeee1V/KvPnw/9x8/ya+/+80M1qr818ce5eCFSV69fTsD1QoznQ6r6z0cXLqIdpaLnTb1ICSWARhL3VTYXO1nYmmZgZ4Kd+3YxG8ffgaD5Seeey+jvYoNlV6aWiKlYyAKaQhDIw2IQs+Uy3JFLgtcIQmcRJf7K2sFubFQgAg1sqoxWuLywHcE0o8WnVUYHeAC50FAS++diCNvBV4n5cD3wLIcszlPMXdAW0HdR5+sAJoIvHu+cL5jisJSJmCcz+ay4hKAeT9FCEIPOr5TEwghPcCGBlMek5JQMr9cIww0Yegv+kUBufF2VkEEVmmMBrTy+7rQEle8s381ysv8MujkAVpLVKi9OBvnOzQ8wBauHH+VuW1lG3UpbRv8mFUEYCrGd6m59C5b/oCYAIJynSNyiTS+y7I1B7nEGocTAqsEHeUIbGlhlZTeisJ3i6JsInECVUCcCcJAkSWOxCgoBIVx/ibFgXKOSCls4Th8Yoo9m1fzgrnIyeMzxE4y3+5QcYogUBw9P0PeKZi4sMCxF8YZNoo1q/t447tu5JFHjjG6th9rLZPTSxx5cYL7P/E8cSVkoWapFZIXnr3AC30BMlR8y/VX0lOJ6anE/My3eKuqvlrCu2+5locOn2K+v8PWNUMMD9T4y/2HecveKxjt9QDZznJOzSxw1807+Ff/5UMECBrzbd79thsJw6+PLLFv1LoMZH+D6hQFsVJfNCDv76O+dct1nGrOsbPUyPWEMT1hzKpKD0/OnuG55SOcbMJykXG2qbluYDubaut5eOZFrDAgHaO1Kv2yxg9efxPnFhr8u098FiEE/dUK//wvPsa2VUOkoaYrCp6YPs8v3PcafuPg53hi+jyFtFy3Zg0/ddPd/NTH7uef3Xorv/f8fgIE5xaXWEi7tKOUPzx6gEIWGJmTOwsuYFF32NI7wHQ6QW4L6qqO0TEORxgUJKGlHWmMC9CFZ8NRjrOcxEfDRJYw9qGWRY63SC+kd8kXDmsVpg0rnHRnnb9QpxKZS+8X6ADlsNbvn0wG/hILLlUv7X9KA1tChwgNQejFz6p0o8hyidESWwQe7FbssowEYbHKW04JaTHGi7BB4Ix3GSkKhbIKXSiCsOuF3SXLUEgvPygAhMTk7hJtsMgUkoBA+Q4qVJpQWZJQe0q8Ex6IhB89ZjrwOjK89k5b5aUOFv+7UQ4ZeI9KU3gHEA/gvpzx+zkCL9Tu643JtCFra6SUOGUR2ndiLhCYwGEDD2BSe+G6KgAHkRQU0n8fCbGRXitWielazZrBXpYmZv3Phn9MEkckQhElIQdOTtDOcqpxSLOdkdSrvPaaXew/NcHh8Rlm0oydG0ZZM9CHkZZ1qsLY9lGiJOQnfspn9Blj+a3ff5g8LahWInp7K7zitq38wdJTXDi/QF8Qs2PTKJ956jg3Xr2RTz55lPtu2snV5W7rY88e5ekTF7hiwyjGOpazjKl2i1999Cn+7es84P3RkwdppTmT0w1q/Qk0CyanGiwtdxge+ptrzR787BFOHJ/mu7/nDqLom/OS/s35rv8WlWnNv37g02zs7+eHb7rl7/S1cmP4neee4cY1Y1y32rtmf+z8Ubb0DLJr4CVhdygVu/q+0D8ykJLd/asYm11LTcU8M3+GjdV1PDw5zgN2HCcLNtaG6Y8rrI56SXODsZb+SsJwrcotmzfwO48+w/5z4zy7cJGhepXlNMMYwydPHWdtvcdHcDjBmbkGv/XkM1ycb/Lz9z/EtRtWc2B6ii0DA1hpmW63vbFvxS8/tI3I8z7qcZUzrZMYB1IWGJ3RW9G0C4GTlkgKNg9FnJl2mFwQGFl2I0DikNWcoFIQSEslcSw2S7DTeHf1Mlrmkt+QA9reeX5FcWsvUdC9BsqW3RFGgHMeNFfEWZpSgO2IEk0t8WbHxghaaYQ1ft9FuVfzAOZfw+kAAosNAq/hCpxPS0biCoHN/V25iS0y8J0bzruKKCUQ0hEqi5KaNFe4Cjjrw0VdrsgAGfpuzFovTeiPUw8awtLOQxqtmndKkYDzRsyZUxityvfr36aQviPVhR9j+mTTS1x7T+AoO1RbsSwWqXf1CEC1JFHhAy11bpG58xll4UtKCWf9DsyWOrJLXbEQJJWA3cMjjPbVOTu7wPm5BoHxomuEY3WQ4JwgqYZ86+uu48P7j3LNtrV85qkTnJ1eZGJuiVfftIt/dPXtPHjwJP/7/mc5cXaWkXqNt77yWp5+9gx/+OFn+MzTJ9gwNsR3vf1m/vyDz/DsgbN0s4LvfNuNxNWYU0cm+Z8/+Q7OTi1gnSPPDdvWD3NhpvHSvyXgvZ99hgsLDe67djsDPVWen57i4TNnaRY5N29Yf+l8vGf3Vh4/eZ4LEw3qPQnf8613EilFf99LqRZ/k1pcbLOw0EJrcxnILtdfr0Kl2DY4yKb+v3tdx2ynzXhzGSkmuG71Ojo658npc7y4OP0yIPtyNRTXuWPVTrb0jLCUpQxHPezp2cjPP3c/a6q9fPvWmwD41f1PMdFcZr7rx4U/8orbAM/+ujCzyNlsiYVOh3oUoeKQj586gQCuG1vHmYVF9g6v4fnzU1gsLrM8Nz5NKgrOthb9gj+HpBYQJorhag0ddFnMm5hmTjXsZVEvUmjPnNM4aolBG98CXVhKsSJEKIUpHLKQ3l9ROmRgPIFQOtLCUq8qWs0yoDP3IZxEtgQmfG6WlTjtcLEHElG8dJFcCWz0uLaS9+XKsWIJhuUFPOuGqMB3Zd3UU9S9W5Usd1cOshAKg0N5cO0xfu8UOAJK2j6lKa8u7ZtSQdCvody54SSdpRAZGpKKJlCaekWT6dCLvwsQ8efvAR3dPAEEU42aBxdhsVaSlyGhUWQorCIvVEnjN8jIU/SNEf7npXTiQCAawSWgv0TqCLgUuyIMYBwEAhdBEiq29PVz/MI8AdCNrAcyje+ALQRaYIwjVoLUOqzyXXarnTMdt2mbgomlJn1BjOpLaHcKsqUu7ba3p+pi+dSxU6xb1ceaVX1cWFwkFDBUS5hbaDNUqzA7ucxdV21FIjh3bp7xo9OkqWbdmj4OP3WG6fFFvvXN16OkRDuHCiQja/o5f36e518YZ8PGYSZnl/iWN+yjVvXMw3Y3J0DQTb1FXCUMWD/Sz/fccwNSCpbTlKfHL/KDt9/E5sGXrhNbR4d4+ORZ+tZVue+mnYz+LWyrXjh2kacOneEdr93HW992wxdIcr7Z6jKQfZUlheAf33DT1/SYj06dYlvvCKurL19oruvp5Yf23cxwxd+xVYOI123YxVit76s6/s0jWzHO8pNPf5iRSp1/dsUr2NO/hq29w/yX5x7g+pH1fN811zHbaRMpxS8+/CjbBgY5dGqSG7aM8d7vewff98EPMN5YoreWMJ21ybUGBd1GwebqALeu2sDp8UWKwOAahsAIrtg8wsVWk5lOm2FVJXEhLsxpm4zexJFjmOwuIVNFLazhRAek8JR1KxBOMRjXmSqZbkJayJQnZAC9lYC2kN7bEEGRBXRTDwDgOymE1yQJLREFCC2xofUJxfguTKxYXJWuEkIL3y2Ad2oPgAjInTfKsBLnHE5I2sul2DVY8Sn0Ly8c0PEMS9UNUbnASkdRsTgjcBayNC59DAUiMbjIgpaevVgEtIsQa8pOKFXYRNCxfu9T78lKN33Q0oOXFH7XpXNZJloLWnmVoLTosgbf/TkwufRWWsq73islcNbhcKgAjAaTCc/KMH7cihW+jeozBFaSpwIhS+cTWf7+cAgp6BrN8+1ZhgYSuoXGBg5pnZcLCn+83jiGApaWU5SAJJQUuUMbx9mlRUQmiMOAf/Wqu8i7hoFqwl88/BzPvzBOmlgqPTDVaHLTjg1MLC2zSI6wllRbHnvmJE8fOsPiQofrrt7Indds5r/96qdot1L27FjLgaPjpJ2Mfu1YbHSYW2hxy77N7D8+zs/+t4/wvW+7mV271vA/f/sB+odq3HL9FsbWDqCUJCs0eWFIMw9k77792kvn2u8/tZ+JxjI/+aq7kF8EWI7PzjFcq/GO67/yjfD7Pvo5hBB85+tu+ILvnTo/y0Kjw9xii96eyjc1iMFlIPt7r4WszcPTp9g/P84P77nrC77/fwZx3rxq41/72PPZMs8unOCe1XuRCAyW880Gv3/0GX7ymnv4wIX9nFuaY2N9gFgFDFdq/KNPfZBjk3OMUsd2DIsm5Z4929i7bi1v2r2Lj5w8ylzeYVP/AEYaZtttpjstzswusD7pZX1QZ3htjeenpzl6chbRJ5FK0nQ5Qgu6uo3FsWmgTmY7KBkQElCXCUEQYh1oLG3TJZCGscoIh4oFcAInBCKi1E47mlbjtACpaOegc+XtjVZ8CNueUSelQqYSpf1IKx/+vF+SAGHEJWmYE6X2yQhPxXf4bs2Ujyikjx8pHe09ZgowZbCnAKEtNvXJydL6nC2fnCyQXYXLlHeGl55g4UrHDKdKXVhgEAps6gEM8I9tK6h7v8hOOyRKtKfIr1gFO0G+FPg3EuLJLgY0srTb8iJwnB/PFrkHQFMIosQzKq0R6NTv9yhKVw/psAOF/xmxBMphrEM5BUXp6lHS/R2Q1y0i85EsDeFtxpSAKA8ohPWu+VVBqyjIuwapvD3Vt9+0l2fOTHB0foauNBAL8sDwuwcP8HOvuodr1q6mv5LwA8cuUBiHKAw7Vg/T0jlHJ2dZtbqXwmU4bZmYXGLtml62bBvhB771Nmanm1yxey2nz85yZm6RZlqQ1EJeefduVo32EgvBs4+eYDLtYAQ88tQJpqebxPWIvqEa27es4j/98ifoqcX84Pe9gh97zz1f9Jzz8oIvTgR3zvFd1+9ly6qvHMsCsNjsIgQ+EXr7Ovo+zyHkTfdeTaebX+oSv9nrMpD9PddAVGVV1Mvp+SXONBbZ/DUcWX588hmMs5xsXmRn7xj/cs89PDF1njPNBc61F+jojKuGRnnnlr38xZnnmOosc9Pa9QzKKret3sD7njnIQtGlleX8u3vu4Tf2f46Rep1qFPGD19/E3Zs28+LsDL1xQm8U86kXTvDYi2cZiBPanYx2N0Mkit7ehCCQVISikQoKDMcX5gniAqerdI1EFpLXbLyKk40G49kCbZchUKwPt6CCBb8XsyACkM6hKwYbWoRV2EJhrPV0e+Ev+LKAoOt3Ok4BBUjj71plU2DrfnQoSid2QbkyC7xeSRlQTmKs8VEksnx97cMjlQ6w2noQCil3cKWrhfN+jT4tWawYlpSxJ95n0Frpn2dBWOmBza7soJRPDegGPmdNgegKpFZYbWHQkXcVOg/8qE/iXf4z6VmMTiKVxgn/QzsESnkA8gJqQZ4FSGW9wz9l5I1w3t0EURoFO1whPMFFlkbBRmBayr+vkoEonCgZiO4S87CnFiEstPMcJwRxFPIdV1/Fe584AAIyvGxChYI4UKzu7WH72mH2n5+gr1bF0CXThshK5pbafObkKa5Zu5qPPHEEpR2hg52rhrGh4OPHjrNzeJgfe92dHL8wy4GD50mbBfX1dYyUvPeDT9FXTwiHEn78ra/l997/OIvzbTavH+J1r7qKowfP8+AH9tPJNFs3DTG6fpBjswvMNlrs2LaKQEk+9eiL7Ni6ilo1wlpHo9Xh/qeP84ZbrqBejXn/5w5xcanJP7/3tpd1R4Ux/NEzh7h9y0ZmFls8e2aCNeM9vP2mq77i+fvP3n0Xh89M8eThc5ydXOA9r7vx0veEEJdB7PPqMpD9PZcQgk2VEc7ZFuPNpa8pkL1h7Y0cbJxme49nVl09uI6rB9fxwORRDsxfYLad8b079wFwaHqSQxNT/MEb3k3vNf4EuXZsLc9enODT4yeZb7T55f1PeWJJ/xD71vhj7h7xu7rJRpPDEzPMNTscOjVJo5siA8FY3MPVG9byfddfz9n2PP/4oQ94QawQRCS0taIwjm5geGr2LKdbi2UMiSRSkgdnn2OkGlMTPTgtWEo6NKLUJw4LqMiQwaTCeGsZMoUrBNIIggzfxfnBF4Eur7MBhLmgyK1PMaa8CDsgdJf+WCtRWiC6wrtR+IdeslPCOT860grrSq1ZIXHK73+E8/sgrEBqMOEKoHqwksphQ/wZaPCdV2wQkfPGxWYFNAWuKF9XlLu6jgAlsV0FAxqxrNAIqBhEBE5bP5oVfuQn8cxNrCWIHEXqrbJsSbmX0ngH+xXnkgI/SsVdck9BCkTXU+/RsiT5lFKFiHKc6ndoQSQY7Im5ONPyNwehF5f/zpEDfifpBKGGSChEIhhUFYw1/PxffhYrHAO9FVaFNSbyJs7Bu/ZexTv2XsX7HniWTz97HCsEV21dzXI74+kTF5iRHRbTLs8dGWeplZJ4KiWr5g17N6xBG0scBfTWEtau6udN911Do9Ght5bwp3/0BN25JqNDPazaPMyeazZwZnyeeLLBuqFeKtWI0+Pz/PFHn+Hbv+Um7r1+B7/24cd5+ugFXnH1Fh57/gzTpsP+Cxfpq/hMu8+f8p1fXGKu1eGB46d4196reeHCNDdv3/DXPod3bhjl1MQct+zZ9Nd+zjdjXQayr4O6Z9NWbhvb8AWO9n/b6o/q3D36hYLL/QvnOTg7yZV96znZmGcwqrE5GqE2UuH0wgLXrvFREVuHBvnT48/xzPEJCm0xxoBz9AUJj505x5nZBZ44fp5/dOdN3LhljJGeKntuuIJPHDxG62xGJzB0c82GuJf//JmHeX5uClv1e6mqShA4kvLCn4QZi3aOOAiohgX1KAFb4cJyhzSTTHcz+sM6XZVhY1OOEAUdoxnNQqTxXoNYgUp992VLBwkhS6q+WXHm8IDmqfSuzMsqGR4WVvZrzjmklshCIFKHqeHBL7L+9QsBoSPsSNDCa9UqHjilFYiuPzRSIIzDRH735ii7NuNF1StdnQgcIjK4joLCswiF8WNJG5XaNgTowIONA+ZDT40X4CLr36dyiBVZki2dP4RAuwDd8iND50DVCmwhMTr0Y1RVyhLKXddKajep927EXKK7XAJ3F+C9o+QKMUaisUw2W34car1IvZMbP14tD2BzgXEWaSXTeQsXQK+KENrRaHZ4zdU7GNdtXpiY5iPPvsiJs7N02hlOCuq1mHWjfay1gtGRGu8/cQSpoZHl9PdUGav1cPLCPC63fOd91/P00QvMLDR5233X8CsfeYy1fT20uzkUjrW9dXbu3cgb33kTG7d75u8Lz48zP98iigOWrea6Kzew5AoOn5nk3ut3EIWKzGlmuh3efe8+/vWHPoUAfub1r0DKz0MxYOvwIK/avY2tw4PUooh/eI/vqh46cYbHz5zne27ex+reL036CJTkTbdf+eVP9Mt1Gci+XuprDWJfrn5gx510t+Q8ePEkf3TkIJ88cYp/f+e9TDdbbBl8aX6fFpobV63nT/a/gNOOzT2DrBvq4fD5GQajChfnmpycmudDzx7mtu0bOTo1x6996kmUE+waG2W626ISRTSyjMfOnaOwlrF6Hw26LHczCu9/xLreGi5q4sipRDnaKgw51nq/Q2c9yOS5IapItIJYhHRyTcVFtDKNSgOCJU/UEBZkB+IM7Cqv05IYdAYmAqRAtQSmhmfiVUrGYuZHnKIU3VIGdGI94UOlIAsvAkYJpPbiZ1bGe4Xf47nIecIIYMsLm9Re6OtUKQkod3FOgKs6CByyqv1uTitEIf2uzvmRX+mBfIkeT0F5HN81CgTGBIiahcSUXpT+c3RF4GkoorTbcsIzNaervmurWAgEMvI7NbfynkzZXZZ/V/jdoQnLMaPAg2ZsUbHxEoo0RjnB3es3cfpig4nFZeIgIEdjtcOWP7dwEIcBA5UEFzvm0g55bggQZB3NA4dO8c579/K5I+dJdYZuG2RuuWJ0mKl2i2dPTtC1mtpEzHtuuIYPHjhCf3/M3o1rePM1V/Dhx17gmePj/OL7H+TI2SmMdTx55ByNbkrctFy5bTV7d49x351XUK29fER35VVjdEzB1Mwyd9+yA6UkFkeoFB979AhPHDrDeLfJqUMv0DdS5frN61jodLn/xZO85ortAC/TmF699gvT6DtFQVpocm3+xufx5Xqpvj4UvZcL5xx/eOwARxam/85fqydMGK308tDkaS6kC6QypxqE9MUJ//nBR/idp57hX338U3zbH/0pT5y6QL+O6QsSfviWW3jl2i1UZUB/nFBLQmpJyKohz7YMjUC0vZFuo9FlJKnxr1//CibSJrU4YlvfIP/iujtYU+2j2ZJljpihyTS51QgXUlUxiYwJUAghqUbewd1pQbfQBDYkUgrlJL2dKvFSSHMhQ6aCShJ6a6YCwo4f7Y3lVYZ1jMn8e5faE/FAeBNb58HFrYwC3crnIS6Bh/UTOKwqG5ZUEbSl77psyVX0dpGovGQ9dqG0wPDHv+TZWJpmWIcrj+cBw7vqu8wTKMRK+LdwPvJkxfkCz/wTxnsTSuNBDMpRZ5mnRi4QqYJc+M5xRXuXKv+YvOwcnB9dUh7aaYFLRTkSleV4lEvhBHEQoIy49HhP3fe5bRgJ0luJferEGU4tNtDa0m0ViGVHmHrnD5HDhoE+ZCCYytvs2bqakWodnRvyXHsz49zw2JMnCdtQzwM2DvQRxyHzy22qYYR0/ubGWkeqDTdv2cBQT5XxqQbv+9QzXJht0O3knL+4wNY1Q4yN9PO2u65iZ7UPmVqWFrtMnZnnwQeOcPSF8S8gaDzz/HmOnJ5iem6ZX33fQzzy5EmSOOTC1CJ9ScKtuzfgQsHBMxe5d/d2kiDgjm0b+fePfJYf+sRH+J2Dz35B8O3n12uv2MHPvf4enjh3gT965uBXcfZeri9Wlzuyr5Oa7bY5vTzPfNrmisGXi5v/6NQzFNbwnu1fW9r/P9x9C//l4GfZNtSPEIL5bocPHz5KM80QwGC1wo7hISo7FDdsHuPOXZt57NQ5BqIKxjj6KwkqUNjCeoFvIbhz12Za3Ywziw1ELPjNR55m47pBjHA0ipT/8plH6B2MCEKBEJo9I5ZCLNHVMa8cuY0PXThEomrcPLiL6U4HGcZ8onHKEwocLOUpVjuwPhCrV4eIjqdzF0p7oW0GCEcgJVOzTT92q5QMQ4kPglSULiHOj/BWXNrLa3QgBDZzvovCg9gKqxEJ0ng6e9jh0s9G4PdgslWCniwbmwrYKsjOCkqyohAoxds+j8waAblAGuVdtgpP2fetnUB2/L5t5WcUTuDy8ueSApF7EBetAAKwoUPqAGEFJjFeN1eCb9lrYhON0NLT+1PpGz4ncS3jR56RQEjPmXdO0iXFaYHIBcTQF1dYzCzC+mNTiput8LvGwkGUe8mENr5FjCsKJSRbBoZ4bmqKB4+dYYAYrbxDflUpYqk4eXEehyNDc2xiBisEdS3ZTIWt64b44XfdwaFzkzxzaoLnJqc4OTlHWEh6CemvVBjqrSGMY01Pnd3Dw+RTXcaPzkIkGRyqEcUB0+OLLE4vk6YF116/+dK58a43XE8nzalXIs5emCdLC177ij18/9tu5Rc/8BC5NvzEvXeye2yU/krCd93sd82b+ge4sLzEyYV5lrOU/uRLZ5EBHJ+Zw3z92t1+w9RlIPs6qdFqnTdv3sPGnv4v+N651gLaGR4ZP8ujF89x78at/NLzj7BvdDXXjqzmlWt2f9Wv98Fzh3hucYLUGD55/gRv2nAVO4aHuXX9eh48cZpCWHrimNfu3kHP3pdGL7dt3cjvf24/c802+0ZXM6ua3LZ1IwdOT3BsZpYr1q3iLbfs4Zc+/iizRUqoA0RTctPGMZ49NUEuHZuTQTomZ81gzJX9OefTlLO54s/OHKWVR1hXcJApTk9mRCjqeUK70J40l3qrJ2ElaElXW8LUa5ichKDtxblBKD0IFWBU2dEIvCt+UWrEAJmVIFUGU16y/Cu8ma0nIpaGtiVzEeOPFy45wsyPGl0svMWT9HsjofAdkHCXnDCQpXA498dcSZ52ziGkZ0YKeMk9w4Kk3NXlK18XpV6s3L/56Swm9u9Pdr0jvYnBBb4LdOWYUSAuObHYwEBc8uIdyEJeci2xgUM45XdykXflAHDC+JFrAK7l3+tiJwUh/Xtxgv56RFPk3lXlZWNJybp6lenFNlEHZrtNRsYq7F49wvGZORay1AOgBKkEulkgUy9/ML3Q6Rb0BhGBVGzbsZonDp/lfR95mnp/woGzE8hIMNrXg2lqbGHp7U144/W7eeCJ40jgxaMTnL4wR7ebc+ve7bztzdezeqDOn/7Ow+RRwNTZOX73oWN81w/fRxAqhgZqDOHjk268dhPnJhf5L7/7ae69ZRebVg2Q5pq9m9bS7GT8h49+lrNzC/z6d7yV91yzj3ddcRXz3S77JyfZMTTM2JcwvG2lGcrC3rG1X/X5e7leXpeB7Ouorhle80W//hNX3wvAh08dZTHrcv+FY3R0wYOTJ+mK9t8IyLb3jvLA+VMkRcLG+jD10Dtz/8IbX83J2Xnev/85zk81+I0HnuJHX3cnAOOLS/QmMc7Bp46c5LNHTnPd8Bq2rR7iFz/8MLm23LRrPYs2Q/WGpEWHi2mLPX2rabYyVKIYS+psHxlkdrpFzfQw1TRc0XsfRh+n2W0gS6f2mgxYW4mpBRHn02W6xnj2X+wvsqK80AtLGTviV1leF+Y7o+HeOlOzyx6YFNgA6mFIt1VgwnLsJxUSbxwsJejQIXJX7q6AHMLUWyk54/0BhfUjNek8CEK5ujL+j8b/TNLgCSWpBzcl/XFW6ABSixKsJCrznUze70eO5TQTZ70zPHBpdIn0dk9+HOq/J7QHRWXcSz+PW3ma80D6eSNET8SQftQZWb/fMj7NWeoSzIyErveQNJHPOWNFoK0Ectm/P5CIxCPrQjPHhQZhA6KVRVoGtmWZbbZBQIHfyYVKMd1dRASSgb6EdiPDLGsqWhLJgKb0bsQ9SUKSRIwldcIwYOvaIU5PzDM92WBmOWCx2WFwoM5//ZbX8mt/9TjnZxuEKC5MLbLY7jI7uURrrkMlDhnbPMwP/sNX0lNPePrhYyRJyOBID2knZ2F2mb/4/Ue55sYt9A/Vee7p09z7pr189ztu4dOPHeXR/afo66nwjiuuAeBHf/sjRFHAtG0z02pfGk9WwpCKLnhs/BzPzUzxIzfd+kXPwcJYuoUmu7wn+1vXZSD7Bijlw6Z467YreMvW3eTW8MjUabb1DX5R94C/Tm3tGSbP/VL6h/fdyuoy3VYKwUC1wr9+9Sv4i2deYLBWJdea/Rcm+bNnn+f87CJnm0vYEFbVavzoW+7k4uIyuTXsXD/Mng2r+Tcf/DTL3S5rR3q4Y/Mmvm/vdXzkxFEePnOGqayFPTNFI+owObfEqiLiwMwUhXGsr69j81AvR5sXaXUEpxYWkFpy99hmTk4tMJ43vElwIQitoh6EdGROYAVWOdBl0xKAxkGqia2gmkI3tzASMBAndNtFKXT2ujQhPDhJJ3yUiytBqwyuNsrvz5TGdxe515/J0ojXi6C5RM8PCv98Srp90vLAkw3iAUX7TklqDx6y7YXTNgKVCXSPw5aZYPLz91HGv46TohyNOkQOBJ4l6aTzRhwBXkYgBFZZH5Ui/d5LGPmyWJqX/pH51xSyZGSWhBQEHplXiCW8RL6RCB+rE4BYwNtT9fhfmHMCk0FkJTiLVQKNo4g8oEvneG58ki4aIkkoJGESsM7VmDvVoK0dSRSwfdsqTGGZuDDPcVr01Ctcv2UtzGbMdXM2bx7l9vUb2D42zH/6rfvZtGmEcI1iaqFJc6HLQBSzjKYrBQN9VX72x99IT92Hll5/xw4GR3o4c3SSmfEFvvOH7+PP3/sIB586hXOQ55qJc/MMrurlyLGL9CYJI4N1fu/Dn+PGqzYQSoUzjv/4tlfTTDPC4CUH+6FKlevWrGPPyJe2khuoVfj3b7rvb3D2Xq7/sy4D2ddBeaLHQXYPjCACze6+tVSD6Is+VghBrALuXbfj0tfm0zb/9fAD7Bsc4x2b9176+q+f+CSJCnnPlld+wXGMcwxWq1y1fjUbeweYaC7zh4cPMhhUmF1qs3fdWt5+gxdt/u5Tz7LQ7nJqdoFmKwXtiJXfvTx9apzTMws8f2GKm7dv4Gc/8mkOnbqIUoLNccyhwxN8ywNHWD3Uw0bTy1TRZnxqkcF1VWqVmBDBfNalVRSk2vDTe+/lXGuB/+/ZB7BRgeuGHJ+ap+pCRAphRVE6SpEbA4XDph6QIl7SazkNS50U2bGec6F8Z1M4iwzLcWLim4vAz76oRCFL3RxhBcp6UoKTpWN7OVKUud/BSeMufc9JSvsrPLvRlCNGfWmZ5Sn8Jbv9/2fvvePsuMvr//f023fv9t5XvfdmW+69AMZ0cCihBRKSkIR80wikk0JCCiUQTDNgY3DvsmXL6m1VVtre++11+u+PuZJQZMDkRxICOq+XXtq9d2bu3d2ZOfd5Puc5R/ohab6LV7m5JdGIZICYF7Akzy8Dxzu2aINkCWCDZLolC0QBfJxvRbqStxYHnlzfUR2PgEQQikJJJFKqXH0lMjMBq6T5kkqvJwtgnvNV9I4r5WRPsi+Bo5eqXtFFdUScgotklFqIBRnL72WKOQ7YjoPmeI4skitgui6WBbIkIKgiju7NvRXyFrWBAJWyRsFXIJ/Vqa8p4xPvupZ//+YehguzYLlYOZenHz/OXLaALEtYQ7PUNpfztQMHCPpVKjWNylCQbFbnUM8oVt6ivixIR2MlGzd0UFt9oc0nCAKdSxs48tJZhs5MEQhoLF7ZzMmjI6zb2o3fr1J0HD7/5RcJhX2s39jG6aEZTMvm1MA0a9sa2LKijbqyMHVll0rob+ladMljP4y++QUeP9vHW1avojYc+rHbXsaPx2Ui+zlA2tA5k5ijNzlNW0WAE8kJ7u3c8Zr3VyWJMsXHieQI+w4MsaqiiXLVj+M45x3KZ/IZjixMcHPzEs8VQFH59JYbz7e5Fgo5RtIJ9ibHcU2Xt69fc/74O7vaeb5viA9csRHHgXWt9bzji9+ho7ycyrIAj/b0olsWe/vHaKqOnM+XEvAW+LNZndG0yda1rZCEsUSS9ILOR6/fxj/37iFjWJ5pq+Pybyf3U++PkDMsT12oOcQLeRxDw5eV6Q5WUhb1cWZ8jqSjo9gCik/CNG3P3qoURyYXIS+6BMIyPldEd02cgsV8IosrCgQVmbRtYUsOriCgiBIp01NOuKWu27lEY/Bu5ufmoNxSBSe4YJeGhwXbE7tIBW/Q2VYEBMfFUgBFwBFALFDyeCzBG7/y5pwNsBSvdalLLoIqnK8UKVWE59fJSopLVyl9K3qk4pyrouACicneDyAU8ZSKvtImuldNCoJXESKBq+LN3NkgFUUcxQXNPa+wFGwBxxSQbAEp5x1XdcAtCueW75AUT72ql9SVsilgKxByZcyYhRTy3i8KLG6qoVLz0TM+i5EqEp/Lgs/GFV1aWiu5ZfUi/uObr3DyzBR+QcbWdVJGkXxWZ92GdnoHZ8i5FlPzaZS8QzFb4EzvDOtWNPGZD97Os6+c5fjxUUbPzBLx+bjjpktnKv/0o19neiLOmo3tPPGdA2y6eikjAzPoeZ3VG9txRQHJddm0to2Vy5pwHIfKsiD//tBehidirG5/9eWA14JTc3NkdIPRZPI1E9l9fYfImDofXr79v/y6v4i4TGT/yzg4M4EsivzK0vVENT9PTvews27JT3WMXdMDVKpBikaCwXiMjKmzpKyWaxuXMVGYwnZsHhzqoWhbLCmvoSNSieO6/L/Hn6GhLMJHdmxhdU095bKfMSPFHUuW0hCO4DguoijQUVlBx9YKHMdrib3YO0xU8jOVyPDkqT5ygkW0IkhlMMD7r9zEvzh7GY0nyWOxqKocfVYnU9TJZAyCAR+kBEzR4funzhBSNGbtLGVygIJtEs8VeNuitTw/NUAhY2FLLnnVQE4KWKZD7/i8N4MkSIQFmcaacvzITCwkiWeKXmWCVw2AS06y8QU13LgBJqi2gKu4VEgqgk9kIVDEFVz8tojgnhso9tam0D0esHWPUFwFXJ3zw8auALLlIuQ9cnAkz5HEMhwkvZSEHBI8gimRlGNc2F+AkhjDq/ikEtGd+xAg5b2WJKW1OIfz2ozSnBvnxwUoHcMVwD43sC17JaBgeW1AURKxXBtXAdH1pPCaK2HnXXBdzIiLECj97kRvf8d1kVzR+33YoMW936vgeGQqCecI3UUDdAckQyBiSxiaR7CKKFHIWQhqaaygRJjIUKn6sRIGRtpCk2XUiERLZx2J+Sy7X+gla5jUV5cx0juNWbQQfRKUqUzE06SyBWxTJxINoIoiecMgPpcmt5DndM8Eb751PW++dT3vec+XiMcyBAK+i66biaE5Rk5NIAc0yqJBNl+zlNauWl739u187ysv0d8zgapKnDo6SmYixf4ltaTSeX7n12+mvqqMU0Mz7Draz8snh3nP7VsuuS7jmTzR0I829H3d8mVc3dFBud/3qs+/GuYKWdJm8TVv/8uCy0T2v4xHhs8gCwJ/tMUzIX1bx6tnnC0Us8iiRLl6qZz3THKWhWKOj664lrIlAYqOzenkNKdS/Ti49GcnuLtjFYcXJmgPewPPAlAfCVNX+iT42JmzJBIFnILLorJK/uT7z1IVDvIbN3if/MbjKX7n249x7dJu3rljLQ+80kO8UCDq92PNxwj5VX7t6i30TM+yc2Un4PLgidOImsTfffRO/vJbz6MXTWayWRAgLKq8cfkyHh7vpSoQZD6bJ+q3sTWdKxraWBSuYi6TA1zKFR+iX0A/X5GApsrUREIMzcRYVFtFQ3mYeKboBTniiStsx0sZjmXzCCLIrkBIVshIJmnbIOz6SDg6DpC1TWRJ8NR254I2DTxiOedoURKXgBeYKVjn/gLe3VyywBA9MpRLogyvevMSpb12o1f5nGvzuYBa9A4hAoFyBV0wkXMl5YrhfXgQbG+D82KREpEJUmk9zi1VizY4gieNP2cg6dpgqS6iaWMHnFJemegdq5RUgCugxF0cDRRJRJdcsDyRvmB5P4+cE0prcd7PJkkg5by1RZ8oUjRtFMtb63NtT00qByVEv4Rje8nUlBSXju4wMZpggTQIAvXhECFRYWo8jVFuIFogyxI71y6iubmCzx6bANtFCMoYgkvOsQiU+3BFge7GKqbn0zRGK/n1t+1k755+urpq+d7DRwgGVMI+Bb8/SDZdYO+LZ7j+9jXYlsNw7xQbd3Sz/qqlpA2bYJl3bVVUh2lqr2Z6aBbLtLANi/qWCuoao5SVtlm5uJ6cZfDswX6aasovuSYPnB3jxZNDLGup5daNP1qM9dOQGMBvr975U23/y4LLRPa/jDs7lqL8hKTpjJnn1/Z/jbAcYmNVB+/s2oRPutCj+tiKnViOg7/kDhIGrqrrJms2cTI1zOJwC4IgcEvLUkZTSU5PzdEzPsPbNq7GEV32T0xwdHIav+L5Fh4ZnaK5ooxYLk9ONwhqKn/75G6mklnGkylUWaarspJMQedjt1zJnzz0LMcHJvnwf3yfvGJTEQnwOzdeyV/cdSNHJqeYmk8zn8kxkUgRDmlE64NsaW/mq2ePkjcMDBwimobl6CQyJu977gH2zU0gShBSVLqDVQzpcWRLxBE9KbrlOqWbqcTATAwp7RBSRLKOd6N2Je8mH1EUklkLSRKIlPmJ6QVMRcCwLVTLQU0JmIJ3AzdkB2RQY6CUDIexQZQ4F8QMuIh5Fy/g2hPRY7sEZAHdcL31J1nAFlzkAghmKU7GV5otK4lLED1RCpYLqoApexVf7NzgmlAaYvaVnErOKSWNUgV0zqcRSq1FoaTgdL0ZN90TZLjnXEoEsFVPvei6JXGL4ak5XM4pMUXENBia66kjS2Ga59b/BNtrR0ZCGoorYhVt9LSXDebXNIqmp77TbM99y3FdRAmWNFdxJD6J7IDfr+BoAnnbJF80EAwZvytyy9ZlfPfxI1iGjZ4xkFSJCVMnpdosqvazYlUzR06PkytNlCdyBaoEja/8w7uQZYndB/uJZfIMz8ZRQyozcyn6BmYojwS4994rqaoJ8/wTPczOpPjKZ5+h9+gYO25YzjVv3EI6W+Chr+7i6UeP8YeffgOqT+HmezZhGhb/8dePsmpRHXe8bj3VDVFc1+Vr33yFhvpybti8GNdxWb/0Uu/EtroKjgxOsqz50sDby/jZ4zKR/S9jfW3jT9wmpmco0xQyepGkXmA4E2Np+QXbG0WUUETpkv1Cip8tVcsueuzfjh4gls3TQJicYfK9gVPkTIMbOxbRWRll14khEtk8ruBSXxbme4dP8Y5ta3nrljWIgsiHr/ZaKNeu6SKRLRDSVFbV1fD8sX5sySUY1MgVDZ49O8hnbr+ZVfV1ZPJFcF1c3aXgs1gRqeGmRYtIDhY4MDHBNS2d9E/FODFXRJBgNjCJqdj4FBGfLDBZTBGzCt66kQM+n4QsySiC511Y0L1cLk2WkB1PSi4InqDAliEoyTRWldEXi2MpJZWiCDnHABtUUaQyEGDayHnxJI6A5ILjeIIHxRK8NTPJa6HJlnfjNwIlknAFirKAKAkeMQngSgKmciHs0BE8EhMtvDUpEcyQN+xsuOBmXVy5NFhdqqSEUuXjiqVWp+FVRm6pHWmXVIWOXNrHxQt0cUDOSUhJj2wd0cEOevNZTknmL+oCkuEJUMRSorUrlCo+01sjFBzvZ7dL83GO5lWRmaKOY0PAFEqVpktaNxAtryy0wVNSAhGfhl20UUpil1pfkECZj2tWdtE/PEcup1Me8PPIE8dBt4mqGqIF87k8ml/l1MgMriSQDoJWH8QtGGiaSkXIz9bFLUzMpnj8xZNsX9fJD547QTKVIyqq9PSM80e/fwfjYzEqK8NUVoaIVob4o49/m8JcGlkWqa4r4+mnepgYnCMxlSC6uJ4v/NnDOK5LbXsNd7xlC5uvW8GpA0NYlsOffuir2K6LUebHcVyuvXoZflGmueHSWJaashAfuOXi7srZ6XkODk7wlm2rmU1neaznLG/etIqwT2MsnuTRnjO8cf1KqsPBn3hPuIyLcZnI/g+gLVTL3214O7IgM5FL0hmp+sk7/QhsaWymTPOxs8VzMbja7CBtFLmivRWAa5Z18MiRM9yxfikv9g1z/fIu0sUiG9qb2NTRzGwqy3gsSV43aayMMJ/JsfvMCA0VEUyfi+E4+ASJvpE5/uKxFygP+OjvmyU2nyMoSuTynuLr3xJ7uWJJO1bAwecqbKhppGd2Fr8koygiumWRxiAjGKiu7rnWixKS6M0YacjkdE9GbwcELL+LEoCArZHN6tT6g8QTebL5IjIig7NxFJ/oDU47Lq7rkrc9vX4ImUxa9wapXQHTBz6zVAnpJR83DXQBEAUsn4tYKM2QuSKiz8VyQHBdRFnwkqEd97zU3lUFnCDnnUHckijjXKCn5xDvEY7rjXbhC0hYtotolubVRHA1MP2UZr8gEJQJ2QpzRgFL8QhNNEHOeutXguLNsDmyiCs6OD7PsUTMlmbPTM9KS4DzTiOi5RGbo3lVqum4CLp3PPFcseh67VDH8NbWBFdAtj0vRhsv3iWgqWBD0JKYHUnimg6KKrOzq42x6SRPPHKMfLJIVXMZ/ek5cnqRxmiExqoIR3q9talFTdW8941bSeUK7DrchylDy7JaqqtD2GmLQF2Qp/d68125VJHRkXkKeQPKwvzK23fw0u6z7H1lgKamKEuXNtJ7epJ0Uaems5r3/MqVdCxtQNQUpvpnqSgPsmZNC5oqMzayQCqRI76QYdWWLlZt6WJiyDv2QrrAkqZK1q9qYSGe5bk9Z4kEfdx7z6svCfwwXuwdJpUvMJPM8NLACJbjcHx8mh3dbRwdnyJvmJyZnb9MZP8FXCayn0P8R/9+0obOR5dfef6xoOz10v//kBjAnd0X9+u3NDVf9H19NHLeoftNm1Yxl8nyN7tepquqkvdsWc9Xdx+maJr0DsyiyRK+Sh++gMKnbrqB3cMjjMSTZLJF0tkiLvDEqbNYec/d3bBdysp9ZAsGC5k8jxzrJaipzI2mmXXy+B0JEYFtnS3snx0jKeaxXAdRdqmp8BPGx2Q8R94yMCyLoKywYlED+8fGMBBIYaJKImYQ8kXLEzc4NiaOF+diOUT8Gumi7g0Xl+JVsq6BpIhIrkcyigi2XgqAKQ1em5pQSqkGWxU8OyXXIy/PjBF8kjdYrQs2tlJSBcreGpVguxes3wXvtUVdwBJdbA3skNfWdARPwWjqjjdDVhpiFoQLs2aUZPE+RSGeKeCqFzyCRQPULKgS5Ev5Z6INsi5Cwav6zs+HlUyFRYdSIGSpWrXB50gUVAfbcZFLJr/nZu9cARRX8IQgsoDluNRVhFEdiYWFDLblcM/WlbxweIDpqSQUHVTRRbEc9u0ZIJbKY6Z0sBwG8zpCWEFVZebzecYH0liyi+vaTKcyVFdHeL5nECmkYEckYnaRhakC/pzAwOgCkYBGXVWEqmiQptpy+vtmMU2bufk0Q/1zWI7Dxk2dHD40xP79g9TVlrN1xyI6lnpuGjt2LmHg5ATxWIbX/coOJMnrbBQLBslEnvvv20PnsgbWr2vj7g9cjazKnDg+TktbFaGQj5aGKCsWe12V6Xia+549zIZFTVy7pvuSay8oyJyZTvMPD+6mIRrh+q2LWd7gtR7vWLWUqVSGxvJXdwG5jB+Py0T2c4iUXiRlFv5bjn3/8EFaQ5VsqGzlm8P7WF/ZxoryH93eLPf7aC4vY2ltNQBbuloYmIuxr3+McsVPQ9BP7+w83z/Zy8evv5K5bJavHjzKtkVl7B0YozIcJC3rdNdX4lMU3rx1FQ/s6sF0bd554wa+8NR+RjIJVtTVcGxhFiNlMdwf5571q9nZ3sY3Bo5RE/TTuxCj2Relzp9mIZMjk9Rpqyhnc10Tr4yOXci1dMEvSoQqNGbiBkKhpItQQVQFfLJCVWWA6XiGvGnhSC5axls0khQBNwhaXsCwzhnhghsszZ254ChCScHoIhTw1IKUTC9ynipEKLUv3RKZIYJc8FqL59ansLxtnKDXmkMQStEyLo5VUi2em10DZBmsks2Wi/d4PF0479ghKF71KJmeUtAsOZJYoZK8P+fZXVn+C+/jnEOI4IJQ8mzEBr8qYTg2siEgygK26yKGgULp/dsQDGiYqo1rupi6yfRChg0N9VRXaSQWMjzxjUMYto1cMHFVCb8q4TguCwtZVFfAtL12qeSWiFaVaKwqY2BygWhAIZXXcX0C//j4y5zqm6FgGLiKQH00wq/dso2DR0c4PjCBoip011RydibG6uXNBFSVxR01FNNFWpoquf6qpcyNLfCmN23h6p1LSSbyrFnfhm07zE7EaWitoqImzGDfDP/4pz/gnndfSWNrFT6/yp7vH+G5F0+z60A/sYU0k/1z+P0qb3/vVeevj7tuXHP+a0EQmI6lealniGtWd12iVgz6VKrLgvT0TpKOF/jY3VddtO9lEvuv4zKR/Rzi11dc9ZM3+img2yaPTh5hW9UiTiammCtmaAtWMJVPYjmDP5bIvrb3KBOzCapkP05rM1cubWd1Wz0506DS7+f+F48j+UUsx2Euk+VzL+9jJpMllskxk82yprGefFbn+PA0deEQY7NJFhI5XMfhs9/azVQiTVNDlL99060Mzsb4y0d20VBWxvHENA+Pn8ZVLXb6OthW1c7y6hqKdSb//Mp+EGEkkeTomUlvnUry1OaS6Q0zmz6HaCRAMpHzSCgg4ggwY2Vp9ZezfUkrR8YmsEURPZ7H1R0kVcR1JFyhRGISRMIqMb+JU5rjcgHXBwFXwrBKJU3Ju9GRSq4fpbWt8076Qmnu65xDRmkdzHVKvo+S4OV22W6p8hHPG2tIEjgW5x3qzwk3BMGbY3Zlr9ALShKW4L22ZXl2Xq7syeMlScAqut76oiNQKKVROxoX/CNV738nCK5PwM6DZguoyCQd7wf3+WRM08ZnCmSTRVzJM7wXXJDyDidPT1JhS9Q2lGMKRay8jqI7HmlbIMsiQVXF55OxXRdTt6iqjpBTbAzDJuuYdHZXk8sbLFnbiKIpnOyfwrYdVFmiYNjE0zm++thBhobmwHbZuKSZUwPTjM+niIT9fOwD1xEJaPzLZ5/B71fIjccoFgxe2TtAtCrC+3/jBgAe+/oe5qeS7LhlNXfcs5mmpkqO7R9AViTP+1IQuP31Gzg5NMNkLM2mTR3860v93HD7BcOBH4brupw8NUljWYREvsBn/+MF1i5r4qrNFyqzu7au4K6tcGpwmnTusoT+Z4nLRPZLgOPJUfK2zgtzp/ng4iuJqH7Cio+3tm+hzn/pp8DpbIagohLRPLPgsfkklf4gs6kMtWVhnu8ZwDRsXhofYTaTxUzZ1EUjfPeVHqoCAd6wajlPnu5jQk7zG9du51t7j3NidIbJdIagquBXZQ6dHMMRwZJdijM27/nsd4ilcvjKNcbFNJN6mrxsUq8G6VtY4JXUJLq1jGTKa1muqa/n9MgsgiQglG7mtusiBgSkokAiVWBJTRVatYAgCYh+kdGFFIIAhaLBrqODmD5Y0lSNIgYZHJzDdlz8skheBAQbVxawNQEKJeEFnA8+khQJSvEljgp+S8CUvBBJJQ+SCpYFluatbYnOOWm8J6ZwS/J4WfcUfq4PXEFEdCAwUzrWD8VkOT/8BxLB1ErKTMebV7P8Apog4zguluVgCS6u4DmW2LZ7Xt5fowWYNwroroNYBFETwHaxSwPeUhYswfGEISbk8gaaC6Gghs+vIKkCuXwR3bKRXAE5JCFbLpIo4AgWhmnTXh8lM5WmULARBAgFVVxVRlMlrIKFP+ijZnkDBi5Z00QRHCqqQkzF0mQKBqorEp/JsmxJA3/5zlv4wg9eob2pEt2wGU+m2Lm8g9nZFCFJZmYiCXhyf1kUaG2qBCCgSriGzbXv2EDPvgFOPd6Dqsh85re/iV60uf3tW8mmC9Q2e9uv29bF4jXN/P2XnqO9pYq33bUJVZP5o9+/E9eF4cE56poqGBmaY+OWzkuumVgix9nBGcpVhdffuJLvPHqYbF5/1etxeed/fYj6Ml4dl4nsFwTzxTR9mWm2Vy++5Ln1FR3otsW6inaC8oW7Y2uo8pJtbcfh7/bvwXVcQrbKNd2d3L1+JYOzMeqjET73zCt8f/8pFjdWkywW6W6pwrRtGqMRCobJOzavIxoOcN+BI4iiyNO9/aSyBWRZpL0qysZFLZT5/GSzRWL5PEXVZTaXJZn2RBkF0yWkaFzf3s1AJkbAr6AoAo4m8u0TJ2gJlTGTydA3P0/IUlnRXEt7TSU9U9NMJNMUHBsUF1UQOTE1i2KKRP0+EgtZr4UlCJB3cG1PFj+cSqCpMpG6IIlMgaxhIQVEXNkTfaQMA9nEk8fDeUl+oWCe/525Auimg2i7CKaDYHrCB1cAp6REdCnJ70sDzy4lJSJeq07WPfd80fB0IpIl4PqgKhBgupj3BCJGqYA6V0mVRt4s1cVxDBxBwSjaXs6nLFyYYyv9cxSYzuXOk7GpApKLVvRao+eGwMs0hWxax5I853vBgLyp49gO5aoPzRIxSi75miBQlGzaGiIkTscxcDh1ZopUuoCmSGiajGh7bc1CzsRxHJKJHAW/QGtHFVNDM0QrgnzmQ7fzkX94CH9AwUlbzKWy+JA5dGyEzEyOE7ECV27upm9glvm5LH/+3lv4/T99EEEUiZYHWFRfxU1bLqz/3vb6DSRiWWobo6zZvoje4+N0Lq7jxYePomgyLgJp0+W+z+/iQx+/GVmW0DSFZCrP4PD8+eMIguew0tldi+u6tLS++hp1VUWIdSta6GytZnw8ToWqsWV120+6bC/jZ4TLRPYLgofGD1F0TDpCtdT7yy96ThJErqi54BbyzeF9RBQftzWtuWi7fzm8n5lchrW19eDC2GySoKpQFvCxrr0R13XZ1T9EUbBZ19HAYCxBoWhS7vexo7OVl0+P8PjRs4iKQFUoxHQ6y9cPHENPm9QEgjRHy4iG/Gxe1sJ0PsNTJ/rYPziOGxQJl2nYukO6aJCVTQ7OTlCuBSgT/QzFYyzkCqSKRU4ZOhWqn6TpIgQEbM2LbCk4FqGgRnuknJ7BKRzdQXEFfKpM0bBwzBKbmC6onthCKEI2ZJHLWRD0IdgidtHBEhxPfi5cIB/gfMClaLkohmeCK0ierF003fO2VQ6eH6KjeBWZI4DgCp5QRMC76lwQVM77QOIKSAbnSQ8RbBuSpXgTXO992KVpaMGFMr/KguxNU1suFAzLM5FWS4pKm/N2WmJpbcsqyeodxVv7A2htiZKZL5LMe2tudsJCMF0UGcr8fvIFg6LjkCmY+GQF0/AmwRVbRC+5ocTRCVb5KCSK5AyToCYjiQ5LVzQyPZ7wRCKqhG7bxEwDczZB3NHRNIV1nY0c75uitaqcaCSAXW6R79VZ3VzHc7tOMzwwR3nQz0JXllu2LaWlLko2VaCpsoxEtsDi5ipWrWphy9r28+dy99IL0SjBiI+tt61hw8Z2bnnTZlLxHOWVIaZmUpw+Mc4/f+ZJbrh1NTOJDHPjSbLBPI7jks0VeWFvHzfuXI6mynQtujTpeXYmSWVVGFmW2Lq+A4BjPWNksjq5vE5lxWUPxf8JXCayXxDc0riGnsQYdb6yS577at9Bavwhbm72PrGeTU/j2AL7pqd49+LNNAXL+a3HHmdOz7GuqYFtDS18+dARtrW2sL65Ecd1yekG6YJOXjdprS7nuhWL6HtxH6IisL6tkYpQAL+m8GLvILpl87ptK8hki0wn0kSiGtcv6WRZQy1TsRS/+e+P0t5YQW00TENbGS0V5UwWMiRyBZAMJvUMkigwk89RxOTsfIwyxUukztsmy1tq2Blq49nRQSy/ja6YpNGxXJuT/VNgumiaQkG1cVImki141lQFB00UaaoMk04XcHCRdE/FJ/ihpjrM1Gwax/IMgWXXm0kGLsjlbc9KSig6qJaLI3v5YH6/gqnbILvnZ7ysENiagPPDSsFzs18ldT7nKqGSwEMUwQ5x3rnDxvHiYBxPeu/KeKTnQkIyPINk0Vvz0kQBNSQhWxKFjIFrl6yvXOiqLKdg2sSzBSzD9irSUlq2YIKgCjh5T35vFSxkBxwTsmYRVZWQHE9skiwUUWUBSwVVhIAkk7ENDFzkiIidBDIGqYwOrsuJo6NsvXopb3jbNj75ie8wN5NGVCUkUcW1XYq6ya59fTyxp5fNy1vImnmWdtWxkMhhGCajw/PIJWeVsKLwphu8AMvHv3uAW3Yu5ca71qPrJrF4jseeOE5l2Mee3X0sXtpAtDLExs2dPPrIMUzTQvMrLF3SQHmlRy4337WOzkV1vPxCL9HKECfOTFLIFFnSWcvcXJpXjgximDaHe0bZtuHSduLkRJyHvnOA2roy3vjWC/L7G65ZznU7lyGeU6n+EMYXkjx6+AyLW6qZzWR588ZVP9LC6jJeOy4T2S8ImgIVNAUuHsw8kRykWotyMjFNTeECkX1ixW18+uhTnE5N89REL+3UcHhkiqpQkPeu2oBu2560XpY5PjbN3+/aQzTk5xPXX8WVi9tZ3lBL0TYZT6RAgGcGB6kNh/jYLdvRH7E4MjTFkaEpRlNJfJJEd3UlPZOzOMADL/ZQ0A2OjUxR3VFGWjA5mZxjR3MrNy3u5m+O7mZ7Ywv1WjlPDfRTtCw0SSIgKYwbeUxsZo0MAUcmqKjE9QJ98ThZ28AwbSSfQNRV0aIquUIey+ei5iQk3cInK0iyyOhCEl/IC/C0SoPAiVyRgmZRGQ0yl8giKl5FJDgQCaps6Gxmz6lhbNNBkbxQTNH01qiQQHNFmprKmB1Jki+a2H4BSy4NQ2ueqpAinlKwRIpWyc0DG5RSqOU5ib9TktiXnK68Aelz4Z4iWAEHW/LKN0ECV3EQkHFtgYxjIOKC7Mn3xbxbaqFKmIqL43j7yXlvrW4wlkAUoKzcTyZRwJI8kYjqkzBMB1WTQBURXBvLcHAckYAqY+dtgq4EAQ09ZxKVguR9JpomofoV9JxBU1MFcwtZvvfAASRBQDJspKKJP6xRLmp0LW9gejrJ8HSMXQcHaIpGsHFpqC3D71e5983b+NLXXsLRLfpPTfPIU8e5/cbV9J+eQvN5ty9NU3ji6R4ef+gItZUhurvrGRqc4+TDR3j26RN86Ndv4JU9/eza18fTe87w2x+4EJ2yaFkDrgDPP3OSSHmA9cubWbm8ibq6Mm66egUHj42waU3bJddbLJZF1y2qqsOsXHOps8erkRjA0eEpdNPiyRN9BHwKWd0g7NNeddvLeO24TGS/oCjaOt8afYGIEuCP1r4OVfL+1K7roooy7128lYfHTvKO7o3Mp/Nc19lJY0WEioBncnp79xIeOdbLmZk55nI52quiRIN+PnHLTv55z34OHZni3m3rGJiPsWd4DE2WmUqm+b27ruY7rxxnbXsjM7ksyXyBQsHkwX0nqPIH+M3XX8VffO95TuXmWUhkUf0S0ZCPt61ZzbMTAyytqOEDK7ZQ7vNzW9diPvb8YzRLEYKyysRsAheHwVyMhJMlZhQJOX7iZp7aYAhDsdnR3cxkPkPv6DxKDjRLIhr20d1cQcLWkQURvy6iaBIn5+bIO0Uv00uCYtEiVsgSCiqYkktBt3CBvG4yl8nSWFVGOpYnlzOQJBFHtT1CkiCd1SlaNnU1ITLFDMWA6/kp4hVXsiSgIWDkHSwNj7Rkj0R9XPBQdCnFuzjegLNQmu+SSz6LTslyygYQBETRxbEFEFzyeO9Lc8VSC9ObIxOckixfcM6Hj5acnnDc0uu6kHN0LMETgDgCHoHJLpYkcM2KLrYsaeKT330ebIegqqL5Ja7ZuIjaihDf/M4BprJpRNshlzNojYYpk1VGe2cwcZiP13DD7as5/vIA/X3TFOMF2le0EHIkmsrDjI0uUKFpdLZUc8c1K3n0xVMcPzLKvn2DhPwqwUiIdCxLMe2p/d7/8VvI5XXu/85+5uZSIIl0ddUQjQT46Mdv5sD+QfYfGkLxK1RXR7jzrvU88kwPumHxn3GqZ5x4LEvP5BzNrZXcepunTAz4Va7a+upRLA8+cIBMpshv/tbNP7Gimo1lSGULLGqt4fYNS5lKpAn7NRay+csk9jPCZSL7BYVP0ijYLj5JIKxeMCb91zMvM5ZN8GcbbmNVpIV/7znMB9Zs4k9vve6i/V84PcihkQkEWWBjSxN/dMs15y/YzS1NfP3QMbqqK7lhaTfv37GJuUyO+rIwY4kkoaifRQ1VdDqVnB6aobYtzOhkgu2L26iLhpiXi+RMg/qKMpY3VrN/ZoI/3fMC17V3srSihjLNx98efomZTAZbdDiTmicoqfiDMoZlEZBlptI5HMdBL7o0BCO0VJbx3jUbODwzwUu9oxABe8El79iEXIee9DxZy8AVBVzZZW2onmzawnEgXKZg5G1E08VRXOKqCarnsehYYEouJ2dm6QpHsVxvsNqx8fqArotkgyQIWI7DSCxFMewRgySL5905XMez6BIt0AzwVyoUNMfLdUs6FAQTTZEpC/iYS2cRLK+1hwKSLGCUGEd0wFIcT8rvgqiKhGwZ2+fJ1x3XxRQdXEVEtj2XDSMCoZBESFRxDYOqSJBYLk/etT17KxkUG4q2gyhdEKKkHRNXAkPXSRcLfGN/D47sYhYd5goFkODh42e4ZlkHAb9KKluafZSgkNNZiOWwCzqCIGCbNnqiiKlb1FZHqO+u4+rrl/Mfjx1kfDZJS305TdXlLO6q4/TpKZILOUYWMsQSWTJZmauXNpMRRbJzGe/8DqgcOjZKMpFj74FBgiEfX/znexEEgXS6wK6nT9LYGGXdxg6eeeE01+9cxu3XXxrjksvr3HrXOlLJPC8cHqQq+tpcNdavbyeZzL+mtuADzxwjm9f5+L3XIooCjRVlfOuJw/hUmY5rL7W3uoyfHpeJ7BcYv9p500XmwgB1/giW4yAi0J9YYDyT4lvHjzOTyfHbV+xAFkUePHCSmUSGt2xazYauJjoqK5jNZvlGz3Gu6+zk5VPDTM4k+cHx09ywrJvl9bW80j/KyckZIhE/puOwobmBQz1jTMfSvNA7xHQ8QzyZY/vSVtY01qOqErbgsnt0lIlcmjWhOiYSKf7gip2cnJ/lO70nCPtU3rV0A+lCEQGBnKDjFB1uaOnmqbF+ZpMFFNdlOpehIuTj93Y/TTyfx3RtJEFADQnIpsj1a7t56HgvtuBiiQ6O7TKYSdBQFaEvGUfwSzSUhTAMi/lMHhy7ZP4LdikKxTFgMpaku6KKeStD0TXRTQsBqAj6SBSKOJbrVTJZsB0RWRNwbNeLgvFDwe85fSg6iFmwdBvL9shEUMGviczYOUSV8876juLtg3XOecOzjhIkz05LdAQKgoVPkREMy6sCiyKu6IlBFFkkViyQEm0yFPE5AmlDx1eukk8XABdRgPKKIKl4/ry4RbogykR0YGA8RlG2sR3Hy00rreHliwZPHT5LXTTMutpmnJSFoFue8a8i4RgBIj6FruVN9JyexLBsyitDROpDvHRokMpwgKxusGxpI2FNo294DgybiKbwtvddyxNPHOfQ3gFefPokHZ01rNvWTTqZJ1IeoKkpymNPHWflskbefM9mADLZIsGARlt7Nd2L6zneN0kqXeDKbYvQVO92Z9sOh3pGWb6onr//j13UV0d47z3bueeWda/52krmi1TWXjq6ousme/YOsH1rF5rmXXvb13awkMhe1G4cn0mgqcol+1/Gfw2XiewXEM9N9PPi9CBv7V5He+jiqPXXt60+//V7V26gYJl841gPB8YnODo5xcbmJkRJYDAW54oV7XRUep8YZ7JZEsUCQ/E4NaEQTZEI8VyBr+8/xm9cu52n+vqxLZdaxWH3yCgrG2rZurKND3/+IWK5PLptodsWgiDwu9dfyWNnzrJvdJxAXmVWz5LMF1HKJCYzaX7vhaeJ5Qo4osuVza0sq65irpAhXtDZWt9MT3yaqXwKsRgjIKks5HNkdYMKnw8ki7RbwClK2E0OVWqQPidBpNLHdDHL1uZWmiNlrK6r5Q8fexZbcNEdk8mMRdG0vLwvC2QHpICIYzmIDshZz2Jr1E3i8yvoCQtBFrhh62IOD01i6jqi7UW5YIEjO/grVaSCTc60S/5RpZkyHUzLRjW9gWKnpGJUFc9fsWCYnuCjJJvXBQf3XCCmK3iM5oCiSliWg0+SqfT5CSgyc6k8gs9bsyvgUJCt88cXXXA1gYRiYIkuBL3Hw1UatdEwobDG9HwGU7foqKuiWDSZzKZwHSjaFn5FoTYSwZFc5mMZhLyLagmkHZNsPM4wCZaWVTLTP4+sO6xrq2VmNE4iWeDwoSFaumoQyiNYosiuXWexRJctGzu556Z14LgMjczTVVnGC0+eRPUp1L89zPbN3ag2HEmdZj6R45lHj/PkI0cpjwZ5073bCQV9tLdVk0kW+dhvfoP65go2re/gze/YjigKtHXVEEtkz5MYwN4jQ4xNJZiaTdHZUkVjbflPdX05jsvRnjHCYR9rVl6weBsamuOZZ09RURnipT39XHeNZ9i9ZvGlhgO/+c5ruKzx+NnhMpH9AsIvK2iSjE/68X9eQRAIKCq3LVnMZCrNM4ODhHwaq1rqOLMwTzTo5+DoBM/2DfLGtSv4f1deha8UFfPWHWt4xxe+zXQqQ2JLnspQgOpwiJenRnFxefJkH35J5gO3buWrLx7mzi3L6VmY4dceepiAqvHm1Sv5o+uu5vDUFMYRi1u7F7GmtoG28iiyKeJYXsXx0ecfZTybZEtzI62RKB1la3h49DQBVeH7d7+dd33rQZSiTHtDBYGAxJOxSY8URBG/qBFL55nL5Qj7NHTT5uDcBFXhAN85dRJL8Dwgs7aFaHk5W9GgD8kHCjLLW2s4MzHPzILXzjonM8wYeqkdJ1AVDhA0JWTdwfJ5Du+ODJYPYnkdHE92LxXACYAiiOAH03Ypk3w0VEU4Pj+HLAlkDRNT9+SLjgiuzxNluCJ4iWYCruggmAJKQETywbbaVkbiSarKZI4m53E1CTSBiOkjni14Dv6iV3Xd1L6I584MevNhImiqSDFokNQs8mkTx3BR/TKaLbFzRQcv9wyDAW5QIE6REC7bWls4Oj5NW2MFE4MJDNchHNIomBaOaTOQjOOzHTRVprWzlva2al7cfRbbJzFfLOBTfOQWcsiSSEd7JZIqsWdvP2f6Z5AEgdaKCIWiiStAIKhy+MgISkDlDe+9kucePUZNTYhkpsj0ZIIHv7GP6s4q5ubTHN0zQDqRw3RdxqcSfPW7e/n8376d6qow1VXhi877dStamJ5Ls3PrIhzXRVUuTY74cRBFgdffvo5w6OIsseeePUUmlaepuYLtW7v47KceJlLu51c+cv0lx5ClHx/d9FoxkU5zX89Rdra1s63pUtHJLwsuE9kvILbVtbGtru01bZs3TR4b7OP2ZYt5vL+Pb544zqeuuY5P3LgTgN2DIxiWjWHZ50kspxt8+P6Hmcvl6KqtxHXhDWuX880jJ7wIlAIcGBonpKo0V5cTrPZz37FjVJcHmc/k8Ss6iWIBRZLAgt9cv52/f3EPf5fYww2Lu1lcWUVdKERNOMQjw2cwRJt00WBeznNkbpJjC5NkzCKqKJIxdFJmEROLuxev4uChIWYLWap8GkHHh6iZLK2o5uTcHJbskBZ0eqZnGJ9NQdEb1FVDIo7rYuCSMopYpQgSJSMS0BSaK8qYyaWQBC83zMrbni+j7fLNx48gO6BpMrbq4sguht8bhL4IJZWgrIEUkCgYFjGjSHHB9syLRReraHkWVXJp7ssRaKwMM5FMYwoCjuJp9gN+iVCZQoU/QGXIT18qRs9UHDniYjgCluWyYOfZ0NJA33yMhFnEEeCpyUHCfgXXBt1vowdM7FJ1J7g2lut4adeWyJHhScYWkgQFhe7mGo6NT5MpFNl1Zggbl4KrUFsTpsznY/2SZvJ5g8ePnKGgm4hRCTXjktVN7rl7E7phcWJohnHJwq8XyWYyYLi0L67jV9+6g69+ey/5lM6GdW2cOThMdXmQG+9aRzDo4+7Xb2BsaJ4TR0fRMzpzxRiNKxpIpgq86/1XIykSlu3gXG+z58Uz3HLnOn7nkw8QLg9w+MTYq8rm+6YXWL2mmWhZgE9/6WkiAY3qUJBEOs+H3n7lJdu/Gjpaqy957PrrVxBP5Fi3ro2FuTQDZ6YoKwu8puP9V1GwTPKWQbL4y2159bP5WPCfMDIywnve8x7a29vx+/10dnbyx3/8xxiG8d/xcpfxY+C6Lk+MnWG+kD3/WFrX+XLPYZLFAgenJ7Ecm5MLc9zQ2cVVbd5Q6WNHzvCDg6e4srONd29aRyLjDYmClyBctC2qKkJ89q23s7S+ht1DI5yamUUxBbIFnaJpMZlKkynqmK5NdSjEJ6+/ji/cfSdff8vdXNvVyUgiwfeOneTxk2fIGjppXef07Cw6Ns1V5dzQ0YUPCcO0GJxJMRHL8MDIMQ7FRunLTnH7rn9CrDNoaApSFwmztb6Neq2ccjFIMe8ykEgQy+fYOz5BmeYjoCiIlshMNotmi4gCVAYD3NK1pJQM7XokJoKkeN6M9VURFE1CCyv4/ArlIT9Rnx+KDpbl4Aqe60dNdRifX8FWBCRZoLuuAr8oUeZTEOTSmpYFJGzsKQPbcHElSEsmpuIpEs+lRsuWZxgsFWFhPs/ayjqiQQ1JFAiERJZ3V0CkwJA9w8MTp5gykhRwMOZ9qKaCa3l2XQYWFdUagaAENjimy8rmesrDAQQNLNvLh6lQgtzQ3E2lG0BzJAzb4ejwFKIsooYVBmYWKA/4KFf92I6LpkiUa35WdTbSXV9FIW0Q0TR2LGkjomlEgz4WN1ZR3xSlp2eMiYk4d9+9icqqEDYujiZhRySOnBjjN/72e4xm0vztX7yJXCJPyT+ZYEDFsmwaG6LsevgohWSeK65eSlN7FScPjBCfTHDy0DAtLZV0tFdz4vAI85MJXjw4wIfefw2vu2Utm35oQPqH8cTBMzyy7zQAq7obWL24EcuysUrBoK8G23EwzEsVjz+MtvZq1q1rA6A8GuSK61fwll/d+dou1P8iuisq+fTO67ml69XVlb8s+G+pyM6cOYPjOHz+85+nq6uLkydP8r73vY9cLsdnPvOZ/46XvIwfgbPJec4m5hlKx/nwim0A7B4fxnYcnh0ZZEt9My8NjfAb27YRUtXz+/WMTmPZDpu7W/jE/U8S8mkIgsC2rlZUWea+d95N1jDRZO8U2tragm7aOIZDQyRC/3yMD16xmZpIiOpQkLlslrpwiN2jIxybmeL96zfxH0eOUhBt7ly9jN+4dgd/9/Ienh0cZG4iz7vWreFvTr9ANpCDooODQ0IvMJ+TWRytYDA/Rd4pEA643FqzlV9buQ1BEGj2VSKaKj3pGUzbocwXJF3Q8UsKb1u+mrlUjoMjE9h+h9baMA0VEYquheS4uK5AWFQwXIe3rV3FWCbFQjbPoJukoSlEIC16AaaOTDaWQ1AEaqJhUuk8E8k0akBBVATksExWMAkFVDK67nnyKiJhUSGnF3FdUNyS/F4peSa6nhejq4ODAJaLI4NRtOkZnsUMuSg+kepggNFYhpig47gulg2iIyIanh+V7brn564XigVqywOsrmhgfi7HSCKJKIuEoypBO8pIKoUuWtiCze6+UdyiS1dFlKmJOKokkUQHU0B1RMoUmdVNtZyenCegKYiCSDKbp3fYy5CrCgVZ3lrLW7avZmw+RZflY+9zvQTDPgqKyA9ePMnOtR2c6p+mrMvP2dl5pjMFsiMJNEHm9z/1IG7OorImTGXQx/337WF0dIH1G9vJpIuIgoAZ9tO1vJGAT+al58/Qs2+Q29/kiTyiFUHypsXDz/bgiOAILkfHplizqJFr1198k79mdRchv3eu33HVCu/B9V0/9jr6wvf3MhvL8EfvufFHzoj9MGRF4p57d7yGK/Qyfhb4byGym266iZtuuun89x0dHZw9e5Z//dd//bFEpus6un7BaDOdTv93vL1fKiwqr6YvOc/m2gv98xvbu9k7Nc6Whma+cugw5aqPkXiCFXW1ntDAcfnIzdtwXBe/orCxvYmcZbK25YLtjyrLVJRI7IWTg+w/O8avXLOBumiYh46f4vXrlrO5/cJCeEir4NkzA3xx30HKyvykV+jsaG1lIBYj6FfxKTI3L+7mxdFh8kWD0XSS2VwGVRboqKnCzkhYos2V9W2MmDpOQiJRhOvqlvDxVVfhui7f7DuK7MjYRdeLCJFcuqrLER2ROl+EomHxxs5ljMdT9ObnSCeKzBk58kUDv6qytKaK47FZio7No4N9ILrMJnMItvfzNtWXsf/kKK7hQETEp0h0LKvlTP8MVk4na5iIIdFrDxZd7KJDUFGRRYt3XbEOu+hw3/OHcQSXuuoIkYiPU7NznhADARsXRROxHZfKUAA74JLKFBFsTyXocxRyeZN5MweihOCzkRGp8AVIFQxkJAxsVFtCEGEsmWI+l+ODN23ls2N7yBUMFkcrODMzR6UWoFzyMy9ksV1Pzq9IEkXbwnCgaJk4Goi4aJpMGQp61kITRcbTKURNJCDLuLiEfBrpbJF0Tieb0zl9dorTx+NgudTVl/Guj1zHVx87wJ5jQ4gWtFWVU18dIZkromkqZs5gwSjSWh5GA5557Di+oEoo7ONzf/UYybkMO957FYNnpmloqWTizBQh0WXnTRfk9JuvXMzBU+OUSzZnp2KIEgxOLBAKaJcQ2eYl3rWw65DnA3rXzotl+d979Ai11RG2b+7CMC2GJ2K01VcQ0JT/swKN+44fozYY5MauS3PSfhHwP7ZGlkqlqKj48TMTf/EXf8EnP/nJ/6F39MsBURC4o335RY8pksSVzW0AvHXNao5NTbO81lM33vv575IrGnz/N995fkH612+5+JPlZDLN7oFhruhqo6m8zFujcF1ShQLfP3Was7MLNJZH2NbRyv6+MaojQTrqKokG/CyurGJNSwPVwSBXtLWye2SYP9+1m/esW0ddWZgdDa2kHJ3Njc2cSc6TNQ0+tuIKPr13F6ooEvSJDCZmsVyT1dEWBFfGcRzOpub59tkeiqZNPFXEwUGQBKbzaSRdoVoJMd4X4y/3j9NVU0FvxiO7ZVUVHFqYQhcshqeTlJf7mSvkqFYC9CRnvGgWSWA8kyIf01ECMoZsYVsOgZCP/eMToLhYONgiWAUHy3HICyaOCyFBpilaxiP7e3EEz+1fMQTiVhEFz1AXIChI6KJDmV8jXShStC0Kpo2huGxubWAqm6W9Msrx1Ayu64lK2gIVTOeyJApFbNkzQV5bV8/x2Wksy2sDG5bNbz/3BDYOpmTzg1O9tLZXkDdMblmxiBcmh8kXDLSIzFw6w3AqiaSCbEJtKMy0mUH3OZiiQM4yqImGEEyR4ViSE7Nz3LlyCa2Rcrobq0jkiigIjPTN4+uoRMmYrFrbSjTo4/c/cBMjkzGeev4UswtpaqNB1l29jlihQC6nU0zriKZLYi6HpEqsWNPC6tUtPP7N/YRCPlaubSUSVDn2ygCSItLWWc32G1ecPyePHB6hpT6Ko1vojS6djZV88G1X4itJ4HXTwnVdfD8keT8xMMWpM9PMTCb5wNu8tTHLdjg7MEMsnmX75i4efPoYmVyR7es6uXnrxaG0/1fguC49MzPU/AIT2X/LGtl/xsDAAP/0T//E+9///h+73Sc+8QlSqdT5f+Pj4/8Tb++XGmFN44r2tvODnYvqquioqUD6T+2TiVgK2/Hs2r924ChfP3ic7x45CcB1q7v5xN3XMJRIMBpL0lVdybu3rMd2HJ451s/DB04zNBfHNGwG43G+f6KXommhyTJr6hpYSGbZ1T/EWCKJ67hc39bJyfk5IrKfDdVNVGh+PrJhC7qS4+vDrzCZ01EIM5t2eWJkmLuf/hotoShraxq4d/k6HNHBECw0Fd63fDPraxoZmkow6+SJ5XKcmp1DQ0QGNF2mxvHjkySqAn46yyqIoHJTVzcBTQXJJSgqiJZLRjAIlGu4Ic9ROBjQKGKTcQxkv+TJ60WvumqoDKP4RFprokiixEwySyyVY9PiZpxKb1vDdby1MRPKyoMYksNMIU9WdUjLBq7tgO1yYGYKS3CZ1/O4jouGiCQITGfydFdWYAk2guIih+BgZgzTZyErIqIk4AouhmhgGA6W7JIIFJk3sgQVhUdOnSHiauxs7WAhl0dDwZVADIgEQz4kBWzJi1oJVfjoXFLDrFVgSUMtVaEAiixS0E2+8cJRHtxzgju2LqMs7McOiWy8aQmVa+o5m8/Q1lVDS32UYyNT9GUT1HVUUBb2sbKrnl+/50rWdjRAwSYgSCzEs6zd2M6v/fYtlJcH+OQ/vpVf+8RtjAzO8dKzp1FUiZnJJLOzF3drtmztYm4iQX1FmNdtWsp73ridD37s6/zpXz4CwD9+dzd//50XL9rnvXdtxcob7DsyTCyRAzw14S3XryQU9mHZDjvWdRIMaHS2vLrrfaFo8Of/+AQPPHrkNV9zf3v/Lr782P7XvP3/X4iCwB9cdRUf3bLlf+w1/6fxU1Vkv/d7v8df/dVf/dhtent7WbLkgtP65OQkN910E2984xt53/ve92P31TQNTbts2fKzxLHJafaMjHHvxrUEf2gN7EfhU2+84ZLHTozO8PTxPhqiEd5yxRpuWrYIF1heV8ODh0/y+nXLEQSBp072MxJP8r7tG6kIemqtq1d2UlMW4qGDp3hldJSYXqC1Oso/vLSHoF+lZ2yGxrIypotZftDbi+nYLKurYVVTHfFCnq6KSj5/+hVemhmiM1KBJZpsrmkjaSQRbI0zySRLIwFUSeJPNnsy5zOJeb49fJjm8nLe0L2C2USWSTVFr5jCCFusqKpja2UbNy5fxHOH+zg1NEOXEKFTraK8MkxIVtnW1MJXB46C7rLYX03CzDOfzbGhpZFEJsegHqPc58PQbCZyWTKG7UnlXXBEl+rKMFet6mJjRxMP7T/Jmfk5LMflldEJbMHFNhziepFAVGZFeS0zuSyuALYCSCBJIhFFZUEv4EouruDSXRNlYCxGrT9M2i4S1hRvjcxvIYog2NL5qJeIqpGzDfyaiCW4FLFxBShgMpCMYao2RdMipKhMJdJIoojqE3FlBatoE/ArTJDB9rlIssvi5ioyGYOJQpqF4TwtFeUsU2pIForkTZOTM7P83n1PMDS2QCKZ5/ljA9jzBrIq8Vdffpatq9t5ev9Z5pJZXAuuWN7GdDyD2DvBfd/dh5sxaAj6eedbttHcVoUswBf+7GHq26p4y6/fyFMPHSYQ9vPWj9xA/9ERIhUhRs9O8+h9L7H+qqX0nprk5N5+Nl29jO1XLEIQRYIBlfKSanBRSw2OcyHV7RsvHiGvm3zk3qsZHFmg8occPU70TpJMFzh1ZorVy5t4220bX/VaSabzTM+liJYHKC/zv8YrEnyKfNFc2/8Eyn2v/f39X8RP9dv8rd/6Le69994fu01HR8f5r6emprj66qvZtm0bX/jCF/5Lb/AXDVlTJ6T8z5H1salp5rM5ZjJZOitfux2O67o4roskirTVRDk+MsXoQoKFfJ47NyzjEzdcxT8/v5dkQSeZLxIN+tEkiVSqwL4zI8hLRFqqytm+tA2AG+xuNJ9MKKDy9OAAD58+Q0d1JVWaj/lcjgZ/mJfHRhEEgV999Ps0lkf44q138Xc9u/n+yAkUQeIjy7ezo74LURDImAX+sudJ3r9kK9W+MH+891kyZpGaiJ+Ca7CzvpvNta189vgeJgtpQpUa28taCckqHWqUN21Zxeh8gtOTsziOS0bXGViIIbopZs08j/b1cf/tb+Lfdx/iyNAkdsbGnxbYu3cIJyiSLer4cgoF0cIRXARNQLRFbN1B0CT2z09xMD7NQ2d7EQqOF5siePNgEZ9GY3OEY7E5CpLNnJlnIVtKsi7964pWMJ3JIGhgKy5zdpYzMzGawxFG00nW1tUT9mscSYx7c2eA4TjItkRY1qj0+3lr10quaergTU9/C19AoUYNMW9ksSwHDQVZElleW8uzQ4MUsXAVAcmWCYU1JEFCMxUQTEzV5lsDPTRrEQqOhYmNbluMpJNoskRDRRhHgkQ6Tzigcc8Vq3jp6BAzhSRVkRDjsSTbJYGNS5rZfWwIXTc5eHKMk31TXL2+m1WLGhg/O4NfUnBth/ZOj3RcUfDUpMDcdJJwmQ9Tt+hc006ozI+iySiqjOZXmZ9Lo6kKgycnefib+5gbjXHtshbuKakG79yx4qLzO5bJk9dN1ixrZs2y5ouee/2t6/i3/3iRp184RWtzBeWRiyX06UwBw7T5/jPHSaTyfOgdVxH0/+QPiefw4Tdc8Zq3vYzXhp+KyKqrq6muvnR+4tUwOTnJ1Vdfzfr16/nKV76CKP6PdDF/rvGd/h6Ox6Z566I1LK+o/R95zXduWEs8n6cq+No85ABM2+YLj+xjIZnlD995A2G/xjUru+ifjZEuFHmpd5iFVI7rVndjODbRoPdpb3tLK5opcmhwkkRe58M3XIi2WNlcx8rmOr6zvwfZEumqqGRtRR13rFlKY3mE3aOj7Oxo52wsxq7RIWZzOXTbotoX5C2da7mjdRlN4ej544UVP3+05nZemRkhKPj4yuxRFgo5KgsiM/k8jgOJok48X8AoOAQElYCocFNnN+/buBHDsvjB3pPops1VKzo4MTBJaiFPRTRCechPa6SM1kiUropKTo/NIfsE4rEchisgFEVkScDnVyjqNm9evgJVk6nw+9k/NsFCMsepxAKWY5MuFgn6VG+c2YauqgrKywMIskBAVMjrJhN6CtEATRPx+xRaK6Msrawm1p9HLIi4goMmSxiWzVQ6hat4HpDvWLqWnn2TuKaIIgo4FmiijF9WWV1bx9uXruWeh+5HL7jgsxBUl4CtUI6ftrJyFldX8ezEAGP5JI7qIAdl6iJBdNOmOhhilVDHezav5/aH78OwLWaLOfyiTFUogJ42SWYLLKqr4rffcSWffW4PA/3zBEyJZ/WzzBfyFC0LM52haFg8d7CPVZ0N1AaD9PROkFzIE6jzkS3oNNdHcfMWi7pqueqGFRw4NEQupxOojJDJeV5ZsiJx5sgIX/vsU7QuqmPV5k4a2qr51T9+PQCrtnYxMRLjlV2naWytxMwb5+NazmFgZJ6XDw3whpvX8tHbfrSiMOBXueaKJfT2TzPpHDBtAABhM0lEQVQdSxPwq6jKhVvlfQ/sI18wuOW6lQyPx34qEruM/x78t9S3k5OT7Ny5k9bWVj7zmc8wP38hcbWu7tJwul8WdJdXMZlLURcI/+SNf0YQBeGnIjGAf3hiD4f6xrh+Wdd5lda9V28AvGHol8+MMDQbxzRtljXVMDqXoG9ugWNT01y/bhGuA111l6ZPAyyur2Y+ncNxXV46PUwmU+T37tiJnjFRZYnf3Ladj2zewseff5JbH/gqggZF2+BUYpY/Xn8DSbPA85P9bKpq5WxiActymM5Oc31zN9P5NJtb6vnzw7twHAdZFCgWbQpFk5St4xgO04kMdy5dyqce2cXunkFEV0AvmGQNC9ux6bZ9/PXbbydQEgW8c9s63rh+JR/59+8T8+UoOhahCj9V4QCpvE5F0M/ITJLxZJJIdQDLcYhEfQhZcCUBS3QwBQfd52CrLjksBkcmWVJbxdbmFp4fGMQSHPxhGU2UqfdF+JtbbuIj33sU3bLwCRJ6zpPeJ60CgiQgIaAisW9kjFzcoa4sQtzI40ouMiJxM8fuqRFqToQJKxoggAu24OA3FGZTOaqkALevWsIj473Yokt5WMWvysSMLMmsQUBQWdZcze+8+CSOA3JWJGjJBF2FW5Yv5uCJMYoFk40tTbTWRplYSKE7Nrm8jiZJbFrdSlnIz0unRsjFDQ70T6A7NmvbGljT3sCx7Dhu2mKqd47Fq5q4YucSrtjiCREOHxmhUDB4+707cL2YUd7yvp0cX9HEiYND3HzPZnyBi8lDkiVau2poaqtCkkWuvGHlJedez5kJ0tkiE9NJlnZ59yHdsDAM6xKXjjUrmlEDCrsPD3LkzARvu3nD+edWLWsinzdYsaiBFYsa+FngaO8ERd1k65pXn327jB+P/xYie+aZZxgYGGBgYICmpqaLnnNLrYJfRqytbmBt9c/mxP9h7JsZIyArrKqq/5kcL5krUBb1s3JJwyXu3kFN5cbVi7hmeSeKLPGVpw8yn8yyeUUrEb+P9uoKmiouDfc8h46qKLMzaRa3VXNieJqxeJK/e2oPumEyncliuA63r1qC4Aqeas8xqQxpHJmb5Dd2P0pTeYgyVeN3dz8JtsAbFq1gPJXitkWL2H16kOMnJnhD2ypypsmfbr6e9/zg+/Sm5riivpkjk1NUKX7KfD7yjokgCdimQ011iDZZ5ezUPEcnpvn4vz2CP6ySt03+6O7rePRILyldp7YqAjKMFlKEBA1NFglrKrpjMVPMUYafqUyaOV0gHNZIO0VEWSTkU7ELDgXbYjSfQEJkupjBZysIQU9V5uDNkE2nMnzqseeJpfLgwObmJvaPT1BwLBS/hCbJ+FWFvtQChxamMHWbbFxHC4isr61jSbSab586QbKgU7RN/uzq6/nOQA/zeo53Ll3LPz25n5n8FMfHZ6gIBdACYCOgmzZ+V2PBzIEuMmwluHlRNwPxONhepecWXNJmkW8/fYRi3mZTdzPvumY9Eb+Pb3zwzXzgnx9EqhD55FtvYEmLp4ItGjaP7z2NYVn0Tc7zFx+4DVEQePyZE0wNzpFKFqivKWPrxgsOHHe/bgO6YVEUXQzD4lzvYvXWLlZv/dHzXr0nJnj6seOs39zBjqsvVRjedu0qTp2dZO+hQWoqw1RGg9z33b3MLWT43Q/fyA++exCAN7zFE0V0NFVyuHecK9Zc7A5y5eYLyj/HcRkcnaeztfpV58v2nxrl5NA077hpw0VV3X/G7kP9WJZzmcj+i/hvIbJ77733J66lXcbPDo8Nn0WTpJ8ZkX3gus08ebyPpY01P3IbRfb86TYtbuZw/wTbFrdiuy7JXOFViexo3yRP7ztDXjeZjaeRgzLruhrJOyZd9ZVs7mzhYw88yq6+QW5c3s37121kfl+WrGlQF/ET13MguJyNzWOYLmMxT6AwnUojI3J8bpqhdJyQqPDwqbN0RSp5pO8sXdEKdN2iLxYjm9Np8IexHQdNkzECLpIpYgqup0pTBI4PTDE0G8OXVlH9Mvc9eZBUoUgqW8R1XKrLQ2zpaCGWyTGeSuEKArFsDtd1yOUNRA3mjQKBsIQqu0RVH9sbWnhxbBg7b2ECUgjmnQL+TBZRBlVQUF2JHAaaKHNscga/LFOnhRiaSyBLIqJfwJFgY1MTBdPg2PwMruhiCQ6CKxDVfCypqqArUkFXVQUhwccbFi/nMydfIFEo0OWrYWAu7r1XB2RZZDKeZl1DM/2xGAtmgVk9i4SEITsomsiR2SnaI1GG4wmu6exgU7SRLz19gHSyiOB61YxfVXjy2Fksw+bWDUvYc2KEl08OUR70cf9zRzk+MEXIryLLImsWN/Gp7zzLZDLNh27eRm19GU+9dJqsbiCJArm8zkIsS2uzV81/9usvYFg2H7/32ovOpUMHh3jllX5uvGkVixdfOOfLK4KEwj6qf8iV3nVdvvnQARpqy9l3bIRT/VNel8GFaNDP4s5aomUBJElkfjZ10ev4VIV33PrqQo9zeP6Vs4xPxRmbinPt9iWXPN8/Ps/kfIpMXqeyTGbfkWEO9Yzy5js2UFVxofV5x9WrfqJzyGX8aFz2WvwFwB0dS/H/BIPgnwbNleW875pNP3G78ekEu1/u49ptSxAFgT1nRwj5VFY0X9o+/vozhzneN0l7bRQHl61d7bzcN8LajgbuWLuMs3PzdDVUEfZpfP3EMeKFAvXBMAOpGLKt8OebbkGVJX57/8OMphLURILUaiFOLsyRK5iMJ1O8pWMN6VyRo+MzDC+kiOsF7lm5ksISk99/9hnyosVoPskjx3rZc2bEI2PBpS+fQMjKLGmsxHVdTp+cRrVFrlnRxYMvn8CyvbmkW3Ys5fnTg8zHM4zl0tg4IEIuo2OD54mo2OBzMRwbR7AxlSJpq4BpOui6S1hT6aqsJKr4GS0kULIiOxrbeGFgGN1x8PtETN2mTPPhU2QW8nkcDTRZpquygqF4gplsmrxrEtI0rKCBoNpEykLsmh7gyaEBmgNR6iMhPvTSQ/gUiXzBYuDsAM+4g6yprWfn4g4Oj08S1FQCeZX1oUb6lBgzqQyZrIGoCqyprWMykSGWzBPNaLQHK3j7jnWk0gWePHAW07LprqnkxdNDzCQzPHesH60gMDudYq4yykw8Q1G3SBQLlIV9/PU7ruf01Dy7TwxSNCxsx6GpPoqpW/ScGCeoqdz/vQOMzcX5+z95E51t1Wxf20FRNy85lzSfgixL5y3TzqG+Mcp7Pnwx6dm2w8hYjKJu0VRfjmGZKLKMa9oMDs1y43XLCQQ88dX7f/1SxS5ALueZNASDl4q01i5vZmomeYlg5BzeesN68kWDUOk1Mrki+YJxScBne9Ort+Iv47XhMpH9AmBjbdOPfK5vboGvHTrGtvYWbl76s/VjiyVy5PIG0/Mp9vePs7KhlnVdl76X6USaTctbqK8KUxsOsWZRI0+80ktNIOjNagG7+0eYSmb4/evWgQRPDw2woXEx/3hsD5PZNF/qOcSfX3kjV9V3kMsMcmfXUlZE63l6aICZdIbO8greumQ13z1xgnevWc+JxCynF+Zwsg6L66q5o2MJD5mnMR2HE+MzBFyZRdVVxItFYmaBvrkFbm7v4siBMRRBZE1nA2+/aQP9kzEO908wE0sT0jSmijl6Y3MokkRlWYDmijJUU2QslSJvWiAI+ESRyqjKnFWgKJhc09xGf3yeeKFAxtXpz8/zkTWbOXBqAMtnMWktUFElEzDDXNnQQUcoSlbXefjUGUzBIW3qyK5IXVmEI/PTFCwLSRYIKArNNVEG0gvgwMKCQbHgkhLmGY3GKToWLZSzKtTIy8IoecMko+uoPglBFCjaFre0L+IzB1+mIHsxO6Is4JcV3rhoJf/4yj7KbY1omZ/2cDlnp+eJxXPUlYUJBVQOD0zg02RSpk5rZRRNBzNj0ndmGjdns2VDO7miTv98jD//7vMIIQlVlfj6b7wZAYFnDvXxttdvZv+BIZqbo/TGYri4/M2XnqG5uZJfuWsLvYMzuK57UYt75cpmRifjPP7sCTSfwvhMgrGpOG973WZs20GWRQRB4D++uYeZuTT3vnkbddURJEnkM//yND5N4S13byaRzJ8nMeBHhmT++xdfwMXl13/jpkueKy/zE6jwk9MNKrl0LVoUhfMkBnD9FUu5/or/m4PVP8+4TGS/4AhpKmFNoyLws5sjKRomX3vkIMu76tm5oYvx6Tgz6QymbdNSVX7RtkMzMb7w7H5qysJEJJXhsRhbVrSykMwxMBNjUaOngl3RUIvtujRFy5gv5DgwP87h+Uk+vf0Gfu+5p5AzIqIgcEVlF2PhPHOJPCfTM/zWpu2EfRoTqRSfP3iQ5wYG2dnWTm0wyFwsy5H5KeYyWXTH5paORbxz01r+ddc+VjTXkdMs1rQ0sJDMkTSKDI0ssBDLEtJUNi9v5fsvnuR1O1cyMLmA5TrsXNXJglPg757bQ0hVafCHmUqkaagI01FXycGxCfxlKoWozlwhg6Kq2E6Rz555BgJ5/NWg5/0gSrw8N0RtRCFZdJgoxrmiqYObq1ewf2KSuFGgXNPorK6kiEXW1nFEl5CiURUMIkhQHwihKQrRoMpQPM3kQpEyOYAh5AmpGvff+Ca+cGIvVb4wtuEiaoLnv+jmMfIWqUKBVFHn/p4TmLKNYzt0VVUQljU+sfkq9k9OIiHQ1VjFLe2LaCgP88fffYbpoTib2pp4z41b+M4rPbxwYoiIpjE9GKc+FKS9oYIzY/O8sjDEs4f6MFwbLarRUFfOXCzDspY6bMdhdCbB2fE5vvPMUVpqyykfmaW+tgzHcmhpqyJbNPjct3fTVhNlNtZEXdWFdmEqXSAc9lFRHqSyMsRLBwcYn06QTOb44r/torOzhquvX86ZvhmSqTw+VcYwLO77+h78ssy61S0EAtpFJPZqeOaJHlKJHEuXNfCjlvYn5lLMxTM8e6CPd9+x+ae+lhZiGb7ytT2sXN7ETdev+Mk7XMar4jKR/YKjoSzC71z7s51byRUMZmIZIkEf8YkUC/EMd9y1nsVtF48UWLbDV3cdIpPXuXXdUgpJHb+m0tVczW1XLeefH9pDwTBwXZet7S1U+QM8duQMO5a3MpJMYtg2AVnlbV1reLK3n+f7BnlmcJDBRILrWtsZjiX5zHMv8Yc3X8PnDx3k+PQ0EZ9KUzDMwFSMfN5gcUUVo3NJCphcv6SL6WSGk7NzpG2dJbXVHB6bpEL2E/X5OJFa4Jpti0hni7zcM8zsXBqjx6WyIUxlJMBf/eBFFJ9IvRSgq7aahWyOeKKAWbCpLQvx2bfeyh+8/DwL6SI10QjVEZXB4gS6ayALFrKkoIWgaBY5nZyluVxFRMZ24O72NciWp5QcnI0xEk+yo6uVeTcHOUgYRR46cYoN9Y1U+4L0T8/zmTfeTFnQx2Q6g2XZdIerSWaLXN3ewX0njvLswBhrqut4aXAU23YQBJBEgd6ZeZKxIjnLYNbOUF8ToT4aZnltLfG5HA/tO8Vv3nQFi6KVlEkq33npOBWBAK015WC5XLGmkyVttVxf7GZgOkZbdRSl4KDHdM6enSGdK1JZG8I1oWDYFAsmv/X6q6gIB2isKqN/boEHe05h5nRqw0GGJ2Ncs2ER//L79xCNBDgzNstf3b+LtV2NrO9qvojEAL71/QMk0wV+50M3AvD2N2zGMC1kSaK2NkJdfTlHj4+SjudoroowNR7nySd7GBmPcfPNq9n6KtEu/xmpdIH7HzyAT5H53L+860dWa611UbasaKWr+bWNJf1nqKpMMKgSCv38GkHc/+QRfKrMXdes+skb/y/hMpH9LyCr65yamWNTS9OPvEB+nlFZFmTnhk4O9IyyfX0Hjz1zgt0vn2X1oouTcGVJZDyZRhQFdiz1bLD+9em9/Nsz+/jgDVvZvrKdT3/zWe75669zzxWrmc/mODs9T9/0PLe2LSZWzPO5/ft5dmiAiO1jPJEils+TzRf5lc3r+ZtnX8K0bb649yDDMwnuXraC5XW1LK6o5Bv7jnNzVQUv9Q4zMZ9i0szwqad38dd33MTr1y4noxeRVYk6f4g9g2NEBA3dtVneUc+uQ/3EZ9OIiFy/ppuB4QVG51PYgksqpTMRT1MZCCLiIgsC69oaODY5zbu/9T2yPgtEqFaDjKcTNISrcEWbvJuhKRpCcgXOpBZQJR9ba9qo95XTn5rl2PwkXz5wnGp/kHvaV2GaNg8cPkmwXGVLezML2Tzj8RSqLFGmeEnOv37/o3z3/W/l89e+jvl8jn/Y9wopw2BWz/DYwBnSukFBN1BdEcOEZl+YtZF6RElkcC5GWFJZXl+Nqbj4JYWzc/OIOUjlinz+2X0ABBQV03G4Ynk725e08cDuHo6PznBVvpu5+Qy1agAnZ/H2Wzdy9Pg4J05O0NAU5aZrl7N9fRcf/aeHaKiKsLbLOzemE2m+/MIhsrZBu1bG8fk5NixroSYaorLca831DExRVxGms66SqsoQj798mplYml+5YzOCINDeWsWpvmmGRud56ImjrFvVyrU7PKHFve+5CoDvP3KEsrCfoF8jly6yMBbj+muWc9uta37suT07m+LokVGuvGoJm7d0sair9ideo+uWvPr62GtBJOznQ++75r+8//8ERqfi5z0rf15xmcj+F/DNIz3olkVY01hW96OVgT/PCGgqkiRSUx3mqq3daOqrn+gVYT8F0+aRoyXTXNvBa3J5qC4LUpb0EfSpXL2yk395Zi8j8Tgbq1p435YNfO7gfioCAV7XvZTXrV7G88PDdFVW8qmXXuBXNq1DEyUOTUySNXXaouWsb/DGG96/cxMziQy1kSCdNRXc33uSmWyWTzz2NFd2t6FbNmWqj5CqsrWzBcd1ed+2jSyurGLPw6eYOBvj+uuXs7yhlomxBIGiSCgnctu2NYwPxSnECvQnE5SF/BQLFrP5HDnHolLys66tgZxocl3lYtY11PLA6FEW0nlCviCSplOth9FEjWq1gkMLYxyKjWEWR0jYNrm0genY7BkaRTdtJCBj6qxpqqdKDuKTZa5qb+PBgyeYz+aI5fP8++HDFEyT2XSOFQ01fH3gKFlJx+8oGFmHT153Lc+fHkKwXdrLytkzPk5rVZT6ijB7J8ep8Pu5adEiXr9yOZ95Yjdp2cdTx/qQRJF/uvcOhmoq2LG0nRcPD1AommSzOrsO9TE8GWdiPE7OMJlJZYhPpVm9uAk9BE+eHWTp0gb+8oO3URW+4IxxZmqeom7yhg0ryMUK7D0yxMh0nJlEhobqCOGAj/6JBerKQpwdmmVgZI5QQGNmIe05zQgC03PekHK+aGDkTabG4pecd3fdvo67bl8HwPe+tocNGzpoa4pesh3A9GSC/jPTXHHNUp599hSmaTE3m+JX37vzv3Rt/KLht955NcJriK7538RlIvtfwM1LF/HCwDDd1f93lUrrl7ewfrkXh9HR9OqGqgAfu+UKHj9+lsGFOIIo8LpNy2mtLOfQwAT/9sw+qstDfOFDd5PIF/jmweNImsRkPkvvoWM8PTzIP9xxK7+7/QoePnWGrx4+xoamBgaScSJ+lZ75GV63eBmHZqYwJIfvn+3lyvYLcziff2YfgiDwe6/byc3rF3P7F7/GbCbL6Zk5PrJ9Ky8PjXKgf5wiDn9+x/W0RMsp6iYDA3MUdZO9x0ZRQz7eetMGPvLp7zA9nSQQ1Kj1Bz13C91GDsgMzcSIShpFyaFo2Iwkknxky1YaI2FkUcTn+qkQovQv5NlY28CyiM7yaBNvaF1Hc7CCPbMjZGwdUVNw8zL3nThKV20lpyfmyGcNTvTNsL6qkTJB5bljA8xPZ9jR2cZVSzqQRJFYoUDBMBAEl7FECtWWua6hmWLcRrIFhkdiOEkLTZXwyyrVSoDxRJIjsQlMxaayMkgmVuQdn/kWM/kskZCf2kAQzRB57NmTFFyLbKLAg08fo6YizOL2Wl48Msji5hpkUSAUUBElkZWrW7hx8xK+9tJRTk3O8htffhhJElnWVMun33Ij3zl4ggP944ylUiSNInftWM74XBLTsekZnmZoJsY1GxcRqPVx57rlLMxnkSWRtUuayBYM7n/2KLdsXcpNO5dzqm+KlUsa2fdSPzPjcdLJHJHyVx/8X7S8kScePMRtb371Naxnn+ihkDdYsaaF225bw+nTk1TXRfjc119kaWcdkiqxcVnLL62Dh1watfl5xmXfqP8FNJeX8Y4Na1Ckn/8T5NWQyhb49x/s4/TANF/8/C4O7Bv8kds2VpTxvqs38Y5ta1nb0kBLRRmnJmf5+x+8xEwsTX15mKyu8+dPvUDBMBiNJSkL+6kKB1lVV8ep2VkOjU8ymUpj2w7N0XL++qYbedPSVdy1yFN/Xd3Wzg1dXTQoYb6x7xgA6UIRSRLZMzrGZ5/aQ3UoxHWdnUT9fkKiyr++vB/ZFZhP5hgcn+cfnt3Dp57cRe/0HLUtUZYua+DeN29l55Zu6qvDXL2xm3BYo6gb6LZNbU2E+//oHaxoqMUvK9yydDHLqqvRFImia/LFkwf57MG9PNB7ij9ZfwNX1XcRz+o81jeIY6u8vm0tEdXHdQ1L2FLZgYJMWPYh4BK3C8SLRdbXN3gGjTrsPjnM1FyKQs6gd2yWD169mdpwiH946mXKXJWPbd3O0roaTs/PkZzT6euP8Te338S7t6wnkStQFvJxw6puAqrC27etQRa8HLPF5VXU+oNMpdIk0nl8rsida5fwpQ/dTZXs41jvBEFNoaupiu7mGhzTQUOkQvNhFS2++Kdv5euffgdf+t038an33cy2Ve2854ZN1JWFqAgE6KqrYmlTDamCTt/MAkG/SnN1OY7rIksiH3zDdpKGTu/4HDdtWsKxsSle7h3hW3uPs2lFK+uWNiMIAv/07Rd5+pVeHnqxh7rqCNduX4IgCNx26xrMVIEv/O2T6AUvgd51XR74t+fZ88RxAHqPj1NWHmBhJvWq5+iNt69h1bpWKipDlJUF2Lq1G8tySGeK9AxMMT6X5JGXTv4Mr6DL+FnjckV2GT81BicWKBoWB06NkUrmiMez55/TdRNJEi/5FFcVCrKmqZ4v7z7M4PwCtutwy5olfOjmbdy3/6iXtTUyTW04RMIu8u4t62koj/BEXx+KKLKouor1zQ1UBrw2VWtZOQCP9PRyZHyKO5Yt4YEjp7AML+DrWy8dYyyWpOCYZG1vFukDV2ym95uP0DczT31VGS+ODVMdDjKZTrNvcIy2qgpyswXkWh9t1ZVcu2MJkijyF//8FPPpLGPJNP4FH7IgMDaTQFNk7rlqNY7j8qmHnifr6Lxx4wrKwj72zozRP7dAOlUk26WTmtSxUwI2AmpRQ7AFnu4fYE19HZ/bfg/vfvRB+vMxim4W23RIuQXuWLKYO9YsI6SpPNPbT8osUlkVwqfJ3HfgGK7tMJPMYsoOj5zuJZfVURwRyREwcQhqKrprY2guVsFGUWSOnB1hdDbBv77rLo5PzPA3T+/mzMw8f33XjZB3ODE2w2wiy/eeO04ulkfRXW7btIzFXXV0NlTxhW+9TC5dZHo8wVV3dhLwXahSnjvST//kArduXsLiuiqWtdXzlqvWnH++OVrGS73DXL20g3vWr8S0bA4OTLCqvZ6GDWXUV0S4KbyI44NTrGy6eBbx6rXdnDk2gZi8eP6qoTHK1quW8MgXnucbf/cE7/5/d2IaNiNnpigWdLbfvJo737aV2ckEze2vLsioqS2jpvbiIf6ysJ/f/+CNGKbF43tOc9W6H58gfRn/u7hMZJdxEeLJHJGQ71XbCbmCwZe/t5eVixq488oVNFSXwe1cZM3zd196jkjYx4ffufOS/V86O4wkCCiizCfedA3z+Tx/8vhz3Lp8EZOpDDcu7eb5U4N8fMuVlAV82I5D0bJY1dTINZ2XKs0yuk7RsnAdl9//+pPUlof48ofv4cH9J3ixd5j++AI5LHb1DaH/4EkEGwbn46iSxOauFl7qGcYO2LRVRimYJmbRIm4VSMXzPDseZzKZ4bfefBWNdWWMx1NIosjUbIrbdq6go85LEljaXMtMIkNYVrmyq52ldbXMZ3P87VU386b77qcgmPzJU89TyJvU+cNMFTLMJnN89JHHyBkGOzpaWd9Wzz3dK/iueZr4QgFRdHANlx8cPs3q1noKpkVI0wgKGlNCBtdyeezoGZbUV/Gld72BT+3axVOjAziyS1d1JSsW1XLz4m7OTM8jALFsjoW5HJ+d3INl2rRURpFFiSsWtfHxbz+O7Tg8fOQMflliSX0NY7MJ6qo0fKqMhMBcLEMyluOVPX3U1UfQVJmjrwzxj//wNKINV+5YDMD4XJKphRQIEAn4OTI8ScY2aKgt47bli2muKCOZLXByfBaAp471sZDOUVsWYuvSVgCeOHaWynCA29d71XZBN5mYT7F1TTtHlw3Dq8jgr75xJbnpBOXVnrpR1WQ+/GdvRNW829v0eBxVkzlxcIiq2jLqW157S19V5EsSpC/j5w+XiewyziOVKfCv33qJ5rood9+89qJP2wCGaZHKFEilCzTVlr/qMbpaqxEVkT/86pOs62riddsvzMbcsHIRB4cmeNt2r616aGwCv6pQGw6zsdVTfnXXXlhvk0SRomWxd2z8PJE9dvIM8XyBd2xay2f3vELRsvjTW6/jY/OP0FVXgSgKnJqYJV3UaQhHGMunUUWJkzNzRDSNa5d3cWV3OzevWMTf2y8zn81xxZI2qsJBxuYSBBWVuh1B/vDfn2R/7yj/9N2X+csP38abbt/AX331WeK5AjPxDD5V4dTANPFkjpOTc0zEUgiyQE4xmc/muWPlUm7qXsRQLM7G1kYifh9DqQQPnD5J/3SMhrII1ZEAu2YGSYkFckmDibkk1XKQKzpbeGloDMkRsF2X4YUEfkkmrKrs7GhjLpdnNpllOJ6kaJpEAhqVAT8Z26S1rIxMusAjh05zfGKG1qooX37HG7h/33EODY9zem6Bqvowo8kkqxrr2NrdwkQsRTGr4w8HefPONTRWRSgL+PjKt/eiKCKnT0wwfHaWsYkYugTRqhBLFtfx8iv9/ODRo+eJ7F03bsCyHRRZ4sqV7XzmB7uZNXI4k/DyyDCLaqv50vvvxra9XLArl7XzwN4TbCuRGEDfzAKxdPa8sOP+54+SzBS4e+dqPvT+H63uu+3eKy/63v9DLhwPf/sAkizi5HUsy6G+o5o737IF3y/pmtcvIi4T2WWcRyio0dpQgSSJ/Ou3XmLN0iau3bL4/PPRSIA/+MCl7gY/jDfetp7x+STf/LceHNe9iMhUWWL7ogs3rQ0tTWxoeXVXkgf2n6C2LIQjODilgs+yHf79lcMIAty5ailr6uvRbRtBgEjYhyB5S75/8LprOTE2w6L6ShL5Ioos8umnXqBM0fh/t1zNQibH737nCd6xfS3Hp2bY2tVCTTjE9q5WLMvmg3/5XTLZAo4LSJAp6Pxgz0nEgIzoSLTXV2DbLl9+ZD+C49IXjxMOqyxuqeF92zby0ccf420PfZev3XU3AeWCmlO3LEzdpjcxT8Sv8ba1q3lk6AzlPh9lfh/PLgwQDQQojwRwgrCoqpI6NcSZmXnSus50LoPl2HzjV9/CNf/4JWb1HG/6j/u5Z90qNFOmWgsSFFSeP92PIAjMGFlSxSKCIBDx+ygIDq21UUI+FUkUsB2Hz73tThbSOT772MtEFI2FhQyrOjz/wjffuYHDJ8Z46gdHKeom1Y3lpGyLxR113H3HOuKZAnWN5eiGhabKCIJw3oNzOpZhdVM9O9d38q0TJ+idWyBWLBCQFd68xqtwDLuUGH6kl3ftWIfrukwtpMmZ+nll6/YV7Rw8M0595cWzZAD9p6coiwaoqS8//9jcRIzeg0NcedcGBEFgfjJOairO6m3dVFSFOX18nHQyz9R4nI5Fv7xJHL9ouExkl3Eekijy9js3MT2f5pFdPbQ1vnoLxnYcbMdFLd205lNZ9pwc4dYtS1EkibpomBs2LGZpcw3DsQT1kTC+H+P8DfC9nlMcHJ2gJhjirRtWcWx0iqpwEDV4ocX5SN8ZAlGV65o7iPh83LpkMQ8cPMGfP7wL3TRpqIiwv2+MRw72ki3orGyp4z03eJ6Rm5ub+freI/zhQ09T4QuQzBf4p+f2ks3rPPBKDw/9+jtRZQnHdTFMi4igUFsT5vXbVvDo7pM8eewswxMLtNdX8pZ338rZ8TlUR+DRfadRFZn3XL+JG9d7pB/wKxi6zUwuw+mpeY5PTxNz86yoruV3r72SP3v5BfaMj3JyYZYrGtvYOzbGQ8dOY7kuXdUV3L1qBQXX4pbuRcRSOcbjaaaTaTRB5teu286p6VnWdDfw2Jk+JvQ01dEgwqiAT1ZYXVfHsbIpJjNpykMBVrTW8Vz/IF986SBdVRW8dcdaVjXU8p77voeAwFfufQNVkSB/fM/1vPeT3+Lo4VGuXN+FLImEQz52bl1Ee0MFiXiOnpEZnt5zhjQm7a3VvOudOzhwYpTf/cz3aamPcuu1K0nlimxa2sJd21dww/pFBHwqazsacVyXL+w7yImZOe4wTAKqQtinEfApWHjrmoIg4EoQlDWmUxkaoxEWNVez6FWGjW3L5okHDxEu8/MrH73+/OPPfnsfesGge00rDe01xGZTlAcVFmZTTM9nufVNm8CFxtb/u4rhy7gUl4nsMi5BfXWEX73nRwcP/tPTr7CQyfGpu29AEAQe29+L67icHp3F71PYfXqYOSPHwOmzRMZ91ISDvH/HJhK5Al/ff5QdXW2sbbk4zubg8AQv9Y/QWVPBLcsX8+EbthHUvJsdQCyX58DYBE3RCPes9z7RL2RyPHD4JONzSbZ0tfD6jSs4PT5LecBHecDHhm6v2jNtmy2tTXz/yCkODk3wd2+6lfqJMHeuW8aH7/sBgqqen2xL5YpEy/yIBYfCfJHPff55li9toLu2gmQ8x/L6GlRFYmlrLV/69h4imsb779nO+h8aiv3czbezkM9TEwzyytA48/kcx1MzTGcyvHv1erY0NRPXCxyam+R0fI5s1iTk18gZOq9bvZyWsjKa3BBz8xm6G6rIZIs0h8tor4uiKhL3HTrGZCpNRcBPa7SczooK/vmeO5jP5KgJB3m+b4g1gQZ6xqaxDYf9g2NM5zOsDNbxZy++QHdlJaIgopsmpm2jyjKyJHLjtiXEknlkSSSb05FlEZ+mICoSPf1T3HjNcgRVxLZs/vJrz1IRDjKfzrKQyDIXyyCGvKDQTUu9sYxzremgqmI7Du/euJ54oXA+601TZNSwwlgujeU4CMCf3H0de/pH+db+49y8chHLG189gFaSJdZs6qCq7uJK7ca3bufs0WHq26o5dnCIoweHefNv3cKZU1McOTCEZTm0dlQzX1IwVtf96Mihy/i/g8tEdhk/Ndqqo4R92nnHgzfsWMnh/klWttXzjZeOMpvMcHxqmo7aCprKI6xvacSwbf7lpX0cGZtCEAXWtjRgOw4nZmbZPzJOfzrOLUsXc8vKxSwurZP9f+3dd3ib5bn48a+2ZFmWh7z3iFdsx4kdO3uTBAgQ9sihQIECDZ30tNDFrz1t6dVDz2lLW8rpoHRQaFmBMkMW2dtJHNtJbMd7yUuSbW29vz9E7Bg7sZ3YsQ3P57q4Liy9evXkdaJb7/Pcz33/9P0dqBRyHlu1mFeOlhIfYGRJWlL/dF14UCAGrQaVVsFDK/x7hLLjI8mOH/zh99KOY7R22UgKMGJS6Dhwpp6HVvt7Ts02RXGqrg2FXMamPSf53T934XV6WT4rhbK9NTgdDtKSI7jpmtnsOVqNRqWko6uH6qZOms0WTKEGWqw9eLw+lB9Pbb5WepLWnl4ae63Mj4/nF9ddy0e1NaiVCp4+uJMPair5euEiYg1BeH0+dlRXE6BQ8ZV580kKCcHj9XG6pR2bw4nd4yEoQEtlewczkk3kxUTxm9378SGRHR5Oj8XJvso6tldUsyQtmdjgIJ68eiU7Ks8yLz6ObeXVxAUFkRASjMvtRfJI9Npd/N/d63F5/EHsnDvXFvCPVw/w55f20NJpQ69T86X7lnP0eB0Oh5uf/G0Lla0dXDM/C5VSyYHyOpRKOQkJYYSF6Wnr6yUlOpQ9lbWE6HVkRfs3+7u9Xr731ockhgbzyBL/78nhdqNVqbguO5Mmq5WTna28XHaCQLWGNVFpHK5ppLPXftG/h0vWDK1NGBYdzILo2QC0NnXT3dmL0+Fh0fKsQT3K/vX8TpDJ+OLj147mr7wwxYlA9ili97jpcTsJ1wWOfPBlWF8wc9DPhgAty2b5kzHuXJTPmZZ2FEcV5CfGsDbXX3G/vstCn8ufmn8u8eztilM0Wm3srPO3VMlMDic/4bz+UgE61B8Hh5vzZ7Kvpn5QJZTjdc0EatSsyEqjvNVMRvTw6dVF6fH8z9+3YTX3kjY7mtsXzgL8TRFLK5vpstmx9blo7bTilnwE6TU8ctcSftvlYumSTBYu9P8ZzlS2sftAJQofrFoxk8LcRE53dvD0a9spqW7kO3esAuBkaxs9LhdhhgCCtf7Ow0sSk/x/5rMV9HmcbG06w1xTPK09vWw+W02myURicDAWuwOXx8sXV88nymjgJ5u24ehzYwzRsa+qgXsLCvjtzdfz6wN7qersJMUUSquth5LGFow6Lfmx0QSoVVyd7R/zrpo63jhWzhNXLyM3Norn9x7meGMzleYOWtttqJBTX9PJDavy0GlV9PY5cbk9ZKVFEfBxMsS61Xk0tXSz6bevYnM40SkVlNU2E6xQ4fT4MIUEkpYUgaepjX31Dbx47AQrslL47jp/coZCLic2OIgYo78z+l9LSnijvIwbMrP43OzZnLC2UNbUilPyMDMokoKkWOYkDm3qOlZrbpjDymtnDZuBO6soBQCnw43d7iI4ZGxd1IWpRQSyKc4nSbi8XrTKkX9Vz5Xvoclu5Ydz1qJVTlxtNLfHy6lmMzPjhtahUyrkZMVGDGnKGR9i5ItL5lHT2UXaxxVNFiYm8kppKT+/5mqOtjSTZ4rk1//eTaBGzX+sKODhxQM90UyBetblDG5cuL3iLEatjnkpcSzPHEjP/9Nb+2lu7SZIpyXOZKT8VDNz42Kwhjp48MbFGAI0dFn6+K/n3iMqUM99a+cSGKCmpKwBtUzO+pV5qFVKvv3E9dh6Hf3nLZyVyLHSevpsDiJNBpYtSue9Q6c4+fYeatq6APjXoRNkGk3kJ8Tw4clKEgMHT13JFTJiQ4IIUKnYWl+FTqZmUUIit2Xn8NLRE/ztwFE6bL1kRUSQGx7pn5JbWsD/bt5NSICWvVW1XJ2bgdwlQ+tT8t83Xs0rJaUo5XKqOjr59e59PLpwXv/79did/q7SKhValZJYYxDvnjzNK0dKaWuwcrq6jUiZlq4eO4/csYgH7h5aYFoulxEXE0JaXDhKmYyKM624PV4iQvU8dE0BM5L8v+vrmcnXXv43EV49vW431e2dJIeFIJfJ+NKy+f3nO9vdxVlrF+/WnOaWmTksjUnm1epSvlu8nBCtv0vDeNUg3fPeCWpPN3PXl1ejOC+gLVyZDcDzv9tKu9nG155YNy0qWAjDE4Fsivvt0f1Ud3fykyVXjRic8k2xBNsC0Ixjk83h/HPfcWx2p389JG1wwVS318sPNm8jNSyU++bO6X/8Rx9tJ0Kv5wsFAx13w/QBPFTsD1bRQQZe2HqIsrpWfF6JmJAgVhdmDOlFdb675s+izdpD9nnrKHanm6YOC12WPmQ+2Haqma6uPq5dlcNbW0t5c/MxNtxQROVZMyrk+Nw+CjLiUcjlRIcFYdCo2ffRGXZuqeDm6wsor2lhdmY8STGhuL0+nn7yFjo6e/j5qzv49Yf7SEsNZ828DFbM9G+Y3VFxlrrOLraUV3G2vZOSpiae23Aj8o//DHqNkmCNBplDgcatQqdS8fhCf+r4a0dO0mbrRY2c5jYrSYZg4sKMLMlM4dDZRvZX15Ni8u9f65PctLn6sDgc3DxrJo0WK/88XorF4aDb7uBQXSMr0lPIj4smRKsj5+NrdP2sLPRaNaer2mh2dKEPUNPU2sOJumae/cdOCmcmMDcvkeHcuiCXD/ZVoA/VcPXCbJbOSRu0hxDge9etZHdVDWfMHbx5rJwOcw+zEmO4ZX4uAG+VlmN3urk1J4fTbR385dBRHl5QxCM584Z7y8vi8XhpbeyktbELt9s7KJCdkzkzjtaW7nENYpIksW9PJdk5sRiNASO/QLhsIpBNcSnBIUiShHoUwWlZdBpEj3jYEFanE5AI0mhHdfyy7BTeP3aamXGD16LcXi8/eW87dZZucqMGPyeXyUb8ln3T/FyiQwzsPFJFyalG9HoN205UsXp2OkEBGjJiwgedw2TQYzLoaem28XZJBbcW5/L79/bjVcv4+WM3AlBa0URNcydJieHER4eQlhjOr3+zmdOVrYRHBfHdr12HTCajpqkTlVJB4cxEjvadxeH0Z9Zt31pO1ZlWYmJCUKqUzMqMRaVV4ZX7y2BtOVlJdGgQYWGBSCoZdxbl8Yute2iwWeiTu9Hr1f1BDCBUq6O800uHvZczbR0sSkgCwO5243P7i/pGavVUtXRS39HN2jz/FOH1BdmYrb1sOVmFQilHrVSSGBZMr9uFSiFn09lylqQnUhgVx//tPojX5yPCoKex04rV7hx0nVdmpHK6rBmDUo0y0ECTQyJIr+VETRO9XveQQCZJEjuOVPLbN/YQoFHxuavnsrxgxqBjas1dbCmvpMli47E1i4k1BrGz9CxOt5fQ84oG/+vYSaweJ99YtogolYGiC2y/uBTvvXscm83OrbcV8+5bRykrbeCO/1jITfcbhw1iAPMXj2+zWYDKM61UVbZQU2Pmzg0Lxv38wlAikE1x16RkjHzQJajp6KLP5SY7OoL/2bcbt8/Lj5atGtWUTmyokc8vnzvkcZlMhlIh5+oZM7g9P3fQc99evHTE8xp0GlbPziA22IjD5SZAr0GvVXPkbCPIoM3Sw5LslCGv++jUWTw+H0drmkiLNuH5eMMtQFJSGK+UnKRhp42Hb/ZPbx07WENcXCg5OQNtdEwhekxGPRlJEdy6Kh+A3/5+G3qFEsnlY/WiLNweH9/99b+pbupAG64lf0YsfQoPnX12jtc3Exyg4+4FszEadGwqK+f9M2c43NTEH/cd4v55hQDM1EeTmGjyZx3KA7guMxOH28P339lCaVUzPrePH9+zmu3l1djsTiKCAmnstvLFv76Btc9JVpSJE+2tRBgD+d7yZeysqSUhLIj9DfVsq67m+wtXcENeFjurasiOiuBPOw9yus2fOGLQaqgxd/HmoTLWFGcQHhjAE//7FolGI1+9fSl/3HqQNvvQBIu3tp6g9HQzYXodN62YxYpPBDGAv+0+ypGqRrxIPO35iIdWFNPVaycjNpwVOQPTvg8VF+JFYlFiIosSh7/zu5BTrWaO1DVxe2HeoC8H59TVtWO1+aeCI6ODaW7sxmDUXTCIndNt6aO+qZPcrPEJqimpEVSeaaVwbvLIBwvjQgSyz6iXj5zA7nLz/65dyeyoaF6sOMb/HN3FY3MuvQmnUi7nO2uXj+k1JTVNHKhq4O7Fs9F9nJY9M3lgo2pWXAQtXTb+faScWUkxw57jxsKZlDeZOVbTxOnmdjauHliPUcjktJptxIcMrFV94cGhYwzUaXhg/fxBj911azFOj4ejJ+upq+3gpnVzeOalHXRb+1g0K46sxEhmpUbz7rHTXDc7E4vLSZuth+yoCF6rPklMmAGfHdp6evvPua3qLE6vh9UZM1CpZOTFRHG2o4tAuRKdTElidAiJYSHMiAjjaG0TCaZgel0u0qJMHGxsoNRqZq1pBivTU/mwsoouu53OPju3pPun6sL1eiINgdyS78/oq2htp63dxp+2HeQrVy+iqdOKtc/B5uNnwCWhlsnp6OjB4/Fh63Pi80kcqWpkTqq/f1hlnZlDZXUoJDk/eWQdIcYA3F4v+6vrmZsUy7H6FnLioihKiaO5xYrT7cba40CrUvLomgUE6wd3Jl+YljTk2js9Hk6YW0kIMnLM3MKqxNRBX6gaui14fRJbT1XTbXdgtvUSGTQ0oen+B5YhfdzKeU5hMnMKBwJJc40Zn9dHbOrQdP433i2hp9dBTFQwYSGXnyilUMi5+tpZl30eYfREIPuMWpmegtXhn3K6ISOLWnsXJu2Vn88/Ud9Cq8VGm6WHxPDB/aIOVzdwrKaZu5fO4YGVRew6VYNMJhtUHQRApVCQFx9Fr92Jze7EGDAwRWp3uokI0hOgUlFW18p7BytYkJXEvOwL3w1IksS2HRVkzIgiKdHE9p0V1NZ3APCt+1fx+7f34/J4yU+OITUyjC+tNtHjdPHnbUeptnUSYQzkmox0lieksDg+CUmS+PehcmYlRbNh9iycHg+/ObifCrMZg1LD4bomHG4PRq2WYw3N/OCtD6lv7sba52TDwtlEGAP57YYb+M/33uNsZxePX7OMHafOkh0Rzp76el4+dpyZURH89Gp/x+R9NfW8V3aaq7PTefLaFfx9x1H67P7CyTGhQSRHh/LmwTKCNVruunYOM5Oj6HG6MCjUNNqspMcOlAlTKRWEBetZNCeVkI/Xe7aUV7G59Ax/3nmYwuQ4TjS2cv/iQoI0WuwuN+UNbfxr1/H+zejn6+ztw+uTCDf4swSPNjXzP7t3kxFpwuZxEh6oJyU4lNTg0P7X/PngUbySj68uXkBdZ/ewQQz8AeRCNv1+K5IPHnnq9iHPLZk/g7JTzYReoA3MWHm9Pjo7ewgPH1qNRJgYIpB9RhUmDp5G+XL+5Mzl37Uwn64eO6agoR8iJWebKatv5Vf/3sW9KwrZWVGDDIYEsnPmpycy/xPPhQYF8J27VqJSKvjhPz7keHUTxgAds1Jj+N0ru2jt6eWmZXmcPt1KgFbFTVfl09XdR8XpZv7x+gHyZsWzoDCV5Hj/h3tZbRuRoQYcbi8hgQN3G4EaNXkxUYTb9djcTnafrQNJRo4pEofDzZnmdho6LDy0upj2nj7WpWeglitICAnmj7sP0drVQ05UJG6Ll2Ntrfzn8kXUmruIMA58aP9g5UqsTgc2h5OypjZq2rvISY7C6fGyt6aeDX//J7fk5ZAZbiJArSJIqyErKoJ5KQlIEvxr73HeKTlFVlwEKo0CnV7NwvwUlAo5wV4fqVGhbFg1h38fKifCGEhzfTeVDWY2rJtLWsxAcFuUlsjL+45jCghAr1GzIss/dVickYDH68Ns7WVB5vC/o2c/2o/H6+PRlfP5y4kSAmVqwnV6fD6JL8yey3FzC8nGwV9oFiUn4vZ5Meq05MZG4fH5KGtpIyc6ctgpxuHMWZaNzzdMxWEgJTGclMTht25citdeP0RzSzc3ri8kPi505BcIl00Esk+xgy0NBChVzDQNXx1hPLg9Xn63ZR+ZMRFclTt07eScfVV1lNQ2c9/iAjTnlauqaDaz50wtdy+cQ3evnd2na1lfmI1CLudzS+fw4s4SWi091LR1cdu83BHX8J56bSser4/v3bqq/zG1SkljpwWlSs4j185naV4qbR02DlQ3IJfgvV3lOGxOYiOCAQgN0VMwOxEnPk5VtRJjMrJ0UTrN7Vbe3HuScGMgj960aFASA8BNef79dVank6+/+y4KZPz9yDHyTVEUpsaSGRfB2ydOcbKplYWpifz3Wn/dSq1KhVGvpTg1Hl8AVLd1EmUysPQT64EBKlX/ZvC5SbFkRkcQoFGil6vwSF7OdHTw4ZkqrslKp93Wy4/f285dc2dxzcwMZDLo7OnD7fGyMD2JBRmJtHTb+jdxKxVy7rhqDj6fxB+2HyTc0kNqUAiNVhuv7jzByvxUdh09y4K8ZKLDDPzijmvRaVWDNlQDdFp7WT4zBVPw8HdNhYlxuL1emmw2Ou12YsMN/Pzatf2/19SQoR/8y9IGrzW9eaKcVmsPrdYersocXXuVoqtyRz5onOTkxOFyeYgIN1yx9/ysE4HsU+ytqgrUcsWEBjKnx0Nzlw2jTnfR4yqazTR2WbDYHUSoBj7kDlY30G7ro6nLypbSSrw+iVNNZrLjIlEpFXxu2Rw6e/oIM+hxe7zsOFlNdLChfz0NwO5ys6uihqXZyRysqsfqcPEtj2fQh+x7R08RGhSA1yvxxzf3MSc7nqLcJCSvD5ldIt5k5N7rBzoIF89NJWdmHA8/9lca6zsxmQK56bo5eCSJNmsPb+8rR6NWkhg5+O4BYEtlFTmmCBKDg2lo6aa8sY05ybGEBwWSExtJbUdXf5X/V46UYumzkxkVzoOL5qLcLwc31HdayIgYepewr66eA3UN3F9UgF6txuPzsTo9jQNNDVR3d3JjXjYymQw5Mhpaujlwpp4orZ5ZyTF8fsVc1hVkERvqXy+sbu7klv96gahgAz9/+Ho0KiVyuYxvXL8ErUqFVq0kJdHEoVP1GHRanC43nZY+Nh+owBQcyEPrh97FP//2ARRyOd+4a/i10jXZA192Eo3BNHZb+PHWHaxMS2V+Yvywr/mkRSmJvHG8nMKE2P7HenqdbHr7KMsWZxAbPfR3ciVlZcaQlTn8eq4wMUQg+xS7OjkdvWpiW1UEajX84NarUMov3mz8cwvm0ON0EqTT+jv4fnSchIhgNizIp9XSQ1yokbB5eRytaRq0mVomkxH28XrKjpPVNHVaefdwBTd9vC/J55N46tVtmIL1SEgsyk5BLoO9Z+pYmjVwR3PbglmcqG3B0tXLjtJq2h12rpqTTlZ8BK3tNmIjjMhkMv724WGCDTqumZtFWWULa1fn8u6WUkzhBkzBgfz+67eyr7yGdksfMcNUZAdotFip77awPDmZBfEJbC2rIjfen8CSFBbCxuUDSSVJYcEsT0/l7qJ8AO4rLuD6nCy2VFVT2dFBWlgYvzy6B0mSuCElm+9t/RB8MCcmmj6bi4oGM4+smUdiZQgH6xspjo9DrVDwvWtW8Ev5bjwuLyU1zXxQcobleakUz/DXQTx5toWtRyrptNnp6XOxt/Qsy2b7g8y5BI1jNc2UNbRy96oCZDIZ3/rcKiRJwmZ3kHreOtr55mTE9d/ljSRIo6FRJsMnSQzbaOwCIgyBfGHh4KzZyupWnC4PBw6f5cZ1kxvIhCtPJp1L85mCrFYrRqMRi8VCUJBYOP20cLo9/PSlrYQb9Xzx+oWjes2pFjNvHS0nRKXltoWzMOj8xYRr27p4ZfcJ6tq7eOqea/B6fewor2ZNXnp/SxGATQdPcrS6kftWzOXlXccwGfV8fsXQLQT/7y/vE2rQs2BGAuWVzTSardjtLh68bSFxUcH8/u19dPc4uG/tXEzG4ZMDmi1WvvTqvwkP1LNx8Txyooe/I65oMfPm8XJuyMsiIyqc2u5u1HI5jRYrmyurCVSr+dLCefz88E4kQCep2Vtfh83mROr1oe6TIXkkri7M4Ky5m+/etGLQnSr4pxPf3F/GmZZ2wo16vrrOn5X6y399RJ/DRWSYgSOnGyhMi6e9u4eNty6mx+lkd0UtTZ1WOnv6ePTqodmHo/XHrQeRwbDXeqzcHu+g3+n5JEmiuradxPiwUQfS6eRUVSuHT9Ryy7VzUI/QSeLTYiyf/5+NKyJMiqr6dmLCjei0gz9cNSolD15TTFDA6DZgA9S0d2H3eFiWGdMfxAASwoMpSo/nvlWF/VXV183JGvL6SKOBkMAADDoN37xx2QXf54k7V6KQy/F6vVTXt6NSyZErNUSa/Osdi3NT2HTgJG+XnULnU3CmuYP/XL8EtVJJr8vF348cY35iAjMiTEg+ifL6VrRyJTqNiuqOThalJPLdLR8SrtczLzKOPpebLruDs51d/K2khIo2M4nBIdyQnUmayV/K67ECf/CxOB0URMeAS+JH72zDJfmYHR9DVEgQNod70Ad4Z08fkgRajZJ7VxZytq2zv5MAwPrFuVh67OSlxXD36kLe2V1GS4cVSZJ461A5Xq/EnJRYTEEBwwax3WdrOdHcyv3FBagUA8Hl3Pfic2teVS3tWPucQwKZJEn8Zd9RksJCWJo+8n6r6pYO/rbtCLNSYriheOaQ52UyGalJ45ewMdUcOl5LR1cPLWYrCTEigeSTRCCbgiRJ4n8O7CZKH8iGnPzJHs4l8fc0O0FwUAD3ri8e8nxM2NjaZ6zJSWdpRsqQvmYymYz0+HBePXaS2wpyMeqGBsdtFVWcbe/iy9csRCaTUVrXQkpkGAGaoSW/ziWiKBVybrt6DrVNnbR22nB4PPxh1yGWpiejD9NyurWdnLAI5DL6m0CWt5pxejwcbmjkqXWrqTV38eK+Y7RZenEqvFgdTnKiI6nu6KS8zczds/LZ21LP7rpa7po9i4jAQII1WlxeL3Pj4/oz8pweDz/fvZvsiAjWZ/mD9HUzs6ht7yIkKIBGq5WvXTu47c7/fbCftr5eDGE6koKD0ctV3Fg4EAASo0IA/xScSqng6gVZeJXg8ni5uTiXw9UNFKXFDylBdc7J1jZqOruxOpyE6QPocTpRyOX8afshWiw2fnjzVchkMmJDjARqHPQ6XOjP6zju9HgpbzFjtTtHFciC9TqCAwP61/c+a25dN0cEsYsQgWyKarf3Dfqme6V4fT5+eXw36cEm1iUNvbMZrYiwQKJMQczOikOSJDotfYRd5j6dCzXn3FlZg8fn43BdIysyUjl4pp4dJ6opzkogITyE8iYzdZ3dOD1eGjq62XKikv1n6rl/5eC7BLO1h7/sOsqshChOt3UwLzWeU3VmitPjqe+00NVn52h9E59fWIjV7iDKODgrrSAuBq1KSXq4iS3HK/nD1gP4ZBK/uu8GfrlrL7Wd3YQE6PiP/Hxqurr5qLaGqs4u+pxu6i0WHiqay7ff+4DDjU04PR4WxieydEYyHp8Pq9NJj8uF1engZ7t3kRsRye1Fufxp5yHsbs+QazI7OYZuh4NWVy+NZgvhgXrKG9uwdznZV3KWm9fkExc1sJZ06EwDPXYX7xys4K7ls1mRe/FswPuLCrA6nIQE+O/WfvLhDgwaDQkBQXTa+vqPu3l+Lk2d1kFB7Nzv8purF6NXj24NN9QQwJevG9009MVIkkRVZRuJSSZUqulTJFitUoogdhEikE1BMpmMp5atnpT3dvm8NPRa0F1m9XyFXM4d1xQAsGn7Cc42drCiKJ28GWPL5upzuOi09BEXGXzBY9bnZ1Pe3EZOjH8tyu3x4vF62XSkDJNBz2PXLqbP5UarUpIYHkJoYAALM5OGnKfX6cZmd1Lb0U17Ty97TtfhdnjYeqKKB1YVUdFlJiE4mH2N9RTGDGTM+XwSLx06zqy4qP4xpESFYgoKICEihAiDngVJCWRG+qe+rs3wlx1zejwEqtWkhYSSHOr/kFqTPgO7x0Ntezf7T9ejU6koSorjp6v9fx9sTicquRytUoleo8bp9pIS7r9L8fp81LdbSIoIoSg9gV6Hk81HzzA3PRY3PnLjo9hjrsbj9Q0q4wVQlJGA3elmXtaFN4rvqDxLo83Knfl59DpcqGQDU5l50VEEatQ0N1rQoKCly0Z0aBBRwQaigodPQw/Vj7wBX5Ikeh0uAs+bTr4c5WVN7N9fSUmJjltuHbphW5ieRLKHMITb50Upk49bK42qhna2HTzDLavyCTaMLWngT6/tpa3DxhfvXEJQ4OjX1AC2l1ejkMlYnDn2mndn27uICTZQ0WAmNSqUQK2G72zbTK/TRVpIGCqFApfTQ2tPL19ZMJ/ndh4gTB/AI0v906hOl4f6zm7Sogay+1q6bew5U8sNBf59cuAPTIFqdf+1fn7fYWxOFxGBej4sP8NdhfmsOK9FzfncXi+f++O/iDAG8svb1/HP3ceoaukgRKvD6nVitvYRotYSHWrgvlUXTrbYXV5DSXUT962aO+x0K8Dptna+8NIbOD0eXn9gA3949wBKhZzHbxmcZl/e0MaRygbuWJLf/2e8HP/afowz9WbuXDWH5OjLvyOx211seuMwixZnECc2K09pItlDuCwq+fhOuaTGmUiNGz5deyRRYQbUSgUG/di/kS/LGlpguMfpxOnxEnaRuwGbw8lzuw/4OxovHljfuyUrB7VCwXe3fUhRTBwJeiNttl5e3FdCVmQ4V2X7p+N8Pol7n/0nCrmcJ29dxYyPg9lbR8rx+nycbm4nKzYCc28v/713J+mhJrLDIthTW4fP7cPt9WHu6SUt0kRGTDiHmhoH3QGe4/J5cYR48er830WLZiTwweHTeGUSiVEhLMlKpiA5lvBhqqacr97cTWu3jR6H84KBLMZoIDsqAq/PR6g+gNykKNTDZBBmxUWQFRcxzBkuzYw4E13WvgtmiI6VTqfmjjvnj3zgBewtqyUmLGjY/YPC5BGBTJiyuix9VJxuIcQYMOTu8LUPj1FW1cxX715OYMBAkLM73Ty7aQ85yVFcVZjO8x8cJNZkZE2BfzrvN7v202138NS6C0/d6jVq0sLDiA8x8oNtW5kdHcPy5GTyI6OQgOXJySQFh3D9jExePVTKX3cdweuTSAoLoSApFpkMZsZH0dnTS6TR0N9T7dbiXEpqm8iM8U8xBmk0xBmMZJhMNFmsdPT18VDxXJJCQnjrRAWBGjX/KD2O1ekgNyISzXkbvM29vZR1tDEjMpSMUH/gSIoIYWXBDF7efxyZxcLjecsvuK54vtsXz8Ll8Q6quALwr8Mn6HO6uWfBHAI1Gn572/X9zw2XOTgR8tNimZkUhdM1dB3wSnO6PWw/VokhQMOjNywa+QXCFSMCmTBlBQfpSIwLIystashzhgANxkAdSuXg6Su3x0uvw0WPw0VDp4Xq5g5cHm//87NjY7A4HJ883SBymYwHFhTS7bCzs6mW+q5uftSwnfQwE/fPLuDLcwe+0d9UMJO6jm4OVNWj/jg5RyaT8d2bVmBzOPnxO9vIjAzn3oUFBOt1LMsemCbUKJV8uXjgXOtnZtPlsPPkzi3MjY5leVoKEcF6ai3dg4IYwJ+PHaHTYedb85cSqh2Yrl0/dyZ2r4f9zQ08u2c/X1s6coKETCYbEsQATja24h1h5WFXdS07q2r4XNFsYo1BbD1dxf7aBh6YX0h4oP8uqr6zm1ZrD4VJl9Ym5fk39tPSbuWJB6664D6yK0GjUrI4N+WCG+GFySMCmTBlyWQybr569rDPXbUgk6sWZA55PEiv5ZEbFvD60ZN848V3WDNzBvcsK+h/fvVFavP1udy8uKeEZVkppEWGEazVsSQ6kUM1DXi8XjJNQ6dHZTIZX1uzCJfHi1qpoLvPTqBGg1IhR6NUEmMMIu4TKeMHWxqICQwiNnDwB+K56ijnL1unhobybt1pfFUSa5PT+49ZnJhEs81GmG7wFKlOreLzSwrp2+UZ1d3YcCRJorHbik+CuODhP7SrLB2o5Ap6XS6cHg9Oj/+Oqc/lxu52D/ry8Oqhk1gdDvLiooedjhxJRlIE+gD1lNjovChH9BibikQgEz4VKk41ExqqR6aW87s399Lk6sEj+ZiVFD3qpIMacydWu4Pdp2tJiwzD4/WRGBrM6ZZ27plTQOzHH+pbz1bzUW0NYdoAOnp7eXyJvzZhd5+Dn737EUmmEL6wtAi1UsGXVw6uR2j3uHmzqhyjRss3Cgd6v22prcLucbMuNZMfLhkoeNzjdtFgtbDrbC015m4enTcPgHmxQ+sSSpLEB2cqyY+J5tFF88Z8Dc95dsd+aju6STGFXPAu6oWKw6jkcr43dxVrMgfqJ67LyWRdzuAvGGtyZtDQZbmkIAawtHB0hYHP6XO4CNBObGk2YWoRgUyY9vr6nLz6xmHCI4O47+6FxIYbSZCFcMvSvCH7ly4mOzYSjUpJQlgwAL/duo/mbis/vMlfS9Lnk5DLZagVCpRyGTIZeM97vUGrJtkUQlZMBIfONpAbFzVkyk6nVJEREk6fy4UkSRxuaaKpx8axdv/esXWpg4OASafnp0vW8ufDh5kxzB3h+Wq6uilrbaOyo4ON8y89kMUEB+GTJL6wpOiCmauLY5JRjzIpKCsmgrTIMH5zeB8zwyNZljBxdzX7ymvZcbyKuRkJrMgfWwAUpi8RyIQpp63Lxv+9uZf8GXGsW5A96LnyM83IZDIyz1s3e/31w3SZbaxakYVKoWBmQiQVdWY27SrlrlVzxvTeqRFh/f+fHmUiUKtGKZfzm+37abJY+NH1q1mUkMiihKH7rRRyOQ8uLWJ/VT1Ha5r4qLyambFRrJmVPui47j4HTq+Hqu5OttZUU9vVzf35cwg3DG194vH5qOvqxtxjJzdy+H+uL1Ucx6jWsDY5nfRwE3NiL6/y+vr87BGPuSr+wi17Dtc0EqBRkRU9kL3Y63ZR3d2FXCab0EAWZzISqNOQJLIKP1Mmf9JZmNZO1bdxtqVzXM+pVinRazUYAoam3L+/o4wPdpQNeiw3N56iuSkUzvF/QM5Ki0WrVrJ6bsZF36fO3E1FfdsFn1+bm87nFxcik8mIDjYQYzQymq11iRHByBVynC4vh6oa6HO6Bz1/S+ZM0kNNpAaHcnduPjIPvH+qknjD4LW0f5Qe58G3XmdXXS2f3O7ZYrfyVl0pPkniSGsjh1ubqLNaCNHr6HT18Yuju+l09DEe3jl7im/vfp+KTvPojj9xijePlg96LFir4/uLlvOF/MsvHnwxceHBbLx+ISnRYSMfLHxqiDsy4bK8sbsUpULOY7cuG/VrPF4fXbY+wi/QfDE4UMfXbl867HPLF2QMme7Ky4snL29gzUirVnL7ivwRx/HKruPYXW6+c/vK/seaLTYC1KohNRtvnj043bykvpkUUwhBnzjO6fHw3/t2ERcUxD1LCmjssg7ZmxUVaOC6Gf4pxOhAA+syMgjUDA7afy0pYXNVJe32Ps5auvivVQPrZi19Nr5/+F0ygyM4rKvnG3MXE6BU87vDB7A4HWREhmFxOqi1dROqHbl6xkhCtDoCVZpRtwRaPXMGgZqhxxo1Y9vQPt76HC50GtW4bfQXpg4RyITLsignGa16bOWsXvrwCA1mC3evKSQ2fGxFYGdlX1oK93CW5aZgtTv7f5YkiV9v3UuoXsdjqxdf8HUNXRY2l1di0Kh5eOnggshqhYIsUziJwcHEhAYREzpyqvbajPQhj0UGBpIbGcXixASM2sHVUN6qPUmaIRy318efThzE6YZnV93AdemZnOnsoL63i9UJacwOH3mK0eFxox2hHNn86ATmRycMeszp8aCUy4dNpClOuXCDTEmSeK2sjPyoaFLDrlxljZqmDv7xzmGyUqJYvyLvir2vcGWIQCZcloWXkI6clxaD2+vDdJlFhC/XnLTBQVEmkzEnMQZT4PDjcro9/OqtXcyIMRFjNFCcPPQDWyaT8cDswsse2+q0NFanDZ+scEfabI6YGyiOSOChD9/AqNRR091FRlg4cjmUtDdR2t7G/JgL100E2NVYw/u1Z1gSl8RVCRde8/oknyTx3Q8/JCowkMcWjW1jcHtfHxXmdpqsVr40f2wVNpo7rCgV8gveyV9MqFGPKVhPkii8+6kkAplwxeWlxpCXOv6t4LceOs2R0418fl0xoUGDp9Qa2y14fD4SIy6eBHDznJwLPueTJOwu/x6pDYvyx2PIl8Sg0rA0xr+x+rlVN3LW4g9iADNCTGzIzifOMHAnaHE6OGFuZWFswqBptTiDkSCNlkSD/5qUdbeQajChUVz8Y0EGzAgLIypw7AElXK9nRUoyaWFjX8P683sH0agUfP22ZWN+bZBey4O3XH71fGFqEkWDhSmrvbePIK2mv2LGhUiSxIvvH6HL1kevw8X91xVjCg7kn1tK6LL18dD6Bfzs1e34fD4ev3XFuI2vzdbDPw4fZ1VGKjMv0AX6ctR0dfNSyXFWpKVQFH/pU6q/PbIfp9fD2pR0ssKGbz55squZ9xvLMap13J9+6bUIx5vb4+WF9w6RkRCO3elGo1KyNH/4Isqj8a9/7icsLJAVK69MiS3h0o3l819kLQpTksXh4OmdO/nDwUMjHmt3uqmsN6NRKfnW3SsxfTz1ZOmx02WzA6BWKtCNcS1vJM1WG912B2faOkY89u3SU/zXe9uwjlAe63x9Lhd9LjdWh3Pkgy/iurQMwgP0zAgZuAvqdblwuAeyKVODTBjVOpZFjX6K8UpwuNzUt3VR3dTB6rkZlxXEJEmiutpMdfXosi+F6UNMLQpTUqBaTUpoKDMjR66kHqBV86XblxCoU+P1+XB5vOjUKh68YeDOotfhGvcSR7Nio0k1hQ2bofdJbp8Xr8+HbwzzH9mREfxwzcqRDxyB1wuJASH95a0Afrx1OwFqNd9dsQwArUI1bndim2srCdFoKYy6/MQcQ4CWb921YswJRcORyWR85atrplVDTWF0RCATroiGtm6iTUGjLhelkMv5QtHo9xydWxP7v7f30WDu5jsbVg2qqvHg2mIUE5B2PZogBrA+L5v1eUM3GkuSxB9KDhMdGMi6GUNrR46H10vLsDgcFMTGEPBxQMiNikL3iaoj/z55ihNNLXx56fz+zs3/2FOCxe7k4ZXFQ857IdvrqglUq8clkAHjWm5Kqx3fu3JhahCBTJhwJacb2XmsmmhTELcsnzWh75USHYpCLkP1iXW1COPYExOuBAmoaDfT7bAPG8h63S5eqjjO9alZhAdcWpbnddkZ1HR29wcxgDvzh6ag97lc9LhceH0D3aPNtl66e0eeDn3myB46HXaeXLCSOzLzMKjHp6OzIIyGSPYQJpy118ErW4+xonAGSZfQ5dfp8fCjLdvJigjnrtmXFghPmc28e/oMd87KI/ISsu0mkt3tRqVQDJr6O2dbXTWnuszoVWruzh6+E8Dl8kkSmysrKYqLI0Q3eM/auY+HkTYR/+H4Ibqddr4x98L77wRhLESHaGFKCdJr+fx1o5+aGo5aqRhylzUW5WYzVoeTuu7uKRfIdKoLT3ctjU9GrVBQEDm0Q/RwPD4fLx49xsKkxFFvOC5tbaWqo5Oari4eKioa9Nxoq2A8kHf5e+cE4VKJOzLhU+HD8krkMhkrMi+c1WZxODBqr0yZpEPVDSSaggkPuvSgaXM72dpYydXxmSNuQTinuqOT10rL0KvVPDK/aOQX4A9+b5SVsyQpkYgpFuSFzy5xRyZMOqfLg0Z95f567a2uQy6XXzSQTVQQK69rJTkqDO3Hf97uXjubT1QSpNOwcfWlZwK+cbYUp9fDzuZqPHIHJZ11PJK+giC17oKvSQkLZUVaCjNMo99wrJTLuSVH7KsSpi+xj0wYd2++W8Ivn/2QpubuK/ae9y0o4N75Y2vZMh5ON5jZcvgML2072v+YMUDLzLgIVueNfU9Wl8PO8bYWAG5ImkmYNoBF0cm4fB5/Cj++Ec4Ac2JjMGiuTLLFplPlvFN5+oq8lyBciLgjE8ZdXEwI5nYbBsOVq3YeFzK24sPjJSkyhOBAHQtzB2pOymQyri8YuafXcP5y4iidDjtxhiBCdQHcmJwLwHVxs7kubmKSPS7HwaZGVHI516QNLXwsCFeKWCMThCmk1NzK8bYW7szOG/d2I5Ik4fJ60Sgv/fvrnpZa3qutYGVcGktjUzH39iKXywjTXX67GEE4n1gjE4QpqtXSQ6heh0o5fPJGTngkOeHjX7cR4I/7D3OqrZ0n16wY9UbuT7K6HBztaKTD3UthRDzh+sntYCAIIAKZIEyYg6fr6XO6WJrrT0BptfTw3OZ9xIYauX/F+HZKrrR0kGQIGXYv2jkJIcH0udxoVZf+z35tQgbhOj1nLOZRN9oUhIkmkj0EYRgur5f6LstlneOjE9XsKavp/zk0UEdcqJHZSePbwuZwWwOvVZXy99MDCSeH6hv5wftb2V9b3//Y6ow0vrxk/kWD3WgUhMdxR9rQ9bo/lBziex99OKgyiCBcCSKQCXS29/Cbp9/loy1lkz2UKeOF/Ud4ft/hywpmty6exc2LBkpBqRQKPr9iLnNSRre5ebRmBJvQq9Qsik7qf0ynUqFSKAaVpZpoWqUSjUI57mt750iSxLaSSsyWngk5vzB9ialFAQkJScJf+E8AoCgxjgO1DURexobmhIjg8RvQRQSptWzMHbxfbWZUBDOjRu4cMJ7+Iyd/Qs9f39ZNWW0rVY0dPHDt5VWKET5dRNaiIAjjrsXWg8frJS54/LZFSJLE+wdPkZ8WS1SoYdzOK0xNorGmIFyCRouVH23ezpYzVZM9lGnvj/sO8fv9IzdFHQuZTMbaokwRxIQhxNSiIHzMJ0l4JB++qTtJMW3MS4rH5fVO9jCEzwgxtSgIgiBMOWJqURAEQfjMEIFMEARBmNZEIBMEQRCmNRHIBEEQhGltwgOZ0+kkPz8fmUxGSUnJRL+dIAiC8Bkz4YHsm9/8JjEx41tbThCEkb1z4hSbyyonexiCMOEmNJC9++67fPDBBzz99NMT+TaCIAzjUE0DB2vqRz5QEKa5CdsQ3drayoMPPsgbb7xBQMDomu45nU6cTmf/z1ardaKGJwifeg8tLUY+QQV8BWEqmZA7MkmSuPfee3n44YcpLCwc9eueeuopjEZj/3/x8fETMTxBmDSSJPFhaSUdPX0T/l6RQYGEG0TjS+HTb0yB7PHHH0cmk130v4qKCp555hlsNhtPPPHEmAbzxBNPYLFY+v+rrxfTIsKny+mWdk43m3ntQOlkD2VKeufYKf604xBTuOCQMAWNaWrxscce4957773oMSkpKWzdupW9e/ei0WgGPVdYWMiGDRt44YUXhn2tRqMZ8hpB+DSJDQ6i09rHPUsLJuT8dpebZ97czczESK6dmzUh7zGRzrS002rpwSdJKMS0qDBKYwpk4eHhhIeHj3jcr371K370ox/1/9zU1MSaNWt4+eWXKS4WfYSEz67NJWdICA2mvL6NeFPwuJ/f55NwuN04XJ5xP/eVsHHVfNxeL4rL7GItfLZMSLJHQkLCoJ8DA/3NCVNTU4mLi5uItxSEaWH17HS2Hq9kycyUCTm/Xqvm+3deNSHnvhKUCjlKhQhiwtiINi6CcAXptWquK8qe7GEIwqfKFQlkSUlJYvFWEARBmBDiHl4QBEGY1kQgEwThkpxqa8fqcEz2MARBBDJBEMaus8/OS0eO85eDJZM9FEEQyR6CIIxdiE5LWngYOdGRkz0UQRCBTBCEsZPJZGwomDVu57P1OtBpVCiVinE7p/DZIaYWBUGYVHanm5//bRsv/PvAZA9FmKbEHZkgCJNKo1KSGmciOSZssociTFMikAmCMKnkchl3Xzt3sochTGNialEQBEGY1kQgEwRBEKY1EcgEQRCEaU0EMkEQBGFaE4FMEARBmNZEIBMEQRCmNRHIBEEQhGlNBDJBEARhWhOBTBAEQZjWRCATBEEQpjURyARBEIRpTQQyQRAEYVoTgUwQBEGY1kQgEwRBEKa1Kd3GRZIkAKxW6ySPRBAEQbiSzn3un4sDFzOlA5nNZgMgPj5+kkciCIIgTAabzYbRaLzoMTJpNOFukvh8PpqamjAYDMhksgl/P6vVSnx8PPX19QQFBU34+30aiWt4ecT1u3ziGl6eqXL9JEnCZrMRExODXH7xVbApfUcml8uJi4u74u8bFBQk/gFcJnENL4+4fpdPXMPLMxWu30h3YueIZA9BEARhWhOBTBAEQZjWRCA7j0aj4cknn0Sj0Uz2UKYtcQ0vj7h+l09cw8szHa/flE72EARBEISRiDsyQRAEYVoTgUwQBEGY1kQgEwRBEKY1EcgEQRCEaU0EMkEQBGFaE4FsFJxOJ/n5+chkMkpKSiZ7ONNCTU0N999/P8nJyeh0OlJTU3nyySdxuVyTPbQp7Te/+Q1JSUlotVqKi4s5cODAZA9pWnjqqaeYO3cuBoOBiIgI1q9fz6lTpyZ7WNPWT3/6U2QyGV/96lcneyijIgLZKHzzm98kJiZmsocxrVRUVODz+Xjuuec4efIk//u//8vvfvc7vv3tb0/20Kasl19+ma9//es8+eSTHDlyhFmzZrFmzRra2tome2hT3o4dO9i4cSP79u1j8+bNuN1uVq9eTW9v72QPbdo5ePAgzz33HHl5eZM9lNGThIt65513pMzMTOnkyZMSIB09enSyhzRt/exnP5OSk5MnexhTVlFRkbRx48b+n71erxQTEyM99dRTkziq6amtrU0CpB07dkz2UKYVm80mzZgxQ9q8ebO0dOlS6Stf+cpkD2lUxB3ZRbS2tvLggw/y17/+lYCAgMkezrRnsVgIDQ2d7GFMSS6Xi8OHD7Nq1ar+x+RyOatWrWLv3r2TOLLpyWKxAIi/b2O0ceNGrr322kF/D6eDKV39fjJJksS9997Lww8/TGFhITU1NZM9pGmtsrKSZ555hqeffnqyhzIltbe34/V6iYyMHPR4ZGQkFRUVkzSq6cnn8/HVr36VhQsXkpOTM9nDmTZeeukljhw5wsGDByd7KGP2mbsje/zxx5HJZBf9r6KigmeeeQabzcYTTzwx2UOeUkZ7/c7X2NjI2rVrufXWW3nwwQcnaeTCZ8XGjRspLS3lpZdemuyhTBv19fV85Stf4e9//ztarXayhzNmn7lai2azmY6Ojosek5KSwm233cZbb701qKGn1+tFoVCwYcMGXnjhhYke6pQ02uunVqsBaGpqYtmyZcybN48///nPIzbI+6xyuVwEBATwyiuvsH79+v7H77nnHrq7u9m0adPkDW4aefTRR9m0aRMfffQRycnJkz2caeONN97gxhtvRKFQ9D/m9XqRyWTI5XKcTueg56aaz1wgG626ujqsVmv/z01NTaxZs4ZXXnmF4uLiSWn4Od00NjayfPlyCgoK+Nvf/jal/yFMBcXFxRQVFfHMM88A/imyhIQEHn30UR5//PFJHt3UJkkSX/rSl3j99dfZvn07M2bMmOwhTSs2m43a2tpBj913331kZmbyrW99a8pP0Yo1sgtISEgY9HNgYCAAqampIoiNQmNjI8uWLSMxMZGnn34as9nc/1xUVNQkjmzq+vrXv84999xDYWEhRUVF/OIXv6C3t5f77rtvsoc25W3cuJEXX3yRTZs2YTAYaGlpAfwdhnU63SSPbuozGAxDgpVerycsLGzKBzEQgUyYIJs3b6ayspLKysohgV9MAgzv9ttvx2w28/3vf5+Wlhby8/N57733hiSACEM9++yzACxbtmzQ488//zz33nvvlR+QcEWJqUVBEARhWhMr74IgCMK0JgKZIAiCMK2JQCYIgiBMayKQCYIgCNOaCGSCIAjCtCYCmSAIgjCtiUAmCIIgTGsikAmCIAjTmghkgiAIwrQmApkgCIIwrYlAJgiCIExr/x82IkjuCm2rhQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "rng, k1 = jr.split(rng)\n", - "xi = jr.normal(k1, (n_points,))\n", - "values = jax.jit(gp.generate)(graph, covariance, xi)\n", - "\n", - "plt.figure(figsize=(5, 5))\n", - "plt.scatter(*points.T, c=values, s=.1)\n", - "plt.gca().set(aspect='equal')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c05428b0", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "graphgp (3.13.3)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.13.3" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/benchmarks/benchmark.py b/benchmarks/benchmark.py deleted file mode 100644 index 94f1143..0000000 --- a/benchmarks/benchmark.py +++ /dev/null @@ -1,309 +0,0 @@ -#!/usr/bin/env python3 -""" -Benchmark script for graphgp algorithm performance testing. - -Sample configuration file format: -{ - "defaults": { - "covariance": {"matern_p": 0, "r_min": 1e-5, "r_max": 10.0, "n_bins": 1000}, - "distribution": {"type": "gaussian"}, - "graph": {"strict": true}, - "timing_runs": 5, - "cuda": false, - "seed": 137 - }, - "runs": [ - {"n": 10000, "n0": 500, "d": 2, "k": 5, "cuda": false, "discrete_cov": false}, - {"n": 10000, "n0": 500, "d": 2, "k": 5, "cuda": true}, - {"n": 100000, "n0": 1000, "d": 3, "k": 10, "cuda": false, "distribution": {"type": "radial", "r_min": 0.1, "r_max": 10.0}}, - {"n": 100000, "n0": 1000, "d": 3, "k": 10, "cuda": true, "distribution": {"type": "uniform"}}, - {"n": 50000, "n0": 1000, "d": 2, "k": 8, "graph": {"strict": false, "factor": 1.3}} - ] -} - -Distribution types: -- "gaussian": Standard normal distribution (default) -- "uniform": Uniform distribution from -1 to 1 -- "radial": Points at random directions and log-uniform distances from origin - Requires "r_min" and "r_max" parameters - -Graph types: -- "strict": true (default) - Use build_graph for highest accuracy but slower to build -- "strict": false - Use build_lazy_graph for faster building but less accuracy - Requires "factor" parameter (multiplicative factor for batch growth) -- "serial_depth": true/false - Use compute_depths_serial if true, compute_depths if false (default) -""" - -import json -import time -import argparse -from datetime import datetime - -import jax -import jax.numpy as jnp -import jax.random as jr -from jax.tree_util import Partial - -import numpy as np - -import graphgp as gp -from graphgp.tree import build_tree, query_preceding_neighbors, query_offset_neighbors -from graphgp.graph import compute_depths_parallel, compute_depths_serial, order_by_depth - - -def generate_points(rng, n_points, n_dim, distribution_params): - """Generate points according to the specified distribution.""" - dist_type = distribution_params["type"] - - if dist_type == "gaussian": - return jr.normal(rng, (n_points, n_dim)) - elif dist_type == "uniform": - return jr.uniform(rng, (n_points, n_dim), minval=-1.0, maxval=1.0) - elif dist_type == "radial": - # Random directions on unit sphere - directions = jr.normal(rng, (n_points, n_dim)) - directions = directions / jnp.linalg.norm(directions, axis=1, keepdims=True) - - # Random radii in log space - r_min = distribution_params["r_min"] - r_max = distribution_params["r_max"] - log_r = jr.uniform(rng, (n_points, 1), minval=jnp.log(r_min), maxval=jnp.log(r_max)) - radii = jnp.exp(log_r) - - return directions * radii - else: - raise ValueError(f"Unknown distribution type: {dist_type}") - - -def run_single_benchmark(test_params): - """Run benchmark for a single parameter combination.""" - - # Build covariance - covariance = gp.compute_matern_covariance_discrete( - p=test_params["covariance"]["matern_p"], - r_min=test_params["covariance"]["r_min"], - r_max=test_params["covariance"]["r_max"], - n_bins=test_params["covariance"]["n_bins"], - ) - - # Use test-specific random seed - test_rng = jr.key(test_params["seed"]) - test_rng, k1 = jr.split(test_rng, 2) - - # Generate points according to distribution - points = generate_points(k1, test_params["n"], test_params["d"], test_params["distribution"]) - - # Build graph with timing - graph_timings = {} - - if test_params["graph"]["strict"]: - if test_params["graph"]["fuse"]: - for i in range(2): - # Time all-cuda build graph - if i > 0: - del graph - start = time.perf_counter() - graph = gp.build_graph(points, n0=test_params["n0"], k=test_params["k"], cuda=test_params["cuda"]) - graph.points.block_until_ready() - graph_timings["build_graph"] = time.perf_counter() - start - - else: - # Time build_tree - for i in range(2): - start = time.perf_counter() - points_reordered, split_dims, indices = build_tree(points, cuda=test_params["cuda"]) - indices.block_until_ready() - graph_timings["build_tree"] = time.perf_counter() - start - - # Time query_preceding_neighbors - for i in range(2): - start = time.perf_counter() - neighbors = query_preceding_neighbors( - points_reordered, split_dims, n0=test_params["n0"], k=test_params["k"], cuda=test_params["cuda"] - ) - neighbors.block_until_ready() - graph_timings["query_neighbors"] = time.perf_counter() - start - - # Time compute_depths - for i in range(2): - if test_params["graph"]["serial_depth"]: - start = time.perf_counter() - depths = compute_depths_serial(neighbors, n0=test_params["n0"], cuda=test_params["cuda"]) - depths.block_until_ready() - graph_timings["compute_depths_serial"] = time.perf_counter() - start - else: - start = time.perf_counter() - depths = compute_depths_parallel(neighbors, n0=test_params["n0"], cuda=test_params["cuda"]) - depths.block_until_ready() - graph_timings["compute_depths_parallel"] = time.perf_counter() - start - - # Time order_by_depth - for i in range(2): - start = time.perf_counter() - points_final, indices_final, neighbors_final, depths_final = order_by_depth( - points_reordered, indices, neighbors, depths, cuda=test_params["cuda"] - ) - offsets = jnp.searchsorted(depths_final, jnp.arange(1, jnp.max(depths_final) + 2)) - offsets = tuple(int(o) for o in offsets) - depths_final.block_until_ready() - graph_timings["order_by_depth"] = time.perf_counter() - start - - graph = gp.Graph(points_final, neighbors_final, offsets, indices_final) - else: - raise NotImplementedError("Lazy graph is currently broken.") - # # Time build_tree for lazy graph - # start = time.perf_counter() - # points_reordered, split_dims, indices = build_tree(points) - # graph_timings["build_tree"] = time.perf_counter() - start - - # # Calculate offsets for lazy graph - # offsets = [test_params["n0"]] - # while offsets[-1] < len(points): - # next_offset = offsets[-1] * test_params["graph"]["factor"] - # offsets.append(int(min(next_offset, len(points)))) - # offsets = tuple(offsets) - - # # Time query_offset_neighbors - # start = time.perf_counter() - # neighbors = query_offset_neighbors(points_reordered, split_dims, offsets=offsets, k=test_params["k"], cuda=True) - # graph_timings["query_neighbors"] = time.perf_counter() - start - - # graph = gp.Graph(points_reordered, neighbors[:, ::-1], offsets, indices) - - - - # Prepare function to benchmark - if test_params["function"] == "forward": - func = jax.jit(lambda g, c, xi: gp.generate(g, c, xi, cuda=test_params["cuda"])) - elif test_params["function"] == "jvp": - func = jax.jit(lambda g, c, xi: jax.jvp(lambda x, cutoff: gp.generate(g, (c[0], Partial(c[1], cutoff=cutoff)), x, cuda=test_params["cuda"]), (xi, 1.0), (jnp.ones_like(xi), 1.0))[1]) - elif test_params["function"] == "vjp": - func = jax.jit(lambda g, c, xi: jax.vjp(lambda x, cutoff: gp.generate(g, (c[0], Partial(c[1], cutoff=cutoff)), x, cuda=test_params["cuda"]), xi, 1.0)[1](jnp.ones_like(xi))[0]) - elif test_params["function"] == "grad": - func = jax.jit(lambda g, c, xi: jax.grad(lambda x: jnp.linalg.norm(gp.generate(g, c, x, cuda=test_params["cuda"])))(xi)) - elif test_params["function"] == "inverse": - func = jax.jit(lambda g, c, xi: gp.generate_inv(g, c, xi, cuda=test_params["cuda"])) - elif test_params["function"] == "logdet": - func = jax.jit(lambda g, c, xi: gp.generate_logdet(g, c, cuda=test_params["cuda"])) - elif test_params["function"] == "fft": - graph.points = None - graph.neighbors = None - @jax.jit - def func(g, c, xi): - for d in range(test_params["d"]): - xi = jnp.fft.fft(xi) - return xi - - # Don't re-order points, this significantly impacts runtime - graph.indices = None - - # Time multiple runs with 1 warmup - times = [] - for i in range(1 + test_params["timing_runs"]): - if i > 0: - del xi, output - test_rng, k2 = jr.split(test_rng) - xi = jr.normal(k2, (test_params["n"],)) - start = time.perf_counter() - output = func(graph, covariance, xi) - output.block_until_ready() - times.append(time.perf_counter() - start) - warmup_time = times[0] - mean_time = np.mean(times[1:]) - std_time = np.std(times[1:]) - - # Memory stats - stats = func.lower(graph, covariance, xi).compile().memory_analysis() - total_mem = stats.temp_size_in_bytes + stats.argument_size_in_bytes + stats.output_size_in_bytes - - result = { - "parameters": test_params.copy(), - "graph_depth": len(graph.offsets), - "graph_timings": {k: float(v) for k, v in graph_timings.items()}, - "warmup_time": float(warmup_time), - "compiled_memory_mb": float(total_mem / (1024**2)), - "timing": {"mean": float(mean_time), "std": float(std_time), "times": [float(t) for t in times]}, - } - - return result - - -def main(): - parser = argparse.ArgumentParser(description="Benchmark graphgp algorithm performance") - parser.add_argument("--config", type=str, help="Path to JSON configuration file") - parser.add_argument("--output", type=str, help="Output file for results (if not provided, only prints results)") - parser.add_argument("--continue", dest="continue_run", action="store_true", - help="Continue an existing benchmark run from output file") - - args = parser.parse_args() - - # Load configuration and existing results - if args.continue_run: - if args.config: - raise ValueError("Cannot specify --config when using --continue to avoid conflicts.") - if not args.output: - raise ValueError("Must specify --output when using --continue to load existing results.") - with open(args.output, "r") as f: - output_data = json.load(f) - config = output_data["config"] - results = output_data["results"] - print(f"Continuing from {args.output}: {len(results)}/{len(config['runs'])} completed") - else: - if not args.config: - raise ValueError("Must specify --config when not continuing from an existing run.") - with open(args.config, "r") as f: - config = json.load(f) - results = [] - print(f"Running {len(config["runs"])} benchmark combinations...") - print("-" * 50) - - # Merge defaults with each test combination - run_configs = [] - for test_params in config["runs"]: - merged_params = config["defaults"].copy() - merged_params.update(test_params) - run_configs.append(merged_params) - - for i in range(len(results), len(run_configs)): - test_params = run_configs[i] - print(f"Benchmark {i + 1}/{len(run_configs)}") - param_str = ", ".join([f"{k}={v}" for k, v in config["runs"][i].items()]) - print(f"{param_str}", flush=True) - - result = run_single_benchmark(test_params) - results.append(result) - - # Print graph depth and all graph timings on first line - print(", ".join([f"{k}: {1000 * v:.2f} ms" for k, v in result["graph_timings"].items()])) - print(f"Graph depth: {result['graph_depth']}") - - # Print compiled memory usage on third line - compiled_mem_mb = result["compiled_memory_mb"] - print(f"Compiled memory: {compiled_mem_mb:.1f} MB") - - # Print JIT compilation time on second line - warmup_ms = 1000 * result["warmup_time"] - print(f"Warmup: {warmup_ms:.2f} ms") - - # Print forward pass time with std on fourth line - mean_ms = 1000 * result["timing"]["mean"] - std_ms = 1000 * result["timing"]["std"] - print(f"Run: {mean_ms:.2f} ± {std_ms:.2f} ms") - - # Save results after each run if output file is specified - if args.output: - output_data = {"timestamp": datetime.now().isoformat(), "config": config, "results": results} - with open(args.output, "w") as f: - json.dump(output_data, f, indent=2) - - print() - - # Final summary - if args.output: - print(f"\nAll results saved to: {args.output}") - else: - print(f"\nCompleted {len(results)} benchmark combinations.") - - -if __name__ == "__main__": - main() diff --git a/benchmarks/compare_all.json b/benchmarks/compare_all.json deleted file mode 100644 index 8c9e942..0000000 --- a/benchmarks/compare_all.json +++ /dev/null @@ -1,2460 +0,0 @@ -{ - "defaults": { - "covariance": { - "matern_p": 0, - "discrete_cov": true, - "r_min": 1e-05, - "r_max": 10.0, - "n_bins": 1000 - }, - "distribution": { - "type": "gaussian" - }, - "graph": { - "strict": true, - "serial_depth": false, - "fuse": true - }, - "function": "forward", - "timing_runs": 5, - "cuda": true, - "seed": 137 - }, - "runs": [ - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "forward" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "jvp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "vjp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "grad" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "inverse" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "logdet" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "forward" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "jvp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "vjp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "grad" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "inverse" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "logdet" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "forward" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "jvp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "vjp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "grad" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "inverse" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "logdet" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "forward" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "jvp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "vjp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "grad" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "inverse" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "logdet" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "forward" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "jvp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "vjp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "grad" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "inverse" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "logdet" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "forward" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "jvp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "vjp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "grad" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "inverse" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "logdet" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "forward" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "jvp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "vjp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "grad" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "inverse" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "logdet" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "forward" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "jvp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "vjp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "grad" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "inverse" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "logdet" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "forward" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "jvp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "vjp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "grad" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "inverse" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "logdet" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "forward" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "jvp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "vjp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "grad" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "inverse" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "logdet" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "forward" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "jvp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "vjp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "grad" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "inverse" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "logdet" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "forward" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "jvp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "vjp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "grad" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "inverse" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "logdet" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "forward" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "jvp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "vjp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "grad" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "inverse" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "logdet" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "forward" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "jvp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "vjp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "grad" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "inverse" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "logdet" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "forward" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "jvp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "vjp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "grad" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "inverse" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "logdet" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "forward" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "jvp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "vjp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "grad" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "inverse" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "logdet" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "forward" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "jvp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "vjp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "grad" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "inverse" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "logdet" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "forward" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "jvp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "vjp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "grad" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "inverse" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "logdet" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "forward" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "jvp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "vjp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "grad" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "inverse" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "logdet" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "forward" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "jvp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "vjp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "grad" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "inverse" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "logdet" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "forward" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "jvp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "vjp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "grad" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "inverse" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true, - "function": "logdet" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "forward" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "jvp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "vjp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "grad" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "inverse" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true, - "function": "logdet" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "forward" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "jvp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "vjp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "grad" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "inverse" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true, - "function": "logdet" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "forward" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "jvp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "vjp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "grad" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "inverse" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true, - "function": "logdet" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "forward" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "jvp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "vjp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "grad" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "inverse" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true, - "function": "logdet" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "forward" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "jvp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "vjp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "grad" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "inverse" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "logdet" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "forward" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "jvp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "vjp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "grad" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "inverse" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "logdet" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "forward" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "jvp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "vjp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "grad" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "inverse" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "logdet" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "forward" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "jvp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "vjp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "grad" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "inverse" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "logdet" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "forward" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "jvp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "vjp" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "grad" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "inverse" - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "logdet" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "forward" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "jvp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "vjp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "grad" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "inverse" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "logdet" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "forward" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "jvp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "vjp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "grad" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "inverse" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "logdet" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "forward" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "jvp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "vjp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "grad" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "inverse" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "logdet" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "forward" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "jvp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "vjp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "grad" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "inverse" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "logdet" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "forward" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "jvp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "vjp" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "grad" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "inverse" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "logdet" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "forward" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "jvp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "vjp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "grad" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "inverse" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "logdet" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "forward" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "jvp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "vjp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "grad" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "inverse" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "logdet" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "forward" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "jvp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "vjp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "grad" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "inverse" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "logdet" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "forward" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "jvp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "vjp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "grad" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "inverse" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "logdet" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "forward" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "jvp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "vjp" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "grad" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "inverse" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "logdet" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "forward" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "jvp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "vjp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "grad" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "inverse" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "logdet" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "forward" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "jvp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "vjp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "grad" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "inverse" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "logdet" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "forward" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "jvp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "vjp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "grad" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "inverse" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "logdet" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "forward" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "jvp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "vjp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "grad" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "inverse" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "logdet" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "forward" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "jvp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "vjp" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "grad" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "inverse" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "logdet" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "forward" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "jvp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "vjp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "grad" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "inverse" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": false, - "function": "logdet" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "forward" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "jvp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "vjp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "grad" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "inverse" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": false, - "function": "logdet" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "forward" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "jvp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "vjp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "grad" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "inverse" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false, - "function": "logdet" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "forward" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "jvp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "vjp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "grad" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "inverse" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false, - "function": "logdet" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "forward" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "jvp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "vjp" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "grad" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "inverse" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false, - "function": "logdet" - } - ] -} \ No newline at end of file diff --git a/benchmarks/compare_scaling.json b/benchmarks/compare_scaling.json deleted file mode 100644 index 2259d2d..0000000 --- a/benchmarks/compare_scaling.json +++ /dev/null @@ -1,347 +0,0 @@ -{ - "defaults": { - "covariance": { - "matern_p": 0, - "discrete_cov": true, - "r_min": 1e-05, - "r_max": 10.0, - "n_bins": 1000 - }, - "distribution": { - "type": "gaussian" - }, - "graph": { - "strict": true, - "serial_depth": false, - "fuse": true, - "factor": 5.0 - }, - "timing_runs": 5, - "cuda": false, - "seed": 137 - }, - "runs": [ - { - "n": 100000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 100000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false - }, - { - "n": 100000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 100000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false - }, - { - "n": 100000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 100000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false - }, - { - "n": 300000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 300000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false - }, - { - "n": 300000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 300000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false - }, - { - "n": 300000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 300000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": false - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": false - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": false - } - ] -} \ No newline at end of file diff --git a/benchmarks/cuda_breakdown_scaling.json b/benchmarks/cuda_breakdown_scaling.json deleted file mode 100644 index 1c79914..0000000 --- a/benchmarks/cuda_breakdown_scaling.json +++ /dev/null @@ -1,172 +0,0 @@ -{ - "defaults": { - "covariance": { - "matern_p": 0, - "discrete_cov": true, - "r_min": 1e-05, - "r_max": 10.0, - "n_bins": 1000 - }, - "distribution": { - "type": "gaussian" - }, - "graph": { - "strict": true, - "serial_depth": false, - "fuse": false, - "factor": 5.0 - }, - "timing_runs": 5, - "cuda": false, - "seed": 137 - }, - "runs": [ - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 600000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 600000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 600000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - } - ] -} \ No newline at end of file diff --git a/benchmarks/cuda_scaling.json b/benchmarks/cuda_scaling.json deleted file mode 100644 index 6dc5d2d..0000000 --- a/benchmarks/cuda_scaling.json +++ /dev/null @@ -1,340 +0,0 @@ -{ - "defaults": { - "covariance": { - "matern_p": 0, - "discrete_cov": true, - "r_min": 1e-05, - "r_max": 10.0, - "n_bins": 1000 - }, - "distribution": { - "type": "gaussian" - }, - "graph": { - "strict": true, - "serial_depth": false, - "fuse": true - }, - "function": "forward", - "timing_runs": 5, - "cuda": true, - "seed": 137 - }, - "runs": [ - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 1000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 3000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 10000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 30000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 100000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 16, - "cuda": true - }, - { - "n": 300000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 600000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true - }, - { - "n": 600000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true - }, - { - "n": 600000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 600000000, - "n0": 1000, - "d": 3, - "k": 8, - "cuda": true - }, - { - "n": 600000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - }, - { - "n": 1000000000, - "n0": 1000, - "d": 3, - "k": 1, - "cuda": true - }, - { - "n": 1000000000, - "n0": 1000, - "d": 3, - "k": 2, - "cuda": true - }, - { - "n": 1000000000, - "n0": 1000, - "d": 3, - "k": 4, - "cuda": true - }, - { - "n": 1000000000, - "n0": 1000, - "d": 3, - "k": 1, - "function": "fft" - } - ] -} \ No newline at end of file diff --git a/benchmarks/graph_timing.json b/benchmarks/graph_timing.json deleted file mode 100644 index c5295ca..0000000 --- a/benchmarks/graph_timing.json +++ /dev/null @@ -1,56 +0,0 @@ -{ - "defaults": { - "covariance": { - "matern_p": 0, - "discrete_cov": true, - "r_min": 1e-05, - "r_max": 10.0, - "n_bins": 1000 - }, - "distribution": { - "type": "gaussian" - }, - "d": 3, - "timing_runs": 5, - "cuda": true, - "seed": 137 - }, - "runs": [ - { - "n": 100000000, - "n0": 1000, - "k": 8, - "graph": { - "strict": true, - "serial_depth": false - } - }, - { - "n": 100000000, - "n0": 1000, - "k": 8, - "graph": { - "strict": true, - "serial_depth": false - } - }, - { - "n": 100000000, - "n0": 1000, - "k": 8, - "graph": { - "strict": true, - "serial_depth": true - } - }, - { - "n": 100000000, - "n0": 1000, - "k": 8, - "graph": { - "strict": true, - "serial_depth": true - } - } - ] -} \ No newline at end of file diff --git a/benchmarks/make_scaling_config.py b/benchmarks/make_scaling_config.py deleted file mode 100644 index 25bb692..0000000 --- a/benchmarks/make_scaling_config.py +++ /dev/null @@ -1,45 +0,0 @@ -import json - -config = { - "defaults": { - "covariance": {"matern_p": 0, "discrete_cov": True, "r_min": 1e-5, "r_max": 10.0, "n_bins": 1000}, - "distribution": {"type": "gaussian"}, - "graph": {"strict": True, "serial_depth": False, "fuse": True}, - "function": "forward", - "timing_runs": 5, - "cuda": True, - "seed": 137 - }, - "runs": [], -} - - -d = 3 - -for cuda in [True, False]: - for n in [1_000_000, 3_000_000, 10_000_000, 30_000_000, 100_000_000]: - for k in [1, 2, 4, 8, 16]: - for function in ["forward", "jvp", "vjp", "grad", "inverse", "logdet"]: - # if n * (d + d + k + 4) > 15 * 1e9: - # continue - run_config = { - "n": n, - "n0": 1000, - "d": d, - "k": k, - "cuda": cuda, - "function": function, - } - config["runs"].append(run_config) - - if cuda is True: - config["runs"].append({ - "n": n, - "n0": 1000, - "d": d, - "k": 1, - "function": "fft", - }) - -with open("benchmarks/compare_all.json", "w") as f: - json.dump(config, f, indent=2) \ No newline at end of file diff --git a/benchmarks/plot_benchmarks.ipynb b/benchmarks/plot_benchmarks.ipynb deleted file mode 100644 index 3e0343c..0000000 --- a/benchmarks/plot_benchmarks.ipynb +++ /dev/null @@ -1,371 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 134, - "id": "a5d38d03", - "metadata": {}, - "outputs": [], - "source": [ - "import json\n", - "import matplotlib.pyplot as plt\n", - "\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 135, - "id": "837c11fb", - "metadata": {}, - "outputs": [], - "source": [ - "# Load data\n", - "with open('output/cuda_scaling_results.json', 'r') as f:\n", - " data = json.load(f)" - ] - }, - { - "cell_type": "code", - "execution_count": 136, - "id": "cde0299f", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeIAAAHbCAYAAAAXnJnGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAn0RJREFUeJzs3XdcleX/x/HXOYc9ZMpSEEVBceIsc1BZrjSzssxyb9xaaqamDStHZmKOsvFL2+VXc5szM7em4l4ge48Dh7Pu3x8kiQMBQVA+z8eDx/d7zrnv675uQt5c130NlaIoCkIIIYQoF+ryroAQQghRmUkQCyGEEOVIglgIIYQoRxLEQgghRDmSIBZCCCHKkQSxEEIIUY4kiIUQQohyJEEshBBClCMJYiGEEKIcSRALUYFcuXIFlUrFvHnzyrsqlcrOnTtRqVTs3LmzvKsiKiEJYlEpXb58mVGjRhEYGIidnR12dnYEBwcTFhbGP//8U97VeygtWbKEr776qtLXQYibqWStaVHZ/P7777z00ktYWFjQp08fGjdujFqt5syZM/z6669cvXqVy5cvU6NGjftetytXrlCzZk3mzp3LpEmT7vv1y1KDBg1wd3cv11bnnepgNpvR6/VYWVmhVkv7RNxfFuVdASHup4sXL/Lyyy9To0YN/vjjD7y9vQt8/uGHH7JkyZK7/jLWarXY29uXZVUrtfv9/VWr1djY2Ny36wlxI/nTT1QqH330EVqtli+//PKWEAawsLBgzJgx+Pr65r/Xv39/HBwcuHjxIl26dMHR0ZE+ffoAsGfPHl588UX8/PywtrbG19eX8ePHk5OTU6Dc62VcunSJjh07Ym9vj4+PD7Nnz+ZOnVLLly8nICAAa2trWrRowcGDB4t0j2lpaYwfPx5/f3+sra2pXr06ffv2JSkpKf+YhIQEBg0ahKenJzY2NjRu3Jivv/66QDk3Pq++W13i4uIYMGAA1atXx9raGm9vb5599lmuXLkCgL+/P6dOnWLXrl2oVCpUKhWhoaEAfPXVV6hUKnbt2sXIkSPx8PCgevXq+d83f3//W+7x7bffRqVS3fL+t99+S8uWLbGzs8PFxYV27dqxZcuWu9bhTs+If/rpJ5o1a4atrS3u7u68+uqrREdHFzjm+n/b6OhoevTogYODA1WrVmXSpEmYTKZC/1sJAdIiFpXM77//Tu3atWnVqlWxzjMajXTs2JE2bdowb9487OzsgLxf1NnZ2YwYMQI3NzcOHDjAp59+yrVr1/jpp58KlGEymejUqROPPPIIH330EZs2bWLmzJkYjUZmz55d4NjVq1eTmZnJsGHDUKlUfPTRR/Ts2ZNLly5haWl5x3pmZWXRtm1bTp8+zcCBA2natClJSUmsXbuWa9eu4e7uTk5ODqGhoVy4cIFRo0ZRs2ZNfvrpJ/r3709aWhpjx44tdl2ef/55Tp06xejRo/H39ychIYGtW7cSGRmJv78/CxcuZPTo0Tg4ODBt2jQAPD09C1xn5MiRVK1alRkzZqDVaov13wdg1qxZvP3227Ru3ZrZs2djZWXF/v372b59O08//XSR6nCjr776igEDBtCiRQvmzJlDfHw8n3zyCXv37uXo0aM4OzvnH2symejYsSOtWrVi3rx5bNu2jfnz5xMQEMCIESOKfS+iklGEqCTS09MVQOnRo8ctn6WmpiqJiYn5X9nZ2fmf9evXTwGUKVOm3HLejcddN2fOHEWlUilXr169pYzRo0fnv2c2m5WuXbsqVlZWSmJioqIoinL58mUFUNzc3JSUlJT8Y//3v/8pgLJu3bpC73HGjBkKoPz666+3fGY2mxVFUZSFCxcqgPLtt9/mf6bX65VHH31UcXBwUDIyMopVl9TUVAVQ5s6dW2jd6tevr7Rv3/6W97/88ksFUNq0aaMYjcYCn/Xr10+pUaPGLefMnDlTufHX1/nz5xW1Wq0899xzislkuu19F1aHHTt2KICyY8eO/O+Hh4eH0qBBAyUnJyf/uN9//10BlBkzZhSoI6DMnj27QJkhISFKs2bNbrmWEDeTrmlRaWRkZADg4OBwy2ehoaFUrVo1/ys8PPyWY27XsrG1tc3//1qtlqSkJFq3bo2iKBw9evSW40eNGpX//1UqFaNGjUKv17Nt27YCx7300ku4uLjkv27bti0Aly5dKvQef/nlFxo3bsxzzz13y2fXu3I3bNiAl5cXvXv3zv/M0tKSMWPGkJWVxa5du4pVF1tbW6ysrNi5cyepqamF1q8wQ4YMQaPRlOjcNWvWYDabmTFjxi3P92/XhX03hw4dIiEhgZEjRxZ4dty1a1fq1q3L+vXrbzln+PDhBV63bdv2rv+9hAB5RiwqEUdHRyCv+/Zmy5YtY+vWrXz77be3PdfCwiL/ueWNIiMj6d+/P66urvnPBtu3bw9Aenp6gWPVajW1atUq8F5gYCBA/rPU6/z8/Aq8vh6Edwu6ixcv0qBBg0KPuXr1KnXq1LklsOrVq5f/eXHqYm1tzYcffsjGjRvx9PSkXbt2fPTRR8TFxRVaj5vVrFmzWMff6OLFi6jVaoKDg0tcxo2ufw+CgoJu+axu3bq3fI9sbGyoWrVqgfdcXFzu6Q8TUXnIM2JRaTg5OeHt7c3Jkydv+ez6M+ObA/E6a2vrW4LLZDLx1FNPkZKSwuTJk6lbty729vZER0fTv39/zGZziet6p5ahUg6zDYtSl3HjxtGtWzfWrFnD5s2bmT59OnPmzGH79u2EhIQU6To39i5cd6fWbEUbBFXSlrwQIC1iUcl07dqVCxcucODAgXsu68SJE5w7d4758+czefJknn32WTp06ICPj89tjzebzbd0VZ47dw7gtiODSyIgIOC2f2jcqEaNGpw/f/6WPxTOnDmT/3lJrz1x4kS2bNnCyZMn0ev1zJ8/P//zknQRu7i4kJaWdsv7N7dIAwICMJvNREREFFpeUetw/Xtw9uzZWz47e/ZsucwxFw8vCWJRqbzxxhvY2dkxcOBA4uPjb/m8OC3O662gG89RFIVPPvnkjucsXry4wLGLFy/G0tKSJ598ssjXLczzzz/P8ePH+e2332757Ho9u3TpQlxcHD/88EP+Z0ajkU8//RQHB4f8rvWiys7ORqfTFXgvICAAR0dHcnNz89+zt7e/bagWJiAggPT09AKrncXGxt5yfz169ECtVjN79uxb/sC48b9PUevQvHlzPDw8WLp0aYF72LhxI6dPn6Zr167Fug8hCiNd06JSqVOnDqtXr6Z3794EBQXlr6ylKAqXL19m9erVqNXq2z4PvlndunUJCAhg0qRJREdHU6VKFX755Zc7Phe0sbFh06ZN9OvXj1atWrFx40bWr1/Pm2++ecvzxZJ6/fXX+fnnn3nxxRcZOHAgzZo1IyUlhbVr17J06VIaN27M0KFDWbZsGf379+fw4cP4+/vz888/s3fvXhYuXJj/LL2ozp07x5NPPkmvXr0IDg7GwsKC3377jfj4eF5++eX845o1a8Znn33Gu+++S+3atfHw8OCJJ54otOyXX36ZyZMn89xzzzFmzBiys7P57LPPCAwM5MiRI/nH1a5dm2nTpvHOO+/Qtm1bevbsibW1NQcPHsTHx4c5c+YUqw6WlpZ8+OGHDBgwgPbt29O7d+/86Uv+/v6MHz++WN8jIQpVXsO1hShPFy5cUEaMGKHUrl1bsbGxUWxtbZW6desqw4cPV44dO1bg2H79+in29va3LSciIkLp0KGD4uDgoLi7uytDhgxRjh8/rgDKl19+eUsZFy9eVJ5++mnFzs5O8fT0VGbOnFlgus31KUO3mwoEKDNnzrzrvSUnJyujRo1SqlWrplhZWSnVq1dX+vXrpyQlJeUfEx8frwwYMEBxd3dXrKyslIYNGxaob3HqkpSUpISFhSl169ZV7O3tFScnJ6VVq1bKjz/+WOCcuLg4pWvXroqjo6MC5E8juj596eDBg7e9ny1btigNGjRQrKyslKCgIOXbb7+9ZfrSdStXrlRCQkIUa2trxcXFRWnfvr2ydevWu9bh5ulL1/3www/55bm6uip9+vRRrl27VuCYO/183KmOQtxM1poW4j7o378/P//8821HbAshKjd5RiyEEEKUIwliIYQQohxJEAshhBDlSJ4RCyGEEOVIWsRCCCFEOZIgFkIIIcqRLOhRCLPZTExMDI6OjiVank8IIcTDQVEUMjMz8fHxuWXd+XslQXwb4eHhhIeHo9fruXjxYnlXRwghRAURFRVVpJX3ikMGaxUiPT0dZ2dnoqKiqFKlSnlXRwghRDnJyMjA19eXtLQ0nJycSrVsaREX4np3dJUqVSSIhRBClMljShmsJYQQQpQjCWIhhBCiHEkQ30Z4eDjBwcG0aNGivKsihBDiISeDtQqRkZGBk5MT6enphT4jNplMGAyG+1gz8aCytLREo9GUdzWEEMVU1DwoCRmsdQ8URSEuLo60tLTyrop4gDg7O+Pl5SVz04UQgATxPbkewh4eHtjZ2ckvVlEoRVHIzs4mISEBAG9v73KukRCiIpAgLiGTyZQfwm5ubuVdHfGAsLW1BSAhIQEPDw/pphZCyGCtkrr+TNjOzq6cayIeNNd/ZmRcgRACJIhvqzijpqU7WhSX/MwIIW4kQXwbYWFhREREcPDgwfKuihBCiIecBHElFBoayrhx48q7GkIIIZAgrhBMZoV9F5P537Fo9l1MxmR+cKZ2L1++nNDQUKpUqYJKpZKpXEIIUUwyarqcbToZy6x1EcSm6/Lf83ayYWa3YDo1qPjTW7Kzs+nUqROdOnVi6tSp5V0dIYR44EiLuBxtOhnLiG+PFAhhgLh0HSO+PcKmk7H3pR7r16/HycmJVatWFfvccePGMWXKFB555JEyqJkQQjz8JIhvo6RrTSuKQrbeWKSvTJ2BmWtPcbtO6Ovvvb02gkydoUjllXSl0tWrV9O7d29WrVpFnz59WLVqFQ4ODoV+7dmzp0TXEkIIcSvpmr6NsLAwwsLC8tcWLaocg4ngGZtLpQ4KEJeho+HbW4p0fMTsjthZFe8/Z3h4ONOmTWPdunW0b98egO7du9OqVatCz6tWrVqxriOEEOLOJIgrqZ9//pmEhAT27t1boOXv6OiIo6NjOdZMCCEqFwniUmRrqSFidsciHXvgcgr9v7z7POWvBrSgZU3XIl27OEJCQjhy5AgrV66kefPm+YtMrFq1imHDhhV67saNG2nbtm2xrieEEOL2JIhLkUqlKnL3cNs6VfF2siEuXXfb58QqwMvJhrZ1qqJRl/5KTAEBAcyfP5/Q0FA0Gg2LFy8GpGtaCCHuNwnicqJRq5jZLZgR3x5BBQXC+HrszuwWXCYhfF1gYCA7duwgNDQUCwsLFi5cWOyu6bi4OOLi4rhw4QIAJ06cwNHRET8/P1xd796SF0KIyk5GTZejTg28+ezVpng52RR438vJhs9ebXpf5hEHBQWxfft2vvvuOyZOnFjs85cuXUpISAhDhgwBoF27doSEhLB27drSrqoQQjyUVEpJ571UAtdHTaenp1OlSpUCn+l0Oi5fvkzNmjWxsbG5QwlFYzIrHLicQkKmDg9HG1rWdC3TlrAoX6X5syOEuD8Ky4N7JV3TtxEeHk54eDgmk+m+XE+jVvFogOxpLIQQlZF0Td+G7L4khBDifpEgFkIIIcqRBLEQQghRjiSIhRBCiHIkQSyEEEKUIwliIYQQohxJEAshhBDlSIJYCCGEKEcSxLcRHh5OcHBwge0BHyahoaGMGzeuvKshhBACCeLbuu8LephNcHkPnPg573/N92dFr3uVkpLC6NGjCQoKwtbWFj8/P8aMGUN6enp5V00IIR4YssRleYtYC5smQ0bMf+9V8YFOH0Jw9/KrVxHExMQQExPDvHnzCA4O5urVqwwfPpyYmBh+/vnn8q6eEEI8EKRFXJ4i1sKPfQuGMEBGbN77EfdnB6P169fj5OTEqlWrinVegwYN+OWXX+jWrRsBAQE88cQTvPfee6xbtw6j0VhGtRVCiIeLBHFpUhTQa4v2pcuAjW9QcCfi/ILy/mfT5LzjilJeCTfRWr16Nb1792bVqlX06dOHVatW4eDgUOjXnj177lje9Z1JLCyks0UIIYpCfluWJkM2vO9TSoUpeS3lD3yLdvibMWBlX6wrhIeHM23aNNatW0f79u0B6N69O61atSr0vGrVqt32/aSkJN555x2GDh1arHoIIURlJkFcSf38888kJCSwd+/eAqPDHR0dcXR0LHZ5GRkZdO3aleDgYN5+++1SrKkQQjzcJIhLk6VdXsu0KK7+BateuPtxfX6GGq2Ldu1iCAkJ4ciRI6xcuZLmzZujUqkAWLVqFcOGDSv03I0bN9K2bdv815mZmXTq1AlHR0d+++03LC0ti1UXIYSozCSIS5NKVfTu4YAn8kZHZ8Ry++fEqrzPA54AtaY0a5l3+YAA5s+fT2hoKBqNhsWLFwPF75rOyMigY8eOWFtbs3btWmxsbEq9rkII8TCTIC4vak3eFKUf+wIqCoZxXuuUTh+USQhfFxgYyI4dOwgNDcXCwoKFCxcWq2s6IyODp59+muzsbL799lsyMjLIyMgAoGrVqmg0ZVd3IYR4WEgQl6fg7tDrmzvMI/7gvswjDgoKYvv27fkt4/nz5xf53CNHjrB//34AateuXeCzy5cv4+/vX5pVFUKIh5IEcXkL7g51u+Y9M86KBwfPvGfCZdgS3rlzZ4HX9erVIz4+vtjlhIaGopRw2pQQQog8EsQVgVoDNdve/TghhBAPHVnQ4zYe9k0fhBBCVBwSxLdx3zd9EEIIUWlJEAshhBDlSIJYCCGEKEcSxEIIIUQ5kiAWQgghypEEsRBCCFGOJIiFEEKIciRBXAmFhoYybty48q6GEEIIJIgrBJPZxMG4g2y4tIGDcQcxmU3lXaViUxSFzp07o1KpWLNmTXlXRwghHhiyxGU523Z1Gx8c+ID47P/Weva082RKyyl0qNGhHGtWPAsXLszf01gIIUTRSYu4HG27uo0JOycUCGGAhOwEJuycwLar2+5LPdavX4+TkxOrVq0q0fnHjh1j/vz5rFy5spRrJoQQDz9pEZciRVHIMeYU6ViT2cScA3NQuHX3ouvvfXDgA1p5tUJThJ2YbC1sS9QiXb16NcOHD2f16tU888wzrFq1imHDhhV6zsaNG2nbNm+TiuzsbF555RXCw8Px8vIq9vWFEKKykyAuRTnGHFqtblVq5cVnx9P6+9ZFOnb/K/uxs7QrVvnh4eFMmzaNdevW0b59ewC6d+9Oq1aF30O1atXy///48eNp3bo1zz77bLGuLYQQIo8EcSX1888/k5CQwN69ewvsMuXo6Iijo2ORyli7di3bt2/n6NGjZVVNIYR46EkQlyJbC1v2v7K/SMcejj/MyD9G3vW4JU8uoZlnsyJduzhCQkI4cuQIK1eupHnz5vnd2sXpmt6+fTsXL17E2dm5wOfPP/88bdu2ZefOncWqkxBCVEYSxKVIpVIVuXu4tU9rPO08SchOuO1zYhUqPO08ae3TukjPiIsrICCA+fPnExoaikajYfHixUDxuqanTJnC4MGDC3zWsGFDPv74Y7p161bqdRZCiPJgMps4HH+4zMqXIL6N8PBwwsPDMZnKbj6vRq1hSsspTNg5ARWqAmGsIq91Ornl5DIJ4esCAwPZsWMHoaGhWFhYsHDhwmJ1TXt5ed12gJafnx81a9Ys7eoKIcR9d32KaUxyTJldQ6Yv3UZYWBgREREcPHiwTK/ToUYHFoQuwMPOo8D7nnaeLAhdcF/mEQcFBbF9+3a+++47Jk6cWObXE0KIB0XeFNPxxGvjyvQ60iIuZx1qdOBx38c5knCExOxEqtpVpalH0zJtCd/87LZevXrEx8ff/uBiUpRbu9mFEOJBYzKb+GDvzLzfaWW8WJEEcQWgUWto4dXi7gcKIYS4L47EHSTekFHmIQzSNS2EEELcIj7yr/t2LQliIYQQ4iYZiSn37VoSxEIIIcQNzqacZUXa7rwX92HciwSxEEII8a81F9bQZ0MfksypuBjzprCqyjiMZbCWEEKISk9n1PHBgQ/45fwvALTJzuG9hGQO21jzobsLMZTdoC0JYiGEEJVaVGYUE3dO5HTKaVSKQlhaOs+lwiTlTSzTs/gy+xsuqDJ5ooyuL0EshBCi0toZtZM3/3yTTH0mLiYTHyYkYZldg8lu03in79OcjE7n5bWP4ZW8H5hRJnWQIBZCCFHpGM1Gwo+F8/mJzwForMtlXkISv+c+TVSzKSzt1hBrCw3VXex4KtiLHf8E8usCCWJRSkJDQ2nSpAkLFy4s76oIIcR9l5STxOTdkzkQdwCAPumZDEvOYZZ5NI+/MJTBTaoVOF6jVtGylmuZ1UdGTVcAismEdv8B0n9fj3b/AZQy3GyitMXFxfHaa6/h5eWFvb09TZs25ZdffinvagkhxG0dTTjKS+te4kDcAWzNZuYmJPFckj3jHOYzctQknr0phO8HaRGXs4wtW4h/fw7GuP8WFbfw8sLzzalUefrpcqxZ0fTt25e0tDTWrl2Lu7s7q1evplevXhw6dIiQkJDyrp4QQgB56+D/X8T/8fHhBRgVE7X0Bj5OSOSo7hGWBb1J+IutcLAun0iUFnE5ytiyheix4wqEMIAxPp7osePI2LLlvtRj/fr1ODk5sWrVqmKf+9dffzF69GhatmxJrVq1eOutt3B2dubw4bLbu1MIIYojS5/FxF0TmXtoLkbFROcsLV9FJ/Glrh9ZnRYzv0/rcgthkBZxqVIUBSUnp2jHmkzEv/ve7VdtURRQQfx772P/6KOoNHffiUlla4uqBIuTr169muHDh7N69WqeeeYZVq1axbBhwwo9Z+PGjbRt2xaA1q1b88MPP9C1a1ecnZ358ccf0el0hIaGFrsuQghR2s6nnmfCzglcybiChaLwenIqbTNsmGj1HqMG9qKpn0t5V1GCuDQpOTmcbdqslArLaxmfa9GySIcHHTmMys6uWJcIDw9n2rRprFu3jvbt2wPQvXt3WrVqVeh51ar99wzlxx9/5KWXXsLNzQ0LCwvs7Oz47bffqF27drHqIoQQRaGYTGQfOowxMRGLqlWxa97sjo2VdRfX8c6+2eSYdHgZjcxLSCI5O5j3fN9iXp/2uNpb3efa354EcSX1888/k5CQwN69e2nR4r8tGB0dHXF0dCxyOdOnTyctLY1t27bh7u7OmjVr6NWrF3v27KFhw4ZlUXUhRCVV1DE1epOejw5+xA9nfwCgdXYO7yWk8JXheTTtJhLeIQiNuuy3NywqCeJSpLK1JehI0Z6NZh86RNTQwruAAXyXL8OuefMiXbs4QkJCOHLkCCtXrqR58+b53drF6Zq+ePEiixcv5uTJk9SvXx+Axo0bs2fPHsLDw1m6dGmx6iSEEHdyfUzNzY/zro+p4ZOFVHn6aWKyYpi4cyInk0+iUhSGpWXwQqrCNPU0Xunbl/aBVcul/oWRIC5FKpWqyN3D9o89hoWXF8b4+Ns/J1apsPD0xP6xx4r0jLi4AgICmD9/PqGhoWg0GhYvXgwUr2s6OzsbALW64Jg/jUaD2Wwu9ToLISonxWQi/v05hYypURH//hz+qWvDlL1vkq5Px8lk4oPEZGy0fkx1f4t3+z6Nj3PxGiz3iwRxOVFpNHi+OTXvLzmVquAP2L+tU883p5ZJCF8XGBjIjh07CA0NxcLCgoULFxara7pu3brUrl2bYcOGMW/ePNzc3FizZg1bt27l999/L7N6CyEql+xDh2+ZXVKAomCMi2PxVyNJr6Gifm4uCxKS2KB7mpgWU1natSFWFhV3klDFrVklUOXpp6n2yUIsPD0LvG/h6Um1f7tZylpQUBDbt2/nu+++Y+LEicU619LSkg0bNlC1alW6detGo0aN+Oabb/j666/p0qVLGdVYCFHZGBMTi3Scc5bCSxmZLIlOZ65+NB4vLmDGs40rdAhDJWgRR0VF8dprr5GQkICFhQXTp0/nxRdfLO9q5avy9NM4PvlkkUcBloadO3cWeF2vXj3i4+NLVFadOnVkJS0hRJnSVHUv0nEvGDPwTazCRMf3mNavO7U9ij7wtDw99EF8vcu1SZMmxMXF0axZM7p06YK9vX15Vy2fSqPBvlXRpikJIURlophMZGzcVOgxZiDNEVLtGrC57nQWP98S+3JcoKO4HpyalpC3tzfe3t4AeHl54e7uTkpKSoUKYiGEELcy5+QQPel1sv74AwDl368bO5rNgApY+ZSagNBhfPTkoyVa3Kg8VeyOc2D37t1069YNHx8fVCoVa9asueWY8PBw/P39sbGxoVWrVhw4cOC2ZR0+fBiTyYSvr28Z11oIIcS9MCYnc7Vff7L++AOzhYYFPdTM76km5abe5hRHmN9TzYEgNY0cLj1wIQwPQItYq9XSuHFjBg4cSM+ePW/5/IcffmDChAksXbqUVq1asXDhQjp27MjZs2fx8PDIPy4lJYW+ffuyYsWK+1l9IYQQxZR7+TJRQ4dhiIpC4+TElVdb8HeVnQAcrKOiXpSCSxakOsBpXxXKv4tz6JOzyrHWJVfhg7hz58507tz5jp8vWLCAIUOGMGDAAACWLl3K+vXrWblyJVOmTAEgNzeXHj16MGXKFFq3bn3HsnJzc8nNzc1/nZGRUUp3IYQQoiiyjxzl2siRmNLSsKxeHd/lyzl0egPqxB2YVXmhG1GjYKtXpSh4mky4W9Yvp1rfmwrfNV0YvV7P4cOH6dChQ/57arWaDh06sG/fPiBvI4b+/fvzxBNP8NprrxVa3pw5c3Bycsr/ki5sIYS4fzI2byFywABMaWnYNGyI//ffcdgmlo9TvsZ8fb2Fmxb1UP37ekiSEcuabUu9TsrtFhEpZQ90ECclJWEymfC8aR6up6cncf9O/t67dy8//PADa9asoUmTJjRp0oQTJ07ctrypU6eSnp6e/xUVFVXm9yCEEAJSvv6a6HHjUHJzcXj8cWp8/RW/p/1J2LaR6Mw5tMjR8V5iMp4mU4HzPEwm5sUnccTQn5YBpbd8pcFg4PDhw1y4cKHUyryTCt81fa/atGlT5OUWra2tsba2LuMaCSGEuE4xmYj/8ENSv/k/AFxe6Y3Hm2+y7NQKlhxbAkCXLC3jEvR8Y+zGl1lbibPVkqjRUNVkwivHgfcMw+jxysBS3cghMTGRmJgY4uLiyrx39IEOYnd3dzQazS2LUcTHx+Pl5VVOtRJCCFEUZp2OmNffIHPrVgA8Xp+EY//XePvv2fx24TcABqWl0z3Zhpmuc3jysUd5eesL+GYcx4M0EnAmyqEx019sSKcG3qVaNx8fHzIyMvD09MTGxga9Xl+q5d/ogQ5iKysrmjVrxh9//EGPHj0AMJvN/PHHH4waNarE5YaHhxMeHo7ppi6Qh0VoaChNmjRh4cKF5V0VIUQlZUxN5dqIkeQcO4bK0hLvD+Zg8XQoY7aPYW/MXtSKwrTkVALTPfnYbw4fv/Yk9tYWvNDMlwOXm5GQqcPD0YaWNV1LpSVsNBq5cOECgYGB+RvZ1K1b957LLYoK/4w4KyuLY8eOcezYMQAuX77MsWPHiIyMBGDChAmsWLGCr7/+mtOnTzNixAi0Wm3+KOqSCAsLIyIigoMHD5bGLdyV2awQfTaVcwfjiD6bitlc9oMDSsvy5csJDQ2lSpUqqFQq0tLSbnvc+vXradWqFba2tri4uOT/4SSEqHz0kZFcfbk3OceOoa5SBb+VX5D7eAv6b+rP3pi92JjNLIpPxCUtkJ8bLGXBgKfyV8rSqFU8GuDGs02q8WiAW6l1R+/fv5/z589z6tSpUimvOCp8i/jQoUM8/vjj+a8nTJgAQL9+/fjqq6946aWXSExMZMaMGcTFxdGkSRM2bdp0ywCuiuri0QT2/HAebdp/06bsna1p+1IdAkI8CjmzYsjOzqZTp0506tSJqVOn3vaYX375hSFDhvD+++/zxBNPYDQaOXny5H2uqRCiqMxmhdjzaWgzcrGvYo13HWfUpRR4OcePEzViJKaUFCx9fPBdsZwoV4UR6/sQlx2Hq8lEeFwiR7Pbkdr+Xd7pUPe+LNIRGBjI8ePHqV69eplf62Yq5X6MzX5AZWRk4OTkRHp6OlWqVCnwmU6n4/Lly9SsWRMbG5sSlX/xaAKblt05kDoNa1AmYXxz1/T69et55ZVXWLJkCX369ClRmTt37uTxxx8nNTUVZ2fn/PeNRiP+/v7MmjWLQYMGlULtH3yl8bMjRFkpy8ZB5h9/ED1xEopOh01wML7LlnLEeJlxO8aSacjCX2/gs/gEVutexP/ZafRq4Xevt3NHRqMRnU6Hg4ND/ntms/mW/dWvKywP7lWF75p+kCiKgiHXVKSv3Bwje344V2h5e344T26OsUjllfTvqdWrV9O7d29WrVpFnz59WLVqFQ4ODoV+7dmzp8jlHzlyhOjoaNRqNSEhIXh7e9O5c2dpEQtRAV1vHNwYwgDatFw2LTvJxaMJJS475dtVXBs1GkWnw759O2r83zdszjzAsK3DyDRkEaLT8UVMEov0I2j52jtlGsJarZY9e/bw999/YzAY8t+/UwiXtQrfNV0eSjpYy6g3s3zsrlKrhzYtl8/H7y7SsUM/aY+ldfG2TgwPD2fatGmsW7eO9u3bA9C9e3datWpV6HnVqlUr8jUuXboEwNtvv82CBQvw9/dn/vz5hIaGcu7cOVxdXYtVZyFE2TCbFfb8cL7QY/788Tw1G1ctVje1YjaTMG8+KStXAuDcqxee099i5Zmv+eTIJwA8naVlSmI209XTGDVsIA2qOZX8RorAysoKs9mMoijk5ORgaWlZpte7Gwni2wgLCyMsLCy/K+Jh9PPPP5OQkMDevXtp0aJF/vuOjo44OpbeHp7X53BPmzaN559/HoAvv/yS6tWr89NPPzFs2LBSu5YQouRiz6fd0hK+WVZqLrHn06gW5FKkMs25ucRMmULmv9sYVh03DqchA3n3wBx+OvcTAP3SM3g5Wc0U+w94e3AvfF3t7u1G7kBRlPxnzZaWlrRs2RJra2usrKzK5HrFIUFciiys1Az9pH2Rjo05n8bvi4/f9bhnRjXGp45zka5dHCEhIRw5coSVK1fSvHnz/B/QVatW3TUcN27cSNu2RVtK7voWlMHBwfnvWVtbU6tWrfyR70KI8qfNKDyEi3ucKS2NqLBR5Bw+DJaW+Lz3LpadOzBu5zh2X9uNSlGYnJJK0zQXZnu8x7wBnXGxL5tQzMrK4tChQ9SrVy9/IG9pNjjulQRxKVKpVEXuHvYNdsXe2brQv0AdXKzxDXYttdGKNwoICMjvItZoNCxevBgo/a7pZs2aYW1tzdmzZ2nTpg2Qt3TclStXqFGjRslvQAhRquyrFG1VwaIcp792jaghQ9Ffvoza0ZHqn35KTuMAhm4eQERyBNZmhQ8Tk7DJrMXy2nNY9EobbCyL92itOK5evUpmZianT5/Gw8Ojwm2VKEFcTtRqFW1fqlPoqOk2veqUSQhfFxgYyI4dOwgNDcXCwoKFCxcWu2s6Li6OuLi4/PVYT5w4gaOjI35+fri6ulKlShWGDx/OzJkz8fX1pUaNGsydOxeAF198sUzuSwhRPIqiEHU25a7HObjkTWUqTM6Jk0QNH44pORkLb298ly0lxtOCkRv6EJ0Vg4vJxKfxiVzMbslfzd5jXvfGpbo05e3Uq1cPRVGoU6dOhQthkCAuVwEhHnQa1uCWqQIOLta06XV/5hEHBQWxffv2/Jbx/Pnzi3X+0qVLmTVrVv7rdu3aAXnPgfv37w/A3LlzsbCw4LXXXiMnJ4dWrVqxfft2XFyK9pxJCFF2TCYzO789w5l9cXc99m6Ng8wdO4ieMBElJwfrevXwXbqUE1xj9IbRZOgz8DMY+CwukbW6rtg8PZO32tYqk2DMysoiJiaGwMBAIG80dIMGDUr9OqVF5hHfxo2jps+dO1dm84ivK8vJ86LikXnEoqLQ64xsXn6SyIgUVCpo/0oQNg6WJWocpH7/A3GzZ4PZjH2bNlRbuJCtSXuYtmcaerOeRrpcFsYlscg4gJYvTKRbY58yuSeDwcAff/yBwWAgJCSk1BboKMt5xNIivo37PWparVYVeRSiEEKUBm16Lr8vPk5SVBYWVmo6Dm6AfyN3AGo2rlrkxoFiNpP48UKSV6wAwOn5nnjNnMn/nf+OeYfmAfCENpuZCZnMYBKvDhjGI7Xcyuy+LC0tCQgIIDExEXd39zK7TmmSIBZCiEomJVbL758eJzNFh62jJV1HNsaz5n+tvKI2Dsx6PbFvTiPj998BcB8zGpdhQ/nw0FxWn1kNwCvpmQxMNvG61WwmD+5DoGfpj1bWarVYWFjkb2Nbu3ZtateuXSGfB9+OBLEQQlQiMRfS2LDkH3KzjThVtaXbmMY4VS3+3F1TejrXRo0m++BBsLDA+513sO7WkYm7JrI9ajsAk5JTaZNmz1Tnd5gzuDueVUr/UUxCQgKHDx/GxcWFVq1aoVKpHpgAvk6CWAghKomLRxLYujICk9GMZ80qdB3ZCFvH4s/dNURHEzlsGPoLF1Hb21P900XkNq3L4M2D+SfpH6wUhfcTkqiaVY251ebwSb/HcbQpm9WrbG1tURQFk8mE0Wgs91WySkKCWAghKoHjf0Tx58/nQQH/Ru48Pbg+llbFn7ubc+pU3vSkxCQsPD3xXb6MeG8bRmx4lajMKJxMJhbFJ5GY3ZAfgt9j0YstsbIo3TWcb9ycwdHRkcceeyx/K9YHkWz6IIQQDzHFrPDnz+f586e8EG7QrhqdhzUoUQhn7d7N1df6YkpMwjowEP8fvueMSw6vbXiNqMwoqhmM/F9sPP9o23PysU/54OVWpR7CsbGxbN++Ha1Wm/+ek5PTAxvCIEF8W+Hh4QQHBxdYg1kIIR40RoOJLV+c4vi2KAAe6VGLdr0DUWsK/9WvmExo9x8g/ff1aPcfQDGZSP3pJ6JGjETJzsa+9aPUWPUtu3NPMXjLYFJzU6mfm8u3MXF8l9MLy2fmMrFTcKmHo6IoXLp0iZycHC5evFiqZZcnmUdciLLej1hUTvKzI+4HndbAxqUniDmfhlqj4om+9Qhq5XXX8zK2bCH+/TkY4/5b4ENtb4/53xaoU48eeM+exeqLP/HhgQ9RUGifncO78WnMNo+gy8uj6BDsWXb3pdNx9epV6tSpc1+3LZR5xEIIIYosM0XHuk+PkxqrxcpGQ6fhDfGte/ctRzO2bCF67Di4qX12PYQdO3bE8/13mXd4Ad9EfANAr4xMRibl8rrmLcIG9aeJr3Op3ktcXBx6vR4/v7z9iW1sbAgKCirVa5Q36ZquhEJDQxk3blz+a39/fxYuXFhu9SlP/fv3p0ePHvmvb/7eCPGgSbqWyc8fHiI1Vou9kxXPTWpWpBBWTCbi359zSwjfKPv4Md7YOSk/hMempDEgSc1Euw+YNnJIqYdwSkoKBw8e5MSJE2RkZJRq2RWJtIgFBw8exN7evryrUSH8+uuvD+T0ByEAok6nsHHZCQw6E64+9jwzqjGOrkV7/JF96HCB7ujbMcXFc+3PLVj4qXg3MZmamVWZ7v4u8wd2xM2haLs3FYerqyve3t7Y2tri4OBQ6uVXFBLEgqpVq5Z3FYC8NWLLOwRdXe/echCiIjr7dyzbvzmD2azgU8eZLiMaYm1X9H9PxsTEIh3nnakwKS6RHG0gS2q9y5I+bbEtwQjsO0lJScHFxSV/oFezZs0e6BHRRSFd02XAZDJhMpkKvGc2mzGZTJjN5tsee+OYueIee69u7ppWqVR8/vnnPPfcc9jZ2VGnTh3Wrl1b4JyTJ0/SuXNnHBwc8PT05LXXXiMpKSn/802bNtGmTRucnZ1xc3PjmWeeKTDK8cqVK6hUKn744Qfat2+PjY0Nq1atuqVuiqLw9ttv4+fnh7W1NT4+PowZMyb/89zcXCZPnoyvry/W1tbUrl2bL774Iv/7NWjQIGrWrImtrS1BQUF88sknhX4vbtdt//777zNw4MD87R2XL19e4Jy//vqLJk2aYGNjQ/PmzVmzZg0qlYpjx44Vei0hSoOiKBzedIVtX53GbFao09yD7mOaFCuEASyK+Af5SF0qV7Wt2Nb0Uxb2bVeqIXz+/Hn27t3LmTNn8t972EMYJIhv616nL23YsIENGzag1+vz37t48SIbNmzgxIkTBY7dvHkzGzZsICcnJ/+9K1eusGHDhlt+kW/bto0NGzaQlZWV/961a9dKVMe7mTVrFr169eKff/6hS5cu9OnTh5SUvP1K09LSeOKJJwgJCeHQoUNs2rSJ+Ph4evXqlX++VqtlwoQJHDp0iD/++AO1Ws1zzz13yx8OU6ZMYezYsZw+fZqOHTveUo9ffvmFjz/+mGXLlnH+/HnWrFlDw4YN8z/v27cv3333HYsWLeL06dMsW7YsvwvLbDZTvXp1fvrpJyIiIpgxYwZvvvkmP/74Y7G+F/Pnz6d58+YcPXqUkSNHMmLECM6ePQvkjaTs1q0bDRs25MiRI7zzzjtMnjy5WOULUVJmk5ld353j7zWXAGjylB9PDayPxrL4v9pN+lwKm0JjBlIcYX2Vp0h4YgGzejTB4i7ToIrr+r/dmxsyDzvpmr6N+737UkXUv39/evfuDcD777/PokWLOHDgAJ06dWLx4sWEhITw/vvv5x+/cuVKfH19OXfuHIGBgTz//PMFylu5ciVVq1YlIiKiwL6g48aNo2fPnnesR2RkJF5eXnTo0AFLS0v8/Pxo2bIlAOfOnePHH39k69atdOjQAYBatWrln2tpaVlgr+SaNWuyb98+fvzxxwJ/NNxNly5dGDlyJACTJ0/m448/ZseOHQQFBbF69WpUKhUrVqzAxsaG4OBgoqOjGTJkSJHLF6IkDLl5c4Sv/JMEKmjzYh0aP+FborIyNm7k2htvoAKUf79ujFgzoAJWPqWmfqeXGdm2zj3XP7/sG1bJ8vb2pn379qU+PaiikyAuA126dAFAo/mvyyYgIIBatW7dBPt6K/DG+XD+/v7UqFHjlmOvh82Nx5bWXps3a9SoUf7/t7e3p0qVKiQkJABw/PhxduzYcdvBExcvXiQwMJDz588zY8YM9u/fT1JSUn5LODIyskAQN2/evNB6vPjiiyxcuJBatWrRqVMnunTpQrdu3bCwsODYsWNoNBrat29/x/PDw8NZuXIlkZGR5OTkoNfradKkSXG+FQW+FyqVCi8vr/zvxdmzZ2nUqFGB+cDX/1AQoqzkZOr5PfwfEq5koLFQ89TAYAKa3nmv4MKkrFpF/LvvoVIU9tVV8XeQite2m3HPvOEYR/jqKTUHgtQ85106rVVFUTh79ixxcXG0adMGC4u8OKpsIQwSxGXixgC+7k4Tz8vq2Ht186AplUqVH6ZZWVl069aNDz/88JbzvL29AejWrRs1atRgxYoV+Pj4YDabadCgQYHueuCuo7V9fX05e/Ys27ZtY+vWrYwcOZK5c+eya9cubG1tCz33+++/Z9KkScyfP59HH30UR0dH5s6dy/79++96/zcq7HshxP2WlpDN758eJz0xB2t7C7qOaIR3bedil6MoCkmffkrSks8ASG7bgIWtT6OoVfxdV0W9KAWXLEh1gNO+KpR/9yPOvnwZat/7fRgMBqKiotDpdMTFxZVZo+JBIEEsiq1p06b88ssv+Pv75/8Ve6Pk5GTOnj3LihUraNu2LQB//vlnia9na2tLt27d6NatG2FhYdStW5cTJ07QsGFDzGYzu3btyu8tuNHevXtp3bp1frcyUOrL4gUFBfHtt9+Sm5ubvxfqwYMHS/UaQlwXfzmD9UuOk5NpwNHNhm6jG+PiVfyph4rJRNys2aT9O17CffQoUqsrWKdEoCMvdCNqFOyRUykKniYT/rri79Z0O1ZWVjRt2pTc3Fx8fHxKpcwHlQzWEsUWFhZGSkoKvXv35uDBg1y8eJHNmzczYMAATCYTLi4uuLm5sXz5ci5cuMD27duZMGFCia711Vdf8cUXX3Dy5EkuXbrEt99+i62tLTVq1MDf359+/foxcOBA1qxZw+XLl9m5c2f+YKw6depw6NAhNm/ezLlz55g+fXqph+Qrr7yC2Wxm6NChnD59ms2bNzNv3jygcoz2FPfP5X+SWLPgCDmZBqr6OfL8G81KFMLm3Fyix43PC2G1Gq+338Zh2ECW6neiU6vzFvS4aVEP1b+vJyenYu9asufQ17uik5OT899zc3Or9CEMEsSiBHx8fNi7dy8mk4mnn36ahg0bMm7cOJydnVGr1ajVar7//nsOHz5MgwYNGD9+PHPnzi3RtZydnVmxYgWPPfYYjRo1Ytu2baxbtw43NzcAPvvsM1544QVGjhxJ3bp1GTJkSP6uLMOGDaNnz5689NJLtGrViuTk5AKt49JQpUoV1q1bx7Fjx2jSpAnTpk1jxowZALKOtCg1J3dHs/GzfzAazPjVd6XHhBDsnYq/gIYpM5OoIUPJ3LoVlaUl1RZ+jPq5TgzdMpSj2WexMZsZkpaB502jlj1NJubFJ9Eg2466rW6d3VAUFy9e5Ny5cxw5cgSj0ViiMh5WsulDIWTTB1ESq1atYsCAAaSnp9/2Obb87IiiUhSF/WsvcXjjVQDqtvYmtE8QmhJMGzImJhI5ZCi5Z86gdnCgeng42ob+DNs6jAtpF3A0mQmPT6CJTo8ROGZrTaJGQ1WTiSY5uWiA460XEdKxX4nuxWQy8ddff1GrVi2qVatWojLKk2z6IEQF9s033+T/cjl+/DiTJ0+mV69edx1MJkRhTEYzO749w9m/85adbNHVnxbP1CzRIw/91atEDh6CISoKjbs7fiuWE1/NjmEb+xKdFU1Vo5GlcYkcy2nNX95teSHxM1ro/utCjlO5EfvozGKFsKIoJCYm4uGRN5pbo9HQpk0beWRzGxLEQtyjuLg4ZsyYQVxcHN7e3rz44ou899575V0t8QDT5xjZtPwEUadTUalVhPYJIvixkj1LzTl1iqihwzAlJ2Pp54ff5yu4aK9l+Ma+pOhS8DMYWB6XwDpdZwyhMxn1ZB3MpvGc2r+ZnNRobF2qUbdVR7xuMzDzThRFYf/+/SQmJtK8efP82RQSwrcnQXwb4eHhhIeHV7rVXUTJvPHGG7zxxhvlXQ3xkNCm5bJu8XGSr2VhYa2h05AG1GjgVrKy/v6ba2GjMGu1WAfXw2/5co4aLzN682i0Bi31cvUsiUvgc/1LVHtmKq89UgMAjYUF9R/rWuJ7UKlUODk5kZKSIlP9ikCeERdCnhGLsiA/O+JOUmK0rFt8jKyUXGwdLXlmVGM8apTseWTGps3EvP46isGAXatWVA9fzM6U/byx6w30Zj3Nc3R8HJfEh8bBPNZrPM80urfRy4qiYDab89c7MJvN5OTkPDQ7u8kz4gpM/o4RxSU/M+J2Ys6nsuGzE+RmG3H2tOOZUY1xqlqycQap331H3Ox3QFFw7NgRn48+ZE3kembtm4VZMfOENpt3EtKZZhrPC31H0D7w3nZg0+v1HD16FI1Gk79anlqtfmhCuKxJEJfQ9dWWsrOzZVCOKJbs7Gzg1hW7ROV14XACW788hdmo4FXLia4jG2HjUPyfD0VRSFocTlJ4OADOvV/G6623+PL013x8+GMAemZmMS4xhwmqNxk5ZABN/Vzuuf7Z2dn5u69lZmbi6Oh4z2VWJhLEJaTRaHB2ds5fc9jOzk4GIohCKYpCdnY2CQkJODs733bJUlH5HNsWyd6fLwBQq0lVnhoYjEUJthZUTCbi3nmHtO9/AMB91CjcRo5gwZGP+erUVwAMTEvn1RSFsZazeWtIbwI9SycwnZ2dadKkCY6OjhLCJSBBfA+8vLwA8sNYiKJwdnbO/9kRlZdiVtj78wWOb48CoGFoddr0qoNaXfw/6M25ucS8/gaZW7aASoXXzBk49nqB6X9NZ+3FvL3EJyWn8mS6NRPsZ/P+4OfwdbUrcd0NBgMnT56kXr16+eMcHsS5wRWFBPE9UKlUeHt74+HhgcFgKO/qiAeApaWltIQFRoOJbV9GcPFIIgCP9gwg5Cm/EvWqmbKyuDYyjOwDB1BZWuIzdy5WHdozfsd4dl7biUZRmJWUQr0MZ950fY8Fg7pQ1bH4q3Ld6NixY8TFxZGbm8sjjzxyT2UJCeJSodFo5JerEKJIdFoDGz77h9gL6ag1Kp7sX4/AFiXrITEmJhI5dBi5p0+jtrenevhiTE2DGbZ1GEcSjmBtVpibmIRTVjU+8J7D4gGPU8Xm3scmBAcHk5OTQ7169e65LCFBLIQQ901GUg6/Lz5Oalw2VrYWdB7ekOpBJRsspY+MJHLQ4LzVstzc8FuxnKyaHgzfNJCzqWdxMJv5ND4RrTaIz2u9z5JXW2NjWbIGg8FgID09HXd3dyBv+9J27dqVqCxxKwliIYS4DxIjM/l98XGyM/Q4uFjzzKjGuFVzKFFZuogIIocOw5SUhKWvL36fryDeRc3QDa9xLesabkYTy+ITOJfTjD0N3mPRC02xKMH61AA5OTn89ddf5Obm0rZtWxmMVQYkiIUQooxFRiSzadlJDLkm3KrZ88yoxji4lGwxF+3f+7kWFpa3Wla9evgtX8ZFTQrDNg4jWZdMdYOB5XGJ7NA9zrVHZvJBlwYlGgB2nY2NTf58YJkDXzYkiIUQogyd/iuWnd+ewWxWqBbkTOfhjbC2Ldmv3ozNW4iZNClvtayWLakevphj2ecYvXU0mYZMAnP1LI1PYFVuD6yfnMbU0IASDQAzGo1oNBpUKhUqlYqmTZuiUqlk7nsZkf2IbyM8PJzg4GBatGhR3lURQjygFEXh0IbLbP/mNGazQp0WnnQb3aTEIZz6/fdEjxuHYjDg+NRT+K5Yzp60wwzbOoxMQyZNdTq+jItnse41PLvPYsTjtUsUwunp6ezevZsLFy7kv2dlZSUhXIZkrelClOXaokKIh5fZZGbXd+eI+DMGgKYda/DIs7VQlaCLWFEUksKXkLR4MQDOL72E14zprL38OzP/molJMdE+O4f341N52zicp14aReeG3iWue2RkJMePH8fe3p727dvLjJB/yVrTQgjxgDDkmtj8+UmunkhGpYK2LwXSMLR6icpSTCbi33uP1NXfAeA+ciTuo0fxTcQ3zDs0D4DumVlMScxikjKJvv2H8Fht93uqv5+fHyaTierVq0sI3ycSxEIIUUqyM/SsDz9OwtVMNJZqnh5Un1pNSrahglmvz1sta/NmUKnwnP4WLr17s/DIQlaeXAlAv/QMBiYbGKWewYSBr9HY17nY18nIyOD8+fOEhISgVuc9raxZs2aJ6ixKRoJYCCFKQVp8Nus+PUZGkg4be0u6hjXCq5ZTicoyZWVxbdRosv/++9/Vsj7C7ukOvL3vbX49/ysA41JS6ZqmYbTVu8wa8iK1PYo/rchsNrN//350Oh329vbUrVu3RPUV90aCWAgh7lHcpXTWh/+DTmugirsN3UY3wdmzZGs5G5OSiBw6lNyI06jt7Ki+JByLFiFM2jWJPyL/QK0ozExKISTDgQmO7zB3SHeqOZdsBzi1Wk3jxo25cuUKtWrVKlEZ4t5JEAshxD24dCyRrV+cwmgw41HDka5hjbGrYlWisvRRUXmrZUVGonFzw3f5Mkx1ajBy20gOxB3AUlGYm5CEZ5YnM93f5dOBT+PmULx1ozMyMgDyBxx5eHjg4eFRovqK0iFBLIQQJXRy1zV2f38ORYEaDdzoOKQBltYlG+CkO32ayKFDMSUmYVm9On5ffE6mhwMjNg/kdMpp7M1mFsUnYs6uxcfV3mNJ//Y4WBfvV3hiYiIHDhzAxsaGdu3ayZSkCkKCWAghikkxK/z9v0sc2XwVgOA2PrTvHYi6hMtIavcfyFstKysL67p18V2+jAQ7A0M39iUyMxIXk4mlcQlcy2nE2trvEf5KyxKtG+3s7Jy/UpbMXK04JIiFEKIQZrNC7Pk0tBm52FexxqNmFXZ+e4ZzB+IBaNmtJs27+Jdo8QyAjC1biJn0Oopej12LFlRfEs4lYxzDNgwjMScRH4ORZXEJHNA9xrEmb/NJzxA0xZiPrNfrsbLK6yq3tLTksccew9rausT1FaVPglgIIe7g4tEE9vxwHm1abv57GgsVJqOCWq0i9NW61Gtd8sUzUn/4kbhZs8BsxvGpDvjMm8c/6acZ+cdIMvWZ1NbrWRqXyG+5nUlr/Rbvda5brAC9du0aJ06coHnz5lStmjeNysamZGtci7IjS1wKIcRtXDyawKZlJwuEMIDJmNel27SjX4lDWFEUEpcsIW7mTDCbce7Vi2oLF/Jn4n6GbBlCpj6TJrpcvopNYKWuF+qnZzOlS71it2JTUlIwGo1ERUWVqJ7i/pAWsRBC3MRsVtjzw/lCjznzdxwtutUq9s5GeatlvU/q6tUAuI8cgfvo0ay/vJ7pf76FUTHRJjuHufHJvGsYRNPnxtKruW+J7qNBgwZUqVKFGjVqlOh8cX9Ii1gIIW4Sez7tlpbwzbJSc4k9n1ascs16PdGTJuWFsEqF51tvUXXMGFafWc3UPVMxKia6ZmmZF5fGZNM4Hn9lUrFCODo6mpMnT+a/VqvV+PuX/Pm1uD+kRSyEEDfRZhQewsU9DsCUpeXa6FFk7/sbLC2p9tGHOHbqxKdHP2X5P8sB6JOeyYhkHaOYypD+/WgdUPR1o7Oysjh69CiKolC1alU8PT2LfK4oXxLEQghxE/sqRVsko6jHGZOTiRoyFF1ERN5qWYs/xeaRVrzz9zv8dO4nAEalptEzFUZqZjF10Ms0qFa85TEdHBwICgrCbDbLAh0PGAliIYS4SUpM1l2PcXCxxruO812P01+7RuSgQRiuRqJxdcV32TI0wYG8vvt1tl7dikpReCs5ldYZNoy2fpv3hzxHraoORapnbGwsbm5u+dOT6tSpU6TzRMUiQXwb4eHhhIeHYzKZyrsqQoj7SFEUDm+8yv61l+56bJtede46UEt35gyRQ4bkrZZVrRp+X3yOoVpVRv8xkv2x+7FQFD5ISKJmliuTqrzLx0M64+1UtHWjL1y4wOnTp/Hw8KBly5byHPgBplJkeZU7KsuNoIUQFYuiKOz95QLHt+VN9WnexR+36g78+WPBecQOLta06VWHgJDCu3+1Bw5wbeS/q2UFBeG7fDlZTpaM2DaCU8mnsDUrfBKfgHW2LwuqvsenA5/Axb7oa1RnZGTw559/UqtWLYKCgiSIy1hZ5oG0iIUQlZ7ZZGbHqrOc+SsWgDYv1qHxk3mjlWs1qVpgZS3vOs53bQlnbN1KzMRJeatlNW9O9SXhJKi1DN04iCsZV3A2mfksLoHknLp84fcOy/q2wb4I60bn5uZibZ33XLpKlSo88cQTskDHQ0CCWAhRqRkNJrZ+EcGlY4mo1CqeeK0udR/9b6EOtVpFtSCXIpeX+tNPxM18G8xmHDo8SbV587iii2Ho5qHEZ8fjZcxbsvKUrjlbg2YT/nJzrC0KXzfabDYTERHBtWvXaNeuHXZ2eVssSgg/HGQesRCi0tLrjKwP/4dLxxJRW6joNLRBgRAuDkVRSFq6lLjpM/JWy3rxBaovXMjJzHP03diX+Ox4aukN/F9MPH/mPM7fIR/y8Sst7xrC16WlpWEwGEhISChR/UTFVaQW8dq1a4td8FNPPYWtbck2qxZCiLKmyzKwbvFxEq5kYGmtocuIhlSv61qishSzOW+1rFWrAHAbPoyqY8eyL2Yf43aOI8eYQ0NdLkviE/lK3wNT28m8+3TRn+uq1WqaNWtGRkaGzA9+CBUpiHv06FGsQlUqFefPn6dWrVolqZMQQpSprNRc1i46RmqsFht7S54Z3RhP/5INwDHr9cROmULGho15q2W9+Saur73KpsubmPrnVIxmI62zc/g4IYkP9H2p0Xk8g9rULLxMs5nTp09jb2+Pv78/ALa2ttK4eUgV+RlxXFxckSeJOzo6lrhCQghRltISslm78BiZKTrsna3pPqYJrj72JSrLlKUlesxotH/tA0tLfD6Yg1PXrnx/5nve3/8+CgqdsrTMSkjjTVMY7Z4fQc+m1e9abkxMDJcuXUKtVuPl5SXPgh9yRQrifv36FesvsVdffVWm+wghKpyka5msXXScnAw9Th62dB/bhCpuJWtlGpOTiRo2HN3Jk6js7Kj+6SLsW7fms2OfseT4EgBeyshkXJKWseZJvPTKIDoEF61buXr16iQlJUkIVxIyj7gQMo9YiIdH7IU0fg//B32OEXdfB7qNboJdlaLP272R/to1ogYNRn/1KhoXF3yXL8e6QTAfHPiA7858B8CI1HR6pxoZzVTG9O9Dy5p3fv5sNpuJiorCz89P5gNXUBV6HnFGRgbbt28nKCiIevXqlUadhBCiVF09lcympScwGsx413ai68hGWNtZFulcxWQi+9BhjImJWFStitrRgWvDhmNMTMTSxwffLz5H7VedKbunsPHKRlSKwpTkVJ7MsGC4xbvMGPQ89X0KXzf64MGDJCQkkJOTQ926dUvjlsUDpNhB3KtXL9q1a8eoUaPIycmhefPmXLlyBUVR+P7773n++efLop5CCFEi5w/Fs21lBGazgl99NzoNa4ClVdGmDGVs2UL8+3MwxsX996ZKBYqCdWAgvitWYHB1YOz20eyN2YuFovBeYjL1Mh0ZZTuLuUO64+9+9+fP1atXJyUlBSen4m30IB4OxZ5HvHv3btq2bQvAb7/9hqIopKWlsWjRIt59991Sr6AQQpTUyd3RbPniFGazQp0WnnQZ0bBYIRw9dlzBEAb492me66CBaJ2sGLJlCHtj9mJjVlgcn4hfpgdTnOayOOy5O4awoijodLr819WqVePJJ5/E27tkc5jFg63YQZyeno6ra96zjk2bNvH8889jZ2dH165dOX/+fKlXUAghiktRFA5vusKu1WdBgQbtqvHUgGA0FkX7laeYTMS/Pyc/dG+hUhG3YD79N/Tln6R/cDKZ+TwuHo22Jh94zGX5iC54Vrn9ICudTse+ffv4+++/C2wsc30HJVH5FDuIfX192bdvH1qtlk2bNvH0008DkJqaKqP7hBDlTlEU/vr1In+vydtBqXkXf9r1DkR1l/Whb5R96PCtLeGCF0GJT8T65EU8jCa+jo0jPrshn9eYx/KhT+BUyPNnlUpFVlYWOTk5ZGRkFLlO4uFV7GfE48aNo0+fPjg4OFCjRg1CQ0OBvC7rhg0blnb9hBCiyMwmMztXneX0v5s3PPZCbZp08Ct2OcbExCIdF5hm4mN1An/q2vBX8HSW9GqG1V1a3dbW1rRo0QIrKyvs7Us2f1k8XIodxCNHjqRVq1ZERkby1FNPoVbn/dDVqlVLnhELIcqNyWBmy8pTXDqaiEoFj79Wl3qtfUpUlsa1aJs8hOWmskbXmdjmU1jQvcFtd2XKzc3l6NGjBAYG5j/Wc3Ep+iYS4uFXoulLzZo1o1mzZgXe69q1a6lUSAghikuvM7Jx6QmunUlFbaGi46AG1AqpWqKyzDk5JH/1FQAKcLsObTNgsjfzpVMPbEMn8vaTde44//fcuXMkJiaSk5NDaGiozBMWtyjSM+IJEyag1WqLXOjUqVNJSUkpcaWEEKKodFoDaz85xrUzqVhYa3hmVOMSh7ApLY3IgYPI3r0Hw7+/Hc03HWMmL5yXP2mNV9c3GNchsNBwrVevHt7e3rRo0UJCWNxWkYL4k08+ITs7u8iFhoeHk5aWVtI6CSFEkWjTcvlt/hHiL2dgbW9Bj3Eh+JZwByVDfDxXX3uNnKNHURzsmNVHw/yealJuWjo/xRHm91Szq75Cg5q3PkvOzc0lMjIy/7WFhQXNmzfHwcGhRPUSD78idU0rikJgYOF/9d2oOK1nIYQoifTEbP638BiZyTrsnazoPjakxJs35F6+TNSgwRhiYrDw8ODymLac0/4PUHGwjop6UQouWZDqAKd9VSj/PguOj/wLfB7JL8dgMLB79250Oh1WVlZ4eXmVxq2Kh1yRgvjLL78sdsGyZ6YQoqwkXcti3aJjZGfocar67+YN7iXbvCHnxEmihg7FlJqKVY0a+H7xBceOrYB/2xOKWkVEjds3QvTJWQVeW1paUq1aNeLj42VEtCiyIu++JIQQFUHsxXTWhx8nN9uIWzUHuo1pjL2TdYnK0u7bx7WwUZizs7GpXx/f5cswONnxS+bxvAMUJW9Jy5uoFAVPkwl3y/ro9XrUajUWFnm/TuvWrUtQUBAaTdFW8BKi2At6PIiee+45XFxceOGFF8q7KkKIexB5Kpm1nxwlN9uId4ATz00MKXEIZ2zaTNTQYZizs7F79BH8vv4arYMFQ7cM5ZT+ApbmvGFaqptW17r+ekiSkRzXhuzatYvjx4/nf65WqyWERbFUiiAeO3Ys33zzTXlXQwhxD84fimf9kn8w6s341Xel29gmRd5B6Wap3/9A9PjxKAYDjh074rtsGUmqLPpv6s+xxGM4ms18EZfAgvgkPG5YhhLAw2RiXnwSRwz9aVbTndzcXDIyMtDr9aVxm6ISuudtEB8EoaGh7Ny5s7yrIYQooVN7otn577rRtZt70KF/0deNvpGiKCQvXUriJ4sAcH7pJbxmTCdSe42hW4YSo42hqtHE0rgEYnX1WGdqy5fZ3xFnqyVRo6GqyYRXjgPvGYbR45WBuLu50rJlS1xdXfO7poUorgrfIt69ezfdunXDx8cHlUrFmjVrbjkmPDwcf39/bGxsaNWqFQcOHLj/FRVClIkjm6+yc1VeCNdvV42nBtYvWQibzcS/935+CLuPHIHX2zM5nXaWvhv7EqONwc9g4P9i4zira8bqgA/p0CuMl62XMT/jdTalDmROfBhdYsPo8nx/OjXI2ynJw8NDQljckxL/9Fy4cIGLFy/Srl07bG1tURSlTCara7VaGjduzMCBA+nZs+ctn//www9MmDCBpUuX0qpVKxYuXEjHjh05e/YsHh4epV4fIcT9oSgK+367yNEteXNym3WqQatna5Xo94yi1xMz9U0y1q8HwHPaNFxfe5UDsQcYs2MMWoOWerl6PotLYL3+Sf5p+CbhLzTBQqOmayMfDlxuRkKmjpgzR+lra8ZPk16q9yoqt2IHcXJyMi+99BLbt29HpVJx/vx5atWqxaBBg3BxcWH+/PmlWsHOnTvTuXPnO36+YMEChgwZwoABAwBYunQp69evZ+XKlUyZMqVY18rNzSU3Nzf/teyMIkT5MJsVdq06Q8TevM0bWj9fm5Cnir95A4A5O5trY8ai/fNPsLDA54MPcHqmK39c/YPXd7+OwWygRY6ORfGJfGF4jsxWk/ioa3D+utEatYpHA9wA0NZx5vz58zRo0KB0blQIStA1PX78eCwsLIiMjMTOzi7//ZdeeolNmzaVauXuRq/Xc/jwYTp06JD/nlqtpkOHDuzbt6/Y5c2ZMwcnJ6f8L19f39KsrhCiCEwGM1s+P0nE3tj8zRtKGsLG1FSuDhiA9s8/Udna4vvZZzg905Vfzv3ChF0TMJgNPKnN5rP4BObq+2LZYRrTnvkvhNPS0oi7YTtEe3t7mjRpIl3RolQV+6dpy5YtbN68merVqxd4v06dOly9erXUKlYUSUlJmEymWxYP8fT05MyZM/mvO3TowPHjx9FqtVSvXp2ffvqJRx999Jbypk6dyoQJE/JfZ2RkSBgLcR/pdUY2LTtB1Om8zRueHlSfgJCSPWIyxMYSOXgI+osX0Tg54bt8GTaNGvH5ic/55MgnAPTMzGJKYjqTjWG0enY4vVv+F/ipqan89ddfqFQq2rVrJ0tUijJT7CDWarUFWsLXpaSkYG1dsvl8ZW3btm1FOs7a2rrC3oMQDzud1sDvi48TfzkDC2sNXYY3xLdeydaNzr10ichBgzHGxmLh5YXf5yuwDKjFvEPz+CYibyrjoLR0hqbkMNo0iedfHkDnht4FynB2dsbV1RVLS0v5vSDKVLG7ptu2bVtgTq5KpcJsNvPRRx/x+OOPl2rl7sbd3R2NRkN8fHyB9+Pj42WNVyEeINr0GzZvsLPg2XFNShzCOf/8w9VX+mCMjcWqZk38V69CXasG0/dOzw/hScmpDEgxMER5i4H9h+aH8I3r5KtUKlq0aEHz5s2xtCzZfGUhiqLYLeKPPvqIJ598kkOHDqHX63njjTc4deoUKSkp7N27tyzqeEdWVlY0a9aMP/74gx49egBgNpv5448/GDVq1H2tixCiZNITc1j7yVEykvI2b+g2tgluPiXrBs7au5dro8egZGdj07Bh3pKVjja8vmM8u67tQqPA7KRkWmVaMkTzNm8NfIFG1Z0BiIyM5MSJE9StW5eAgAAAeRYs7oti/5Q1aNCAc+fOsXjxYhwdHcnKyqJnz56EhYXh7e199wKKKSsriwsXLuS/vnz5MseOHcPV1RU/Pz8mTJhAv379aN68OS1btmThwoVotdr8UdQlER4eTnh4OKabVtQRQpSu5Ogs1i46Rna6nipVbXn2HjZvyNi4keg3JoPBgH3r1lT/dBFZliZGbx3OkYQjWCsK8+KT8NdWYaTN23w4uDu1Pf4LfEVRMJvNpKamltbtCVEkKkW5aSHVCmbnzp237fLu168fX331FQCLFy9m7ty5xMXF0aRJExYtWkSrVq3u+doZGRk4OTmRnp5OlSpV7rk8IcR/4i6l8/vi0tm8IWX1auLfeRcUhSpdOuP9wQckG9MZtm0Y51PP42A2Ex6XiHWOFzOrzGbR4I74ON+6/kF8fLzsHCduqyzzoERBrNPp+Oeff0hISMD878Lo13Xv3r3UKlfeJIiFKBuREclsXHoCo96MVy0nuoY1wsa++M9hFUUhaXE4SeHhALi80hvPadOI0kYzdOtQorOicTeZWBqbQFpuAAurvsOSgaG42Ftx9epVoqOjeeSRR1CrK/wig6KclWUeFLtretOmTfTt25ekpKRbPlOpVNKdK4Qo1IXDCWxdeQqzScEv2JVOwxpiaV383YoUk4n4994jdfV3ALiPGoV72EjOpp5l+NbhJOuS8TUYWRYXz5ncJnzn9zaf922NvbUFubm5nD59GoPBwLVr1/DzK9k8ZSFKQ7H/DBw9ejQvvvgisbGxmM3mAl8SwkKIwkT8GcOWz09iNinUbuZBl5GNShTCZr2e6EmT8kJYpcJzxnSqjgrjUPwhBmwaQLIumaBcPd/ExrE/9zHWBn3IZwMew946r+1hbW1NSEgIwcHBslaAKHfFbhHHx8czYcKEh/o5igzWEqL0Hdl8lX2/XQQguK0P7XsH5a9gVRxmrZZro0ej/WsfWFpS7aMPqdK5MzsidzBp1yT0Zj3NcnR8Gp/Id4YuXG06mYU9GhF9LQpnZ+f8bkVPT8+H+veYeHAUu0X8wgsvPPRbCoaFhREREcHBgwfLuypCPPDyNm+4kB/CTTvWIPSVkoWwMTWVq/0HoP1rHyo7O3yXfkaVzp1Zc2EN43eOR2/WE6rNZml8IuH6l8hsO4N3n2tE5NUrHD9+nEOHDmE0Gkv7FoW4J8VuES9evJgXX3yRPXv20LBhw1smuo8ZM6bUKieEeLCZzQq7vjtLxJ4YAB7tGUDTp2uUqCxDTAyRgwajv3wZjbMzviuWY9uwIV+e/JIFhxcA0CMzi7cSU5lhHExQ5zAGtqkJQLVq1bh06RK+vr5oNMXvCheiLBV71PQXX3zB8OHDsbGxwc3NrcDQf5VKxaVLl0q9kuVFRk0LUXImo5mtKyO4eCQBlQpC+9QluI1PicrKvXCByMFDMMbFYeHtjd8Xn2NVsyYfH/6YL099CcCAtAxGpmQx3jiap18YzJMBVQr8uzWZTBLCosQq1PQlLy8vxowZw5QpUx76If8SxEKUjCHXxKZlJ4iMSEGtUfHUwPrUblayzRtyjh0jathwTOnpWAUE4PfF56g83Jm1bxZrLqwBYEJKKi+mGQgzT6LvK6/hro8nMjKSRx55hKpVq5binYnKqizzoNhJqtfreemllx7qEA4PDyc4OJgWLVqUd1WEeODotAbWfnKUyIgULKw1PBPWuMQhnLVnD1cHDMSUno5t48bU+Pb/MLk7M2HnBNZcWJO3ZGViMt3TYLBqJqMGDeLJev+tM5+ZmVlKdyVE2Sl2i3j8+PFUrVqVN998s6zqVGFIi1iI4tGm57Ju0TGSo7VY21nwzKjGeNVyKlFZ6b+vJ2bKFDAasW/ThuqLPkFrYWL09tEcjj+MlaIwLyGJQK0dYy1nMntgD4J98q5lMplIT0/H1bVkG0cIcbMKtaCHyWTio48+YvPmzTRq1OiWwVoLFiwotcoJIR4cN27eYOdkRfcxTXCrVrLNG1L+71vi33sPgCrPPIPP+++RbMpgxOYRnEk5g4NZ4dP4BJyy3RltM5Ohj9XAkHgFfBoDoNFoJITFA6PYQXzixAlCQkIAOHnyZIHPbhy4JYSoPAps3uBuQ/exIThVLf7mDYqikPTppyQt+QwAl9dew3PqFK5poxm2dRhRmVG4mcwsjYsnR1eDaS6zmdMzhHP/HCYyA2rWrCm9V+KBU+wg3rFjR1nUQwjxgLpx8wZXH3u6j21Sos0bFJOJuNnvkPbDDwBUHTcWt2HDOJd6juHbhpOUk0Q1g5EVcQlczq3HCu9ZrBjQDidbSyxNOhwdHSWExQNJNtsUQpRY1OkUNiw9gTHXhGfNKjwzqnGJNm8w6/XEvP4GmZs3g0qF18yZuLz8EkfijzDqj1FkGjIJzNWzND6BfbktWGXXnxX9HqOKbd61atWqVdq3JsR9U6Qg7tmzJ1999RVVqlShZ8+ehR7766+/lkrFhBAV28UjCWxZeQqzUcE32JXOJdy8wZSl5dqoUWT//TcqS0t85s6lSqeO7IraxcRdE8k15dJUl7dk5Vr9E2yy78nL9ew5G3FCZjaIh0KRgtjJySn/+a+TU8lGQD5IZK1pIQoXsTeGnd+eQVEgoKkHTw0IRmNZ/CmNxuRkooYOQ3fqFGo7O6ovCcf+kUdYe3EtM/bOwKSYaJ+dw9yEJJYbepDR6nUWt63OwYMH8Pf3L/0bE6IcFHn60uzZs5k0aRJ2dnZlXacKQ6YvCXGro1si+evXCwAEt/GhfQnXjdZfiyZq8GD0V66gcXXFd/lybBvU5+tTXzPv0DwAumdmMSMxmbe1vane9XVGhgagUqkwm80P9VoGouKpEAt6zJo1i6ysrFK9uBDiwaEoCvvWXMwP4aYd/QjtU7IQ1p07x9VXXkF/5QqWPj7UWPUtNvWDWXh4YX4I90vPYHJsGq9d6o65+mMMfKRafs+chLB4mBR5sFYx1/0QQjxEzGaF3d+d5dT1zRueC6Bpx5Jt3pB95ChRw4djzsjAuk5tfD//HFVVN2btm8Uv538BYFxKKr3TchnDRFo82YCGXjZkZ2dja1v8KVFCVHTFGjUt84SFePiZzQqx59PQZuRiX8Uaj5pV2P7NaS4cSgAVhL4SRP221UpUdtauXVwbOw5Fp8M2JATfz5ZgdLRl8q5J/BH5B2oFZiQm0SELhirTGDHgVZpWsweQEBYPrWIFcWBg4F3DOCUl5Z4qJIQoPxePJrDnh/No03Lz39NYqDAZlXvevCF97Vpipr4JJhMO7dtTbeHHZGtMjN02kgNxB7BS4J3oBEwX4BXn8bw/oT+NfZ1L6c6EqLiKFcSzZs2qFKOmhaiMLh5NYNOyk7e8bzLmPZZq+rRfiUM45euviZ/zAQBOz3bH+913STHmLVl5OuU09v8uWZkTZ88UY0+Gtg6mgY9jyW9GiAdIsYL45ZdfxsOjZP8QhRAVl9mssOeH84Uec+bvOFp0q1WswVmKopD48UKSly8HwLVfPzwmv0FMdixDtwwlMjMSl3+XrETnwwe+bzPn1Zq0aBgkeweLSqPIQVyZng/LPGJR2cSeTyvQHX07Wam5xJ5Po1qQS5HKVIxG4mbNIu2nnwGoOmECbkMGcyHtAsO2DiMxJxHPbANTTseR4RTIoqqzWTHoCVztre75foR4kMio6dsICwsjLCwsf96YEA87bUbhIVzc48y5ucRMmkTm1m2gVuM1621cXnyRYwnHGPnHSDL1mQTo9PTZH8NfOf4c9xjH18M64GAtq+6KyqfIP/Vms7ks6yGEKEf2VYq2SUNRjjNlZXFtZBjZBw6gsrKi2oL5OHbowO5ru5m4cyI6k44mulwWxyfwg1NLjlV/kS/GdJMQFpWW/OQLIYrEwcUa7zrOhR5jTEoicuhQciNOo7a3p/qSJdi3asnvl35n+p/T0efqaa3NYVF6Ct8aOnO1/RR+fLYhFhpZoENUXhLEQlRyV08ms3HZibse16ZXnUIHaumjoogcNBhDZCQaNzf8VizHJjiYbyO+5cODH2LSmmh4KoWXtZks9H4Fy/YTebdjUKUafyLE7UgQC1GJnT8Uz7aVEZjNCv4N3ajT0pO/frlYYOCWg4s1bXrVISDkzjMmdGfPEjl4MKbEJCyrV8fvi8+x9PNj0ZFFrDixAoBXcrIIScvkC1VX2nWYyPAn65b5/QnxIJAgFqKSivgzhh2rzoACdVp48mT/emg0amo38yywspZ3HedCW8LZhw4RNWIk5sxMrIOC8F2xHLW7G+/8/Q4/nvkRlVrFmJQ0XsvIZpT3aHq+PJIXmvvdxzsVomKTIBaiEjq6NZK/fsnbvKF+u2q0ezkwP2zValWRpyhlbt9B9PjxKLm52DZvhu+SJZjsbXh99+tsPLmR3Ks6plfJ4UWjwjDzZPoO6seT9TzL7L6EeBBJEAtRiSiKwoF1lzm04QqQt4PSIz0CSvScNu23NcS+9VbekpWPP061jxeQ8++Slfvj9qMkGeifmEb1VAsGV3+biYN608LftZTvSIgHnwTxbciCHuJhpJgV9vx4nhM7rwHwSI9aNOvkX6Kykr9YScLcuQA4Pfcc3u/MJvXfJSsjkiOwMysssEzHaG/PIs/ZvDvkBep5y57eQtyOSqlMK3UUU1luBC3E/WQ2mdn+zRnO7o8DFbR/OZAG7asXuxxFUUiYN4+UL1YC4DpwIB6vTyJWG8uAXwdwOfYynlUtWRqXgLXOnSl2s5g/pCs13OxL+5aEuK/KMg+kRSzEQ85oMLHl81NcPp6ESq2iQ/96BLb0KnY5itFI7IyZpP/6KwAer0/CbdAgLqReYPDvg7l89DKuRjML0xIxWPozy3k2SwY/hUcVm9K+JSEeKhLEQjzE9DojGz47QfTZVDQWajoObUDNRu7FLses0xE9YSJZ27eDRoP37Nk4P9+T44nHGbltJBnmDGo5q5kWn0qmugFfeM1mxYD2ONlalsFdCfFwkSAW4iGl0xr4ffFx4i9nYGmtoevIRkUaDa2YTGQfOowxMRGLqlWxDqzDtdGjyTl0GJW1NdU+XoDjE0+w8dRGZhyegU7R0UiXSzip7HVrxY+13mZ5n0ewtZLdk4QoCgliIR5C2vRc1i06RnK0Fmt7C7qNboKn/92fa2Vs2UL8+3MwxsX996aFBRiNqB0d8V0Sjl2LFny15ytm/zYbtZOaDh6wICGJ3wxPcKTBNMJfDMFSlqwUosgkiIV4yGQk5fC/T46RkZiDnZMV3cc2wc3H4e7nbdlC9NhxcPP4TaMRAPeRI7Br0YLVp1fz0T8fYVJMtM3J5ZO4TJaZniOt5RvMfSa4WPsVCyEkiIV4qKTEaln7yTG0ablUcbeh+9gQnKra3vU8xWQi/v05t4bwDRK/+prvG2ex9MRyNA4a+nsrzMzO4l1DX9w6jGN6aMnmIwtR2UkQC/GQSIzMZO2iY+iyDLh42/Ps2CbYOxdte8PsQ4cLdkffJFKv59qlS+xYswQCLAhLTWOQNotJxhE06z6CPq1qlNZtCFHpSBAL8RCIOZ/K+vB/0OtMeNRwpNvoJtg4FH3EsjEx8Y6fmRSFOKOBXMWMZayRt5wyeDYjlzDTRHq8PIguDb1L4xaEqLQkiIV4wF05kcSm5ScxGcz41HGm68hGWNkW75+2puqdpzRpVCrq29iSZjJRz1FHswwzQ5RpDOv3Gm3qFH8qlBCiIAliIR5gN29j2HFIAyyKOW1I0etJ//W3Au9F6fVYq1V4WOS1qm3VajSO4GOvZoh6FlMH9qKJr3Np3YYQlZoE8W3IWtPiQXBqTzQ7V5+9ZRvD4jBlZRE9Zgzav/ZhAtRAnMHABX0uGlQ42WmwVKtRAd88qSHS9l0+HNyD2h6OZXFLQlRKstZ0IWStaVFRHd0SyV+//reNYfuXA1EVc9qQIS6OqGHDyT17FsXGmjndDVgZod8WEzGJOtw0GqpbWZHkCF89peZAkJoPHw2nS2C7srglISo0WWtaCAHkbbqwf+0lDm+8CkDTjjV4pEetYk8b0p09S9TQYRjj49FUdedon6Ycs90OwME6KupF2eOSBakOcNpXhfJvyJtTDgESxEKUJgliIR4Qillhzw/nOLErGij5NoZZe/cSPWYsZq0Wq4AAkseM5tjer9E76rHysEJRq4iocftg1ydn3cstCCFuQ9ahE+IBYDaZ2fZ1RF4Iq6D9K0ElCuG0X38jathwzFotdi1b4r96Fa51AjiemwCFNKpVioKX0Yi7Zf2S34QQ4rakRSxEBVca2xgqikLSkiUkfboYALsuXfD9YA7Z6Jl3cR5XasVgZW0JioIKUG7o6lb9O4xkSJIRy3ZtS+2+hBB5JIiFqMBKYxtDxWAg9u23Sf/lV4yKQnzXrlj3eBaNLoHRO0ZzIe0C9tYaPkhIxKzAh+4uxFv896vBw2TijaRUthtG83xA1dK+RSEqPQliISqokm5jeCNTVhbRY8eh3bsX1GpcJ08m2tODs9dOMOXcVDIsM3A3KSyOi8M9154vjJ35MnszcbZaEjUaqppMeOU48J5hGD1eGYhGNnQQotRJEAtRAWnTc1n7yTFSYoq3jeGNDPHxedOTzpxBZWubt49waCh7D//I51c+x2hrJFBvIDwugRRDdYbbvUW3Ni14eXdPfDOO40EaCTgT5dCY6S82pFMDWcpSiLIgQSxEBVPSbQxvpDt7jqhhw9DFxnLZzpZWS5bg8EgrVp5cyccnPwZbaJedw0cJSewzNuFLr+l83q8Nbg7W9Gvtz4HLzUjI1OHhaEPLmq7SEhaiDEkQC1GBlHQbwxtp//6ba6NGY87KIsqjKsaBgziRk8Xuv2by24W8pSxfSc/k9ZRUvjZ25mT9SXzxQgg2lnlLY2rUKh4NcCv1exNC3J4EsRAVRMLVDNYtOo5Oa8DVx57uY4q+jeF16f/7HzFvTQeDAbvmzXn84wXsPnmEr5O/5pj2GGoF3khJ4aX0bN42DsDjiTAWPFFb9hEWohxJEAtRAcScT+X38H8wlHAbQ0VRSF66lLiFn5BqMlGre3e8P5hDdG484enhXNZexk6BufEJNMlWMdQ8med69aVbY58yvCshRFFIEAtRzm7cxrBaoDNdRjbCyqbo/zQVg4G42bNJ/PEnjuZko3nqKepOmcw/aRGM3TGWFF0KnkYz4fHx2Oc6MdhiGlP6PUdTv+KNwBZClA0JYiHKUYFtDBu503Fw/WJtY2jK0hI9fjzaPXuw1GioOWIEumbN2H5tBx+d+gi9WU+9XAOL4xO4ZqjJDKcZLBj4FNVd7MrwroQQxSFBLEQ5uddtDA3xCVwZNgz96dNo7OyotmA+ddq2ZenRpSw7sQyAx7XZfJCYzB/GVqz1f4vP+zyCo03Ru7yFEGVPgliIcnBky1X2/XoRKNk2hrnnz3Nm0GCOX7mCi6srHb75Gk1wEDP3zWTtxbUA9EvPYHxKGouNz5HWciKfda2PRTH3KxZClD0J4tsIDw8nPDwck8lU3lURDxlFUdj/v0sc3lTybQy1f+/n2ujRZKWmoqvqjnrCBDL8PJi8dSiH4w+jUeDN5BSezdDxhmkkTZ4ZzthHapTVLQkh7pFKUf5d0V3coiw3ghaVj2JW2P3DOU7ewzaG6evWEfPmNDAYsG3WDGXKZPSeVkzcO5GrGVdxMCvMT0ikbrYF43mdgX360D5Q1ocW4l6VZR5Ii1iI+8BkMrP9m9Oc2x+ft41h7yAatKtW5PMVRSFy0afsX7CAujY2uHbpjM8HH3A07SRjt48gPTcdb6OJ8LgE1LnujLSbzjsDulPH07EM70oIURokiIUoY0aDic0rTnHlnyTUahVPDqhHYIuib2OoGI3EzZrNrq+/JstsIrFLZxrOn8/vl9cz468ZGM1GGuj0fBqfwDlDXZZ6vU14v1DcHIq3GIgQonxIEAtRhgpsY2ipptOQBvgXYxtDs1bLtfHj0e7eQ11bW1Jf6U3rN95gyT+fsfT4UgCe0mbzXmIy/zO052D9aSx/oVn+cpVCiIpPgliIMqLTGlj36XESrpRsG8P0K1e4GDYK24sXUdnYUG/+PKxC2zB973Q2Xt4IwKC0dEalZDDX+DL2j09g3pN1ZLlKIR4wEsRClIF73cYw4ehRfu8/AGNKMo/4VKPO8mXkBPkStmUIRxOOYqHAjKRkOmUaGGseT6deQ2S5SiEeUBLEQpSyjKQc/rfwKBlJuhJtY6g9cIDksFFYpqZi7+1Djf/7hlhPC8LW9+Fa1jUczQofxyfgn2PLUIvpTOj3MiGyXKUQDywJYiFKUUqMlrWfHEWbri/2NoZ6vZ6czVuIffNNMBho+cgj1PxsCUf1Fxi/YTyZ+kyqG4yExyegy63GROeZfDCgsyxXKcQDToJYiFJyL9sYxsXFsev9ObivX4+PpSWOHTvi8+EH/C9qI7P3zcaoGGmiy+WT+ESOGhrzs//bfNbnMVmuUoiHgASxEKUg+lwq65eUbBtDxWjk4nvvkfzbb5g0GhoMGYL76xNZdGwxX5z8AoDOWVreSUrmW0Nnolu+yaddG8hylUI8JCSIhbhHBbYxDHKmy4iib2No1mqJnjARl507CbSxpclbb+Hw6ku8vucNtl7dCsDw1HSGpmbyjmkAdZ4ZzwxZrlKIh4oEsRD34PzBeLZ9ecM2hkPqY1GEObwJCQlcOXEC9/Al5EZEoLaxoeW8uejbhDBw80BOJJ3AQoHZSUm0z1QYxRRe6TtQlqsU4iEkQSxECd24jWFgS0+e6Fe0bQz1ej371q0j7pNFBGi1+Hl44PvZEqJrOBC2vg8x2hiczGYWxifileNImO10Zgx4XparFOIhJUEsRAkc2XyVfb/lbWPYoF012hVjG0Pj8eM4fboYVWYmfnVq479iBYcsopm4cQRZhiz8DEaWxCWQrPdnpsdsFvbvIMtVCvEQkyAWohgUReHv/13iyPVtDDvV4JFn776NYWJiInZ2dhh37iR2ylQ8DQb8W7Wi+mdL+DVhK+/vfx+TYqJZjo6FCUnsMbRkT/Bswl9oLstVCvGQkyAWohBms0Ls+TS0GbnYOVpx4XACp/bEAPDocwE07Xj3gVNRUVEcPXoU/vyTgP+tRa1S4fhUBzw//ICFpz7j64ivAeiemcXMpBSWGntA6Jt8+GSgLFcpRCUgQSzEHVw8msCeH86jTcu95bP2rxR9G0N3Fxe0P/+M7e49YG2Na7++OIwfxaS/3mR71HYARqWm0T9Vy1vmkbR9cbQsVylEJSJBLMRtXDyawKZlJ+/4ua1j4XOEdTodNjY2mLOzSXr9DYL/3o+VrS2eUyZjfLEzA7cNJiI5AitF4Z3EZB7NUjPKYiYj+/WV5SqFqGQkiIW4idmssOeH84Ue8+eP56nZuCrqmwZoKYrCuXPnuHDhAq3q1iVzylR0J05gbWuLz0cfEduiBmHrXyE+Ox5nk5lP4xNwzHFjgtPbvDOwuyxXKUQlJEvzCHGT2PNpt+2OvlFWai6x59NueV+lUpGZmUluTCxHXn0N3YkTaJyd8fvyS47Vt6Hvxr7EZ8dTU29gdUws2dm1+dhvMYvCnpcQFqKSkhaxEDfRZhQewnc7ro7JRM6SJbjn5GDp54ff8mX8nPMXH27/ELNiplWOjgUJiWzQt+d8i1l80q0xmiJOfRJCPHykRSzETTQWRftnYV/FGkVROH/+PGfOnAEgY+NGYocMxT0nB5vGjfBd/S3z479jzoE5mBUzPTOz+Cwugc/0L2Po+gnTn20iISxEJSctYiFuoE3L5e81F+96nIOLNd51nElJSeHMmTMoioLNtj/IWbw47/MOT+L8/iwmHJzB7mu7ARifksrLabm8zkR69h1BO1muUghBJWgR//777wQFBVGnTh0+//zz8q6OqMAyU3T8Nv8IafE52NgX/jdqm151UKtVuLm5Ucvfn2q79+SHsMurr2Lx/lQG7BzG7mu7sVYUFsQn8kyahjE27xE2cryEsBAi30PdIjYajUyYMIEdO3bg5OREs2bNeO6553BzcyvvqokKJiMphzUfHyUzWYejmw09xoeQGJV5yzxie2crara1oUZDVwDMOTlUWboM9R9/AOAxeTJx3ZozetNrJOYk4mYy8WlcIhY6L6Z7vMuH/TvJcpVCiAIe6iA+cOAA9evXp1q1vIUXOnfuzJYtW+jdu3c510xUJGnx2az5+CjatFycPGx5dlwIjq42VHG3pWbjqvkra9lXsSYh+yrXrkVx4oSGhn5+RI0Yie6ff1BZWeHz0YccCrZiyuYB5Bh11NbrCY9P5HRuI7bWe59FvVphbSHLVQohCqrQXdO7d++mW7du+Pj4oFKpWLNmzS3HhIeH4+/vj42NDa1ateLAgQP5n8XExOSHMEC1atWIjo6+H1UXD4jkmCx+nX8EbVouLt72PDexKY6uNvmfq9UqqgW5ENjCi2pBLvj5+WJhYYGDVsuVl3uj++cfNE5O+H65kt984xm3Yxw5Rh2PZefwTUw8m3RPcbr9Uub0flRCWAhxWxU6iLVaLY0bNyY8PPy2n//www9MmDCBmTNncuTIERo3bkzHjh1JSEi4zzUVD6LEqEzWLDhKToYet+oOPDchBHungt3GiqKQk5OT/9rNzY3Wrq4oEydhiIrC0teX6t99y3z9euYdmoeCQq+MTBbGJbPAOACPXh8zqkNdWTNaCHFHFbprunPnznTu3PmOny9YsIAhQ4YwYMAAAJYuXcr69etZuXIlU6ZMwcfHp0ALODo6mpYtW96xvNzcXHJz/3semJGRUQp3ISqi+CsZrFt0jNxsIx41HOk2pgk29gWXrTQYDBw5dIiEg4do5euLvY8PxpQUYidPRtHrsWnYEJdFcxl/8n3+ivkLlQKTUlLpkW7kdc2bDBw0WJarFELcVYUO4sLo9XoOHz7M1KlT899Tq9V06NCBffv2AdCyZUtOnjxJdHQ0Tk5ObNy4kenTp9+xzDlz5jBr1qwyr7soX7EX0li3+DgGnQmvWk48M7ox1ra3/lPI3LaNc1Omok1O5qyNDe4W/x3j8MQTqGaNZ8Bf47iQdgEbs8KHiUkEau15vcocpg+UlbKEEEVTobumC5OUlITJZMLT07PA+56ensTFxQFgYWHB/Pnzefzxx2nSpAkTJ04sdMT01KlTSU9Pz/+Kiooq03sQ99+1s6ms/TQvhKsFOtNtzO1DOGPLFuInTKReTjZNbW0LhDBAWmhj+mwfxIW0C1Q1mvg6Ng6XrGrM9V3CvLCXJYSFEEX2wLaIi6p79+507969SMdaW1tjbS1TSx5WkaeS2bD0BCaDGd9gVzoPb4il1X8DqAwGA8eOHcPHy4vs9+eAomCvvnWAlQKkz1tI6gg1QQYDi+MTOaRvwT/N57CgW4islCWEKJYHNojd3d3RaDTEx8cXeD8+Ph4vL69yqpWoqC4fT2TTipOYjQr+jdzpOKQ+FpYFQ/bq1avExcUR89c+AmJj0dxhgJUKcMtQePlCLmOtEvnS2APnLjN589Ga9+FOhBAPmwe2a9rKyopmzZrxx78LKQCYzWb++OMPHn300XsqOzw8nODgYFq0aHGv1RQVwIXDeXsLm40KASFV6TS0wS0hDBAQEED16tVp4ul5xxC+0ZBoLe+ZR9Lotbm8KiEshCihCt0izsrK4sKFC/mvL1++zLFjx3B1dcXPz48JEybQr18/mjdvTsuWLVm4cCFarTZ/FHVJhYWFERYWRkZGBk5OTvd6G6Icnd0fxx9fRaAoUKeFJx3610Otyfv702AwEBUVRa1atYC8LQxDQkJIT0sluwhlr3B6lQEjp1LH07EM70AI8bCr0EF86NAhHn/88fzXEyZMAKBfv3589dVXvPTSSyQmJjJjxgzi4uJo0qQJmzZtumUAl6icIvbGsOPbM6BAvdbehL5aF/W/z2/NZjN79+4lMzMTlUpFzZp5LVpTRgZRn8xDQ96z4Nu1i81AiiO0HN1NQlgIcc8qdBCHhoaiKEqhx4waNYpRo0bdpxqJB8WJndfY/f05ABq0q0a7lwNR3TCISq1W4+fnx6VLl3BxyZvra0pLI3LgIDRnLpNjCTaGvNC98fmNmbxw/uopNc+r0u/b/QghHl4VOoiFKIlj2yLZ+3PeI43GT/ry2Au1UalUGI1GTCZT/sj4WrVq4efnh4WFBcaUFCIHDiL3zBnMVWyZ/qIer1SF/lvNuGf+V3aKY14IHwhSMyQ9rjxuTwjxkJEgvo3w8HDCw8MxmUzlXRVRTIc2XGH/2ksANOtUg1bP1kKlUpGZmcnBgwextramdevW+UtOWlhYYExKInLAAHLPX0Dj7k7ioHZcU/2PSA81B+uoqBel4JIFqQ5w2lcFKvAyGnFKlmlKQoh798COmi5LYWFhREREcPDgwfKuiigiRVHYv/ZSfgi37FaTR3oE5AeuWq0mNzeXnJycAmtHG+ITuNq3H7nnL2Dh4YHlZ3OYZrETs0oFioKigogaavbWVxNRQ53/0HhycirJuN73+xRCPHykRSweeIqi8NevFzm2NRKAR3sG0PTpGgWOsbe3p2XLljg6OmJlZQWAITaWq/37Y7gaiYW3N+pP32FQxHTSzBkE6PX0Tctgiasz8TesquVpMvF6UirB2XZc9X/s/t2kEOKhJUEsHmiKWWHPj+c5sfMaAG1fqkOjx33JzMzk6NGjhISE4OiYN7L5xuVN9deiiezfH8O1a1hWq4bq09kMPjmNpJwkauv1fB6bgKvJTLesbI7ZWpOo0VDVZKJJTi4a4E3L0bwXULU8blkI8ZCRrmnxwFLMCjtXnckLYRWE9gmi0eO+AJw5c4b09HROnTp1y3n6qCiu9n0tL4T9/CD8HQadeJOknCQCc/WsjE0g3NiP4YZxJOJKC10uXbTZtNDlkogbIw3jCO0xUJayFEKUCmkRiweS2WRm+zdnOLs/DpUKnuhXj7qPeOd/3qhRIywsLKhfv36B8/RXrnC1X3+M8fFY+ftj+mQmQ469QYoulbq5elbEJfCpeSDPDplObHoOL659DN+s43iQRgLORDk0ZvqLDenUwPvmKgkhRImolLtN1K2Ebhw1fe7cOdLT06lSpUp5V0v8y2Qys/WLCC4eSUClVvHUwGC8guxIS0vD19f3juflXrxIZP8BGBMTsaodgOHjtxh6+A1Sc1Op928If2IeRI/Bb9GounPetcwKBy6nkJCpw8PRhpY1XaUlLEQldH2lxbLIAwniQpTlN16UjMlgZvPnJ7l8PAm1RkXHwQ3wDLRj165dmM1mWrdujavrraOZdefOETlgIKbkZKwDA8ldMJUhByeRrk+nfm4uy+ISWGgewnODp+WHsBBCXFeWeSBd0+KBYdSb2LjsBJGnUtBYqOk0rAH+Dd0B8Pb2RqfTYW9vf8t5utOn80I4LQ3r4Hro5k1myP4JZOgzaKjLZUlcIguUYbww+E0aVpe1xYUQ95cEsXggGHJNrF/yD9FnU7GwVBM6IAC/+v+1fBs1aoRarc6fN3xdzslTRA4ahDk9HZsGDcj+aBJD9o8nU59JI10uS2ITmc9QXpQQFkKUExk1LSo8fY6RdZ8eI/psKpbWGlq+7MWl+JNERETkH6PRaG4N4ePHiRwwAHN6OraNG5M1dxJD/s4L4Sa6XD6LTWQ+wyWEhRDlSoJYVGg6rYH/fXKM2AvpWNla0H1sE6rVccVoNJKRkYHZbL7tedlHjhA5cBDmzExsmzUj/cOxDN03jkxDJk11OpbEJvIRI+g1ZIqEsBCiXEnX9G3IWtMVQ06WnrWfHCMpKgsrOw09xoVQ1S9vcY5HHnkEd3f3W1rBANkHDxI5bDhKdjZ2LVuSOnsEw/8ah9agpVmOjsVxScxhJL2HvEGDahLCQojyJaOmCyGjpstPdoae/y08SkqMFp0qnTpP2tL52SextLQs9Dztvn1EjRiJotNh3/pRkmYOYcSf48g2ZtMiR8eiuCTeJ4xXhrwuISyEKLKyzAPpmhYVTlZqLr/NP0JKjBZbRw0BT1iisjZw6dKlws/b8ydRw0fkhXC7tiTMHMzwP8eSbcym1b8h/J5qlISwEKJCka5pUaFkJOfwv4+PkpGkw8HVmh7jQ1As9cTFxREYGHjH8zJ37CB6zFgUgwGHxx8nbuqrhO0eS45Jx6M5OXwcl8xs1Rj6DplAfR8JYSFExSFBLCqMtIRs/rfwKNFRMTi52/HcxEep4mYL2OHs7HzH8zK3bePa+AlgMOD41FNEv/4So3aPRWfS8Vh2DvPik5mlGkM/CWEhRAUkXdOiQkiN0/Lb/CNci4om2XCFao8pWNnffSnJjE2buDZuPBgMVOnSmajXXyTs3xBum53D/PhkZqnGSQgLISosaRGLcpccncX/Fh4lJ9OAf4AvLVq5Ub2Gd/6+wXeSvu53YiZPBrOZKt27cWXUM4zdPZ5cUy7ts3P4MC6FmerxDBwyjmAfGWwnhKiYJIhFuUqMzOS7j/agMdrg7utA97FNsLazQK0uvLMm7bc1xE6bBmYzTj17cnHY04zbNR69WU+oNpsP4lOZoR7PoCFjJYSFEBWadE3fRnh4OMHBwbRo0aK8q/JQi7uUzmfTfyPiwhE0Ltk8Oy4EWweru4Zw6k8/Efvmm2A249yrF+eHdWDs7rwQflKbzYfxqUyXEBZCPCBkHnEhZB5x2Yk5n8rvi//hWvwVDHYp9B7zFI2aNLjreanffUfcrNkAuPTpw+m+rZmweyJGs5GntNm8E5/KW5qJDB0ymnre8t9MCFE6ZPcl8VCJjEhm42cnMBrMhLRsyKMvV8fLx+Ou56V88w3x788BwLVfP06+0pxJ/4bw01laZiekMU0ziWFDRkkICyEeGBLE4r4xm81sX/c3W//vGL5uQdRo4E7nYQ2wsNLc9dzkL1aSMHcuAG5DBnP8+Ya8set1jIqRzllaZiak86bmdUYMDaOul4SwEOLBIUEs7ptT+67y6/JdmE0mmrTU0GV4QzSWdx+mkLR0GYkLFwLgPnIER7oFMnn3G5gUE12ytMxISGeq5nVGDh0pISyEeOBIEIv74vyhePasuoKPSy1qNfag14R2aDSFh7CiKCQtDicpPBwA9zGjOdy5FlP2TMGkmOiWqeWtxAze0LzB6KEjCfJyvB+3IoQQpUqCWJQZRVE4f/482mgN+368iqLAI0825Im+dVEXIYQTF35C8rJlAFSdOIH9T/rw5p7JmBUzz2Zm8WZi5r8hPEJCWAjxwJIgFmUmIiKCnesOcuGvNAK8G1K/jQ+hfeqiUhe+YpaiKCTMnUfKypUAeEyezF/t3HjrzzcxK2Z6ZmYxOTGT1zWTGTN0uISwEOKBJkEsykxWpBVn/0zC08WXRo/70rZXnSKFcPycOaR+838AeL71FnsecWD6n9NQUHghI5PXk7KYpJnCuGHDCPSUEBZCPNgkiEWpURSF9PR0nJ2dObL5Kof+F0Wdak1o9rQ/j/YMQKW6SwibzcS98w5p330PgNfbb7OzmRUz905HQeGljEzGJ2mZqJnK+GFDJYSFEA8FCeLbCA8PJzw8HJPJVN5VeWAYjUYOHjxIcnIy9tm+RGxPBqBl11q07FazaCE8cyZpP/0MKhXe777DtoYKs/6aAcDL/4bwBM1UJg4bQh0JYSHEQ0JW1iqErKxVPAcOHGDPuhPorzpRxc6VVs/Wonln/7uep5hMxE57i/Q1a0CtxueDOWwO0vHO3+8A0Cc9kzHJWsZr3mTSsMESwkKI+05W1hIV0vW/4VQqFYqikH3BAVWMF1XsbHnshdo06eB39zKMRmKmTCXj999Bo8Hnow/ZEJDB+3+/D8Br6RmEJecwXjONScMGSQgLIR46sumDKJHc3Fz2/397dx5XVbX3cfxzRmYQBBkUxCnDCRxyyLS8+mhYare5pxLNTExTM7uP1lOaUzczc7iUZamV997GR19eUm9mDt1wyIEk5wlBZIbDcIAz7ucP8qQJyHxQfu/X6/xx9l57nbVxyZe9z9pr7d/PqVOnUOwKu/95mmN7MnDRuTH48duqF8IWC2mzXi4PYa2W1suWEd/ewOL95SE8zlDI87mlzNC+ysuxEsJCiFuTXBGLWsnNzSU7O5vc3Dwu/GTi/M+5oIIhT91Ol4EhNzxeMZu5NHMmxd/vAJ2ONiuWsykojSUHlgDwjKGAiXllzND+L7MnjadjKwlhIcStSYJY1EpISAhFhUWc2FFAWlIuKrWKoTERdO4XdMNj7SYTadOmU7x7Nyq9njarVvKNfzJLf14KwERDAePzTEzXvsacSePp2MqzoU9HCCGcRm5Ni2oxm838+uuvjpHkNqud87vNpCUVo1arGD6ha/VCuKyMS1Omloewiwtt3n+PL1ueY+nB8hCelF/AuDwzMySEhRDNhFwRi2rZv38/BoMBu91Ol4iubPvwVy4m5aLWqrj3ue606+F/wzrsJSWkPj+Fkn37ULm5Efr++/zTI4kVh1YA8Hy+gafyLUzXvsYrk2IkhIUQzYJcEYtqiYiIwMvLi9YhoWx57ygXk3LR6NTcN7lHtULYVmwk9blJlOzbh9rdnbA1H7LBLZEVh8tDeGq+gSfzLUzTvs6rsRLCQojmQ4JYVMhisVBYWOh47+/vz4B+A9nzyQVST+SjddEwamokYV1b3rAuW3ExqRMnUnLwIGpPT0I//ohPtD/zt8S/ATA9z8AT+Vamaefyv7Fj6RAgISyEaD7k1rS4TnFxMfv27UNRFO6++270ej2mUivxq34h43whOtfyEA7u2OKGddkKC0l5diJlR4+i9vYm9KM1rLP/yOpfVgPwYl4+DxtsvKCdy+uxT0kICyGaHQlicR1XV1fU6vKbJWazGbtFxb9WJpJ1sQgXdy2jpkURGH7jmWVsBgMpz0yg7PhxND4+hK79mDWmHaxJWgPArNx8HigoD+G5sU/RXkJYCNEMSRBXoDnONW2321Gr1djtCpnnivDThuPb0gusOjatOkJuWjGunjpGT48iIPTGz/Ra8/JIeWYCppMn0fj6ErpuLauNW1n7a/nShi/n5jO6wM403TzmTnpSQlgI0WzJXNNVaC5zTRsMBg4dOoSHPZCTOwowGkyOfSq1CsWu4O6tZ/SMKFqG3DgwrTk5pIwfj+nMWTT+/oSt/Zi4wn+x/th6AGbn5nFfgcI03TzeiH2Sdv4eDXVqQghRL2SuadGgLl++zLmky5z4IYkOwd2vWSlJsZf/ndY7OrxaIWzJyiJl3HjM58+jbdWK0PXrWJn7NZ8dL19f+JWcPO4thBd085gvISyEEDJqWsBtt3Um95iGdoFdKl2u8Mh3F7Hbq755YsnIIOXpseUhHBxM2KefsCLnK0cIv5aTx4hCeEH3hoSwEEL8RoK4GSooKOD48eOO95nnCvHWBKHRVH6DpDjfRPoZQ6X7LWlpXHx6LOaLF9GFhBD26Se8k/kPNpzYAMDrObkMLVQxTTefhbFPSAgLIcRv5NZ0M2M2m0lISMBqteLp6UlYWBjGQtOND4RKy5lTU0mJGYfl8mV0oaGErl/L26nr+eLUF6gUmJeTy91Faqbp5rMo9jHCJYSFEMJBgriZ0ev1dO7cmdzcXIKDgwFw99ZX61gPb5frtpmTk7k4bjzWjAz04eG0Wb+Wv174kK9Pf41Kgfk5udxVpGGa/g0WTZIQFkKIP5IgbgYKCwvR6/W4uroC0L59e9q3bw+UL95wal/GDevw9HUhuFOLa7aZzp8nJWYc1uxs9B06ELr2Yxafe59vznyDWoGFOTn0L9IyTT+fN2MfpW1LCWEhhPgjCeJbXHp6OocPH8bX15cBAwZcMxirzGhh2wdJpJ023LCeux7thFp91bGnT5My/hlsubm43HYbrT9ew4LTq9h0dhNqBRZn59C3WMc0/Xz+GvuIhLAQQlRCgvgW5+3tjVqtRqvVYrPZ0GrL/8kNmSXEx/1CQVYpOlcNwyd0xWa18+MXZ655jtjT14W7Hu1Eh56tHNvKTp4sD+H8fFwiImjz0Ye8ceJdNp/bjEaBN7Nz6F2s/y2EH5YQFkKIKkgQ34JsNhsajQYADw8P7rrrLjw9PR1Xw2mn8tn6QRKmEitefq7cN6UHLVuXPyPcLjKA9DMGjIUmPLzLb0dffSVc+usxUiZMwF5QgGu3boR8uJrXj73Nt+e/RaPAW1nZRBldmKZfwJLYhwlr6d74PwAhhLiJSBDfYlJSUjhx4gQDBw7E07M8XL28fp+S8vhPl9n991PY7QqB7bwZObnHNYO11GoVrTv7Vlh36S+/kPLsROxFRbhFRhL84fu8lvgmW5O3olVgSVY2PYwuTJcQFkKIapPniG8hiqKQlpaG2WwmOTn52n12hYT/O8vOz05ityt07NOKB17sWe0R0yWHD5PyzITyEO7dm+A17/Nq4iJHCC/Nyqa70ZXpLgslhIUQogbkivgWolKp6NWrF2lpabRr186x3WKy8f2645xPzAagz8hw+t7fDpW64lm0/qjk559JmRSLUlKCe9++BMWtZM6hN9h+cTtaBZZlZXO70Y3pLgtYGvsgoX4SwkIIUV0SxDe5S5cuYbFYHMHr4uLieDQJwGgw8e17R8lOKUKtVfGnpyPo3C+o0voUm42Sg4ewZmejDQhAsVq4NGUqSlkZHncOIHDlcv7n59fZkbIDnQLvZmbRqcSd6S4LeSf2zxLCQghRQxLEN7Hc3FyOHDmCSqWiZcuW160Ikp1SxLfvHcVoMOHqqWNkbHeCO7aotL7C774jc/GbWDOuf67YY/AgApcv4+V9r7AzdSf630K4Q4kHM1wWSAgLIUQtSRDfxFq2bEmbNm3w8PC4ZkAWwPnEbLavPYbVbMc3yJ37pkTiE+BWaV2F331H2vQZUMmqmJ6j7+elvbPZfWk3egVWZmbRtsSTGS4LWBb7gISwEELUkqxHXIG4uDji4uKw2WycPn26Sa1HnJmZSUBAAGp1xePsFEUhcXsqCRvPggKhEb6MmNgNF3ddpXUqNhtnhw6r8EoYABUU+bjw7CQrepWKlRlZhJV68qLrQpZNGiMhLIS45TXkesQSxFVoyB98bRw/fpxz587Rvn17unbtet1+m83Onn+c4vhP6QB0G9yaQY91Qq2penC8cf8BUmJibvj5i59QM8Ulm9Yl3rzotpB3J42WEBZCNAsNmQdya/om4ufnx/nz5x2zY12tzGhh24e/knYqH5UKBj7ciR5/alPp+sJXs2ZnV+vzZ6YV0DLImxluC1kRO5o2vhLCQghRVxLETZzVanUEb1BQEEOGDMHD49opIw1ZJXwbdxRDZgk6Fw3Dn+1KeHf/an+GxrdFtcr5qN150X0BKyaNkhAWQoh6IkHcRNntdo4dO0Z2djaDBw92hPEfQ/jymXy2rE7CZLTi6evCfVMi8W/jWe3PsRkMZL/3PgAKUNH1sx0weMGysHkSwkIIUc8kiJsom81GZmYmpaWlZGVlERIScl2Zk3vT2bnhJHabQqtwb0ZO7o6Hz/VrBlfGfCmN1Oeew3z+PCYt6K3loXv1N8p2ysN57X+pmfBomISwEELUMwniJkqn09G7d28sFgutWrW6Zp9iV9i3+TyHt10EoEOvVgwbF4FWr6l2/aVJv5I6eTK2nBys/j68MqaY4HyFcdvt+Bf9Xi7PC9b/l5oDndU8pDLUx6kJIYS4igRxE2G32zl+/DiBgYEEBAQA4Ot7/eILFrONHeuOc+5I7aarBCjauZO0mS+hlJbicvvtFE4dTGraWlJbqfi5k4qIVAXfYsj3hBOhKpTf6vYrqOTxJiGEELUmiz40EefOnePChQscOXIEm81WYRljgYlN7xzm3JFs1FoVw8ZF0G90+xqFcP7nn5dPWVlaisfAgbTd8BnpZcWofnuKTVGrON5WzU9d1Rxvq0ZRq1ApCkFWKz651f8cIYQQ1SNXxE1E+/btyc7OpkOHDo61hK+Wc6mIb+OOUpxvwtVDR3Rsd0I6tah2/YrdTva775K75iMAfB56kOB589iV/h/m5/4fikr1+6xaVz3ydCWg/yc3n9wwv9qfoBBCiApJEDuJ3W4nIyPDMQhLo9Fw5513Vlj2wtEcvvv4GFaT7bfpKnvgE1D9QVN2s5n02XMo3LIFAP9pL+A/eTLfnPmGBfsWYMfOYGMpI41G3vVrQeZVzykH2my8nJNPlxJ3LoYPrMMZCyGEqIgEsRMoisLevXvJy8tDURRat25dablfdqTy0zfl01W2ub18ukpXj8qnq/wjm8FA6tSplB48BFotwQsX4DNmDKuPrua9xPcA+HNRMa/n5KFRYHhxCYluLmRrNATYbESVmtAAr+heYFGHgPo4fSGEEFeRIHYClUqFv78/RUVFFd6Ght+mq/z8NMd/vAxAl0EhDH78NjQ3mK7yauZLl0id+BzmCxdQe3rSZtVKXPv1ZcG+BXx1+isAnssvYKqhgNXWUSTaOzBX9yl3lOU56rhMS+ZbnuaBR55BU4PvooUQQlSPBHEjsdvt2O12x8Qct912G2FhYbi5Xb8ikqmkfLrKSyfzQQUDH+pI5NDQak1XeUVp0q+kxsZiy81FGxRE6AcfQIcwZu6ayQ+pP6ACXsnJ4/GiYuZbnkY7cApj2rTgkfiBhBb/QisMZNGCVM9IXnukO/d2C66vH4UQQoirSBA3grKyMg4dOoROp+OOO+5ApVKhUqkqDOGC7PLpKvMzStC6aBg+oSvtelR/ukqAoh92kvbS748nhX6wmpIWrryw/TmOZB1Bj4q3MrMYbDQzzTKFHtHP8uyg9gCM6BbEgQu9ySoqo5WXK33b+cmVsBBCNCAJ4kZgNpsxGAyo1WqMRiOenhVPQXn5jIGtq5MoM1rw9HVh5PM9CAj1qrBsZfL/+U8yFiwEux2Pu+6i9fLlZFFI7NaxnC84j5eiYlV6BreXwSTbX3jg0acZE/X7d9QatYoBHVrW6XyFEEJUnwRxI/D29qZXr154e3tfN1f0Faf2pfPDhpPYrQqt2nox8vkeNZquUrHbyV62jNyPPgbA5+GHCJ47l7PFycR+H0tWSRat7LD68mX8zK6MV+bwQsyjDOokA7CEEMKZJIgbQFlZGUlJSXTr1s1x+zk4uOLvWBW7wv5/nefQ1vLpKtv3DGDY+C7oajBdpd1kIn3OHAq3bAUgYPo0WsbGcijzENN+mEaRpYj2FjsfpKdjsfgxUfca8595gG6tfep4pkIIIepKgrgBHD16lMzMTGw2G/3796+0nNVs4/v1Jzh3OAuAXve2pX8NZ8r64+NJIYsW4jNmDNsvbmf2ntmY7WZ6miysysgkzRrKqx5zWf7svbRtWfGVuRBCiMYlQdwAunXrhs1mo3v37pWWMRaY2PJ+ElnJhag1Ku558nYi7qzZyOSKHk/yGDCAz09+zuL9i1FQGFJSxpKsbI5YI1juP481E+7B37P6t7yFEEI0LAniemAymTAYDAQGBgLg7u7OgAEDKi2fc6mYb9/7heI8Ey4eWqIndaf1bdcv8FCV0qQkUmMnlz+eFBxM6AercenUiZWHV7ImaQ0AjxQW82puHv+29eXrtq/z8dMD8HSRf3IhhGhK5LdyHZWUlPCf//wHi8XCoEGD8Pb2rrJ8clIO3310DIvJRotAd+57vgctAmu2xm/RDz+Q9tKs8seTIiIIXb0aVYAfcxPmsvHsRgCm5BuYZChkg3UYh7vOYfUjvdBrZY0PIYRoaiSI68jNzY0WLVpQUlKCWl150CmKwtEfLvHT12dQFGjd2Zd7n6vZdJUAef/4B5kLF13zeJLJRcXLO6ez59Ie1MDr2bk8VGzkHcvDlA2YyTsju6CWZ4GFEKJJahZB/Oc//5ldu3YxdOhQvv766zrXZzab0el0jok5evbsiVqtrnS6SrvNzo9fnOHXPWkAdBkYzOD/7lyj6SoVu52sd94h7+O1ALR45GGCXn8dg62Yqd9N5WjOUVxQ8XZmFoONZcyxTqD9iKm8NLh9nc9XCCFEw2kW9yqnT5/Op59+Wi915ebmsnv3bk6fPu3YptPpKg1hU6mV+Lij5SGsgjsf7Mg9T91eoxC2m0ykvfSSI4QDZkwnaP58LpuyGLt1LEdzjuKjqPjocjp3Gq28YHuR/o+8xEQJYSGEaPKaRRDfc889eHnVbIaqypSWllJWVkZGRgZ2u73KsgXZpXyz5BCpx/PQ6tVET+pOz+FhNZoz2mYwkPLMBIq2bgOdjpAlb+EfG8vp/NM8teUpkguTCbKr+DQtjfZlWiYqr/BEzPPXzJYlhBCi6XJ6EO/Zs4dRo0YREhKCSqVi06ZN15WJi4sjPDwcV1dX+vXrx4EDBxq/ob9p06YNUVFR3HXXXVV+J5x+1sDXbx0kP92IRwsXHpzVm/ZRNZvFypyaSvIT/03poUOovbwIW/MhPqNHcyD9AOO2jSOnNIeOVoUNly7hYfZkonYBLz83QWbLEkKIm4jTg9hoNBIZGUlcXFyF+7/44gtmzpzJ3LlzOXz4MJGRkYwYMYKsrCxHmaioKLp163bd6/Lly/XSxoMHD2Kz2RzvQ0NDK70VDXBqfwablh+hrNhCQJgXD/9PHwLCanZFXpqURPLjT2C+cAFtcDDh//g7Hv37sy15G7Hfx1JsKaa3yconaZcotrRimvtbLHn+Cbq3kdmyhBDiZuL0wVrR0dFER0dXun/ZsmVMnDiR8ePHA7B69Wq+/fZb1q5dy+zZswFITEysl7aYTCZMJpPjfUFBAQAXL14kMTGRTp06VXm8oigc2pbM4X+nABDerSVDnu6IXWOisNBU5bFXK9q9m/RXXkUpK0PfuTOtli/H1CqAT39ew/JDy1FQuKfExBvZ2Ry1t2OF36u89dQQfHU2CgsLa3HmQgghqnLld6uiKPVfudKEAMrGjRsd700mk6LRaK7ZpiiKMnbsWGX06NE1qnvnzp3KQw89VGWZuXPnKoC85CUveclLXhW+zp07V6PsqQ6nXxFXJScnB5vN5pix6orAwEBOnjxZ7XqGDRvGL7/8gtFopE2bNnz11VcVznw1Z84cZs6c6XhvMBho27YtKSkp+Pj41P5EGsgdd9zBzz//3CTrrs3x1T2mOuWqKlPTfYWFhYSGhpKamnrDCVucoaH6gfSB30kfaLw6mmofKCgoICwsDD8/vxu2raaadBDXl++//75a5VxcXHBxuX4eZh8fnyb5n0+j0TRYu+pad22Or+4x1SlXVZna7vP29m5W/UD6wPWkDzR8HU29D1Q1SLe2nD5Yqyr+/v5oNBoyMzOv2Z6ZmUlQUJCTWtV0TJkypcnWXZvjq3tMdcpVVaa2+5qqhmqz9IGbR1PtA7Wpozn2AZWiNMQ3z7WjUqnYuHEjDzzwgGNbv3796Nu3L6tWrQLAbrcTFhbG1KlTHYO1GkphYSE+Pj4UFBQ0yb+CReOQfiCkD4iG7ANOvzVdXFzM2bNnHe8vXLhAYmIifn5+hIWFMXPmTGJiYujTpw99+/Zl+fLlGI1GxyjqhuTi4sLcuXMrvF0tmg/pB0L6gGjIPuD0K+Jdu3YxZMiQ67bHxMSwfv16AP72t7/x9ttvk5GRQVRUFCtXrqRfv36N3FIhhBCi/jk9iIUQQojmrEkP1hJCCCFudRLEQgghhBNJEAshhBBOJEEshBBCOJEEcR1cuHCBIUOG0KVLF7p3747RaHR2k0QjOnXqFFFRUY6Xm5tbhct4ilvbu+++S9euXenSpQvTpk1rmEUBRJO2dOlSunbtSrdu3diwYUONj5dR03Vw9913s3DhQgYNGkReXh7e3t5otU5/NFs4QXFxMeHh4Vy8eBEPDw9nN0c0kuzsbPr378+xY8fQ6XQMHjyYpUuXVjiXvbg1JSUlERMTQ0JCAoqiMGTIELZt20aLFi2qXYdcEdfSlf94gwYNAsDPz09CuBnbvHkzQ4cOlRBuhqxWK2VlZVgsFiwWC61atXJ2k0QjOnHiBAMGDMDV1RU3NzciIyPZtm1bjepotkG8Z88eRo0aRUhICCqVqsJbinFxcYSHh+Pq6kq/fv04cOCAY9+ZM2fw9PRk1KhR9OrVi8WLFzdi60V9qGsfuNqXX37JY4891sAtFvWtrn0gICCAWbNmERYWRkhICMOGDaNDhw6NeAairuraB7p168auXbswGAzk5+eza9cu0tLSatSGZhvERqORyMhI4uLiKtz/xRdfMHPmTObOncvhw4eJjIxkxIgRZGVlAeV/Bf/444+899577N27l+3bt7N9+/bGPAVRR3XtA1cUFhaSkJDAyJEjG6PZoh7VtQ/k5+cTHx9PcnIyaWlpJCQksGfPnsY8BVFHde0DV8YG/OlPf+LBBx+kf//+aDSamjWi3lc4vgkBysaNG6/Z1rdvX2XKlCmO9zabTQkJCVHefPNNRVEUJSEhQRk+fLhj/5IlS5QlS5Y0SntF/atNH7ji008/VZ588snGaKZoQLXpA19++aXy/PPPO/YvWbJEeeuttxqlvaL+1eX3wBUTJkxQ4uPja/S5zfaKuCpms5lDhw4xbNgwxza1Ws2wYcPYu3cvUL5wdFZWFvn5+djtdvbs2UNERISzmizqWXX6wBVyW/rWVJ0+EBoaSkJCAmVlZdhsNnbt2kXnzp2d1WRRz6r7e+DK1fGpU6c4cOAAI0aMqNHnyOiiCuTk5GCz2QgMDLxme2BgICdPngRAq9WyePFiBg8ejKIoDB8+nPvvv98ZzRUNoDp9AKCgoIADBw7wzTffNHYTRQOrTh/o378/I0eOpGfPnqjVaoYOHcro0aOd0VzRAKr7e2DMmDEUFBTg4eHBunXrajxwV4K4DqKjo4mOjnZ2M4QT+fj4kJmZ6exmCCdatGgRixYtcnYzhBP98S5ZTcmt6Qr4+/uj0Wiu+wWbmZlJUFCQk1olGpP0ASF9QDRWH5AgroBer6d3797s2LHDsc1ut7Njxw55UL+ZkD4gpA+IxuoDzfbWdHFxMWfPnnW8v3DhAomJifj5+REWFsbMmTOJiYmhT58+9O3bl+XLl2M0Ghk/frwTWy3qk/QBIX1ANIk+UNPh3beKnTt3KsB1r5iYGEeZVatWKWFhYYper1f69u2r7Nu3z3kNFvVO+oCQPiCaQh+QuaaFEEIIJ5LviIUQQggnkiAWQgghnEiCWAghhHAiCWIhhBDCiSSIhRBCCCeSIBZCCCGcSIJYCCGEcCIJYiGEEMKJJIiFENdZv349LVq0cHYzhGgWJIiFuEWNGzcOlUqFSqVCr9fTsWNH5s+fj9VqveGxjz32GKdPn67R591zzz3MmDGjlq0Vovlqtos+CNEc3Hvvvaxbtw6TycSWLVuYMmUKOp2OOXPmVHmcm5sbbm5ujdRKIZo3uSIW4hbm4uJCUFAQbdu2ZfLkyQwbNozNmzeTn5/P2LFj8fX1xd3dnejoaM6cOeM47o+3pufNm0dUVBSfffYZ4eHh+Pj48Pjjj1NUVASUX33v3r2bFStWOK7Ck5OTyc/P58knnyQgIAA3Nzc6derEunXrGvvHIESTJkEsRDPi5uaG2Wxm3LhxHDx4kM2bN7N3714URWHkyJFYLJZKjz137hybNm0iPj6e+Ph4du/ezV//+lcAVqxYwYABA5g4cSLp6emkp6cTGhrKa6+9xvHjx9m6dSsnTpzg/fffx9/fv7FOV4ibgtyaFqIZUBSFHTt28O9//5vo6Gg2bdrETz/9xJ133gnA3//+d0JDQ9m0aROPPPJIhXXY7XbWr1+Pl5cXAE8//TQ7duxg0aJF+Pj4oNfrcXd3JygoyHFMSkoKPXv2pE+fPgCEh4c37IkKcROSK2IhbmHx8fF4enri6upKdHQ0jz32GOPGjUOr1dKvXz9HuZYtW9K5c2dOnDhRaV3h4eGOEAYIDg4mKyurys+fPHkyn3/+OVFRUfzlL38hISGh7iclxC1GgliIW9iQIUNITEzkzJkzlJaW8sknn6BSqWpVl06nu+a9SqXCbrdXeUx0dDQXL17kxRdf5PLlywwdOpRZs2bV6vOFuFVJEAtxC/Pw8KBjx46EhYWh1ZZ/ExUREYHVamX//v2Ocrm5uZw6dYouXbrU+rP0ej02m+267QEBAcTExLBhwwaWL1/Ohx9+WOvPEOJWJN8RC9HMdOrUiTFjxjBx4kQ++OADvLy8mD17Nq1bt2bMmDG1rjc8PJz9+/eTnJyMp6cnfn5+zJs3j969e9O1a1dMJhPx8fFERETU49kIcfOTK2IhmqF169bRu3dv7r//fgYMGICiKGzZsuW62881MWvWLDQaDV26dCEgIICUlBT0ej1z5syhR48eDB48GI1Gw+eff16PZyLEzU+lKIri7EYIIYQQzZVcEQshhBBOJEEshBBCOJEEsRBCCOFEEsRCCCGEE0kQCyGEEE4kQSyEEEI4kQSxEEII4UQSxEIIIYQTSRALIYQQTiRBLIQQQjiRBLEQQgjhRBLEQgghhBP9P3rq5yWeZVSOAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1, figsize=(5, 5))\n", - "\n", - "# Group by k value\n", - "groups = {}\n", - "for result in data['results']:\n", - " label = f'k={result['parameters']['k']}' if result['parameters']['function'] == 'forward' else 'fft'\n", - " n = result['parameters']['n']\n", - " mean_time = result['graph_timings']['build_graph']\n", - "\n", - " if label not in groups:\n", - " groups[label] = {'n': [], 'times': []}\n", - " groups[label]['n'].append(n)\n", - " groups[label]['times'].append(mean_time)\n", - "\n", - "# Plot\n", - "for label in groups.keys():\n", - " if label == 'fft': continue\n", - " ax.plot(groups[label]['n'], groups[label]['times'], 'o-', label=label)\n", - "\n", - "scaling = np.array([10**6, 10**9])\n", - "ax.plot(scaling, 1e-7*scaling, ls=':', c='k', alpha=0.3, label='linear scaling')\n", - "# ax.plot(scaling, 7e-9*scaling*np.log(scaling), ls=':', c='k', alpha=0.3, label='O(N log N)')\n", - "ax.set(xscale='log', yscale='log', ylabel='Time [s]', xlabel='Points', title='Graph construction', ylim=(0.1, 900), xlim=(1e6, 1e9))\n", - "\n", - "ax.legend(loc='upper left')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 137, - "id": "57726f10", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdsAAAHbCAYAAACDejA0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAc61JREFUeJzt3Xd81dXhP/7XXbkruTeDbDIgQCDMMBLCMgzZoEIrVlRo/Tgo2iq1KtpWcaE4iq2r/r4VrZLWTSEIspECEggoe4VAIBsybpKb3Jt77/v3x00uuZk3yV1JXs/H4z64973uuXDJK+e8zxAJgiCAiIiIXEbs6QIQERF1dwxbIiIiF2PYEhERuRjDloiIyMUYtkRERC7GsCUiInIxhi0REZGLMWyJiIhcjGFLRETkYgxbom7s8uXLEIlEeOONN5x63Y8//hgikQiXL1926nUdtXTpUvj6+nrkvYk6gmFL5ATZ2dl45JFHMGDAAKhUKqhUKiQkJGD58uU4fvy4p4vXJen1ejz//PPYs2ePp4tC1GlSTxeAqKtLT0/HokWLIJVKsXjxYgwfPhxisRhnz57FN998g/fffx/Z2dmIiYnxdFG7FL1ej1WrVgEAUlNTPVsYok5i2BJ1QlZWFu666y7ExMRg586dCA8Pt9v/2muv4b333oNY3HojUlVVFdRqtSuLSkQexGZkok5Ys2YNqqqqsG7duiZBCwBSqRS/+93vEBUVZdtWf78xKysLs2fPhp+fHxYvXgwA2LdvH375y18iOjoacrkcUVFRePzxx1FdXW133fprXLp0CTNmzIBarUZERAReeOEFtLSQ14cffoi4uDjI5XKMGTMGhw8fdugznjp1ClOmTIFSqUTv3r3x0ksvwWKxNHvsli1bMHHiRKjVavj5+WHOnDk4depUu8t++fJlBAcHAwBWrVoFkUgEkUiE559/3u5aubm5uP322+Hr64vg4GA88cQTMJvNDn0uIndizZaoE9LT09GvXz8kJye36zyTyYQZM2ZgwoQJeOONN6BSqQAAX375JfR6PZYtW4agoCBkZGTg73//O65du4Yvv/zS7hpmsxkzZ87E2LFjsWbNGmzduhXPPfccTCYTXnjhBbtj09LSUFFRgYceeggikQhr1qzBggULcOnSJchkshbLWVBQgMmTJ8NkMuHpp5+GWq3Ghx9+CKVS2eTYTz/9FEuWLMGMGTPw2muvQa/X4/3338eECRNw7NgxxMbGOlz24OBgvP/++1i2bBnuuOMOLFiwAAAwbNgwu2vMmDEDycnJeOONN7Bjxw68+eabiIuLw7Jly9r170HkcgIRdUh5ebkAQLj99tub7CstLRWKi4ttD71eb9u3ZMkSAYDw9NNPNzmv4XH1Vq9eLYhEIuHKlStNrvHoo4/atlksFmHOnDmCj4+PUFxcLAiCIGRnZwsAhKCgIKGkpMR27H//+18BgLBp06ZWP+Njjz0mABAOHTpk21ZUVCRotVoBgJCdnS0IgiBUVFQI/v7+wgMPPGB3fkFBgaDVau22O1r24uJiAYDw3HPPNSlX/TVeeOEFu+2JiYnCqFGjWv1MRJ7AZmSiDtLpdADQ7BCU1NRUBAcH2x7vvvtuk2Oaq301rDFWVVXh+vXrGDduHARBwLFjx5oc/8gjj9iei0QiPPLIIzAajdixY4fdcYsWLUJAQIDt9cSJEwEAly5davUzfvfddxg7diySkpJs24KDg23N3vW2b9+OsrIy/OpXv8L169dtD4lEguTkZOzevbvDZW/Nww8/bPd64sSJbX4mIk9gMzJRB/n5+QEAKisrm+z7xz/+gYqKChQWFuKee+5psl8qlaJ3795Ntufk5OAvf/kLNm7ciNLSUrt95eXldq/FYjH69u1rt23AgAEA0GT8a3R0tN3r+uBt/B6NXblypdkm8vj4eLvXFy5cAABMmTKl2etoNJoOl70lCoXCdl+3XkBAQJuficgTGLZEHaTVahEeHo6TJ0822VcfUC0Fh1wub9JD2Ww249Zbb0VJSQmeeuopDBw4EGq1Grm5uVi6dGmLnZIcIZFImt0utNCZqr3qy/bpp58iLCysyX6p1Pk/alr6TETeiGFL1Alz5szB//t//w8ZGRl2Ta0dceLECZw/fx6ffPIJ7rvvPtv27du3N3u8xWLBpUuXbDVCADh//jwA2HVG6oyYmBhbrbWhc+fO2b2Oi4sDAISEhGDatGltXteRsotEoo4Wm8jr8J4tUSc8+eSTUKlU+M1vfoPCwsIm+9tTc6yvqTU8RxAEvP322y2e884779gd+84770Amk2Hq1KkOv29rZs+ejR9//BEZGRm2bcXFxVi/fr3dcTNmzIBGo8Err7yC2traJtcpLi5ud9nre2iXlZU546MQeRRrtkSd0L9/f6SlpeFXv/oV4uPjbTNICYKA7OxspKWlQSwWN3t/trGBAwciLi4OTzzxBHJzc6HRaPD111+3eA9SoVBg69atWLJkCZKTk7FlyxZs3rwZzzzzTJN7mR315JNP4tNPP8XMmTPx+9//3jb0JyYmxm4aSo1Gg/fffx/33nsvRo4cibvuugvBwcHIycnB5s2bMX78eLtwdaTsSqUSCQkJ+PzzzzFgwAAEBgZiyJAhGDJkiFM+G5Fbea4jNFH3cfHiRWHZsmVCv379BIVCISiVSmHgwIHCww8/LPz00092xy5ZskRQq9XNXuf06dPCtGnTBF9fX6FXr17CAw88IPz8888CAGHdunVNrpGVlSVMnz5dUKlUQmhoqPDcc88JZrPZdlz90J/XX3+9yXuhhWE1jR0/fly45ZZbBIVCIURGRgovvvii8M9//tNu6E+93bt3CzNmzBC0Wq2gUCiEuLg4YenSpcKRI0faXXZBEIQDBw4Io0aNEnx8fOzK29Lf4XPPPSfwxxp5I5EgOKmHBBG5zdKlS/HVV1812xPa23XlshN1FO/ZEhERuRjDloiIyMUYtkRERC7m0bB9//33MWzYMGg0Gmg0GqSkpGDLli22/TU1NVi+fDmCgoLg6+uLhQsXNhlekZOTgzlz5kClUiEkJAR//OMfYTKZ3P1RiNzq448/7rL3PLty2Yk6yqNh27t3b7z66qvIzMzEkSNHMGXKFNx22222Jbkef/xxbNq0CV9++SX27t2LvLw82+ofgHXGnTlz5sBoNOLAgQP45JNP8PHHH+Mvf/mLpz4SERFRE17XGzkwMBCvv/46fvGLXyA4OBhpaWn4xS9+AQA4e/YsBg0ahIMHD2Ls2LHYsmUL5s6di7y8PISGhgIAPvjgAzz11FMoLi6Gj4+PJz8KERERAC+a1MJsNuPLL79EVVUVUlJSkJmZidraWrup3wYOHIjo6Ghb2B48eBBDhw61BS1gnclm2bJlOHXqFBITE5t9L4PBAIPBYHttsVhQUlKCoKAgThFHRNRDCYKAiooKRERENJm7vLM8HrYnTpxASkoKampq4Ovri2+//RYJCQn46aef4OPjA39/f7vjQ0NDUVBQAMC6sHXDoK3fX7+vJatXr8aqVauc+0GIiKhbuHr1qkOzvrWHx8M2Pj4eP/30E8rLy/HVV19hyZIl2Lt3r0vfc+XKlVixYoXtdXl5OaKjo3H16tUmS4EREVHPoNPpEBUVZVs+05k8HrY+Pj7o168fAGDUqFE4fPgw3n77bSxatAhGoxFlZWV2tdvCwkLbEl5hYWF2E6TX76/f1xK5XA65XN5ke32vaCIi6rlccTvR68bZWiwWGAwGjBo1CjKZDDt37rTtO3fuHHJycpCSkgIASElJwYkTJ1BUVGQ7Zvv27dBoNEhISHB72YmIiJrj0ZrtypUrMWvWLERHR6OiogJpaWnYs2cPvv/+e2i1Wtx///1YsWIFAgMDodFo8OijjyIlJQVjx44FAEyfPh0JCQm49957sWbNGhQUFOBPf/oTli9f3mzNlYiIyBM8GrZFRUW47777kJ+fD61Wi2HDhuH777/HrbfeCgD461//CrFYjIULF8JgMGDGjBl47733bOdLJBKkp6dj2bJlSElJgVqtxpIlS/DCCy946iMRERE14XXjbD1Bp9NBq9WivLy8xXu2FosFRqPRzSXrvmQymW2xdCIib+BIFnSUxztIdQVGoxHZ2dmwWCyeLkq34u/vj7CwMI5tJqJuj2HbBkEQkJ+fD4lEgqioKKcPdO6JBEGAXq+3dWwLDw/3cImIiFyLYdsGk8kEvV6PiIgIqFQqTxen21AqlQCs9+1DQkLYpExE3RqraW0wm80AwHmWXaD+l5fa2loPl4SIyLUYtg7ifUXn498pEfUUDFsiIiIXY9h2U6mpqXjsscc8XQwiIgLD1m3MFgEHs27gvz/l4mDWDZgtXWd484cffojU1FRoNBqIRCKUlZV5ukhERF0KeyO7wdaT+Vi16TTyy2ts28K1Cjw3LwEzh3j/sBe9Xo+ZM2di5syZWLlypaeLQ0TU5bBm62JbT+Zj2WdH7YIWAArKa7Dss6PYejLfLeXYvHkztFot1q9f3+5zH3vsMTz99NO2OamJiKh9WLNtJ0EQUF1rduhYs0XAcxtPobkGYwGACMDzG09jfL9ekIjb7pmrlEk61IM3LS0NDz/8MNLS0jB37lysX78eDz30UKvnbNmyBRMnTmz3exERUVMM23aqrjUj4S/fO+VaAoACXQ2GPr/NoeNPvzADKp/2/ZO9++67ePbZZ7Fp0ybccsstAID58+cjOTm51fMiIyPb9T5ERNQyhm039tVXX6GoqAj79+/HmDFjbNv9/Pzg5+fnwZIREfUsDNt2UsokOP3CDIeOzcguwdJ1h9s87uNfj0FSn0CH3rs9EhMTcfToUXz00UcYPXq0rQmazchERO7FsG0nkUjkcFPuxP7BCNcqUFBe0+x9WxGAMK0CE/sHO3TPtr3i4uLw5ptvIjU1FRKJBO+88w4ANiMTEbkbw9aFJGIRnpuXgGWfHYUIsAvc+mh9bl6CS4K23oABA7B7926kpqZCKpVi7dq17W5GLigoQEFBAS5evAgAOHHiBPz8/BAdHY3AwLZr5EREPR2H/rjYzCHheP+ekQjTKuy2h2kVeP+ekW4ZZxsfH49du3bh3//+N/7whz+0+/wPPvgAiYmJeOCBBwAAkyZNQmJiIjZu3OjsohIRdUsiQRC6zlRGLqLT6aDValFeXg6NRmO3r6amBtnZ2ejTpw8UCkULV2ib2SIgI7sERRU1CPFTIKlPoEtrtF2Bs/5uiYicobUs6Cw2I7uJRCxCSlyQp4tBREQewGZkIiIiF2PYEhERuRjDloiIyMUYtkRERC7GsCUiInIxhi0REZGLMWyJiIhcjGFLRETkYgzbbio1NRWPPfaYp4tBRERg2LqPxQxk7wNOfGX902L2dIkcUlJSgkcffRTx8fFQKpWIjo7G7373O5SXl3u6aEREXQana3SH0xuBrU8Buryb2zQRwMzXgIT5niuXA/Ly8pCXl4c33ngDCQkJuHLlCh5++GHk5eXhq6++8nTxiIi6BNZsXe30RuCL++yDFgB0+dbtp92zcs7mzZuh1Wqxfv36dp03ZMgQfP3115g3bx7i4uIwZcoUvPzyy9i0aRNMJpOLSktE1L0wbNtLEABjlWOPGh2w5Umg2aXj67Ztfcp6nCPX6+ACTWlpafjVr36F9evXY/HixVi/fj18fX1bfezbt6/F69WviCGVsmGEiMgR/GnZXrV64JUIJ11MsNZ4X41y7PBn8gAfdbve4d1338Wzzz6LTZs24ZZbbgEAzJ8/H8nJya2eFxkZ2ez269ev48UXX8SDDz7YrnIQEfVkDNtu7KuvvkJRURH279+PMWPG2Lb7+fnBz8+v3dfT6XSYM2cOEhIS8PzzzzuxpERE3RvDtr1kKmsN0xFXDgDrf9H2cYu/AmLGOfbe7ZCYmIijR4/io48+wujRoyESWRerX79+PR566KFWz92yZQsmTpxoe11RUYGZM2fCz88P3377LWQyWbvKQkTUkzFs20skcrwpN26KtdexLh/N37cVWffHTQHEEmeW0vr2cXF48803kZqaColEgnfeeQdA+5uRdTodZsyYAblcjo0bN0KhUDi9rERE3RnD1pXEEuvwni/uAyCCfeBaa5mY+apLgrbegAEDsHv3bqSmpkIqlWLt2rXtakbW6XSYPn069Ho9PvvsM+h0Ouh0OgBAcHAwJBLXlZ2IqLtg2Lpawnzgzn+1MM72VbeMs42Pj8euXbtsNdw333zT4XOPHj2KQ4cOAQD69etnty87OxuxsbHOLCoRUbfEsHWHhPnAwDnWe7iVhYBvqPUerQtrtHv27LF7PWjQIBQWFrb7OqmpqRA6OOSIiIisGLbuIpYAfSa2fRwREXU7nNSCiIjIxRi2RERELsawJSIicjGGLRERkYsxbImIiFyMYUtERORiDFsiIiIX4zhbIqIeymIRkH+hDFU6A9QaOcL7+0MsFnm6WN0Sw7abSk1NxYgRI7B27VpPF4WIvFDWsSLs+/wCqsoMtm1qfzkmLuqPuMQQD5ase2IzspuYLWYcLjiM7y59h8MFh2G2mD1dpHYTBAGzZs2CSCTChg0bPF0cIuqgrGNF2PqPk3ZBCwBVZQZs/cdJZB0r8lDJui/WbN1gx5UdeDXjVRTqb85NHKoKxdNJT2NazDQPlqx91q5da1sTl4i6JotFwL7PL7R6zP++uIA+w4PZpOxErNm62I4rO7Bizwq7oAWAIn0RVuxZgR1XdrilHJs3b4ZWq8X69es7dP5PP/2EN998Ex999JGTS0ZE7pR/oaxJjbaxylID8i+UuadAPQRrtu0kCAKqTdUOHWu2mLE6YzWEZhaOr9/2asarSA5LhsSBFYCUUmWHapZpaWl4+OGHkZaWhrlz52L9+vV46KGHWj1ny5YtmDjRunCCXq/H3XffjXfffRdhYWHtfn8i8g5mswWXT1536NgqXeuBTO3j0bBdvXo1vvnmG5w9exZKpRLjxo3Da6+9hvj4eNsxqamp2Lt3r915Dz30ED744APb65ycHCxbtgy7d++Gr68vlixZgtWrV0Mqdf7HqzZVIzkt2WnXK9QXYtx/xjl07KG7D0ElU7Xr+u+++y6effZZbNq0CbfccgsAYP78+UhObv0zREZG2p4//vjjGDduHG677bZ2vTcReZ4gCCjIKsf5jEJczCxCTVWtQ+epNXIXl6xn8WjY7t27F8uXL8eYMWNgMpnwzDPPYPr06Th9+jTUarXtuAceeAAvvPCC7bVKdTNwzGYz5syZg7CwMBw4cAD5+fm47777IJPJ8Morr7j183ibr776CkVFRdi/fz/GjBlj2+7n5wc/Pz+HrrFx40bs2rULx44dc1UxicgFSvKqcD6jAOcPF6LiRo1tu8JPBrPRglpDy500fQOsw4DIeTwatlu3brV7/fHHHyMkJASZmZmYNGmSbbtKpWqx+XLbtm04ffo0duzYgdDQUIwYMQIvvvginnrqKTz//PPw8fFxapmVUiUO3X3IoWMzCzPx252/bfO496a+h1Ghoxx67/ZITEzE0aNH8dFHH2H06NG2Juj2NCPv2rULWVlZ8Pf3t9u/cOFCTJw4scki9UTkOZWlBlw4XIjzhwtw/WqlbbtMLkHfxGAMSApF7/gAZB+/jq3/ONnidSbc2Z+do5zMq+7ZlpeXAwACAwPttq9fvx6fffYZwsLCMG/ePPz5z3+21W4PHjyIoUOHIjQ01Hb8jBkzsGzZMpw6dQqJiYlOLaNIJHK4KXdcxDiEqkJRpC9q9r6tCCKEqkIxLmKcQ/ds2ysuLg5vvvkmUlNTIZFI8M477wBoXzPy008/jf/7v/+z2zd06FD89a9/xbx585xeZiJqH4O+FlnHinE+owC558tQ/6NGLBEhenAQBiSFInZYL8h8bv6MiUsMwcyHhjQZZ+sbIMeEOznO1hW8JmwtFgsee+wxjB8/HkOGDLFtv/vuuxETE4OIiAgcP34cTz31FM6dO4dvvvkGAFBQUGAXtABsrwsKCpp9L4PBAIPh5hdMp9M5++MAACRiCZ5Oehor9qyACCK7wBXB+lvjU0lPuSRo6w0YMAC7d+9GamoqpFIp1q5d265m5LCwsGZbFaKjo9GnTx9nF5eIHGCqNePKiRs4n1GIyyevw2K6+bMlvJ8WA5LC0G9kCBS+shavEZcYgj7DgzmDlJt4TdguX74cJ0+exP/+9z+77Q8++KDt+dChQxEeHo6pU6ciKysLcXFxHXqv1atXY9WqVZ0qr6OmxUzDW6lvNTvO9qmkp9wyzjY+Ph67du2y1XDffPNNl78nETmXxSIg73wpzmcUIutYMYzVJtu+wAg1BiSFov+YUGiCHL/dJBaLEBkf4IriUiNeEbaPPPII0tPT8cMPP6B3796tHlvf/Hnx4kXExcUhLCwMGRkZdscUFlpDraX7vCtXrsSKFStsr3U6HaKiojrzEVo1LWYaJkdNxtGioyjWFyNYFYyRISNdWqNtfC910KBBtr+XzhKEpk3iROR8giDg+tVKnM8owIXDhagqN9r2+QbI0X9MKAYkhaFXb18PlpIc4dGwFQQBjz76KL799lvs2bPHoWbJn376CQAQHh4OAEhJScHLL7+MoqIihIRY7zNs374dGo0GCQkJzV5DLpdDLndvt3aJWIIxYWPaPpCIejzd9WqczyjE+YwClBbobdvlKiniRoZgQFIoIvr5Q8Qm3y7Do2G7fPlypKWl4b///S/8/Pxs91i1Wi2USiWysrKQlpaG2bNnIygoCMePH8fjjz+OSZMmYdiwYQCA6dOnIyEhAffeey/WrFmDgoIC/OlPf8Ly5cvdHqhERB1VXWHExcwinM8oRMGlctt2iVSM2GFBGJAUhpjBQZDIOPFfV+TRsH3//fcBWCeuaGjdunVYunQpfHx8sGPHDqxduxZVVVWIiorCwoUL8ac//cl2rEQiQXp6OpYtW4aUlBSo1WosWbLEblwuEZE3qjWYkf1zMc5nFOLq6RJYLNZbNCIREBkfgAFJoeibGAK50ivu+FEneLwZuTVRUVFNZo9qTkxMDL777jtnFYuIyGUsZguuninF+YwCXPr5OkwNJpcIjvazdXRSa9ky153w1yUiIhcTBAGF2bq6KRMLUV1xc8pETS8FBiSFYUBSKALC1K1chboyhi0RkYuUFlRZOzodLoSu+OYCJko/GfqNCsWApFCE9tFw6coegGFLROREVeV1UyZmFKI4p8K2XSqXoO/wXhiQFIbegwIgkbCjU0/CsCUi6iRDtQmX6qdMPFeK+u4oIrEI0QmBGJAUij7DgyGTu25sPXk3hi0RUQeYay24cuoGzmcU4PLxGzCbLLZ9YX21GJAUin6jQqD0c+5iKNQ1MWy7qdTUVIwYMQJr1671dFGIvJ7FIjg0R7BgEZB3scw6ZeLRIhj0N6dMDAhT2To6aXq1b4Uu6v4Ytm4imM3QH8mEqbgY0uBgqEaPgkjSNZqUCgoK8Mc//hHbt29HRUUF4uPj8eyzz2LhwoWeLhpRp2UdK2qy+o3aX46Ji26ufnP92s0pEytLGxyn9bk5ZWKULzs6UYsYtm6g27YNha+shqnBKkTSsDCEPrMSmunTPVgyx9x3330oKyvDxo0b0atXL6SlpeHOO+/EkSNHnL6EIZE7ZR0ranZd16oyA7b+4yQGJIXi+rVKlORV2fb5KCQ3p0wcEMBVcsgh7A7nYrpt25D7+8fsghYATIWFyP39Y9Bt2+aWcmzevBlarRbr169v97kHDhzAo48+iqSkJPTt2xd/+tOf4O/vj8zMTBeUlMg9LBYB+z6/0Oox5zMKUZJXBbFUhL4jgjHzwSH49esTMOW+Qeg9MJBBSw5jzbadBEGAUF3d9oGwNh0XvvQy0NxMWYIAiIDCl1+BOiXFoSZlkVLZoWaqtLQ0PPzww0hLS8PcuXOxfv16PPTQQ62es2XLFkycOBEAMG7cOHz++eeYM2cO/P398cUXX6CmpqbJNJtEXUn+hTK7puOWjJgWhVGzYqFQt7w2LFFbGLbtJFRX49zIUU66mLWGe35MkkOHxx/NhEilatdbvPvuu3j22WexadMm3HLLLQCA+fPn25YqbElkZKTt+RdffIFFixYhKCgIUqkUKpUK3377Lfr169eushB5kypd20ELAMExfgxa6jSGbTf21VdfoaioCPv378eYMTeX9/Pz84Ofn5/D1/nzn/+MsrIy7NixA7169cKGDRtw5513Yt++fRg6dKgrik7kUjWVtbh0rNihY9UazlFMncewbSeRUon4o47dq9QfOYKrD7beXAsAUR/+A6rRox167/ZITEzE0aNH8dFHH2H06NG2Juj2NCNnZWXhnXfewcmTJzF48GAAwPDhw7Fv3z68++67+OCDD9pVJiJPqjWY8fPOqzi27QqMNeY2j/cNsA4DIuoshm07iUQih5ty1ePHQxoWBlNhYfP3bUUiSENDoR4/3iXDgOLi4vDmm28iNTUVEokE77zzDoD2NSPr9daFq8Vi+750EokEFoulyXlE3shstuDM//JwePNl6HVGAEBQb1/EDg1C5pYrLZ434c7+7ARFTsGwdSGRRILQZ1Yi9/ePWReobBi4dbXM0GdWunS87YABA7B7926kpqZCKpVi7dq17WpGHjhwIPr164eHHnoIb7zxBoKCgrBhwwZs374d6enpLis3kTMIFgEXM4vw48ZLtoUANL0USJ7fF/1Hh0IkFiE42q/JOFvfADkm3HlznC1RZzFsXUwzfTrw9tqm42xDQ902zjY+Ph67du2y1XDffPNNh8+VyWT47rvv8PTTT2PevHmorKxEv3798Mknn2D27NkuLDVRxwmCgKunS3BwQxauX60EYF1pZ8ycPkiYEAGJ9GZLTVxiCPoMD3ZoBimijhIJba3g3gPodDpotVqUl5dDo9HY7aupqUF2djb69OkDhULR4ffoyjNIuYqz/m6JGirILsePG7KQe64MACBTSDByejSGTYmCj4L1C2pZa1nQWfzmuYlIIoE62bEhPkTUfqUFVfjxv5dsvYzFUhGG3tIbo2bFQOnLxQDIsxi2RNSlVZbW4HB6Ns4cyLfOFSMC4seGIWleX/gFssWEvAPDloi6pJqqWhzdegXH91yDudbaM77P8F5Ivq0vgiJ8PVw6InsMWyLqUmqNZhzfdRVHv8+Bsdq6xF14Py1S7uiH8Dith0tH1DyGLRF1CWazBWf25+Pw5mzoy+vGykb6YuztfREzJIjL25FXY9gSkVcTLAIuHi3CoY2XUF5kHSvrF2QdKztgjHWsLJG3Y9gSkdeqHytbnFMBwDpWdvTsWAyeEAmJjCuEUtfBsCUir1N4WYcfN2Th2tlSAIBMLkHi9GgMn8qxstQ18VtLRF6jtKAKhzZeQtbRm2Nlh0yKxOhZsVD6cawsdV0M224qNTUVI0aMwNq1az1dFKI2VZYacHhz3VhZiwCIgPjkMCTN7QNNr/atdkXkjXjTw00sFgG550px/nABcs+VwmLpOrNkfvjhh0hNTYVGo4FIJEJZWVmzx23evBnJyclQKpUICAjA7bff7tZyUtdTU1WLg99exGd/OYjT/8uDYBEQO6wX7vpTEqYtTWDQUrfBmq0bZB0rarKqiNpfjomLusaqInq9HjNnzsTMmTOxcuXKZo/5+uuv8cADD+CVV17BlClTYDKZcPLkSTeXlLqKWqMZJ3Zfw9Hvr8CgrxsrG6fF2DviENHP37OFI3IBhq2LZR0rwtZ/NA2dqjIDtv7jJGY+NMQtgbt582bcfffdeO+997B48eJ2nfvYY48BAPbs2dPsfpPJhN///vd4/fXXcf/999u2JyQkdLS41E1ZzBacOZCPw+nZqKobKxsYoUbK7XGIGcqxstR9MWzbSRAEmIyOLZpusQjY9/n5Vo/Z9/kF9B4Y6NByXlIfcYd+GKWlpeHhhx9GWloa5s6di/Xr1+Ohhx5q9ZwtW7Zg4sSJDl3/6NGjyM3NhVgsRmJiIgoKCjBixAi8/vrrGDJkSLvLS92PIAjIOlqMQxsvoaxQDwDwC1QgaX4fDEgK43J21O0xbNvJZLTgw9/vddr1qsoM+H+P/+DQsQ++fQtk8vYty/fuu+/i2WefxaZNm3DLLbcAAObPn4/k5ORWz4uMjHT4PS5dugQAeP755/HWW28hNjYWb775JlJTU3H+/HkEBga2q8zUvVw9W4Ifv81C0RXrWFmFrwyjZ8ViyCSOlaWeg2HbjX311VcoKirC/v37MWbMGNt2Pz8/+Pn5Oe19LBZrTf/ZZ5/FwoULAQDr1q1D79698eWXX7ZZi6buqeiKdazs1TM3x8qOmBaFEdOi4aPkjx7qWfiNbyepjxgPvn2LQ8fmXShD+js/t3nc3EeGI6K/v0Pv3R6JiYk4evQoPvroI4wePdrWBO3sZuTw8HAA9vdo5XI5+vbti5ycnHaVmbq+skI9Dm28hIuZRQAAsUSEwXVjZVUajpWlnolh204ikcjhptyohECo/eV2vZAb8w2QIyrBsXu27RUXF2drzpVIJHjnnXcAOL8ZedSoUZDL5Th37hwmTJgAAKitrcXly5cRExPT8Q9AXUpVmXWs7On9N8fKDkgKRfK8vhzCQz0ew9aFxGIRJi7q32xv5HoT7uzv0s4hAwYMwO7du5GamgqpVIq1a9e2uxm5oKAABQUFuHjxIgDgxIkT8PPzQ3R0NAIDA6HRaPDwww/jueeeQ1RUFGJiYvD6668DAH75y1+65HOR9zDoa3H0+xwc33UVprp1ZWOGBmHsbXHo1ZvryhIBDFuXi0sMwcyHhjQZZ+sbIMeEO90zzjY+Ph67du2y1XDffPPNdp3/wQcfYNWqVbbXkyZNAmC9L7t06VIAwOuvvw6pVIp7770X1dXVSE5Oxq5duxAQEOC0z0HexWQ04/ieazi69eZY2bC+GqTc0c+h2yJEPYlIEISuM5WRi+h0Omi1WpSXl0Oj0djtq6mpQXZ2Nvr06QOFQtHh97BYBORfKEOVzgC1Ro7w/v49friDs/5uyb0sZgvOHixARnq27RfIwAg1xt7WF7HDenGsLHVZrWVBZ7Fm6yZisQiR8azlUdclCAIuHSvGj/+9OVbWN0COpHl9ET+WY2WJWsOwJaI2XTtXioPfZqHosg4AoFDLMGpWDIbcEgmprH1jv4l6IoYtEbWoOKcCBzdk4erpEgCAVC7BiKlRSLyVY2WJ2oP/W4h6oLb6EJQV6ZGx8RIuHKkbKysWYfDECIye04djZYk6gGHrIPYjcz7+nXpGa6tQhfXV4sjmyzj9vzzbMpD9x4QieX5faIM5Vpaooxi2bZBIrPejjEYjlEr+sHEmvd7ayUYmk3m4JD1HW6tQiaUiWEzWkI0eHISxt/dFcJTzpvYk6qkYtm2QSqVQqVQoLi6GTCaDWMyJ0ztLEATo9XoUFRXB39/f9gsNuZZ1FaoLrR9jEhAS64dxC/ohcgB7zxM5C8O2DSKRCOHh4cjOzsaVK1c8XZxuxd/fH2FhYZ4uRo+Rf6Gs1alD66XcEcegJXIyhq0DfHx80L9/fxiNRk8XpduQyWSs0bpZla7toAUAvY7fcyJnY9g6SCwWc5Yj6tLqp1Rsi1ojd3FJiHoehi1RN1dWpMePGy4h62hRm8f6BliHARGRczFsibopvc6II5uzcWpf3TAeERDZ3x+558taPMfVq1AR9VQMW6JuptZgxk87cnBsWw5qDWYAQPTgQKTc0Q+9evs2O87WnatQEfVEDFuibsJstuDM/nwcTs+2dXIKjvbDuAVx6D0w0HZcXGII+gwP5ipURG7EsCXq4gRBQPZP13FwQ5ZtNR5NLwXG3h6HfiNDIGomRLkKFZF7MWyJurD8i2U48E0WCi6VAwAUvjKMnh2LIZMiIZFyAhYib+HR/42rV6/GmDFj4Ofnh5CQENx+++04d+6c3TE1NTVYvnw5goKC4Ovri4ULF6KwsNDumJycHMyZMwcqlQohISH44x//CJPJsWEORF1RSX4Vvnv/OL554ygKLpVDKhNj1KwY3PtiCoZPiWLQEnkZj9Zs9+7di+XLl2PMmDEwmUx45plnMH36dJw+fRpqtRoA8Pjjj2Pz5s348ssvodVq8cgjj2DBggXYv38/AMBsNmPOnDkICwvDgQMHkJ+fj/vuuw8ymQyvvPKKJz8ekdNVlRmQkZ6NM/vzIAiASAQMGh+BpLl9oPbn+FgibyUSvGjpleLiYoSEhGDv3r2YNGkSysvLERwcjLS0NPziF78AAJw9exaDBg3CwYMHMXbsWGzZsgVz585FXl4eQkNDAQAffPABnnrqKRQXF8PHp+3lwHQ6HbRaLcrLy6HRaFz6GYk6wlhtwtFtV/Dzjqsw1VoAAH2G98LY2+MQGK72cOmIugdXZoFX3bMtL7fedwoMtPaczMzMRG1tLaZNm2Y7ZuDAgYiOjraF7cGDBzF06FBb0ALAjBkzsGzZMpw6dQqJiYlN3sdgMMBguDnsQafTueojEXWK2WTByR9yceS7y6iprAUAhPXVIGVBP0T08/ds4YjIYV4TthaLBY899hjGjx+PIUOGAAAKCgrg4+MDf39/u2NDQ0NRUFBgO6Zh0Nbvr9/XnNWrV2PVqlVO/gREziNYBFw8WoQfN2RBd70GAOAfqkLK7XHoM6IXRCIO0yHqSrwmbJcvX46TJ0/if//7n8vfa+XKlVixYoXttU6nQ1RUlMvfl8gR186V4uA3F1F0pQIAoNL4YMzcPkgYHw6xhB2fiLoirwjbRx55BOnp6fjhhx/Qu3dv2/awsDAYjUaUlZXZ1W4LCwttS7OFhYUhIyPD7nr1vZVbWr5NLpdDLmdnEvIu169V4uC3Wcg5dQMAIJNLkDg9GsOnRsFH4RX/VYmogzz6a7IgCHjkkUfw7bffYteuXejTp4/d/lGjRkEmk2Hnzp22befOnUNOTg5SUlIAACkpKThx4gSKim5Osr59+3ZoNBokJCS454MQdUJFSQ12fnwan7+cgZxTNyAWizD0lkjc82IKxszpw6Al6gY8+r94+fLlSEtLw3//+1/4+fnZ7rFqtVoolUpotVrcf//9WLFiBQIDA6HRaPDoo48iJSUFY8eOBQBMnz4dCQkJuPfee7FmzRoUFBTgT3/6E5YvX87aK3m1mqpaHN16Bcd3X4PZZO1hHDcyBGNv6wv/UJWHS0dEzuTRoT8tdfJYt24dli5dCsA6qcUf/vAH/Pvf/4bBYMCMGTPw3nvv2TURX7lyBcuWLcOePXugVquxZMkSvPrqq5BKHftdgkN/yJ1MtWac2J2LzK2XbWvMRvT3x7gF/RDah98/Ik9xZRZ41ThbT2HYkjtYLALOZxTg0MZLqCyxDj0LjFAj5Y44xAwJYg9jIg/rMeNsibojQRCQc7oEB7/Jwo3cSgDWJe2S5vVB/NhwrrZD1AMwbIlcqOiKDge/zcK1s6UAAB+lFKNmxmDY5N6Q+kg8XDoicheGLZEL6K5X48f/XsKFw9ZhaGKpCENTe2P0zFgofGUeLh0RuRvDlsiJqiuNOPLdZZzcmwuL2dodYkBSKJLn94Wml9LDpSMiT2HYEjlBrdGMn3dexbHvr8BYYwYARCUEIuX2OARH+3m4dETkaQxbok6wmC04e7AAGZsuoarcCADoFeWLcXf0Q1RCoIdLR0TegmFL1AGCIODy8es4uOESSvOrAAB+QQokz++LAWNCIWIPYyJqgGFL1E4Fl8px4JuLyL9oXRJSrpZi9KxYDL2lNyQyLhRARE0xbIkcVFaox8ENWbh0rBgAIJGJMXxKFEbOiIZcxR7GRNQyhi1RG/Q6Iw6nZ+PU//IgWASIRMDAlHAkzesD3wCFp4tHRF0Aw5Z6PItFQP6FMlTpDFBr5Ajv7w+xWARjjQk/bc/BsR1XYTJYexjHDg3C2NvjEBTp6+FSE1FXwrClHi3rWBH2fX4BVWUG2za1vxwxgwORffw6qitqAQAhsRqMWxCHyAEBnioqEXVhDFvqsbKOFWHrP0422V5VZsDp/fkAAG2wEmNvj0PcyGAuFEBEHcawpR7JYhGw7/MLrR4jV0mx6C9JkMk4hzERdQ7HKVCPlH+hzK7puDkGvQlFl3RuKhERdWcMW+pxaiprcXJfrkPHVulaD2QiIkewGZl6jJL8KhzfdRXnfiyAqdbi0DlqjdzFpSKinoBhS92aIAi4eroEP++8ipzTJbbtQb3VqCwxwKA3tXiub4B1GBARUWcxbKlbqjWace7HAhzfdRWlBXrrRhHQd3gwhk/tjfB+/rj0U3GzvZHrTbizP8Sc45iInIBhS91KZakBJ/Zew6l9uTBUWWutMoUECeMiMHRyb2iDb64pG5cYgpkPDWkyztY3QI4Jd/ZHXGKI28tPRN0Tw5a6hcJsHX7edRVZmUWwWKyLtmt6KTBschQGjQuHj7L5r3pcYgj6DA9udgYpIiJnYdhSl2UxW3Dpp+v4eedVFFwqt22P6O+P4VOjEDusl0OhKRaLEBnPmaGIyHUYttTl1FTV4vT+PJzYfQ2VpdbmX7FEhAFjQjFsShSCo/08XEIiInsMW+oyygr1OL7rKs78WGBbGEDpJ8PgSZEYMikSai2H6RCRd2LYklcTBAHXzpXi551XceXEDdv2oEg1hk+NQv8xoZByOkUi8nIMW/JKJqMZ5w8X4uedV1GSV2XdKAJih/bC8Cm9ERkfwIUBiKjLYNiSV6kqN+Dk3lyc/CEXNZXW5e2kcgkGpYRj2OTe8A9VebiERETtx7Alr1CcU4Gfd17FhSOFsJitQ3d8A+UYNjkKCePDIVfJPFxCIqKOY9iSx1gsAi7/fB0/77qKvAtltu3hcVoMmxKFviN6QSzhWhlE1PUxbMntDNUmnNmfh+O7r6HiRg0A61jXfqNDMGxKFEJjNR4uIRGRczFsyW3Ki/U4vvsazhzIR22NdeiOXC3FkImRGHJLb/gGcOgOEXVPDFtyKUEQkHehDD/vvIrs49cB6+1YBISrMXxKbwxIDoPMh0N3iKh7Y9iSS5hrLbhwpBA/77qK61crbdujBwdh+NTeiBoUyKE7RNRjMGzJqfQ6I07ty8WJvbmo1hkBAFKZGPF1Q3cCw9UeLiERkfsxbMkprl+rwM+7ruF8RgEsJmtbsdpfjmGTeyNhQgQUag7dIaKei2FLHSZYBFw+eQM/78xB7rky2/aQWA1GTI1C35HBkHDoDhERw5baz1hjwtmD+Ti+6xrKi6sBACKxCHEjgzF8ShTC+mo9XEIiIu/CsCWH6a5X48Seazi9Px/GahMAQK6SImFCBIam9oZfoMLDJSQi8k5OC9uysjL4+/s763LkJQRBQH5WOY7vvIpLPxVDqBu64x+qwrDJvTEwJRwyOYfuEBG1pkNh+9prryE2NhaLFi0CANx55534+uuvERYWhu+++w7Dhw93aiHJuSwWAfkXylClM0CtkSO8vz/EYvthOGaTBRczi3B811UUXamwbY8aFIBhU6IQMzgIIjGH7hAROaJDYfvBBx9g/fr1AIDt27dj+/bt2LJlC7744gv88Y9/xLZt25xaSHKerGNF2Pf5BVSVGWzb1P5yTFzUH3GJIaiuNOLUvjyc3HMNVeXWoTsSqRjxyaEYNiUKQZG+nio6EVGX1aGwLSgoQFRUFAAgPT0dd955J6ZPn47Y2FgkJyc7tYDkPFnHirD1HyebbK8qM2DrP06i98AA5GeVw1xrAQCotD4YektvDJ4YAaWfj7uLS0TUbXQobAMCAnD16lVERUVh69ateOmllwBY7++ZzWanFpCcw2IRsO/zC60ec+1sKQAgONoPw6dGod+oEEikHLpDRNRZHQrbBQsW4O6770b//v1x48YNzJo1CwBw7Ngx9OvXz6kFJOfIv1Bm13Tckgl39sewyb05lSIRkRN1KGz/+te/IjY2FlevXsWaNWvg62u9j5efn4/f/va3Ti0gOUeVru2gBQCln4xBS0TkZB0KW5lMhieeeKLJ9scff7zTBSLnM1SbbE3EbVFruMwdEZGzORy2GzdudPii8+fP71BhyLmqK404vusaju++ZpuEojW+AdZhQERE5FwOh+3tt9/u0HEikYidpDysqsyAYztycOqHXJiM1p7FAWEqRA0KxPHd11o8b8Kd/ZuMtyUios5zOGwtFosry0FOoLtejaPbcnDmQJ5t5Z3gaD+MmhWDvsODIRKLEDHAv8k4W98AOSbcaR1nS0REztfp6RpramqgUHBOXE8qLahC5tYrOJ9RCMFiDdnwOC1GzYpF9GD7RdrjEkPQZ3hwmzNIERGR83QobM1mM1555RV88MEHKCwsxPnz59G3b1/8+c9/RmxsLO6//35nl5OaUZxTgcytl5F1rBiom7M4KiEQo2fFIKJ/QIvnicUiRMa3vJ+IiJyrQ2H78ssv45NPPsGaNWvwwAMP2LYPGTIEa9euZdi6WH5WOTK3XMaVkzds2/oM74VRs2IRGqvxYMmIiKg5HQrbf/3rX/jwww8xdepUPPzww7btw4cPx9mzZ51WOLpJEARcO1uKzC2XkXu+DAAgEgH9Rodi1MwYzllMROTFOjQXX25ubrMzRVksFtTW1jp8nR9++AHz5s1DREQERCIRNmzYYLd/6dKlEIlEdo+ZM2faHVNSUoLFixdDo9HA398f999/PyorKzvysbySIAjI/rkYX72WiY1v/4Tc82UQS0QYND4cd68ai+n3D2bQEhF5uQ7VbBMSErBv3z7ExMTYbf/qq6+QmJjo8HWqqqowfPhw/OY3v8GCBQuaPWbmzJlYt26d7bVcbj/pwuLFi5Gfn4/t27ejtrYWv/71r/Hggw8iLS2tHZ/I+1gsArIyi5C59TJu5FYBACQyMRImRCDx1mgu1E5E1IV0KGz/8pe/YMmSJcjNzYXFYsE333yDc+fO4V//+hfS09Mdvs6sWbNs8yq3RC6XIywsrNl9Z86cwdatW3H48GGMHj0aAPD3v/8ds2fPxhtvvIGIiAjHP5SXMJssOHeoAEe/v4LyomoAgEwhwdBbemP41CioNFx9h4ioq+lQ2N52223YtGkTXnjhBajVavzlL3/ByJEjsWnTJtx6661OLeCePXsQEhKCgIAATJkyBS+99BKCgoIAAAcPHoS/v78taAFg2rRpEIvFOHToEO64445mr2kwGGAw3BxnqtPpnFrmjjAZzTi9Px/Htl9BZYm1bHK1FMOnRGFoam8o1DIPl5CIiDqqw+NsJ06ciO3btzuzLE3MnDkTCxYsQJ8+fZCVlYVnnnkGs2bNwsGDByGRSFBQUICQEPuJGKRSKQIDA1FQUNDidVevXo1Vq1a5tOyOMtaYcHJvLn7aeRXVOuti7SqND0ZMi8bgSRHwUXR6KDQRUZcimM3QH8mEqbgY0uBgqEaPgkgi8XSxOqVDP8n/7//+D/fccw9SU1OdXBx7d911l+350KFDMWzYMMTFxWHPnj2YOnVqh6+7cuVKrFixwvZap9MhKiqqU2Vtr5qqWhzffQ3Hd12FQW+dt9gvUIHE6dEYND4cUlnX/mIREXWEbts2FL6yGqYGFSZpWBhCn1kJzfTpHixZ53QobIuLizFz5kwEBwfjrrvuwuLFizFixAgnF62pvn37olevXrh48SKmTp2KsLAwFBUV2R1jMplQUlLS4n1ewHofuHFHK3fR64z4aUcOTu7NRa3BOoe0f6gKI2fEYEByKCQSLtZORD2Tbts25P7+MUAQ7LabCgut299e22UDt0Nh+9///helpaX48ssvkZaWhrfeegsDBw7E4sWLcffddyM2NtbJxbS6du0abty4gfDwcABASkoKysrKkJmZiVGjRgEAdu3aBYvFguTkZJeUoaMqSmpwbFsOTu/Pg7nWOs90UG9fjJoZg7iRIZwukYh6NMFsRuErq5sErXWnAIhEKHxlNfymTu2STcoiQWjuk7XPtWvX8O9//xsfffQRLly4AJOp7eXcAKCyshIXL14EACQmJuKtt97C5MmTERgYiMDAQKxatQoLFy5EWFgYsrKy8OSTT6KiogInTpyw1UxnzZqFwsJCfPDBB7ahP6NHj27X0B+dTgetVovy8nJoNM6dgamsUI+j31/BuR8LYKmbtzi0jwajZ8UiZmgQF2onIgJQdSgDOUuWtHlc9CefQJ2c5JIyuDILOt37pra2FkeOHMGhQ4dw+fJlhIaGOnzukSNHMHnyZNvr+vuoS5Yswfvvv4/jx4/jk08+QVlZGSIiIjB9+nS8+OKLdk3A69evxyOPPIKpU6dCLBZj4cKF+Nvf/tbZj9VpN3IrkbnlMi5mFtl+UYuMD8DoWTGIjA9gyBIRNWAqLnbqcd6mw2G7e/dupKWl4euvv4bFYsGCBQuQnp6OKVOmOHyN1NRUtFax/v7779u8RmBgoFdNYFGYrcORLZdx+fh127bYoUEYNSsWYX21HiwZEZF3MmRnQ7d1q0PHSoODXVwa1+hQ2EZGRqKkpAQzZ87Ehx9+iHnz5nmsw5E3EAQBeefLcGTLZVw7W2rdKAL6jQzBqFkx6NXbz7MFJCLyMoLFgqr9B1Dy6b9Q9cO+tk8QiSANDYVq9CjXF84FOhS2zz//PH75y1/C39/fycXpWgRBwJWTN5C55QoKLpUDsC5fNyA5FCNnxCAgTO3hEhIReRdzZRXK/7sBpZ+thzE727pRJILvLbdAnjAIN97/wLqtYatn3W230GdWdsnOUUAHw7Z+Wb2LFy8iKysLkyZNglKphCAIPeJepGARkHWsGJlbL+P6VeuiBxKpGIPGhyNxejQ0QUoPl5CIyLsYc3JQun49yr7+Bpa6xWLEajW0CxcgcPFi+NTNta8YOLDpONvQ0J45zvbGjRu48847sXv3bohEIly4cAF9+/bF/fffj4CAALz55pvOLqdXMJstuHC4EEe3XkFpgR4AIJVLMGRSJEZMi4Ja23Ob0omIGhMEAfqDB1Hy6Weo3LPHVlv1iY1FwD33QHv77ZD42rcAaqZPh9/UqZxBCgAef/xxyGQy5OTkYNCgQbbtixYtwooVK7pd2JpqzTh70Lo4QMWNGgCAXCXF0Mm9MXxyFBS+nLeYiKieRa9H+caNKPnsMxgvZtm2qydOROC990A9YQJE4pYn8BFJJC4b3uMpHQrbbdu24fvvv0fv3r3ttvfv3x9XrlxxSsE8Ie9CKXwT/WwTTNQazDi1LxfHtudAX26dt1jpJ8OIadEYMikSPkrOW0xEVM94LRelaWko++orWOoWeBGrVNDecQcCFi+GvG8fD5fQczqUFlVVVVCpVE22l5SUdOleyenvHkevkGsYe3tfVJbU4Oed11BTVQsA8A2Q181bHAGZT9duziAichZBEKA/lIGSzz5F5a7dgMU6Q54sOhqB9yyG9o47IPHjiIwOhe3EiRPxr3/9Cy+++CIAQCQSwWKxYM2aNS5fnMDVqsoM2PnxGdtrbbASI2fGID45DBIp5y0mIgIAS3U1ytPTUfrpZzCcP2/brh43DgH33gPfSZO6/H1WZ+pQ2K5ZswZTp07FkSNHYDQa8eSTT+LUqVMoKSnB/v37nV1GjxCJRZi6ZCD6jw6FmIsDEBEBAGrz8lD673+j7IsvYS63DnkUKZXQ3jYfgffcA3m/fh4uoXfqUNgOGTIE58+fxzvvvAM/Pz9UVlZiwYIFePDBB/HSSy/hww8/dHY53U6wCPD1VzBoiajHEwQB1ZmZKPn0M1Ts2AGYrSuWySIjEbB4MfwXLoBEyxnyWtPhHj5arRbPPvus3baff/4Z//znP7tF2AJAlc7g6SIQEblMW4u0WwwG6NI3o+Szz2A4c/P2mio5GYH33gPfyZPZVOwgdqdthVrTdTt7ERG1prVF2pXDh1ubij//AuZS6xS0Irkc2vnzEXDPPVDED/BUsbsshm0LfAPkCO/v7+liEBE5XYuLtBcUIPd3vwfEYluvYml4OALu/hX8f/ELSAMCPFDa7oFh24IJd/bngu5E1O20ukh7PYsFylGjEHjfffCbOgUiKaOis9r1N7hgwYJW95eVlXWmLF7BN0COCXf2R1xiiKeLQkTkdPojmXZNxy0J/t3vut0sTp7UrrDVttHbTKvV4r777utUgTxp7vJhGJAYzRotEXUrlpoa6DMzUXXgAHRbHFs3tqsu0u6t2hW269atc1U5vEJE/wAGLRF1eYIgwHDuHKr2H0DV/v3QZ2ZCMLRvdEVXXaTdW7EhnoioG6gtKkLVgQN1j4MwX79ut18aEgL1+PFQjR2L4jfegOn69ebv23bxRdq9FcOWiKgLslRXQ3/kiK32arhwwW6/SKmEKmkMfMeNg3r8ePjExdnWGxcrFdbeyCJRt1uk3VsxbImIugDBYkHNmTPWmuv+A6jOzIRQW3vzAJEIisGDoa4LV2XiCIh9fJq9lmb6dODttd1ykXZvxbAlIvJStQUFtppr1cGDtgkm6knDw6EePw6+dc3D7RkH210XafdWDFsiIi9hqapC1eHDttqrMSvLbr9YpYIqOdlWe/XpE2trGu6I7rhIu7di2BIReYhgNqPm9OmbvYZ/+glo2DQsFkMxdAjU46y1V+Xw4RDJZB4rL3Ucw5aIyI1qc3NRWVdz1R88aFumrp4sMhLq8eOtj7HJXE2nm2DYEhG5kLmyEvqMDFT9bz+qDhyA8fJlu/1iX1+oxibDd/x4qMeNgyw6ulNNw+SdGLZERE4kmEyoOXnSVnut/vlnwGS6eYBEAuWwYdaa67hxUA4byrmHewD+CxMRdZLx6tWbvYYPHYJFp7PbL4uJtt13VSUnQ+Ln56GSkqcwbImox2trEfXGzDodqg4dsobrgYOozcmx2y/WaKAeO7bu3us4+PTu7eqPQF6OYUtEPVpri6jXT+4g1Nai+sQJ233X6uPHbeu9Wk+QQjliuO2+q2LIEI5XJTsMWyLqsVpcRL2wELm/+z0qf/kLmEtKof/xR1iqquyO8enTx3bfVZWUBImv2o0lp66GYUtEPVKri6jXbSv/8ivbJolWC/X4cdYJJcaNgywiwl1FpW6AYUtE3ZogCDCXlcFUUIDa/ALU5ufBVFCA6hMnHVpEXfuLXyBg0SIoEgaxaZg6jGFLRF2aRa9HbUEBavPyYSrIrwvUBs8LCiBUV3f4+uqxY6EcOsSJJaaeiGFLRF5LMBpRW1QEU36+LVBrC/JhqgvU2oICWBrNwNQSSWAgZOHhkIaHQRYWDqHWiLLPv2jzPC6iTs7AsCUijxAsFpiuX7cGaX5BkxA15ee3vMB5I2JfX8jCwyANC4csPLzB8zBrwIaFQSyX27+/2YzKvT/AVFjIRdTJ5Ri2RD1Qe8eVtvv6ggBLebm1Npqfb23WrWvSNdW9ri0qsp90vwUiHx9bbVQWFmZ9Hh5RF6jWMO3IJBEiiQShz6zkIurkFgxboh7GkXGlbbFUV9t1NrLVTPPqmnsLCiDo9W1fSCyGNCQEsrAwyCLCrbXRRoEqCQx02VzBXESd3EUkCA600XRzOp0OWq0W5eXl0Gg0ni4Okcu0NK60viYX+fZa+E2ejNrCohY7G5ny8pqsVNMSSWBgXXiGNwhUa21UFhYGaUiIV8wL7OqaPnUNrswChi0YttQzCGYzLk6d1vpwF7HYfmakVojV6ps10PraaFg4ZBF1QRoWBrFC4aTSE7meK7PA879SEpFb6I9ktj2utC5oRTLZzdpoeH3NtEHHo4iO3Scl6qkYtkTdnLmyEhXbtqNk3TqHjg977jn4L7oTIrHYxSUj6jkYtkTdkMVoRNW+fSjflI7K3bshGAwOn+vTty+DlsjJGLZE3YRgsUB/5Ah0m9Kh27bNbrIHn7g4aObMRmnav2G+cYPjSoncjGFL1MXVnDsH3aZNKN/8HUz5+bbt0pAQaObMgXbeXMgHDYJIJIK8Xz+OKyXyAIYtURdUm5uL8s3fQbdpEwwXLti2i3194TdjOrTz5kE1ZkyT4OS4UiLPYNgSdRHmsjLotn6P8vRNqD6Sadsuksngm3oLNHPnwTf1libTEjammT4dflOnclwpkRsxbIm8mKW6GpW7d6M8fTMq9+27Ob2hSARVUhK08+bCb/p0SNo5JlAkkUCdnOSCEhNRcxi2RF5GMJlQ9eMh6DZtQsX27bA0mPZQPmgQtHPnQjNnNmRhYR4sJRG1B8OWyAsIgoCakydRvmkTdN9tgfn6dds+WWQkNHPnWjs69evnwVISUUcxbIk8yHj5MsrTN0O3aROMV67Ytkv8/eE3aya08+ZBmZjoson4icg9GLZEbma6fh26775D+aZ01Jw4YdsuUijgN2UKNPPmwnfCBIhkMg+WkoiciWFL5AbmyipU7NgO3aZ0VB08eHOyf4kE6pQUaOfNhe/UaZD4qj1bUCJyCYYtkYsIRiMq/7cfuvRNqNi1G0JNjW2fYvgwaOfOg2bWTEh79fJgKYnIHTw6AeoPP/yAefPmISIiAiKRCBs2bLDbLwgC/vKXvyA8PBxKpRLTpk3DhQYD+AGgpKQEixcvhkajgb+/P+6//35UVla68VMQ3SRYLNBnZiL/+edxYeIkXPvtb6H7bguEmhr4xMai16OPIO77rejz+ecIvPceBi1RD+HRmm1VVRWGDx+O3/zmN1iwYEGT/WvWrMHf/vY3fPLJJ+jTpw/+/Oc/Y8aMGTh9+jQUdetkLl68GPn5+di+fTtqa2vx61//Gg8++CDS0tLc/XGoB6s5fx669M3QpaejNi/Ptl0S3Ava2bOhmTsPiiGD2dGJqIfymsXjRSIRvv32W9x+++0ArLXaiIgI/OEPf8ATTzwBACgvL0doaCg+/vhj3HXXXThz5gwSEhJw+PBhjB49GgCwdetWzJ49G9euXUNERIRD783F46kjavPzodu8GeWb0mE4d862XaxWw+/WW6GZNxfqsWM5MxNRF9EjF4/Pzs5GQUEBpk2bZtum1WqRnJyMgwcP4q677sLBgwfh7+9vC1oAmDZtGsRiMQ4dOoQ77rjDE0WnbsxcXg7d999Dtykd+iNHbk7mL5PBd+JEa0enyZMhrmt5ISICvDhsC+omSQ8NDbXbHhoaattXUFCAkJAQu/1SqRSBgYG2Y5pjMBhgaLC+p06nc1axqQsSzOZW5wm2GAyo3L0H5embULX3Bwj1UyYCUI0eDc3cudDMnAGJv78HSk9EXYHXhq0rrV69GqtWrfJ0McgL6LZta7oCTlgYQp9+ChKtFuWb0lGxbRssDTrdyQcMgGbeXGjnzIHMwVsVRNSzeW3YhtXN+1pYWIjw8HDb9sLCQowYMcJ2TFFRkd15JpMJJSUltvObs3LlSqxYscL2WqfTISoqyomlp65At22bdW3XRt0WTAUFyH3scbtt0vBwaOfOsXZ0ih/gxlISUXfgtWHbp08fhIWFYefOnbZw1el0OHToEJYtWwYASElJQVlZGTIzMzFq1CgAwK5du2CxWJCcnNziteVyOeRtLENG3ZtgNqPwldVNgtaOSATtwoXwv20+lKNGQST26Eg5IurCPBq2lZWVuHjxou11dnY2fvrpJwQGBiI6OhqPPfYYXnrpJfTv39829CciIsLWY3nQoEGYOXMmHnjgAXzwwQeora3FI488grvuusvhnsjUc1iqq1Fz+jSqT5xA5e49dk3HzRIE2yLsRESd4dGwPXLkCCZPnmx7Xd+0u2TJEnz88cd48sknUVVVhQcffBBlZWWYMGECtm7dahtjCwDr16/HI488gqlTp0IsFmPhwoX429/+5vbPQt5FMJlguHgR1cePo+bECVSfOAnDhQuA2dyu65iKi11UQiLqSbxmnK0ncZxt1yYIAmqvXkX1iROoOX7C+ufp03bTI9aTBPeCcugwSAICUP71121eO/qTT7jIOlEP0SPH2RK1xHT9ujVQ62qsNcePw1xe3uQ4sVoNxdChUA4dCsXQIVAOGwZpaChEIhEEsxlV+/fDVFjY/H1bkQjS0FCoRo9ywyciou6OYUtezVxZhZrTp6zBevwEqk8chykvv8lxIpkM8kGDoBwyBIphQ6EcNgw+sbEtdmoSSSQIfWaltTeySGQfuHVTKoY+s5KzPxGRUzBsyWsIRiNqzl9AzYnj1hrrieMwXMxqWvMUieDTt6+1xjrMWnOVx8dD7OPTrvfTTJ8OvL226Tjb0FCEPrPSup+IyAkYtuQRgsUC45UrdjVWw5mzEIzGJsdKw8NvNgUPHQbFkMGQ+Po6pRya6dPhN3VqqzNIERF1FsOW3KK2sMiuxlp94iQsFRVNjhNrtTebgocOg3LoEEiDg11aNpFEwk5QRORSDFtyOnNFBWpOnrTVWGtOnLR2RGpEJJdDkZAA5bChUAwZCuWwoZBFR3MZOiLqdhi21CkWgwGGs2dv1liPn4AxO7vpgWIx5P362dVY5f37QySTub/QRERuxrDtgdpa5aa184zZ2XY11ppz54AGq+DUk/XubVdjVSQkQKxSueLjEBF5PYZtD9PiKjeNet8KggBTfr5djbXm1ClYqqqaXFMSGGjrvGQN2CGQBga65fMQEXUFDNsepMVVbgoLkfu736Nm2TKIZFLUnDiJ6hMnYL5+vck1RCoVlAkJUAyzNgUrhg6DLDKC91mJiFrBsO0hWl3lpm7bjffft98ulUIxYIB1FqZhQ6EYOhTyuDgOiyEiaieGbQ8gmEwo/errtle5AaBKSYHf5MlQDB0CxaBBEDdY9IGIqLsyW8zILMx02fUZtt2QYDaj5sxZ6DMyoD90CPrMTFgqKx0613/hQmjnznFxCYmIvMeOKzvwasaryLuR57L3YNh2A4LZjJqzZ6E/lGEN2CNHmoSrSKmEUF3d5rVcPYEEEZE32XFlB1bsWQEBrl0Aj2HbBdnCNePwzXBtNBuT2M8PqtGjoUpKgippDOT9+yNr+gyuckNEVMdsMePVjFddHrQAw7ZLEMxmGM6dQ1VGhjVgjxyBRaezO0bs63szXJOToBg4sElHJq5yQ0R0086cnSjUN53dzhUYtl5IsFhgOHcO+owMVB3KaDlcR42CKjkZqqQkKAY1DdfGuMoNEfV02eXZ2JWzC7tyduH49eNue1+GrRcQLBYYzp+H/tAhVNXXXBsthi5Wqxs0C9eFq7T9/3xc5YaIehJBEHDqxinszNmJXTm7cKn8kkfKwbD1AFu4ZmRYm4YPNx+uytGjoLaF66AOhWtzuMoNEXVntZZaHCk4Yq3BXt2FIn2RbZ9ULEVyWDKmRE/BpN6TcM9396BIX8QOUt2BYLHAcOEC9IcyUJVxCNWHj8DcOFxVKvtwTUhwWrgSEXV3+lo9DuQdwK6cXdh7bS90xpu33lRSFSZETsDU6KmY2Hsi/Hz8bPueTnoaK/asgAiunQWPP81dwBquF61jXA9bOzU1G66jRkGdzHAlImrIbDHjaNFRFOuLEawKxsiQkZCIm97qKq0pxd5re7EzZycO5h2EwWyw7QtUBGJy1GRMiZ6C5PBkyCXyZt9rWsw0vJX6lnWcbbXrxtmKBKG5cSA9i06ng1arRXl5OTQaTbvPt4VrRt0418OHYS4rsztGpFJZOzQljYG6Ply5vBwReZCjoeZO9RNMNOwlHKoKxdNJT2NazDTkVebZmoczCzNhESy24yJ9IzE1eiqmRk/F8ODh7fosZosZP2T9gCkDpnQ4C1rDsMXNsM3buRNht9zSZmchwWKB4eLFm+NcDx+GubTU7hiRSgXVyJFQJSVBnTQGisGDGa5E5DXaCjVPlam1CSYifSORW5lrt21g4EBMiZ6CKVFTMCBgQKcWRelsxas1DFvc/AvO6Ncf/pGRzS43Z7x40dqZ6VAL4apU2sJVlTQGyiFDGK5E5JVaCrX6+5Zvpb7ltMAVBAFGixEGswEGk8H6Z6OH0WyEvlaPF3980e5ea3NEEGFU6ChrwEZPQaRvpFPKCbg2bHmTsBFTYSFyf/8YTCufBiQSa+318GGYS0rsjhMplVAlJtqG4iiHDIbIx8dDpSYickxrsybVb3v+wPO4Xn0dJosJNeYaGM3Gm3+aGr2u+7O1MHWmv07+K6ZGT3XqNd2BYdtYXUW/8JXVdptFCgVUIxOhSkpmuBKR1xMEATqjDrmVucirzENuZS5yK3Nx+vrpNmdNKjeW4+VDLzu9TGKRGHKJ3P4hlUMulqOqtgrZuuw2r2EwOTe83YVh2wrF4AT43XprXbgOYbgSkddoLkzzKvOsz6usz6tqqzp8/YTABMRoYqxh2Dgg60OyndulImmL91QPFxzGb77/TZvlClZ1zcVSGLatCPz1b7jcHBF5RH2Y2gK0Mhd5VfahWlnb9tKZvZS9EOEbgUh1JCJ8I2A0G/HpmU/bPO+JMU9gTNgYZ3wUh4wMGYlQVWiLE0yIIEKoKhQjQ0a6rUzOxLBtBZebIyJXqg/Txk297QnTIEUQIn2tQRrhG2H3PEIdAYVUYXe82WLGtivbvC7UJGKJ3QQTDctW33HrqaSnPD40qaMYts3hcnNEPYqrxps2DtPGzytqK9q8RqAi0Bagkb6RdmEarg6HUqpsV5m8OdQaTjDReEjSU0lPeWxIkjNw6A/sh/741s3iFPn2Wq6CQ9QDdGa8aYWxoknNNK8yz9bcW2FsX5g2bO6N9I1EuG/7w9RRzX3uMFWYV4Sapybb4DhbF2trnC0RdU9tjTd9ZcIr6B/Q3y5Acyty2x2mEeqmTbyRvpEIV4dDJVO55LM5whtnkPIkhq2LtXcGKSLq2gRBQLmhHLf/93bcqLnRqWsFyAOabeL1hjCl9uGkFm6iHj2aQUvUhdVaalFSXYLrNddxXX8d16uvo7i6GNerr+NG9Q275zXmGoeu6SvzRYwmxq5mGukbaautMkzJEQxbIvJqgiCgsrYS16uv2z2Kq4utAaovxvUaa4CW1pQ6fV3SP4/9M2b3ne3Ua1LPw7Al6oG84V6dyWLCjeobtqAs1hfbhWjD547WQgFAIpIgSBGEXqpe6KXshWBlMIKUQbbnvZTW7Zd1l7Fsx7I2r9dVJ1Eg78KwJephXLnaiyAIqKqtarbptvGjvbVQX5mvLSgbPxoGaoAiAGKRuM3rhavDu/UkCuRdGLZEPUhLvW+L9EVYsWdFi6u9mCwmlNSU2Nc69c2HaEdqobaapyoYQYogBKuC7cI0SBHk9Huj3jzelLof9kaGa3ugEXkLs8WMGV/PaHUSej8fPyzsvxAlNSWdqoWqZeoWa54Nm3L95f4eDzNvHm9K7sWhPy7GsKXuqtJYaZto4WD+Qfz77L87fC2xSGy9F9pSU64qGL0UvRCkdH4t1NW84R42eR6H/hBRsyqNldYJFiqaTlKfW5nb5kLczRkfMR6jw0Y3qZUGyAO6bQBJxBK3TrpPPQ/DlsiLVdVWNb+EWt0KMOWG8jav4S/3R4RvBJRSJTILM9s8/v6h9zN4iJyMYUvkQfpafYvz6uZV5qHMUNbmNbRyLSLUES1OVq+WqQHcvGfL3rdE7sewpR7Plffr9LX6JgHa8M+OhKndHLvqCPj6+DpUFva+JfIchi31aJ0dc6qv1SO/Kt+uifda5TXb81JDaZvX0PhomgZp3VSAEb4R8PPx69RnbKg7L2FG5M3YGxnsjdxTtbXiy1upb2F85HjkV+bbLerdsLm3pKakzffx8/GzC9DGzbzODFNHsfctUVMc+uNiDNuex5Exp42bWlviK/O1C9CGf4b7hkPjw+8UUVfAoT9ETiAIAnIrc3G25Cx25uxsNWgB2IK2PkybW480wjeCYUpEbWLYUrdUa6nFpbJLOFd6DmdunMHZkrM4V3IOFbVtL/bd0PMpz2PhgIUuKiUR9RQMW+ry9LV6nC89j7MlZ3G25CzOlJzBxdKLMFqMTY6ViWXo598PvZS9sC93X5vXjtZEu6LIRNTDMGypSympKcHZG2dxtvQszt6wBusV3ZVm7636ynwRHxiPgYEDMTBwIAYFDkJfbV/IJDKOOSUiexYzcPmAyy7PsCWv1PD+asMaa5G+qNnjg5XBtlCtD9ZIv8gWl1rjmFMisjm9Edj6FFCc67K3YNiSx5ksJlwqv2QXrGdLzqLC2Pz91RhNjF2wDgwciF7KXu1+X445JSKc3gh8cR/QjlWtOoJhS27V+P7q2ZKzuFB6odn7q1KxFP39+2Ng4EDEB8ZjUOAgxAfG26YfdIZpMdMwOWoyx5wS9UQWs7VG6+KgBbw8bJ9//nmsWrXKblt8fDzOnj0LAKipqcEf/vAH/Oc//4HBYMCMGTPw3nvvITQ01BPFpUZKa0pxpuSMXbBe0V2BRbA0OVYtUyM+IB6DggbZ/ozTxkEmkbm8nFzxhaiHunIA0OW55a28OmwBYPDgwdixY4fttVR6s8iPP/44Nm/ejC+//BJarRaPPPIIFixYgP3793uiqD2WIAjIq8qzdVg6V3IOZ0rOtDiOtZeyl+2+an2Ntbdf7xbvrxIROUVNOVB0Big8CRScBLJ/cNtbe33YSqVShIWFNdleXl6Of/7zn0hLS8OUKVMAAOvWrcOgQYPw448/YuzYse4uapfRman6TBYTssuzbR2WzpWcw9mSsy2umxrtF20N1gY11o7cXyUiF7CYrbW7ykLANxSIGQd4wy2UzpbLYgZKLllDtfBU3eMkUJbjujK3wevD9sKFC4iIiIBCoUBKSgpWr16N6OhoZGZmora2FtOm3ezEMnDgQERHR+PgwYOthq3BYIDBYLC91unav8B2V9WeiferTdXW+6sNaqwXyi7AYDY0viykYin6+fez67QUHxDv8Io0RORm9T1wGzajaiKAma8BCfO7TrmqbgBFDQK18JS19mqqaf76mkggdLD1EZIAfP8sUFWMHt1BKjk5GR9//DHi4+ORn5+PVatWYeLEiTh58iQKCgrg4+MDf39/u3NCQ0NRUFDQ6nVXr17d5F5wT9DSxPtF+iI8vudxPDzsYahkKtv91cu6y83eX1VJVU16A/fz7+eW+6tE5AQt9cDV5Vu33/kvzwRuW+Wa8TKgDravsVbkN38tmQoIGVQXrENuhqsq0P44qaLuPUVN39eJutRCBGVlZYiJicFbb70FpVKJX//613Y1VABISkrC5MmT8dprr7V4neZqtlFRUd16IQJHJt5vTpAiCAODrPdX64M1yi+K91epe/HW5lRnsVgAY4X1nqW+BPhsIaC/3vLxCi0w6UnAnf/PBQuwdw1gKG//uQGxNwO1PlwDYh3/N6yrTeuKc6F9tYILEfj7+2PAgAG4ePEibr31VhiNRpSVldnVbgsLC5u9x9uQXC6HXC53cWndzyJYcKP6ht0ScPXPs8qyHAraUaGjMD5ivC1Yg1XBbig5kQd5a3NqQxYLYKy0hmVNOVBT1uB5S4+Gx+jQrlpbTTmw7VkXfZhOCkmw/jJUH6ohgwB5J5epTJgPDJwDnNwOvDrLOeVspEuFbWVlJbKysnDvvfdi1KhRkMlk2LlzJxYutE4Uf+7cOeTk5CAlJcXDJXUNQRBwo+aG3bqqDRctz6vMa3a8anvcOeBOzO4720klJvJy7mpOFQTAUOFAQLYQpAadtebXWVIFIPGxXq8tUcmAvxvnBi/LAa4eavu4iX8Ahv7C+e8vlgCx45x/3TpeHbZPPPEE5s2bh5iYGOTl5eG5556DRCLBr371K2i1Wtx///1YsWIFAgMDodFo8OijjyIlJaXL9kRuLkzrQzS3Mhf5VfnNdk5qSCwSI1QV2mSR8gpjBdYcXtNmGViTpR6j1QkNBAAiYOvT1hqPSNyoZtnMo7rM9WEp8QEU/tZm3rYeSn/7Y+UaQKYAsvcBn8xt+72m/BnoM7HzZXaUo+Xy7ZrzKHh12F67dg2/+tWvcOPGDQQHB2PChAn48ccfERxsDYS//vWvEIvFWLhwod2kFh2VWZiJSb6TXDZ7UH2YNgzQvMo85FbdDNX2hmmEbwQi1Defh6pDIRM37ahktpjxyalPOPE+9WxmE1BdCuhvAFm725jQQAB0ucCr0UCt3jlhKZbVhWBrQenf6M8GD5mi82WIGWdtJtflo/lfNETW/TGuq+V1qXI5SZfqIOUqOp0OWq0Wg94fhIigiGaHwThCEASU1JTYBWhuRa7teX5lPmrMLXRHryOCCKHqULsAbbhgeZgqrMO9fut7IwNoduL9t1Lf4nzA1HWYjEB1ibXDj/5G3fMbda9LGr2u21/Tgc43DYmlrdcsbUHawjFSBSASOeHDd5Kt+RywD7a6snm8NzLgiXLVZ4ErOkgxbGEftlKltbLfXPAIgoBSQ6ldgDZu7nUkTENUIXYB2rC5tzNh6ojmxtmGqcI48X5P4229b02GpsGovwHoS5sJ0hvW2qkj9x1bovAHZMqWh400dNt7QNyUupql0jvC0hma7RgWCcx81QvH2bqnXAxbF2sYthKl9QeOv9wfSwcvRX5V/s0OSFV5qDZVt3otEUQIVgXb1Uptz9WRCFO7Nkwd0ZkZpKgbcHXv29rqZoKzjRqosbKDbyYClAGAKsg6flIVBCgD6543fN1gv8IfkEitv3CsHdJ2s+VjJ7rXMKCGvO2XLg+Xi2HrYs2FbUsah2nj5t4wdRh8JD5uKjlRO7W4nFgzzXSCYL1X2bhG2WwNtEGYtvELaYtEEmsg2oVj49eNwlOh7dwPYW9tTiWPcGXYenUHKU8bETwCY8LG2DX3hqvDGabUNbXZ+xbA1/8H7Ol/M0Tb6LDXIrHM8Zpmfc1UrgHEbp4sJWG+NVCbrel7uDmVuhWGbSt+N/J3XHqNup7qMuuYxcaPotNtLydmNgBFJ+23SeRNg7HZ4GxQC5X7dZ17m/UTGnhjcyp1GwzbZnAYDHm1mvLmw7T0ivXPjkx319D4x4HBt90MUx911wnOjhJL3DumlHochm0j9cNgnkp6ip2GyDNaCtOyujB1ZPiKOtg6+0/Dh6EC2PF82+f2mwpEJHb6YxDRTQzbRkJVoRwG09O4u+djja7lIC3Lsc5A1BZVL/sgDYgB/GOsz7W9rbXRxixmIOPDbjtpAHUfZouAjOwSFFXUIMRPgaQ+gZCIXdu6YrYIyLhU4rLrM2wbeHfqu5gU57oZpMgLuWIYjKGimebd9oZpUF2QxjQI1frnUc2HaVvEEuvnanY5sbofZDNf5b1K8qitJ/OxatNp5JffnLMgXKvAc/MSMHNIuEvfM7fIdWHLoT9wbXdv8mLtGQbTUOMwbVwzrS5t+71tYdo4SKMBbRQg9+3sp2uZt05mQD3e1pP5WPbZ0Zb+R+L9e0Y6PXAbvqfFoMfVtXdy6A+R0zgyDCb9MWsglV+1D9ZqB377VQa2HKb+UZ1fEqwz2PuWvJDZImDVptOtLQuBVZtO49aEMKc1Kbf2ns7GsKXuz2KxNt02nC8358e2h8Hob9QFcjOUAS0EaYznw9QR7H1L8My90cZqzRYUVxiw82yRXdNxYwKA/PIa/PL9AwhQO2eug9IqY6vv6UwM257IW6doc4TFXDeLUXMzGLUwNWB1acdXbIlIBGLG29dStVGAgrcbqGtz9b1Ro8mC4koDCnU1KNIZUFRh/bNQV4OiCoP1oavBjar2rcF99GpZp8vmCQzbnsbV8+K2h7m2jeBsNDWg/kbdsJcONvr4+N2cfAEiIO9o2+fc+iJrgNTttHRvtKC8Bss+O9rqvVGDyVwXntawLKpoGqBFFQaUtCNEpWIRtEopblTVtnnsQ5P6Ii7YOX0asoor8Y8fLjnlWm1h2PYkLXUI0uVbt3dmHljbcmeOrtxS0rnJFxTaFubMbWFaQGUgIG3Q9OToJPQcBtMjeENzqru0dW8UAFZ+cwK5ZdW4Xmm0r5VW1KBM33Yg1pNJRAjxUyBEI0eInxyhGgVC/OQNtikQqpEjQOUDAcCE13ahoLympf+RCNMq8OTMgU69Z7vx57wW39OZGLY9RZsdgkTA1qetHWfMtY41zzYMTmNFBwsmsq4B2tJ8ufWvG4anMsC6aktncBgM1fHEUJPOEAQBNbUW6I0m6I1m1NSaoTeaGz032W2vrjWjuu75tdKqNu9Tlupr8WL6mRb3+0jETQO0wZ+hdUEaoJJB1I7Zx56bl4Blnx1t6X8knpuX4NRfgiRikd17uhKH/qDB0J+ft0Az5Nbu8QPWYrau91lTbn1c/h/w/TNtnydRAG2sydsikfhmSNrCs/HrRrVOpb9n/745DKZHc8VQE0EQYDBZbKFXXRd2eqO50XOT3Xb7UDTZBWTj5+4wIkqLEVEBCNHIEdqoJqpVti9E28PT42xdNfSHYYsGYfu0HzTBkZ65f9mYxWIfls0+ylre15mFtYGby505smpLfW1T4e/+VVucoSt3GKMOM5osmLhmFwp1La9spFFI8evxfVBjqgtKoxl6u0C0oLpRDbO61gx3/VSVS8VQ+Uig8pFC6SOBUiaB0kcCVbPPpVD5SFBQXoOPD1xu89r/fmAsUuKCXP8hmuGpGaR2H7+CWxP7MGxdxS5s5XVh0dl1LC0Wa9NqdVkbgdlaWDrhn0amqlvzU2odL9qWBf8f0H+69ZzuPvl8D9aV71HW1xx1NbWorDGhou5RaaiFrsbUYFstKg3W57oGzyvqzqsyur6GWB+GN4NP6lAg1gen/XPrPoXs5vHiDvybmS2CQ/dG//fUlC7znXAWrmfrVg3uX8ZOAIyV7QjJsgbPnRSWUqU1+Bx++Dd4rgGkcut1HO0QNGQha3XdnCfvUZotQl3o2YdfRaPQrKgLTV1N02MrDSbUmt1XRxgfF4RB4Zq64JNCKRPb1SRtgegjgUomtYWnQibxyrBqfJ/SHfdGiTVbAI1rtk7+gkkVHQxLf/uwdAZbb2Sg2f9ina3Nd1FduZbXXh29R1lfm2xcY2wpKCtqTKgw3KxF1h/rzNqkSAT4yqXQKGTwlUvhp7A+fBUy23M/uRR+da99Gzz3U0hxrqACD36a2eb7eLI51ZW6Wscwd2DN1pMkPo1qi20EpbLBsXINIFN4+AM0kDDfGqjNjrPtmR2CuusPHEEQYDRbUGO0QF9rvadYWWPCs9+ebHXIx+Of/4wvj1xDlbFhgFqD0pm1SblUXBd6jYJSbg1DjUIKX0XToGy4XdXBZtR6vQNUCNcq2mxOTeoT2OH38GYzh4Tj1oSwHvOLpqexZotWarb3fGNd27O7YYcgAJ6Z9Lwho8lS1+HG1EKvUxOqjZZme7TWd9KprgvShvtr6vabLc7/r11fm7SrMTYITY0tNO33axqEpq9CCrnUO75v9d8BoPnmVFd/B8i7sGbrdnX3L/umerogrsF5cR2e9DypTxCMJkubQzHqe6Q2P+6xUW/VunNMLgjD5sgkIihlEohEIpRXtz0hwaLRUZjQv9fNptgGQan2kXaqNultZg4Jx/v3jGzSuhHWDVo3yLswbJvghAbdhSAIqK41o1Rfi9IqI0r1RpRUGVGmr8Xxa2UOTXo+8sXtLi+nTCKy9TBV+UgbPG/cW1UKpY+4jR6tUrsOO0qZBDKJtYf9wawb+NX/92Ob5bk9MbJb3qNsCZtTyR0Yto31gPuXXbFDkCAIqDKabaHZMEBLq4wosdt2c5/B1MEFCBqQikWNep7a90htdQhHs6FoP4SjPgxdLalPYI++R9kaiVjUo37BIPdj2Db0qy+A7jKDVAu8oUOQIAioMJiaBGN9rbNEb0RZw9d1fxrNHQtOH4kYAWoZAlQ+1odaBqPJgh1nito899PfJGHigOAOva+34ZAPIs9hBym49qa4N3FFhyCLRYCuphaltlBsPjQb1jrL9MYO36+US8UIVPvAX+WDQLXM+qfKBwEqGQLU9WFq3eavkiFQ7QOVj6TJ1HI9eWC/N/zCReSN2EHKTTIulWDyML9u98MVcLxD0KiYQGt4Nq516o0oq2pa6yzVG9HRfj5KmaQuOGU3A7RRaAaoZHYBqvRxTqtDT67l8R4lkfuxZoubv81EPfYFIkMCu8xv+LVmi32v2AZDQRr3ij1fWIHPDzswXWMHqX0k1kBsEJrW2mejWmddM26AygcKmeeb61nLI6J6rqzZMmxhH7YSuQqAc8bXmcwW6Gvrxj22a1WPlsZd2q8i4qop6/wUUruapbVJtkGzbYPaaEBdc623jJvsiK7YYYyInI/NyG7UcPHkaqMZRrPlZlC2sjxWw1C0riVp6XCHnvYSi9D8XK0Nes9WVBux5/z1Nq/VnToEOYo9UYnI1Ri2LSjV1+LxL352yrVEIkDV5nCQloeM3BwmYj9kpP65XCpuc21JRzsEjevXyymfmYiIbmLYtqJ/iC+iA1VQ+Eigqgs4Rd3KHq0tg3VzBRDrn46Eoav15A5BRESexrBtxQu3DelWzYucmo6IyDMYts3ozjPpcNgHEZH7MWwb6QlNquwQRETkXgzbRtikSkREzsawbeCjJWMweVhMt63REhGRZ7hnuZEuIqkv710SEZHzMWyJiIhcjGFLRETkYgxbIiIiF2PYEhERuRjDloiIyMUYtkRERC7GsCUiInIxhi0REZGLMWyJiIhcjGFLRETkYgxbIiIiF2PYEhERuRjDloiIyMUYtkRERC7GsCUiInIxLh4PQBAEAIBOp/NwSYiIyFPqM6A+E5yJYQvgxo0bAICoqCgPl4SIiDztxo0b0Gq1Tr0mwxZAYGAgACAnJ8fpf8HOMGbMGBw+fNjrrtuR8x09x5HjWjumvft0Oh2ioqJw9epVaDSaNsvnbt76HejINfgd6BhXfQeccW1v/Q60tr+57eXl5YiOjrZlgjMxbAGIxdZb11qt1iv/k0kkEpeUq7PX7cj5jp7jyHGtHdPRfRqNht8BF1+D34GOcdV3wBnX9tbvQGv7WzuvPhOciR2kuoDly5d75XU7cr6j5zhyXGvHdHSft/LW70BHrsHvQMe4sszu/lngru9Aa/vd/R0QCa64E9zF6HQ6aLValJeXe+VvtOR6/A4QvwPkyu8Aa7YA5HI5nnvuOcjlck8XhTyE3wHid4Bc+R1gzZaIiMjFWLMlIiJyMYYtERGRizFsiYiIXIxhS0RE5GIMWyIiIhdj2LYhOzsbkydPRkJCAoYOHYqqqipPF4nc6Ny5cxgxYoTtoVQqsWHDBk8Xi9zsr3/9KwYPHoyEhAT87ne/c8lE9eT93njjDQwePBhDhgzBZ5991q5zOfSnDbfccgteeuklTJw4ESUlJdBoNJBKOctlT1RZWYnY2FhcuXIFarXa08UhNykuLsbYsWNx6tQpyGQyTJo0CW+88QZSUlI8XTRyoxMnTmDJkiU4cOAABEHA5MmTsXXrVvj7+zt0Pmu2raj/zzVx4kQA1gULGLQ918aNGzF16lQGbQ9kMplQU1OD2tpa1NbWIiQkxNNFIjc7c+YMUlJSoFAooFQqMXz4cGzdutXh87t12P7www+YN28eIiIiIBKJmm3+e/fddxEbGwuFQoHk5GRkZGTY9l24cAG+vr6YN28eRo4ciVdeecWNpSdn6Ox3oKEvvvgCixYtcnGJydk6+x0IDg7GE088gejoaERERGDatGmIi4tz4ycgZ+js92DIkCHYs2cPysrKUFpaij179iA3N9fh9+/WYVtVVYXhw4fj3XffbXb/559/jhUrVuC5557D0aNHMXz4cMyYMQNFRUUArL/N7tu3D++99x4OHjyI7du3Y/v27e78CNRJnf0O1NPpdDhw4ABmz57tjmKTE3X2O1BaWor09HRcvnwZubm5OHDgAH744Qd3fgRygs5+D+rv10+ZMgULFizA2LFjIZFIHC+A0EMAEL799lu7bUlJScLy5cttr81msxARESGsXr1aEARBOHDggDB9+nTb/jVr1ghr1qxxS3nJ+TryHaj3r3/9S1i8eLE7ikku1JHvwBdffCH89re/te1fs2aN8Nprr7mlvOQanflZUO/+++8X0tPTHX7Pbl2zbY3RaERmZiamTZtm2yYWizFt2jQcPHgQgHVx4aKiIpSWlsJiseCHH37AoEGDPFVkcjJHvgP12ITcPTnyHYiKisKBAwdQU1MDs9mMPXv2ID4+3lNFJhdw9GdBfS333LlzyMjIwIwZMxx+jx7b2+f69eswm80IDQ212x4aGoqzZ88CAKRSKV555RVMmjQJgiBg+vTpmDt3rieKSy7gyHcAAMrLy5GRkYGvv/7a3UUkF3PkOzB27FjMnj0biYmJEIvFmDp1KubPn++J4pKLOPqz4LbbbkN5eTnUajXWrVvXrg6zPTZsHTVr1izMmjXL08UgD9JqtSgsLPR0MciDXn75Zbz88sueLgZ5WOMWr/bosc3IvXr1gkQiafJDtLCwEGFhYR4qFbkTvwPE7wAB7vke9Niw9fHxwahRo7Bz507bNovFgp07d3Kweg/B7wDxO0CAe74H3boZubKyEhcvXrS9zs7Oxk8//YTAwEBER0djxYoVWLJkCUaPHo2kpCSsXbsWVVVV+PWvf+3BUpMz8TtA/A4Q4AXfg450m+4qdu/eLQBo8liyZIntmL///e9CdHS04OPjIyQlJQk//vij5wpMTsfvAPE7QILg+e8B50YmIiJysR57z5aIiMhdGLZEREQuxrAlIiJyMYYtERGRizFsiYiIXIxhS0RE5GIMWyIiIhdj2BIREbkYw5aoh/r444/h7+/v6WIQ9QgMW6IubOnSpRCJRBCJRPDx8UG/fv3wwgsvwGQytXnuokWLcP78+Xa9X2pqKh577LEOlpao5+rWCxEQ9QQzZ87EunXrYDAY8N1332H58uWQyWRYuXJlq+cplUoolUo3lZKoZ2PNlqiLk8vlCAsLQ0xMDJYtW4Zp06Zh48aNKC0txX333YeAgACoVCrMmjULFy5csJ3XuBn5+eefx4gRI/Dpp58iNjYWWq0Wd911FyoqKgBYa9F79+7F22+/batNX758GaWlpVi8eDGCg4OhVCrRv39/rFu3zt1/DURejWFL1M0olUoYjUYsXboUR44cwcaNG3Hw4EEIgoDZs2ejtra2xXOzsrKwYcMGpKenIz09HXv37sWrr74KAHj77beRkpKCBx54APn5+cjPz0dUVBT+/Oc/4/Tp09iyZQvOnDmD999/H7169XLXxyXqEtiMTNRNCIKAnTt34vvvv8esWbOwYcMG7N+/H+PGjQMArF+/HlFRUdiwYQN++ctfNnsNi8WCjz/+GH5+fgCAe++9Fzt37sTLL78MrVYLHx8fqFQqhIWF2c7JyclBYmIiRo8eDQCIjY117Qcl6oJYsyXq4tLT0+Hr6wuFQoFZs2Zh0aJFWLp0KaRSKZKTk23HBQUFIT4+HmfOnGnxWrGxsbagBYDw8HAUFRW1+v7Lli3Df/7zH4wYMQJPPvkkDhw40PkPRdTNMGyJurjJkyfjp59+woULF1BdXY1PPvkEIpGoQ9eSyWR2r0UiESwWS6vnzJo1C1euXMHjjz+OvLw8TJ06FU888USH3p+ou2LYEnVxarUa/fr1Q3R0NKRS652hQYMGwWQy4dChQ7bjbty4gXPnziEhIaHD7+Xj4wOz2dxke3BwMJYsWYLPPvsMa9euxYcfftjh9yDqjnjPlqgb6t+/P2677TY88MAD+Mc//gE/Pz88/fTTiIyMxG233dbh68bGxuLQoUO4fPkyfH19ERgYiOeffx6jRo3C4MGDYTAYkJ6ejkGDBjnx0xB1fazZEnVT69atw6hRozB37lykpKRAEAR89913TZqK2+OJJ56ARCJBQkICgoODkZOTAx8fH6xcuRLDhg3DpEmTIJFI8J///MeJn4So6xMJgiB4uhBERETdGWu2RERELsawJSIicjGGLRERkYsxbImIiFyMYUtERORiDFsiIiIXY9gSERG5GMOWiIjIxRi2RERELsawJSIicjGGLRERkYsxbImIiFzs/we1tO7/4SviKgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1, figsize=(5, 5))\n", - "\n", - "# Group by k value\n", - "groups = {}\n", - "for result in data['results']:\n", - " label = f'k={result['parameters']['k']}' if result['parameters']['function'] == 'forward' else 'fft'\n", - " n = result['parameters']['n']\n", - " mean_time = result['graph_depth']\n", - " \n", - " if label not in groups:\n", - " groups[label] = {'n': [], 'times': []}\n", - " \n", - " groups[label]['n'].append(n)\n", - " groups[label]['times'].append(mean_time)\n", - "\n", - "# Plot\n", - "for label in groups.keys():\n", - " if label == 'fft': continue\n", - " ax.plot(groups[label]['n'], groups[label]['times'], 'o-', label=label)\n", - "\n", - "ax.set(xscale='log', ylabel='Levels', xlabel='Points', title='Graph depth', ylim=(1, 300), xlim=(1e6, 1e9))\n", - "ax.legend(loc='upper left')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 140, - "id": "cf9010c2", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeIAAAHbCAYAAAAXnJnGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwARJREFUeJzs3Xd4VFX6wPHvlPTeeyEhAUILJHSBIEix0Cy4uoodf4IN1xVEKWJXFAXsa11YXBEQGyhtRXoLoQVISO+9TjLt/v64MBAJIQmTTCacz/P47M7MnXtPQpJ3zrnveV+FJEkSgiAIgiBYhNLSAxAEQRCEa5kIxIIgCIJgQSIQC4IgCIIFiUAsCIIgCBYkArEgCIIgWJAIxIIgCIJgQSIQC4IgCIIFiUAsCIIgCBYkArEgCIIgWJAIxIIgXLXt27ejUCjYvn27pYciCFZHBGJBMKMvv/wShULR6H9z5syx9PAEQeiA1JYegCB0Ri+99BJdunRp8FyvXr0sNBpBEDoyEYgFoQ1MmDCB+Ph4s5+3pqYGJycns5/3SiRJoq6uDgcHh3a/tiB0dmJpWhAsYOvWrQwfPhwnJyfc3d2ZNGkSJ0+ebHDMwoULUSgUnDhxgrvuugsPDw+uu+46NmzYgEKhICkpyXTs999/j0KhYOrUqQ3O0aNHD6ZNm2Z6/MUXX3D99dfj6+uLnZ0dMTExfPjhh5eMLzw8nJtvvplNmzYRHx+Pg4MDH3/8MQDZ2dlMnjwZJycnfH19efrpp6mvr2/W133+a0pOTuaOO+7A1dUVLy8vnnzySerq6hoc29yxHjhwgHHjxuHt7Y2DgwNdunThgQceaHDM6tWriYuLw8XFBVdXV3r37s17773XrDELQlsTM2JBaAMVFRUUFxc3eM7b2xuAzZs3M2HCBCIiIli4cCEajYZly5YxbNgwDh06RHh4eIP33X777URFRfHqq68iSRLXXXcdCoWCP/74gz59+gCwY8cOlEolf/75p+l9RUVFJCcnM2vWLNNzH374IT179mTixImo1Wp+/PFHHnvsMYxGIzNnzmxw3VOnTvG3v/2NGTNm8PDDD9OtWzc0Gg2jR48mMzOTJ554gsDAQL755hu2bt3aou/PHXfcQXh4OK+99hp79uzh/fffp6ysjK+//rpFYy0sLGTs2LH4+PgwZ84c3N3dSU9PZ+3atabz/P777/ztb39j9OjRvPHGGwCcPHmSnTt38uSTT7Zo3ILQJiRBEMzmiy++kIBG/zsvNjZW8vX1lUpKSkzPHTlyRFIqldK9995rem7BggUSIP3tb3+75Do9e/aU7rjjDtPj/v37S7fffrsESCdPnpQkSZLWrl0rAdKRI0dMx9XW1l5yrnHjxkkRERENngsLC5MAaePGjQ2eX7p0qQRI//3vf03P1dTUSF27dpUAadu2bU1+f85/TRMnTmzw/GOPPdaqsa5bt04CpP3791/2mk8++aTk6uoq6fX6JscmCJYilqYFoQ2sWLGC33//vcF/AHl5eSQmJnLffffh6elpOr5Pnz7ccMMN/PLLL5ec69FHH73kueHDh7Njxw4AqqqqOHLkCI888gje3t6m53fs2IG7u3uDJLGL7/Gen7WPHDmSs2fPUlFR0eAaXbp0Ydy4cQ2e++WXXwgICOC2224zPefo6MgjjzzS7O8NcMns+/HHHzedvyVjdXd3B+Cnn35Cp9M1ei13d3dqampM/waC0NGIQCwIbWDgwIGMGTOmwX8AGRkZAHTr1u2S9/To0YPi4mJqamoaPP/X7GuQA3FeXh4pKSns2rULhULBkCFDGgToHTt2MGzYMJTKC7/mO3fuZMyYMaZ70z4+Pjz//PMAjQbiv8rIyKBr164oFIoGzzf29TQlKiqqwePIyEiUSiXp6ektGuvIkSO59dZbWbRoEd7e3kyaNIkvvviiwT3rxx57jOjoaCZMmEBwcDAPPPAAGzdubNF4BaEtiUAsCB1cY5nK1113HQB//PEHO3bsoH///jg5OZkCcXV1NYcPH2b48OGm96SmpjJ69GiKi4t55513+Pnnn/n99995+umnATAajVe8blv5a2Bv7lgVCgVr1qxh9+7dzJo1i5ycHB544AHi4uKorq4GwNfXl8TERDZs2MDEiRPZtm0bEyZMYPr06e329QlCU0QgFoR2FBYWBsiJUH+VnJyMt7d3s7YnhYaGEhoayo4dO9ixY4cp4I4YMYL09HS+++47DAYDI0aMML3nxx9/pL6+ng0bNjBjxgxuvPFGxowZ06KAGxYWRmpqKpIkNXi+sa+nKWfOnGnwOCUlBaPRaEpUa+lYBw8ezCuvvMKBAwdYuXIlx48fZ/Xq1abXbW1tueWWW/jggw9ITU1lxowZfP3116SkpLRo3ILQFkQgFoR2FBAQQGxsLF999RXl5eWm548dO8Zvv/3GjTfe2OxzDR8+nK1bt7Jv3z5TII6NjcXFxYXXX38dBwcH4uLiTMerVCqABkG0oqKCL774otnXvPHGG8nNzWXNmjWm52pra/nkk0+afQ6Q76FfbNmyZYC8/7olYy0rK7vkQ0FsbCyAaXm6pKSkwetKpdKUbd7cbVeC0JbE9iVBaGdvvfUWEyZMYMiQITz44IOm7Utubm4sXLiw2ecZPnw4K1euRKFQmJaqVSoVQ4cOZdOmTSQkJGBra2s6fuzYsaaZ4YwZM6iurubTTz/F19eXvLy8Zl3z4YcfZvny5dx7770cPHiQgIAAvvnmGxwdHVv0PUhLS2PixImMHz+e3bt38+9//5u77rqLvn37tmisX331FR988AFTpkwhMjKSqqoqPv30U1xdXU0fah566CFKS0u5/vrrCQ4OJiMjg2XLlhEbG0uPHj1aNG5BaBOWTdoWhM7l/PalprbTSJIkbd68WRo2bJjk4OAgubq6Srfccot04sSJBsec3+pTVFTU6DmOHz8uAVKPHj0aPP/yyy9LgPTiiy9e8p4NGzZIffr0kezt7aXw8HDpjTfekD7//HMJkNLS0kzHhYWFSTfddFOj183IyJAmTpwoOTo6St7e3tKTTz4pbdy4sUXbl06cOCHddtttkouLi+Th4SHNmjVL0mg0LR7roUOHpL/97W9SaGioZGdnJ/n6+ko333yzdODAAdN51qxZI40dO1by9fWVbG1tpdDQUGnGjBlSXl5ek2MVhPaikKS/rOsIgiC0kYULF7Jo0SKKiopMBU4E4Von7hELgiAIggWJQCwIgiAIFiQCsSAIgiBYkLhHLAiCIAgWJGbEgiAIgmBBIhALgiAIggWJgh5XYDQayc3NxcXF5ZJ6uIIgCMK1QZIkqqqqCAwMbNBIxRxEIL6MFStWsGLFCrRaLampqZYejiAIgtABZGVlERwcbNZzimStK6ioqMDd3Z2srCxcXV0tPRxBEATBAiorKwkJCaG8vBw3NzeznlvMiK/g/HK0q6urCMSCIAjXuLa4RSmStQRBEATBgkQgFgRBEAQLEoFYEARBECxI3CM2A6PRiFartfQwOg0bGxtTY3hBEITOTgTiq6TVaklLS8NoNFp6KJ2Ku7s7/v7+Yu+2IAidngjEl3F+H7HBYLjsMZIkkZeXh0qlIiQkxOybvK9FkiRRW1tLYWEhAAEBARYekSAIQtsS+4ivoLKyEjc3NyoqKi7ZvqTT6UhJSSEwMNDs+8qudSUlJRQWFhIdHS2WqQVBsLimYsHVElO4q3B+tmxra2vhkXQ+jo6OgPxhRxAEoTMTgdgMxH1M8xPfU0EQrhUiEAuCIAiCBYlAfA1KSEjgqaeesvQwBEEQBEQgFq7SJ598QkJCAq6urigUCsrLyy09JEEQBKsiti91AFmltazen0lmqYZQTwfuHBBKiKejpYfVLLW1tYwfP57x48czd+5cSw9HEATB6ohAbGFrDmbz3PdJGIwXdpF9/L+zvH5rH26LM2/Py8v5+eefueuuu/jggw+4++67W/Te80vc27dvN//ABEEQrgEiEJuRJElodJcvAPJX2WW1lwRhAL1RYs73SfQJdiXYo3kzYwcbVasyjVetWsWjjz7KqlWruPnmm1m5ciUzZsxo8j2//vorw4cPb/G1BEEQhEuJQHwZzams9VcanYGY+ZvMcn29UWLsuzuaffyJl8bhaNuyf84VK1Ywb948fvzxR0aOHAnAxIkTGTRoUJPvCwoKatF1BEEQhMsTgfgyZs6cycyZM03VVDqbNWvWUFhYyM6dOxkwYIDpeRcXF1xcXCw4MkEQhGuLCMRm5GCj4sRL45p9/NLNZ/jkj7OXff2RERE8NSaq2dduiX79+nHo0CE+//xz4uPjTcvaYmlaEAShfYlAbEYKhaJFy8P3DA7j8z/T0BsvLfetViq4Z3BYi5ebmysyMpIlS5aQkJCASqVi+fLlgFiaFgRBaG8iEFtQiKcjr9/ahznfJzUIxmqlgjdu7dPmW5iio6PZtm0bCQkJqNVqli5d2uKl6fz8fPLz80lJSQHg6NGjuLi4EBoaiqenZ1sNXRAEodMQgdjCbosLZlAXT1bvzySrVENIO+8j7tatG1u3bjXNjJcsWdKi93/00UcsWrTI9HjEiBEAfPHFF9x3333mHKogCEKnJNogXkFTra/q6upIS0ujS5cu2NvbW2iEnZP43gqC0JGINoiCIAiC0EmJQCwIgiAIFiQCsSAIgiBYkAjEgiAIgmBBIhALgiAIggWJQCwIgiAIFiQCsSAIgiBYkAjEgiAIgmBBIhBfxooVK4iJiWnQmUgQBEEQzE0E4suYOXMmJ06cYP/+/ZYeitklJCTw1FNPWXoYgiAIAiIQC1ehtLSUxx9/nG7duuHg4EBoaChPPPEEFRUVlh6aIAiC1RBNHzqCsnQ49LX8vx7h0P9e+X87uNzcXHJzc3n77beJiYkhIyODRx99lNzcXNasWWPp4QmCIFgFEYgtLXEV/DALJMOF53a+BxOXQexd7TKEn3/+mbvuuosPPviAu+++u9nv69WrF99//73pcWRkJK+88gp///vf0ev1qNXix0sQBOFKxF9Kc5Ik0NU2//jyzEuDMIBRDxseh8B+4B7avHPZOIJC0fxrn7Nq1SoeffRRVq1axc0338zKlSuZMWNGk+/59ddfGT58eKOvne9MIoKwIAhC84i/luakq4VXA81zLqMePhjc/OOfzwVbpxZdYsWKFcybN48ff/yRkSNHAjBx4kQGDRrU5PuCgoIafb64uJjFixfzyCOPtGgcgiAI1zIRiK9Ra9asobCwkJ07dzbYouXi4oKLi0uLz1dZWclNN91ETEwMCxcuNONIBUEQOjcRiM3JxlGemTbX9tdh1/uXf33oE5Awp/nXboF+/fpx6NAhPv/8c+Lj41GcW9ZuzdJ0VVUV48ePx8XFhXXr1mFjY9OisQiCIFzLRCA2J4WiZcvDAx6EPR/Iy9B/pVTLr7dwubm5IiMjWbJkCQkJCahUKpYvXw60fGm6srKScePGYWdnx4YNG7C3t2+T8QqCIHRWIhBbkke4nB294fGGwViphonL23wLU3R0NNu2bSMhIQG1Ws3SpUtbtDRdWVnJ2LFjqa2t5d///jeVlZVUVlYC4OPjg0qlasvhC4IgdAoiEFta7F0QNvTcPuIM8Ahr133E3bp1Y+vWraaZ8ZIlS5r93kOHDrF3714Aunbt2uC1tLQ0wsPDzTlUQRCETkkE4o7AIxxGz2+3y23fvr3B4x49elBQUNDi8yQkJCBJkplGJQiCcG0SJS4FQRAEwYJEIBYEQRAECxKBWBAEQRAsSARiQRAEQbAgEYgFQRAEwYKuiUD8008/0a1bN6Kiovjss88sPRxBEIQOr7JYw571qfz22TH2rE+lslhj6SF1Wp1++5Jer2f27Nls27YNNzc34uLimDJlCl5eXpYemiAIQoeUvDuPrd8kIxkvbE88/Fsmo+7pTvchARYcWefU6WfE+/bto2fPngQFBeHs7MyECRP47bffLD0sQRCEDqmyWHNJEAYwGiW2fZMsZsZtoMMH4j/++INbbrmFwMBAFAoF69evv+SYFStWEB4ejr29PYMGDWLfvn2m13JzcxvURg4KCiInJ6c9hi4IgmB1TvyZe0kQPs9olDjxZwsa2wjN0uEDcU1NDX379mXFihWNvv7tt98ye/ZsFixYwKFDh+jbty/jxo2jsLCwnUdqPRISEnjqqacsPQxBEDqgouzqJl+vLKlrp5FcOzp8IJ4wYQIvv/wyU6ZMafT1d955h4cffpj777+fmJgYPvroIxwdHfn8888BCAwMbDADzsnJITAw8LLXq6+vNzUvuLiJgdA0SZKYMGHCZVctBEHo2LR1enZ+n0LmsZImj3P1ujY7rJWWlrbZua06WUur1XLw4EHmzp1rek6pVDJmzBh2794NwMCBAzl27Bg5OTm4ubnx66+/8uKLL172nK+99hqLFi1q87FfLLsqm7Vn1pJdlU2wSzBTo6YS7BLcrmO4WkuXLjX1NBYEwXpIksTpfQXsWptCbYW2yWOVSgUx111+ItOZVVRUtNm5O/yMuCnFxcUYDAb8/PwaPO/n50d+fj4AarWaJUuWMGrUKGJjY3nmmWeazJieO3cuFRUVpv+ysrLa9Gv4IeUHbl53M58e/ZRf03/l06Ofcsu6W/gh5Yc2ve7Ffv75Z9zc3Fi5cmWr3p+YmMiSJUtMqxCCIFiH4uxq1i05xOYvTlBbocXNx4GbZvZh9PQeKJUNP1grlQpG3dsdV28HC422fUmSRH19velxW3aTs+oZcXNNnDiRiRMnNutYOzs77OzsWnUdSZLQ6JufUZhbncuCXQswSIYGz+slPQt2LaCnV08CnZv36dNB7dCqGemqVat49NFHWbVqFTfffDMrV65kxowZTb7n119/Zfjw4QDU1tZy1113sWLFCvz9/Vt8fUEQ2l99rY59P6Zx9H85SEYJtY2SuBvD6TcmFJWNPD8LjHLnxJ+5VJbU4eplT8x1gddMEK6urubQoUOoVCqGDh2KQqFo0xU/qw7E3t7eqFSqS1r4FRQUWCQoaPQaBq0aZJZzGSQDUzY0fl+8MXvv2oujjWOLrrFixQrmzZvHjz/+yMiRIwH5Q8ugQU1/DRdnoT/99NMMHTqUSZMmtejagiC0P8kokbwnj93rUtFU6QCI7O/DsNuicPFseO/X1duBwZMjLTFMi1OpVFRXV6NUKqmpqcHZ2blNr2fVgdjW1pa4uDi2bNnC5MmTATAajWzZsoVZs2Zd1blXrFjBihUrMBgMVz7YCq1Zs4bCwkJ27tzJgAEDTM+7uLjg4uLSrHNs2LCBrVu3cvjw4bYapiAIZlKYUckfq09TkCYnoHr4OzJ8WjQhPTwtPLKOoba2FkdHeTLj4OBAfHw8bm5urV4hbYkOH4irq6tJSUkxPU5LSyMxMRFPT09CQ0OZPXs206dPJz4+noEDB7J06VJqamq4//77r+q6M2fOZObMmVRWVuLm5tas9zioHdh7195mX+PDIx/y5fEvL/v6fT3v4//6/l+zr90S/fr149ChQ3z++efEx8ebll1asjS9detWUlNTcXd3b/D6rbfeyvDhw9m+fXuLxiQIgvnVVevYs+Esx3fkgAQ2dioG3NSFPtcHo1JbdZqQWRiNRhITE8nLy2PkyJGm2a+vr2+7jaHDB+IDBw4watQo0+PZs2cDMH36dL788kumTZtGUVER8+fPJz8/n9jYWDZu3HhJAld7UCgULVoentZtGv8+8W/0kv6S19QKNdO6TWvxcnNzRUZGsmTJEhISElCpVCxfvhxo2dL0nDlzeOihhxq81rt3b959911uueWWNhm3IAjNc774xp4fUqmvkf/GRA3wY9itXXFyb/tZnrVQKpXo9XokSaKkpKTNl6Eb0+EDcUJCApLUeJWX82bNmnXVS9GWEOwSzMKhC1m4a2GDYKxWqFk0bFGbb2GKjo5m27ZtJCQkoFarWbp0aYuWpv39/Ru9Fx8aGkqXLl3MPVxBEJop/2wFf6w+TVFmFQBeQU6MuDOawCgPC4+sY6ipqcHBwQGlUl4R6N27N/X19Zes7rWXDh+ILaW97hFP6jqJOL84eR9xdTbBzu27j7hbt25s3brVNDNesmRJu1xXEATzq63Usmd9Kid35QFga69i4MQIeo8MQqkSy9AA6enpHD9+nKioKKKjowH5nrCDg+UywhXSlaab17jz94grKipwdXVt8FpdXR1paWl06dIFe/trs9pMWxHfW0FoPqPByLE/ctn341nqa+XVte5D/BkypSuOrrYWHl3Hkpuby8GDB/Hz82PgwIHNfl9TseBqiRmxIAiCFcs9U84fq09TkiPXiPYJdWHEndH4RzQvybSz0+v11NXVme79BgYGYmNjg4+Pj4VHdoEIxIIgCFaopqKeXWtTOL1XrqNg56hm8ORIYq4LvKQq1rWqoqKCffv2oVarGTlypOmecEcKwiACsSAIglUxGIwc3ZbNvp/S0NUZQAEx1wUyeFIEDs5iGfpijo6OSJKE0WhEo9Hg5ORk6SE1SgTiy+jsBT0EQbA+2cml/LH6NGX5tQD4dXFlxJ3R+IaZ956ltZIkidLSUlM/ARsbGwYPHoyTkxMqlcrCo7s8EYgvozUFPQRBENpCVWkdu75PIeWg3Gfd3tmGIVMi6TEkAIVYhgbkwhx79uyhpKSEYcOG4ekpVwwzd2JVWxCBWBAEoYMy6IwkbsnkwC/p6LVGFAroNTKYgbd0wd7JxtLDsxhtdjbl361Bl5WFTUgI7rffhm1wME5OTpSXl6PRNL/5TkcgArEgCEIHlHG8hB3fnqaiUA4qAV3dGHFnNN7BzSu401mVr1tP3gsvgMFAucGAk1JJyb/+RcDixcTcfBPR0dEW3RPcGiIQC4IgdCCVxRr+/O4MaUeKAXB0tWXorV2JHujXpq34rIE2O9sUhNO1WtK09QSqbeimUJD34otEDojHIbh9iiGZkwjEgiAIHYBea+Dw75kc3JiBQWdEoVTQ5/pgBt7UBVsH8acaoPy7NXAugdb9ouQrSZJQ6PWUf7cG36efstDoWk/8615GZ86aTkhIIDY2lqVLl1p6KIJwzZMkifSkYv787gyVxXUABHVzZ/i0aLwC278BQUdVlZlJxvffc/474q5SMcjRCUflhdKduuxsywzuKonio5cxc+ZMTpw4wf79+y09lA4tPz+fe+65B39/f5ycnOjfvz/ff/+9pYclCFahvKCWn5Yn8cuHR6ksrsPJ3Y6xD/Vk0lP9RBA+RzIaSfvX56wecwNJGRnoLqrKfHEQBrCxwmVpEDPiDuFyGYDW4N5776W8vJwNGzbg7e3NqlWruOOOOzhw4AD9+vWz9PAEoUPS1Rs4+Gs6hzdnYtRLKFUKYseEEjchDFt78Wf5vLrTp8lfsJDaQ4dQazQ4hYZiKC3FprEWCWo17rff1v6DNAMxI7aw8nXrSR03npKPP6byl18o+fhjUsdPoHzd+nYbw88//4ybmxsrV65s8Xt37drF448/zsCBA4mIiOCFF17A3d2dgwcPtsFIBcG6SZJEysFCVi3cw8GNGRj1EqExnvxt/iCGTIkUQfgcXU0NiQsWkjb1VjSHD6N2cmLcgvnctn0bXV59FdR/+T6p1QS8vNhqJjB/Jf7VzUiSJKQW7F/T5uSYMgAb0OvJe/EF7Hv1xDYoqFnnUjg4tCqjctWqVTz66KOsWrWKm2++mZUrVzJjxowm3/Prr78yfPhwAIYOHcq3337LTTfdhLu7O//973+pq6sjISGhxWMRhM6sNK+GHd+eJju5DAAXT3uuuyOKLn29r/ls6ItV7tjBj089TUVBPr3sHegybhz+L8zDJiAAAPcpk3EcEC+vImZnYxMcbFWriI0RgdiMJI2GU/3jzHMyvYG0WyY2+/Buhw6icHRs0SVWrFjBvHnz+PHHHxk5ciQAEydOZNCgQU2+L+iiDwf//e9/mTZtGl5eXqjVahwdHVm3bh1du3Zt0VgEobPS1unZ/3M6SVuyMBolVGol/caF0n9cGDa2HbfsYnvTl5RQ8NrrVP70E+719eg8PQl+8UVCbr/9kmNtg4OtMjv6ckQgvozOnDUNsGbNGgoLC9m5cycDBgwwPe/i4oKLS/MLBrz44ouUl5ezefNmvL29Wb9+PXfccQc7duygd+/ebTF0QbAKkiRxZn8BO79PobZCC0B4H2+uuz0KNx/rKjjRliSjkROfforhs39hU1UFCgX9HngAz1mzsPdwt/Tw2oVCkhq76y2c11Qz6L82r2/p0nTR8hWUfv75ZV/3fOABfGbNbNa5WrI0nZCQgIuLC4cOHWLixIl88MEHpve2ZGk6NTWVrl27cuzYMXr27Gl6fcyYMXTt2pWPPvqoWeNpzF+/t4JgTUpyqvlj9Wlyz5QD4OrjwPA7ogjv7W3ZgXUw9Skp7Hj6aU4fPoy3Sk18XH8CFi3CoQN+iG8qFlwtMSM2I4VC0aLlYY+7/kbp11+DXn/pi2o1Hnf9DWULl5ubKzIykiVLlpCQkIBKpWL58uVAy5ama2vlDjDKv2whUKlUGI3GNhi1IHRs9bU69v2YxtH/5SAZJdQ2SuImhBN7QwhqG7EMfZ6xvp7ijz6i5LN/4V5fh9rOjrCHHib8H8+gtLn2amiLQGxBtsHBBCxeTN6LLzYMxu2UARgdHc22bdtISEhArVazdOnSFi1Nd+/ena5duzJjxgzefvttvLy8WL9+Pb///js//fRTm45dEDoSySiRvCef3etS0FTpAIjs58Ow26Nw8RQrOhfL/f130l95BY/8AgD8rh/N3+c8h2N4uGUHZkEiEFuYpTMAu3XrxtatW00z4yVLljT7vTY2Nvzyyy/MmTOHW265herqarp27cpXX33FjTfe2IajFoSOoyizij9WnyL/bCUA7n6OjJgWTUiMp4VH1rHoS0s5tXARf6xdixIYFh5O6PwXcbnhhms+a1zcI76CltwjFsxHfG+Fjq6uRseeH85yfEcOSKC2UzHgpnD6Xh+CSi1KNJwnSRIVa9dR+Oab6MvLOVRXh8+NExi+eDGO3tZzz1zcIxYEQbCQymINJ/7MpbJYg6u3A92HBpBzqow9689SVyMvQ0cN8GPo1K44e9hZeLQdS1VyMgeem4NfcjIKhQL77t2ZvGA+zv37W3poHYoIxIIgCJeRvDuPrd8kIxkvLBwe3Jhh+v+egU6MuDOaoGgPSwyvwzLW11P88Sf8/O67aHRajK5uxD7zDJ733oPCCpOxsquyWZW4qs3OLwLxZXT2fcSCIDStslhzSRC+WPyN4cTfFI5KJZahL1azdx/5CxagTU8nRKmgtF8/er/+Bl49Yyw9tFb5IeUHFuxagLZW22bXEIH4MmbOnMnMmTNN9wUEQbi2nPgz97JBGORMaRGEL9CWlLB/3jxst2zFWaVC5ePNgOefx3nsWFQq69y6lV2VzYJdCzBIbTshE4FYEAThL4xGiazk0iaPqSypa6fRdGySJFGx/gd2LlhARmkJrio1199/H36zZ6Myc1JTe1t7Zm2bB2EQgVgQBMFEkiQyjpWwe10qpbk1TR7r6iWy+evT0shfuIjavXsJMhopDQll0IL5BI4fb+mhmUV2VXa7XEcEYkEQBKAwo5Jda1PIOVUOgK29Cl29gcY2eCqVCmKuC2zfAXYgRq2Wk++8Q+6XXxKMAoW9PcEzH6PP9OkobW0tPTyzqNJWkV6Z3i7XEoFYEIRrWmWxhj0/nOXMfrnSk0qtpM+oYPqPDyM9qZht3yRjvOhesVKpYNS93XH1vjYbN9Tu30/y8/PYc/IEChQEXX89ka+8jG1IiKWHZjZbMrfw6p5XKdQUtsv1RCAWBOGaVFet48Cv6Rzdno3RIIECug30Z+DELrh6yUG2+5AAAqPc5X3EJXW4etkTc13gNRGEtdnZcsW/rCxsQkJwHTeW0lWrqFjzPQ6An5c3If/3KNEPPYRa3TlCSUFNAa/te40tmVsACHUJZXToaL458Q0G2u5ecef47gktkpCQQGxsLEuXLrX0UASh3em1BpK2ZXNwYwZajVzjPbi7B0OndsUn9NI6667eDgyeHNnew7So8nXryXvhBTi3fbPGaCTjvffobmeHUqHAfdo0Jj39FGp3d8sO1EyMkpHvTn3H0kNLqdZVo1aoub/X/TzS5xHs1fbc0e0OVh1exXM81ybXF4FYuCqffPIJq1at4tChQ1RVVVFWVoZ7I7+cP//8My+99BJJSUnY29szcuRI1q9f3+7jFa5dRqPE6b357N1wluqyegC8gp0ZOjWS0BgvC4+u49BmZzcIwpIkkaTRUCcZcVAqGPbBB7h1kmQsgJSyFBbtXkRiUSIAfbz7sGDoAqI9ok3HBLsE82jsoyIQd2Z/LaFnTUtftbW1jB8/nvHjxzN37txGj/n+++95+OGHefXVV7n++uvR6/UcO3asnUcqXMsyj5ewa20qJTnVADh72DFoUgTRA/1RKq/thgN/Vf7dGlMQBrm9a1c7O3J1OvzVNtSfTIZOEIjrDfV8kvQJnx/7HL1Rj6PakSf7P8m0btNQKdt337MIxJfRXpW1Giuhd/i3TEbd053uQwLa9Nrn/fzzz9x111188MEH3H333S1671NPPQXA9u3bG31dr9fz5JNP8tZbb/Hggw+ano+Jsc4qO4J1KcqsYtfaFLKTywCwdVATNz6MPqOCUdtaZ5GJtlZ56CCn6urws7HB/VwhDh+1Gp9z94F12e2zpact7c/fz0u7XzJlRSeEJDBv0Dz8nfwtMh4RiC+jNZW1JElCrzU2+xqVJRq2fnMS6S9vMRoltn6TjE+Yiylp5ErUtspWtRJbtWoVjz76KKtWreLmm29m5cqVzJgxo8n3/PrrrwwfPrxZ5z906BA5OTkolUr69etHfn4+sbGxvPXWW/Tq1avF4xWE5qgs0bB3w1lO75UzoZVqBb0TgokfH469s/XVOm4P+qIiCt54k5N/7iRXr6PcaGCgg+Mlf1ds2qlFa1uoqK/g3YPv8v2Z7wHwdvDm+UHPMyZ0jEVbMYpAbEZ6rZFPnvyfWc4lGSVWv7Sv2cc/8t5IbOxa9gl/xYoVzJs3jx9//JGRI0cCMHHiRAYNGtTk+4KCgpp9jbNnzwKwcOFC3nnnHcLDw1myZAkJCQmcPn0aT0/Rs1Uwn7oaHQc3ZpC0LQujXl5lihrgx+BJEVZzu6e9SQYDZatXU7T0PYxVVYTZ2VFlNBJuY3NpcFKrcb/9NssM9CpIksSm9E28vu91SupKALg9+naeinsKV1vLV/8SgfgatWbNGgoLC9m5cycDBgwwPe/i4oKLy6WZo61lNMrT/Xnz5nHrrbcC8MUXXxAcHMx33313xdm3IDSHXmfg6PYcDv6aTn2tnAkd1M2doVO74htm+T+0HVXt0WMc/Oc/KUtOJsrODvtevQhfuJDQM2fIe/FF0OsvHKxWE/DyYmytbEacW53LK3tf4Y/sPwCIcItgwZAF9PfrOK0YRSA2I7WtkkfeG9ns4/f9lEbi75mXfT32hlAG3tyl2dduiX79+nHo0CE+//xz4uPjTZ98zb00HRAg3+e++J6wnZ0dERERZGZe/msXhOaQjBKn9xew94ezVJXKtZ89A50YOrUroT09Lbrc2JEZqqooWvoemf/+N0drqlE4ONLrmdmEP/AACpUKh149cRwQL+8jzs7GJjgY99tvs6ogbDAaWJW8imWHl6HRa7BR2vBw74d5sPeD2Ko6VvUvEYjNSKFQtGh5uPfIIJK2ZDWo2nOeUqmg98igFi83N1dkZKRpiVilUrF8+XLA/EvTcXFx2NnZcerUKa677joAdDod6enphIWFtf4LEK55WSdL2bU2heIsORPayd2OQRO70G1wgMiEvgxJkqj8+RcK3ngdQ1ExLgoFPW64geCZM+kSF9fgg4ttcDC+Tz9lucFeheTSZBbuWsjxkuMA9Pftz4IhC4hwj7DwyBonArEFuXo7MOqe7hYroRcdHc22bdtISEhArVazdOnSFi9N5+fnk5+fT0pKCgBHjx7FxcWF0NBQPD09cXV15dFHH2XBggWEhIQQFhbGW2+9BcDtt9/eJl+X0LkVZ1exe20qmSfk7ki29ir6jw+jz/Uh2IhM6MuqT0sjed48ju/cSS97B5y6dMF/wXx6DBli6aGZjUav4cMjH/L18a8xSAZcbFx4Ov5pbo26FaWi47asFIHYwixdQq9bt25s3brVNDNesmRJi97/0UcfsWjRItPjESNGAPJ94Pvuuw+At956C7VazT333INGo2HQoEFs3boVDw8Ps30dQudXVVrHvg1nSd6bDxIoVQp6jQwi/sZwHJw71lJjR2Ksr6fk408o/uQTEisrqFWqqLj9NnrNn2+1DRqyq7JZe2Yt2VXZBLsEMzVqKplVmSzevZjsanl71diwscwZOAcfRx8Lj/bKFJLUWG8R4bzz25cqKipw/Utvzbq6OtLS0ujSpQv29qIlmjmJ761wXn2tjkObMjiyNRuDTk7+6xrvy+BJEbj5OFp4dB1b9Y4/yV+8GN25fAzdgAHo/n43fa6/Hhsb69zG9UPKDyzYtaBBn2AFCiTkUObn6McLg18gISTBrNdtKhZcLTEjFgShQzLojBz7I4f9v6RRXyNn7wZGyZnQfl1EJnRTdAWFpL+8mIMbfiTARk1gYBB+zz+Py7ixVp3All2VfUkQBkxBeFLkJOYOmouTjZMlhtdqIhALgtChSEaJMwflTOjKYjkT2iPAiaFTIgnr7WXVgaStSXo9ZatWUfTe+5wtK6PUaEQ1ciRD312Kjav5tiVaytozay8JwhfzdfS1uiAMIhALgtCBZJ8qY9f3KRRlVgHg6GbLoFsi6D7EH6Wq4ybbdASaI0fIXbgQ7clkAKLj4/C88056jh2LjbOzhUdnHplVTW95PH9/2NqIQCwIgsWV5FSze30qGUflqkc29ir6jw2l7+jQNtvC11kYKirIW7KExH+vpNZgoK+fH77PPIP77bcRqew8H14SCxPZl9d0tcFgZ+vZ53wxEYgFQbCY6rJ69v14luTdeUiSvHWv5wg5E9rR1TozetuLJElU/vgjBW+8SWVREdlaLfaDBuHxxut4dO1q6eGZTaW2kvcOvsd3p78z3QtujFqhZmrU1HYcmfmIQCwIQrur1+g5vCmDI1uy0J/LhI7s78PgSZG4+4lM6CupP3uWvIWL0OyTZ4geUVEMf/ghvIcMwdfPz8KjMw9JktiUsYk39r1BsaYYgMldJxPjGcOb+99EL10ov6lWqFk0bBHBLmJG3Km0VxtEQbiWGPRGju/IYf/P6dRV6wAI6OrG0Kld8Y9oXpeza5lRo6H4o485/vHHpNXU0N/Dg+BZs/C6bzoKK90T3Jjc6lxe3vMyO3J2ABDuGs78IfMZ4C/XxR8ePFzeR1ydTbCzvI/YWoMwiH3EVyT2EVuG+N52LpIkkXqoiN3rU6ks0gDg7ufIkCmRdOnrLTKhm6Fq+3YKFr+MNjubwxoN9TEx9PvHM/QbM8bSQzMbvVHPypMrWZG4wlQf+qHeD/Fg7wexU9lZdGxiH7EgCFYr90wZO79PpTC9EgAHV1sG3tyFmGEBIhO6GXT5+eS9/ArVv/8u17MPCOD6Z2ZT1a0bXTvRveBjxcdYtHsRyaVy1necXxzzh8wnwq1j1oc2JxGIhWZTKBSsW7eOyZMnN/q6JEnMmDGDNWvWUFZWxuHDh+nbt+8lz8XGxrbruAXLKM2rYfe6VNKT5Pt7arvzmdAh2NqLPz1XIun1lH7zb1LffZfk8nL87ezo+/DD+Mx8DKWTEwGWHqCZ1OhqWHZ4Gf9J/g9GyYirrSv/iP8Hk7pO6tD1oc1J/DZ0AHXV1RSkpVBfU42dkzN+Xbpi34b7/j788EM+/PBD0tPTAejZsyfz589nwoQJV3XejRs38uWXX7J9+3YiIiLw9vZu9LkrBXTButVU1LPvxzRO7sxFkkChVNDzukDibwrHyc2yy4vWovbQYfIXLaL+1CkqdTq0XcLR33c/PtPvRdmJtiRtydzCq3tfpbC2EICbIm7i2fhn8XLwsvDI2pcIxBZWmH6W1AN7kSSj6bncUyeJjB+Eb3jbLMkEBwfz+uuvExUVhSRJfPXVV0yaNInDhw/Ts2fPVp83NTWVgIAAhg4d2uRzQuekrdNz+LdMEjdnotfKP88RsT4MnhyBh7/1VTuyBH1ZGUXvvEPJf79DpVCgcnMj7h/PENK7N+FdunSaIJxfk89re19ja9ZWQN7/++LgFxkadG3+nRCB2IwkScJo0F/5wHPqaqo5s28Xl+bLGTmzbxdOHh7YOzVvZqxUqZud8HLLLbc0ePzKK6/w4YcfsmfPHlMgPnPmDA8++CD79u0jIiKC9957r8lz3nfffXz11VeAvIQdFhZGQkLCJc+dN2XKFADCwsJMM3PBOhkMRk7syGX/z2loquRMaP8IV4ZO7UpAV3fLDs5KSJJExdp1ZL/5JskFBWiMRq7/+934Pfssag8POkufMoPRwOpTq1l2eBk1uhrUCjX39bqPGX1mYK/uwEmZZemw45M2O70IxGZkNOjZu+6/zT6+oiCfyuKiy75eWViAm59/s841aModqNQt76ZiMBj47rvvqKmpYci5vqRGo5GpU6fi5+fH3r17qaio4KmnnmryPO+99x6RkZF88skn7N+/H5VKha2t7SXPAfj6+vLFF18wfvx403OC9ZEkibOJRexel0pFoZwJ7ebrwJApkUTE+ohM6GaqP3OGvEWL0Bw4iN5opMrPD9e/3YnDvfei7kStQpNLk1m0axHHSo4B0NenL/OHzCfaI9rCI7uCxFXwwyyoa/4kq6VEILYgvU57hdd1bXbto0ePMmTIEOrq6nB2dmbdunXExMQAsHnzZpKTk9m0aROBgYEAvPrqq03eQ3Zzc8PFxQWVSoW//4UPD409B+Du7n7Jc4L1yEspZ9faFPLPnsuEdrFhwE1diBkeiEpkQjeLsbaW4g8+IP+LL7ExGFA4OBAyayZ+Y8fi6OqKm1vn2Fddq6vlwyMf8s2JbzBIBlxsXHgq7ilui76t4ydjlaXLQbiJRhPmIAKxGSlVagZNuaPZx2ceSyLn1InLvh7ULYbQXn2afe2W6NatG4mJiVRUVLBmzRqmT5/O//73P2JiYjh58iQhISGmIAyYZsvCta0sv4Y9689yNlFeyVHbKokdE0q/saEiE7oFqrZuJW/xYlIzMsnUahl+4wS6LlyIzUW/c53BH9l/8MqeV8ityQVgbNhY5gycg4+jj4VH1kyHvm7zIAwiEJuVQqFo0fJwQNdu5KecbpCodeFcSgK6dmvVcnNz2NramvYgxsXFsX//ft577z0+/vjjNrmeYF0qizWc+DOXymINrt4OhPf1Jnl3Pif+zEUySigU0OO6QAbe3EVkQreALieH/FdepXqrnKRU5+mJx+TJMHVKpwrCRbVFvLH/DTalbwIg0CmQeYPnMSJ4hIVH1kJl6e1yGRGILcje2ZnI+EGXZE0rFEoi4we16RamvzIajdTX1wPQo0cPsrKyyMvLIyBA3q24Z88es13LxsZGlA7twJJ357H1m2Qk44UkwoMbM0z/P7yPN0MmR+IZKDKhm0vS6Sj58kvyV3wAGg0qGxu87r+fcfffR5lGQ1BQkKWHaBZGycia02tYenApVboqVAoVf+/xdx6LfQxHGyurIV6ZC3lH2uVSIhBbmG94BK7evvI+4toa7Byd2nwf8dy5c5kwYQKhoaFUVVWxatUqtm/fzqZN8qfXMWPGEB0dzfTp03nrrbeorKxk3rx5Zrt+eHg4W7ZsYdiwYdjZ2eHRiRJSrF1lseaSIHyxsQ/FEBUv7u23RO2BA+QvWkTuyWRO1dcTHhvLde++g925FSkrC0+XdabsDC/tfonEokQAenr1ZMGQBfTw6mHZgbWU0QgHP4fNi6C+sl0uKQJxB2Dv7ExY79h2u15hYSH33nsveXl5uLm50adPHzZt2sQNN9wAgFKpZN26dTz44IMMHDiQ8PBw3n//fcaPH2+W6y9ZsoTZs2fz6aefEhQUJLYvdSBJ27IvG4QBSrJriIpvxwFZMX1pKYVvvU3FunUAKNzccBw/DsXo0dhEdJ6yjXX6Oj5J+oQvjn2BXtLjqHbkif5PcGe3O1EprWxXRGEy/PgkZJ1bAQyKg+jx8L83gLZLnhVNH65ANH2wDPG9bV+VxRqObMni6P9ymgzEUQP8GPtg64u+XAsko5Hy77+n8K23qS0vx16pxP2OO/Cd/TT5NTX4+/t3mm17u3N3s3jPYrKqsgC4PuR65g6ai7+Tla2a6OthxzuwYwkYdWDjBKPnw8CHQamCsnQqd3yC26TXRNMHQRDMK/9sBYmbMzl7uIjmfCR39RIfippSd+oU+QsWUnboECfq6pBCQpj03lJc4uVlhCB3d8sO0ExK60p5a/9b/HT2JwB8HX15ftDzjA4dbeGRtULGbnkWXHxKfhw9Hm58G9xDLhzjEQ4Jc4DX2mQIIhALwjXGaJRIO1JE4u9Z5J+tMD0fGuNJ1AA/tn2TjLGRWbFSqSDmus6T2WtOhuoaipcvp/Sbb8BgwNbJCftJE3EYORJdJ1qGliSJ9SnrWXJwCRX1FShQcFePu5gVOwtn2/ZLLjWLugrYvBAOfC4/dvKFCW9AzynQzsVoRCAWhGuErt7AyV15HNmaZeoJrFQriB7oT+zoELyCLvwh/WswVioVjLq3O67eDu0+7o5MkiSqfv+dgldfoyI3FyelEpdx4/CbO4dAOzvs7e1xcLDO71l2VTZrz6wluyqbYJdgBvgP4JOkTzhQcACA7p7dWTBkAb28e1l4pK1wYgP88ixU58uP+98LN7wEDpZJHL0mAvGUKVPYvn07o0ePZs2aNZYejiC0q5qKepK2ZXP8jxzqa+UyfXZOanqNCKJ3QvAl+4C7DwkgMMpd3kdcUoerlz0x1wWKIPwX2uxs8hcvpuZ/f3Cqro4Cd3fGvrSI4IkTAay6PvQPKT+wYNcCDBcVs/j06KcAOKgdmBk7k7t73I1aaWUhpDJXDsDJ8pI6npFwy3vQZbhFh2Vl38XWefLJJ3nggQdMDQgE4VpQklNN4u+ZnN5fgNEgz27dfBzoOzqE7kMCsLG7fMKQq7cDgydHttdQOzRtdjbl361Bl5WFTUgIbpMmUvXb7xR/+CFSfT3Y2OAxeRKKAQPQde9u6eFeteyq7EuC8HkKFHw45kPi/OIsMLKr8NctSUo1DHsKRjwLNpbPe7gmAnFCQgLbt2+39DAEoc1JkkTWiVISN2eSdbLM9HxApBuxN4QS3scbpVI0Y2iu8nXryXvhBbioAE3Jxx9TZzSiVChwHzwY/wXziQoNpbKyEk9PTwuO1jzWnlnbaBAGkJDYmbPTugJxYTL8+ARk7ZUfB8XDxPfBr+Nk/1u84vYff/zBLbfcQmBgIAqFgvXr119yzIoVKwgPD8fe3p5Bgwaxb9++9h+oIHRgBp2Rk7tyWb14Hz8uO0LWyTIUCojs78utz8Ux9dk4ImJ9RBBuAW129iVBGKBAp2NvbS1ld99F6JdfYBcRgVqt7hRBWJIk9uQ1XUUvuzq7nUZzlfT1sO1V+Og6OQjbOsOEN+HB3zpUEIYOMCOuqamhb9++PPDAA0ydOvWS17/99ltmz57NRx99xKBBg1i6dCnjxo3j1KlT+Pr6AhAbG4tef2mLqt9++61B4wJB6GzqanQc+yOHo9uyqa2Uu3mp7VTEDAug7/Uh4r7uVSj/bs0lQRjAXqnEiER1cTGSJHWado9ny8/y0p6XOFp8tMnjgp2D22lEVyFj17ktSaflx9Hj4aYl4Na6sddVV5N5PMmMA2zI4oF4woQJTbbXe+edd3j44Ye5//77Afjoo4/4+eef+fzzz5kzZw4AiYmJZhtPfX29qeYyyAU9BKGjKS+sJWlLFid356HXynXKndzt6DMqmJ7DA7FzbJtmIdcKSZKoPXgQAIMkUWs04nKuCIebSkU/B0dC1DYolRZfVLxqdfo6Pj36KZ8f+xy9UY+dyg6dQYeRS5vRqBVqpkZdOmHqMDTlsHkBHPxSfuzkCze+CTGTW70lqTD9LKkH9lJdU22uUV7C4oG4KVqtloMHDzJ37lzTc0qlkjFjxrB79+42ueZrr73GokWL2uTc1urUqVOMHDmSM2fO4OLi0uz3abVaoqOjWbNmDfHxoi7i1ZIkifzUChI3Z3H2SBGc213kHeJM7JhQusb5olJbf2CwtPqUFApeex3NgQPUGo0kaTTokRjo6ITtuT/m7ioVtiEhVzhTx7crdxcv73nZVBlrZPBInh/0PPvz97Nw10L00oWVRrVCzaJhiwh26QAz4rJ0uUVhWbpcbKPfPZCfBL/806xbkuqqqy9pytMWOnQgLi4uxmAw4Ofn1+B5Pz8/kpOTm32eMWPGcOTIEWpqaggODua77767bH/duXPnMnv2bNPjyspKQjrBL1xjsrKyWLBgARs3bqS4uJiAgAAmT57M/Pnz8fLyMh03d+5cHn/8cVMQ3r59O6NGjSImJoakpKQG5frc3d1ZunQp9913H7a2tvzjH//gueeeY8uWLe3+9XUWRoORs4nFJG7OpCDtwgpNWC8vYseEENTNo9Msj1qSobycouUrKPvPf+QlabUae70epQKUkoI6oxHb8z/rajXut99m2QFfhWJNMW/uf5Nf034F5MpYcwfOZXToaBQKBZO6TiLOL07eR1ydTbBzMFOjpnaMIJy4Cn6Y1bBP8I53MH0y9eoqb0kKv+6qL1WQloIkGTEajVQWFV31+S6nQwdic9m8eXOzj7Wzs8POrvP3Vz179ixDhgwhOjqa//znP3Tp0oXjx4/z7LPP8uuvv7Jnzx48PT3JzMzkp59+YtmyZY2e4+uvvzbdNmjM3XffzTPPPMPx48fp2bNjJUh0dNo6PSd3ygU4qkrqAFCplXQb5Eff0aGiDaGZSHo9Zd9+S/H7yzBUVFCq1xM6fhx+//wntQcPUTdvHrYGA+rzH3bUagJeXoxtcAcISi301zaFSoWSu7rfxax+s3CyafjzFOwSzBP9n7DQSC+jLP3SIAyYgvCAh2Hsy2bbklRXXUV1WSkVhQVU19SY5ZyN6dCB2NvbG5VKRUFBQYPnCwoK8PfvuEXFz/favXimaDQaTYkdF99XOn+sUqk0zWpaemxr7lPNnDkTW1tbfvvtN1Pln9DQUPr160dkZCTz5s3jww8/5L///S99+/ZttF/q448/zoIFC7jrrrsu++HFw8ODYcOGsXr1ahYvXtzicV6LqsvqSdqWxfEduWg18tKgvZMNvRKC6D0yGEdXWwuPsPOo2bWLgtdeo/5MCgCnfHzQTbyF8LvuwjYoCNvQUHoPiJf3EWdnYxMcjPvtt1llED5VeoqX9rxEUpGcdBTjFcP8IfPp6WVFH5APfd1IEL6IvatZgrAkSZTn55KdfJyy3BwA1DZt93vXoQOxra0tcXFxbNmyhcmTJwNy4NmyZQuzZs1q02uvWLGCFStWtKqB/S+//ALAuHHjsLWV//FSU1NJTk4mNDSUvn37mo7dtGkTBoOB0aNH4+godyZNT0/n+PHjBAUF0b9/f9OxmzdvRqvVkpCQYFomzs7OJjQ0tEXjKy0tZdOmTbzyyiuXlN/z9/fn7rvv5ttvv+WDDz5gx44dl72/+9RTT/Hvf/+bZcuW8Y9//OOy1xs4cCA7duxo0RivRUVZVSRuziRlf6GpvKS7nyN9R4fQbbA/Nrado2NPR6DNyKDgjTep3roVAJW7Oz5PPoEqNpYzZ8+i1WpNx9oGB+P79FMWGunVq9XV8uGRD/nmxDcYJANONk483u9x62xTWJLa9OtlGVd9ieqyUjKSDlNRmI+NrR1KtRpXbx8U9m3XOdrigbi6upqUlBTT47S0NBITE/H09CQ0NJTZs2czffp04uPjGThwIEuXLqWmpqbJ5VBzmDlzJjNnzjS1QexMzpw5gyRJ9OjReMPuHj16UFZWRlFRERkZGZcNxI6OjixYsIDnn3+ehx9++LLfp8DAQDIyrv4XpDOSJInM46Uc/j2TnFMXCnAERrkTOyaE8N7eKMTeX7MxVFdT/OGHlH79Deh0VAHed04j7OmnUbm54WY0EhQaipNT51j23561nVf3vkpeTR4AN4TdwHMDnsPPya/pN3ZEZ7fL/zXFI6zVp6+vrSHz2BGKMtIBCYVSSWjvWKIGDiX9yKHOnTV94MABRo0aZXp8PlFq+vTpfPnll0ybNo2ioiLmz59Pfn4+sbGxbNy48ZIEro7kxhtvBBouTUdGRhIREXFJUs24ceMAGiwvh4eHExYWdsmxY8aMueTY4KtYImtOK2qNRtNkP+AHH3yQJUuW8MYbb/Dqq682eoyDgwO1tbWtHmdnpNcZOL2vgMTNWZTlyfeeFEoFXfv7EHtDKL5h5u13eq2TDAYq1q2j8N2lGEpKACjv14/860dh7N2biHMfIpVKZacIwvk1+by+73W2ZMpJkoFOgcwbPI8RwSMsPLJWqCmGTfMgaXXTxynVcqZ0C+l1OnKSj5N3OhmjUV4B9Q4NJ7RXX+yd5EYoHgFBpBxNbPG5m8vigTghIeGKAWHWrFltvhRtTo01/b7cfdy2OrYpXbt2RaFQcPLkSaZMmXLJ6ydPnsTDwwMfHx+8vb0pKytr5CwytVrNK6+8wn333XfZf6PS0lJ8fHxaPM7OSFOt5dj/cji6PRtNlQ4AG3sVMdcF0mdUMK5eogCHudUeOED+q69Sf+IkALbh4fjNnUNofDyl27dja2uLwWBo9PfL2uiNev6T/B+WH15Orb4WtULNPT3v4dE+j+Jo03ZLq21CkiBxJfz2AmjKAAUMfBh8usOv/wTjRUWclGqYuFzeytRMRqOBgrMpZJ84hq5eToZ09fYlrG8/XDy9Gxxr7+xMaM8+ZviiGmfxQNxRXc094o7Oy8uLG264gQ8++ICnn366wX3i/Px8Vq5cyb333otCoaBfv36cOHGiyfPdfvvtvPXWW5fdf33s2DH69etn1q/B2pQX1JK4JYtTu/PQ6+Q9ic4edvS5PoSY6wKxcxC/iuamy8mh4O23qfp1IwB6JyfU995DxP/9H4pzuRujRo0y5WZYu+PFx1m0exEnS+UPHH19+jJ/yHyiPaItPLJWKE6Bn56C9HO5JX695C1Jweduk3UdfW4fcYa8HN3/3mYHYUmSKM3NJiMpkbpqeTugg4srYX364REQZJGtgOK3/zI68z1igOXLlzN06FDGjRvHyy+/3GD7UlBQEK+88gogL50/9NBDV5wxvP7666Zl9r/asWPHNZkxLUkSeSnlHP49i/SjxaYdFj6hLsTeEEJkf19UKlGAw9yMtbWUfPYZJf/6XO6OpFRiO2kSZ/v3Q+HkRJhej+O5QNwZgnC1tpplh5ex+tRqjJIRF1sXno57mlujbkWpsLKfL309/LkUdrwNBi2oHSBhDgyZCaqLqsV5hMPo+S0+fVVpMRlHDlNZXAiAjZ09ITG98Y2IRGnBxDURiK9RUVFRHDhwgAULFnDHHXdQWlqKv78/kydPZsGCBaYC9hMmTECtVrN58+bLBlqA66+/nuuvv57ffvutwfO7d++moqKC226z3uIHLWU0GEk9VETi5kwKM6pMz4f39iL2hlACo9xFAY42IBmNVP70E4VL3kF/bsuj48CB+D0/F/vu3SnYtQudTtdpVrkkSeL3jN95Y98bFGrkwHJTxE38I/4feDt4X+HdHdBf60NHjoab32nRcvPl1FVXk3kskeIsOWlUqVQREN2doO49UdtYvhysQmpOxs417PyMuKKiAlfXhgk0dXV1pKWl0aVLlyYTmqzdihUr2LBhA5s2bWrxe6dNm0bfvn15/vnnW/Q+a/zeajV6TuzM5cjWLKpL5XrlKhsl3Qb7Ezs6BA9/608C6qg0SUkUvPIqmiNHAFAFBaG9bzoxd99tyqPQarXY2Nh0ig9BOdU5vLLnFXbkyEu3oS6hvDD4BYYENl4xsEPTlMHv8+WlZgAnHxj/OvS6tdX1oc/TaevJOXmcvJRTSEYjoMAnTE7EsnNs/u9jVmktX24/wfxbBzQaC66WmBELVzRjxgzKy8upqqpqca3p3r178/TTT7fh6CyvqrSOpK1ZnPgzF22dPNtycLGh18hgeo8MwsFFFOBoK7qCQoreWULFDxsAUDg64j1jBsndoimrqsIhLY3IyEgA055+a6Yz6vj6+Nd8dOQj6gx12ChteLD3gzzU+yHsVFZWEVCS4Nj3sHEO1JwrH9l/Otyw6KrqQ4OciJWfcobsk8fQa+UPxW6+/oT16YezR8vaVa45mM1z3yeh01yjlbUsqTMna7WUWq1m3rx5LX6fra0tL7zwQhuMqP1UFms48WculcUaXL0diLku0NRasDCjksTNWaQcLEQ6V4DDw/9cAY5B/qhFAY42Y6yro/TLLyn+5FOkc1vj3CZPxufpp7Hx8yU0M5OakyetZjWlORILE1m0exEp5XLdhQH+A3hh8AtEuEVYeGStUJoGPz8Dqedq0Ht3g1uWQtjQqzqtJEmU5mSRcTSRumr5tpCDqxvhffrh7h/Y4tWQrNJanvs+CYOxbReORSC+jM6erCVcWfLuPLZ+k2wKsgCHf8ukd0IQxdnV5JwuNz0f1M2d2DGhhPX0EgU42pAkSVRt+o3CN99El5sLgENsLNKMR3Dq3x+bc7+roaGhBAQEYNMB7v9drYr6Ct49+C7fn/keAA87D/4x4B/cEnGL9S2zG3SwezlsfwP0GlDZwYh/wLAnQd38GX1ddTUFaSnU11Rj5+SMX5euaOs0ZCQdpqpEnl3b2DsQ2rMPvuERKFrZrnL1/sw2D8IgArEgNKqyWHNJEAYwGiWObM0GQKlU0DXel9gxofiENn/JXmidupMnKXjlVWoPHABA7e+P7zPPUBzTgxMnTuB25AjDhw83BSdrD8KSJPHT2Z94+8DblNaVAjCl6xRmx83G3d7dsoNrjewDcjJWwTH5cfhwuHkpeHdt0WnO9wc+35pQp9WStHkj9s7OOLl7oFSpCerWg8BuPVCpr+5nILNUc1Xvby4RiM1A5LuZn6W/pyf+zL0kCF/Mr4sr4x7uhYtn51n67Kj0JSUULX2P8jVrQJJQ2Nnh9eCDeD30IEpHR+zr60lNTcXHx8fULMXapVek8/Lel9mbtxeACLcI5g+ZT5xfnIVH1gp1lbDlJdj/GSCBgyeMewX6/q3FyVgX9wc26PVUFhdRXVoCkkRtZQVBPXrRNW4gtg5Xvy1NkiRq6vVXPtAMRCC+Cuf31Wq12kuaJwhX53xJzPae1dRV68g8UcLpfflNHufq7SCCcBuTtFpK/72S4g8+wFgt1/l1vfFGHP/vUSptbfE5twfYzs6O66+/HrXa+v+caQ1a/nXsX3yW9BlaoxY7lR0z+szgvp73YaOyshm+JMHJH+UqWFVyrWv6/g3GvgJOXk2/9zIK0lIwGg2m1oTSuRwee2cX3Pz8cXJzN0sQTi2qZt66o+w5W3rV52oO6//JtSC1Wo2joyNFRUXY2Ni0qtyk0JAkSdTW1lJYWIi7u3ublx2UJInirGoyjpWQcayEgrQKmjMZd/USQbitSJJE9fbtFL7+BtpzzULsY2Lwm/c89OjBtm3bkCQJd3d3U/5GZwjC+/L2sXjPYtIr0wEYFjiMeYPmEeIaYtmBtUZFNvzyLJySO9HhGQE3vwsRCVd32oJ8CtNS0WrkJWMbe3vc/QKwd5ZrQtfXXl1mc73ewAfbUvlweypagxF7GyWju/ux6Xg+2iu/vdWs/6e3jTQna1qhUBAQEEBaWproLmRm7u7ubdZzWqvRk5Vcagq+tRUNf8W8gpzwj3DjxM5czt2GakCpVBBzXWCbjO1aV5+SQsFrr1OzcycAKm9vfJ9+CrcpU0wJNwEBAej1+k6xHQmgtK6UJQeWsCFV3oLl7eDNcwOeY1z4OOtbZjcaYO/HsPVl0NWA0kZOxBrxD7Bp/aqhXqcj69gRcpJPoNVoUCiVuPv54+Th2eB71JK9wX+1O7WEeeuOcrZYDuYjo314eXIvQjwdL+wjXtrq0zdJFPS4gqYKepxnNBob9C8Vro6NjY1ZZ8KSJFGWX2sKvHkp5RgNF37s1bZKgrt7Et7bi9CeXqYl5+TdeWz7JtnUGxjkIDzq3u50HxxgtvEJYCgvp2j5Csr+8x8wGFDY2OB533RcH3iAtPx8oqOjTT8TRqOxU6w+GSUj61PW887Bd6ior0CBgju63cET/Z/A1dYKu2/lJsrJWHmJ8uOQwfKWJN/G2602hyRJlGRnkp54EG2dBr1WS2VRIW6+fqj+cttKoVDSb/wtptlxc5XWaHnl55N8f0hOwvRxsWPBLTHc1DugQZBvTixoLTEjNgOlUtmp9it2BnqtgexTZWQeKyHjeAmVxXUNXnfzdSCslxfhvbwJjHJHZXPpH/buQwIIjHKX9xGX1OHqZd9gH7Fw9SS9nrJvv6X4/WUYKioAcB4zGr9//hPb0FD+/PNPysrKkCSJmJgYoHUdxzqalLIUFu9ZzKHCQwB08+jG/CHz6ePTdh1+2kx9NWx/DfZ8AJIR7Nzkohz9p8NV/FtpqqtIO3yA8nx5m5q9swsR/QagrdM0yJoGOQhHxg9qURCWJInvD+Xwys8nKKvVoVDA3YNCeXZcd9wc2vd+vAjEQqdRWawxzXqzT5Vh0F34RVWqFQRFexDW04uwXl64+zUvocPV24HBkyPbasjXtOqdOyl8/XXqz8gFKuyiovB7fi5OQy6UaYyOjub48eMduv94S2j0Gj5J+oQvj32JXtLjoHZgZuxM7u5xN2qlFf45Pr1JLsxRkSU/7jlVLk/p0vp/L6PBQO6pk2SfPIbRaEChVBLcvSdB3XuiPLcq4urtK+8jrq3BztEJvy5dWxSE/5qM1d3fhVem9CYu7OoqerWWFf7LC4LMoDeSl1JuCr5l+bUNXnf2sCOslxdhvb0J7uaBjZ2odNURaDMyKHjjTaq3bgVA5e6Oz5NP4HbbbWRkZ+NcVGTqX+3r64u3t3enmAX/mfMnL+95mZzqHABGhYxi7sC5BDhb4W2Oqnz49Tk4sV5+7BYqN2iIuuGqTltRWMDZQ/vQVMntCd18/YnoPwAHl4ZLwfbOzoT1jm3x+ev1Bj7cnsoH2y4kYz01JpoHr+uCjQU7oYlALFiVmvJ6Mo7LgTfrZCm6ugvJdAqlgoBINzn49vLCM9DJ+pJdOjFDdTXFH35I6dffgE4HKhUed9+Fz8yZqNzcOHv2LMePH8fR0ZGEhATTPWFrD8JFtUW8sf8NNqXLTVP8HP2YO2guo0NHW3hkrWA0wsHPYfMiqK8EhUpuUZgwB2xbnyilq6sjPekQRRlpgNyeMDw2Du+QMLP9Du9OLWHe+qOcLbo0GcvSRCC+DFFrumMwGiUK0irJOFZMxrESirOqG7zu4GIjLzf39iakhwd2jla21/IaIBkMlK9dS9HS9zCUlADgNHw4fnOewy7ywrJ/aGgoWVlZhIWFWX3wBTAYDfz39H95/9D7VOuqUSqU3N3jbmbGzsTJxgo6cZWlyx2RytLlVoShQ+F/b0D2Pvn1wP5wy3sQ0Pr72pIkUZiWSsbRxHPNGRT4R0YR0qsPNrbmaWJRWqPl1V9OsuZg08lYliSypq+gLTPlhMZpqrVkHpe3F2WeKKG+5qLqNgrwDXMlvLc86/UJcRG1nTuw2gMHyH/1VepPnATANjwcv7lzcB45kuLiYoqKiujR40JWbWepjHWy5CSL9yzmaPFRAHp59WL+kPn08Gp9BnG7SlwFP8wCqZGJiK0zjJ4PAx4CZetv99SUl3H20H5TbWgndw8i+g/Excs8vZTNnYxl8azpDRs2tPjEN9xwg6g2JTTLhaIa8qw3P60SLvp4aOeoJjTGk7BeXoTEeOHo2jn2j3ZmupwcCt5+m6pfNwKgdHHBe+ZjeN51FwpbW2pra9mzZw+SJOHt7W26J2ztQbhWV8vyxOWsPLkSo2TE2caZJ/o/wR3Rd6C6iqDVrsrSLx+EUcDf10LooFaf3qDXkXX8KHlnTiFJRlRqG0J69iGga3SrmzP8VUdLxrqSZgXiyZMnt+ikCoWCM2fOEBFhhe25hHZRr9GTffJcUY3jjRXVcCbs3KzXv4srSgsmUgjNZ6ytpfjTTyn9/Auk+npQKnG//XZ8nnwCteeFPrCOjo506dIFo9GIu7u75QZsRlsyt/Da3tcoqC0AYFz4OP454J/4OvpaeGQtdOjrywRhAAnObGp1IC7JySI98aCpApZXcCjhfeOwczTPfdqOmox1Jc2+R5yfn4+vb/N+oFrSPF64NkiSRFneuaIax4vJO1PRoFCG2k5FSHcPU6KVs4fYl21NJKORyp9+onDJO+gL5EDkOHAgfs/Pxb57d2pra0k6dIiePXtiZyff++vZs6clh2w2edV5vLrvVbZnbQcgyDmIFwa/wHVB11l0XK1iNELq1qaPKWt5FcG6mmrSEg9Slivfp7VzdKZLv3g8A4NaM0qySmtZvT+TzFINoZ4O3DkglOwyTYdNxrqSZgXi6dOnt2iZ+e9//7u4nyqg0xrIOVVm2l5UVdKwqIa7n6Mp8AZ2bbyohtDxaZKSKHjlVTRHjgBgExyM7z+fxeWGG0xLzYcPH6a0tBSFQkG/fv0sOVyz0Rv1rDy5khWJK9DoNagVau7rdR+P9HkEB7UV3pYrOAE/PQW5h5s+ziOs2ac0Gg3knT5F1omjGA16FAolgd16ENyjF6pW1gdfczCb575PatAn+INtqaa7WR0xGetKRLLWFYhkrZapKLpQVCPndMOiGiq1kqBu7oT1kktJuvt2/E+qwuXpCgooeucdKn6Qc0gUjo54z5iB533TUdo1zHgtLy/n5MmT9O7dG+cWliC0tOyqbNaeWUt2VTbBLsFMjZpKaV0pL+1+iVNlpwDo79ufFwe/SFePlvXW7RC0tfDHm7BrGRj1YOMI+joaL7SuhscPylnUV1BZXMjZg/uprSwH5CIcEf0H4Ojm3uqhZpXWkvD29gZB+GKTYwNZNKlXm1TGsniyVlMqKyvZunUr3bp1a5D9KFwbDHojueeKamQ2VlTD047wXt6E9fIiSBTV6BSMdXWUfvklxR9/gnSuC47b5Mn4PP00Nn6+GAwGTpw4gaurK8HBwYDcxGPIRRWzrMUPKT+wYNcCDBfdM/3s6GdI5+ZfrrauPBP/DJO7TkapsMIVnTO/y5Wxys8tN3e/GSa8AWl/wIbH5cB8nlINE5dfMQjr6uvIOHqEwjS5Ypra1o7wvv3xCety1TPU1fszLxuEAYI8HNq9PKU5tDgQ33HHHYwYMYJZs2ah0WiIj48nPT0dSZJYvXo1t956a1uMs91dq/uIK4s1cm3lYg2u3g6N1lauLqsn8+KiGvWNFNU4l2jlGSCKanQWkiRRtek3Ct98E12uXP/XITYWv3nP49C7t+m4zMxMUlNTsbGxwd/f32pbFGZXZV8ShAFTEB4dMpoXh7yIl0PreutaVGUebJxzoTKWazDc+BZ0v1F+HHsXhA09t484Q16O7n9vk0FYkiSKMtJIP3Lo3J5g8O3SlbDefbGxM0/OR3px020Os0o1ZrlOe2vxb8gff/zBvHnzAFi3bh2SJFFeXs5XX33Fyy+/3GkC8cyZM5k5c6ZpOeJakLw7j63fJCNd9Inz8G+ZjLy7Gx5+jmQcKyH9WAkl2X8pquFqK9/r7elFSIwndg7W+YdXuECbnU35d2vQZWVhExKCQ79YSj/7F7UHDgCg9vfH95lncL35pks+aIWFhVFUVERYWJjVBmGAtWfWXhKELxbhHmF9QdhogAOfw5aXLlTGGvx/kDAX7P5yy8AjXN4v3Ay1lRWcPbSfyqJziXqu7kTEDcDV23wZ43vPlrAztaTJY0I8rfDePK0IxBUVFXie24awceNGbr31VhwdHbnpppt49tlnzT5AoX1UFmsuCcIgV7ba9k1yw4MV4Bfuakq0EkU1OpfydevJe+EFaGQ1SGFnh9eDD+L10IMoz205ycrKorCwkLi4OEAuSTlw4MB2HXNbSKtIa/L17OrsdhqJmeQlyclYOQflx0FxcPPSq6qMZdDryT55jNzTJ5GMRpQqNSExvQmI7obSTPumy2q0vPbrSf57oOnvt1qp4M4BoWa5ZntrcSAOCQlh9+7deHp6snHjRlavXg1AWVmZaAVohSRJoqqkjl3fp1wShC+mUiuI6OcrJ1rFeOLgIopqdEba7OzLBmEUCkI//xeO5wIuQF1dHUlJSRiNRgIDAwkIsMIGBn9hlIz8kPIDf+b82eRxwc7B7TSiq2RqU/ihvD/YzlWe6cY/cFWVscryckg7fIC6GnmFzCMgiC794rF3Mk8yniRJrDucw8s/n6S0Rq4zcNegUHr4u7DoxxPoL97+qFTwxq19rGKrUmNaHIifeuop7r77bpydnQkLCyMhIQGQl6x7X3SfSOh4tHV6SnNrKM6upiS7mpKcaopzqhs0TricLrE+jH2wc+z7FC6vfPW3jQdhAEmi+o8dDQKxvb09PXr0wGg0dopWhUlFSby+73VTacrLUSvUTI2a2k6jugrJv8Avz0Lludlkzykw7jVwbf0HpvraWtKPHKQkOxMAWwfHc3uCg82WD5JWXMML64+yM0Veio72c+a1qb2JC5NXYxO6+bJ6fyZZpRpCzu0jttYgDK0IxI899hiDBg0iMzOTG264wVScPSIigpdfftnsAxRaTjJKVJZoKMmuoTi7ipKcGopzqqksajyRQalSYOeoRlOlu+w53byt896L0DySTkfFhg2UrlzZ5HFFKSmc/vNP+vXrh5OT3LigM1TQK9YUs/TgUn5I/QEAJxsnHu3zKK62rizesxi9dCF7WK1Qs2jYIoJdOvCMuCJbblOY/JP82D0UbmpZm8K66mq5529NNXZOzviGRVCWn0vW8SQMeh0KhZKAqG6E9OyNSm2eTGWt3sjH/0tl2bYUtHojdmolT46J4qHrIrBVX8hKD/F05Nlx3c1yzY5A7CO+go6+j1ir0csz23MzXPm/mgaZzBdzdLPFO9gZryD5P+9gZ9z9Hakpq2fl/D0Nql2dp1QquPulwZdkTwvWT9LrqfjpJ4o/+BBdZuYVj08bNw7DmNEEBAQQHx/fDiNsWzqDjlXJq/jwyIfU6OSM3EmRk3gq7im8HeTmA6Z9xNXZBDvL+4g7bBA26GHfJ7DtFdBWy1uOhj4OI/4Jts2fMRamnyX1wF6kc3uJ6zW1lOfl4ezpiZO7B86e3kTGDcTJ3Xy1m/ellfL8uqOkFMpL3cOjvHl5ci/CvDpGp6q2jAXNCsSzZ89m8eLFpk/AVzJ37lyeffZZU1KXNesogdholKgs0jQIuMXZ1ZdUqzpPpVbiGeiEV5CTKeB6BTk3eW83eXce275JbhCMlUoFo+7tTvfB1n/vT7hAMhio/HUjxStWoE2Tk5JUnp643347Jf/6F+j1l75JrcZ/7fdk1NYSExODra115wn8mfMnb+x7g/TKdEDukDR30Fz6+LQ+ecmicg7JyVh5coUzQgbJyVh+MS06TV11NYc3/ogkGTEaDFQUFlBdKi8RK9VqBk25g5CY3mZbhi6v1fL6r8ms3p8FgLezLS/eHMPEvoEdauujxQOxSqUiPz/f1CHlSlxdXUlMTOwUS1aWCMT1tbpzgbbGFHBLc6vRaxupdAM4e9g1mOF6BTnj7ufQqkYJpn3EJXW4etk3uo9YsF6S0UjVb79RtHw52pRUAFRubng+9CCed92F0slJzpp+8UXqtVpStFqclUrCHB0JeHkx7i1sANMRZVVm8eaBN021oT3tPXmq/1NM6jrJOoty1FXC1pdh/6dyNSx7N7jhJeh3L7Sim1HG0URyko+jqa6iNCcb47kPZY7u7rj7BRDaqy9hvWOvetiSJPFDYi6LfzpByblkrL8NDGHO+B64dcC+4havrCVJEtHR0c3+dFJT0/Sma0FmNEpUFNZemOVmy8lT1aX1jR6vslHiFSjPcL2CnfE+F3ztnc33Q+vq7cDgyZFXPlCwKpIkUb1lC0XLllN/Si7LqHR1xev++/C45x5UF5WddJ8yGccB8Zz49DOqjxxB5+vL8LlzcOrSxVLDN4taXS2fHf2ML49/ic6oQ61Qc1ePu3i076O42FphoxpJgpMb5HvBVXnyc73vgHGvgHPr9+9qqispL8inqljuE6y2s8MjINCUDX2+c9LVyCip4YX1x9hxphiAKF9nXp3amwHh1r+K2hrNCsRffPFFi09s7RmU5q6sVVejMwXa8xnLJbk1DWoxX8zZ004OtMEXZrpuvo4oxX5doQUkSaL6f/+j+P1l1J04AYDS2RnP6dPxnH4vqr98spckCYVCgW1wMLGLFmJz/DjBwcE4WXFRG0mS+CXtF9458A6FmkIAhgYO5bkBzxHhbqWrdmUZcjb0mU3yY88IuGkJRF5/Vaetq64m78wpUxB29vTC3S+gQZ0AO8fW37PV6o18uuMs7285Q73eiK1ayZOjo3h4eMNkrGuNSNa6gvPLEZtXHmbA2G5XXKY1GoyUF2guSaCqLmt8lqu2VeIZeGFJ2TtYnvHadcClGcF6SJJEzc5dFC17n7ojSYDclMHznnvwuv8+VH/pAWw0GklJSaGgoIBhw4aZdkNYu5MlJ3lt32scLpQ7CgU5B/HPAf9kVMioDnX/sdkMOtjzAWx/HXS1oLSB656G4c+AzdXVcSjKTOfswX3U19ZQkJaKR0AQjn/5oKZQKOk3/hbsW9G4Y396Kc+vPcqZc8lY13WVk7HCvTtGMtaVWHxpWoDDm7M4/WcZo+7pTvchcuKSplorz3KzL2Qrl+bWYNA3Pst18bK/JGPZ1cdBzHIFs6rZs4ei95ehOXQIAIW9PR5334XXgw+ivkwCpV6vJy0tDa1WS15eHkFBresT21GU1ZWx7PAy1pxeg4SEg9qBh3o/xPSe07FT2V35BB1R1j748SkoPC4/DhsGN78LPt2u6rQGvY60wwcpTJdzBjwCg4iIG0jWsSRT1jTIQTgyflCLg3BFrY7XNybzn31yVr6Xk5yMNSm2YyVjWZIIxC1gNEps+fokJ3flUl6oobZC2+hxajsV3n/JVvYMchY1mIU2VXvgAEXvL6N23z4AFLa2ePztTrwefhi1t/clxxuNRtPM19bWlt69eyNJklUHYb1Rz39P/Zflicup0lYBMKHLBGbHzcbfyd/Co2slTTlsWQQHvgAkcPCEsS/LjRmuMpDVlJdxes+faKoqAQXBPXoREtMLhVKJd3CYvI+4tgY7Ryf8unRtURCWJIkNR+RkrOJq+W/lnQNCmDOhO+6O1p1xb24iMrSUBLlnKkwPXX0cTPdy5f91wtXLQdReFtpN7eHDFC9bTs2uXQAobGxwv+MOvB55BBu/xpN28vLyOHbsGAMGDMD93DJ1YGBgew25TezL28dr+14jpVxuv9fNoxtzBs4h3t9K9ztLEhz7HjbOhRr53jaxd8MNi8Hp6ppNSJJEfuppMo4cxmg0YGvvQNSgobj5XviwYu/s3Ors6MySWl744Rh/nJbvNUf6OPHqlN4MirCyJhntRATiVvANc2H4tGg8A52wtRffQsEyNEePUrRsGTV/7JCfUKtxv/VWvGc8gs0Vgmp+fj51dXWkpKRYfWGO3OpclhxYwm8ZvwHgZufGE/2e4NaoW1GZqfFAuys9K/cJTt0qP/aKkpehuwy/6lPrtPWk7t9Daa5c9tIjIIiu8YOxMUOvAJ1BTsZ6b/OFZKzHR3XlkZER2Kmt9N+iHbQ6iqSkpJCamsqIESNwcHAwZVteC0J6eOIfYb1ZpIJ1qzt5kqJly6neeu6PtEqF25TJeD/6f9gGN76sLEkSkiSZlqJ79uyJk5MTXbt2ba9hm12dvo4vjn3Bv479i3pDPUqFkjui72BWv1m42Vnp76deC7vehz/eAn0dqOxgxD9g2JOgvvp725XFhZzZu4v62hoUSiVhvfsRENXNLH+7D2aU8vzaY5wqkG8JDI304pUpveliJclYltTiQFxSUsK0adPYunUrCoWCM2fOEBERwYMPPoiHhwdLlixpi3F2GEqlgpjrrHsJT7BOdadPU7xsOVW//y4/oVTidssteD/2f9iGhV32fVVVVRw5cgQPDw969pQbd9ja2hIdHd0ewzY7SZLYnLmZt/e/TW5NLgDxfvHMGTiHbp5Xl7hkURm74Kenoehc29GIBLk+tNfV7+uXjEayk4+TdfwoIGHv7EL0oGE4e179UnGFRsebG5NZuVdOxvJ0suWFm3owpV/QNTM5u1otDsRPP/00arWazMxMevToYXp+2rRpzJ49u1MH4vPlHkWlKaE91Z89S/Hy5VT+ulG+b6hQ4HrjjXjPnIldxJWLbNTV1VFWVkZ1dTXR0dHY2Fjv1rgzZWd4Y98b7M3fC4C/kz/PxD/DuLBx1vtHv7YUfp8Ph7+RHzv5wLhXofftV52MBXK3pDP7dlFZVACAT1gXuvQbgPoqfw4kSeKnpDwW/XiC4mp5e+Yd8cHMndADDyeRjNUSLQ7Ev/32G5s2bSI4uGHR86ioKDIyMsw2sI6m35iQZu0jFgRz0aanU/TBB1T+9DMY5W0kLuPG4TNrJnZRUU2+V6fTmQKuj48PvXr1IiAgwGqDcEV9BR8e+ZDVyasxSAZslbbc3+t+Huj1AI42Vtr+TpLgyGr4bR7UyrWc6T8dxiwER/NUmCrNzSFl/2702npUahu69IvHN/zqi5hkldbywvpj/O9cMlbEuWSswSIZq1VaHIhrampwdLz0B7+0tBQ7Oyvdn9cMA26OwNVVBGGh7Wmzsij+8CMqfvjB1BvYecxofGbNwr57063f9Ho9x48fp6ioiISEBNRq+Ve8i5WWpzQYDaxLWcf7h96nrL4MgDGhY3gm/pmO2wGpOYpT4OenIe0P+bFvjJyMFTrYLKc3GgxkHE0k74y8zO3k7kn04GE4uFxdIQqdwci//kxj6ebT1OmM2KqUzBzVlUcTRDLW1WhxIB4+fDhff/01ixcvBkChUGA0GnnzzTcZNWqU2QcoCNcKXU4OxR99TPm6dabuR84jR+L9+OM49OrZrHMoFAqKi4vRaDQUFhZa9Zakw4WHeW3va5wsPQlApFskzw18jiGBQyw8squgq4M/34U/3wGDFtQOkPAcDJkFKvOsVmiqKjm9Zyc15aUABER1J6x3LEpVywJlVmktq/dnklmqIdTTgV5Bbry3+QzJ+XIy1pAIL16e0otIn5ZX2RIaanEgfvPNNxk9ejQHDhxAq9Xyz3/+k+PHj1NaWsrOnTvbYoyC0KnpCgoo+fhjyr5bAzodAE7XXYfP47Nw6Nv3iu/XarWmloQqlYrY2FgUCoXVtiEtqCng3UPv8vPZnwFwsXHhsdjHmNZ9GjZK61xaB+TZ709PQ4m8z5muY+T60B7hZrtEYfpZ0g4fwKDXoba1o+uAIXgGtrxAy5qD2Tz3fRKGRvqTezjaMO+mGG7tL5KxzKXFgbhXr16cPn2a5cuX4+LiQnV1NVOnTmXmzJkEBIietYLQXPqiIoo//ZTy1d8iaeXKQ46DB+Pz+Cwc4+KadY60tDROnjxJXFycqdGKl5d13qfTGrR8feJrPkn6BI1egwIFU6Om8ni/x/FysM6vCYCaYvjtBTjyH/mxsx+Mfx16TjFLMhaAXqcj7fB+ijLk3tKuPn5EDRyKXSO3Ea8kq7T2skFYAXz9wCB6B1vp9rAOqlX7iN3c3Jg3b565xyII1wR9aSkln35G2X/+g1RXB4BDXBw+TzyB06CBLTqXRqPBYDCQk5NjtR3PJEnij+w/eGP/G2RVyc3h+/r0Ze7AufT0bt6SfIdkNELiv+WMaE0ZoIABD8HoF+WewWZSXVbK6T07qauWy1SG9OxNcPeeKFrZuGP1/sxGgzCABGw8nicCsZm1KhDX1dWRlJREYWEhRmPDBgcTJ040y8AszdxtEAVBX1ZG6edfULpyJVJtLQAOffvi8+QTOA4Z0qxlPoPBgNFoNGU/d+vWDVdXV6utD51Wkcab+9/kz5w/AfB28GZ23GxuirgJpcKKO0AVJsvL0Jly2VH8esMt70Fw81Y6mkOSJPLOnCLj6GEkoxFbB0eiBw3D1ecqehFrDfx2vKDJY7JKNa0+v9C4FrdB3LhxI/feey/FxcWXnkyh6HSBqy1bXwnXBkNFBaVffUXpV19jrJGbqtv36oXPE4/jNHx4s++zlZaWcvjwYdzd3Ylr5tJ1R1WtrebjpI/598l/ozfqUSvV3BtzL4/0eQQnGyuuxKTTyFWxdr4PRh3YOMGo52HQo6AyXzlcXX0dKfv3UJaXA4BnYDCRAwZjY9u6nSuSJPH7iQIW/XiCnPKmA+3MUZE8O67p7P3OqEO1QXz88ce5/fbbmT9/vtUuhQlCezBUV8sB+MuvMFbJmaZ23bvj88TjOI9qeT9clUqFRqNBkqQGCVrWxCgZ+TH1R949+C4ldfLe2RHBI/jngH8S5nr56mBWIWUL/DwbytLlx91uhAlvgnuIWS9TUVjAmb070dZpUCpVhPXth39kdKsTpzJLaln443G2JsuNJXxdbCmu1tLY6rRaqeDOAaFXM3yhES0OxAUFBcyePVsEYUG4DGNNDaX/Xknp559jqJA7ddlFReH9+Cxcxoxp0b27mpoanJzkGaKbmxvx8fF4e3ub9gdbk2PFx3ht72skFScBEOYaxj8H/JMRwSMsPLKrVFUAm+bKnZIAXALhxregx81mvYxkNJJ14hjZJ48BEg4urkQPvg4nd49Wna9OZ+Cj/6XywfZUtHojNioFDw+PYNb1XfnlaD5zvk9Cf1E0VisVvHFrH0I8rbSASgfW4t/m2267je3btxMZefX1TwWhMzFqNJSt+g8ln32GoUwuPmEbEYHPrJm4jB/fogCs1Wo5dOgQ5eXljBo1ylQsx9/f+nrqFmuKef/Q+6xLWQeAo9qRGX1n8Pcef8dWZX2zehOjEQ5+AZsXQX0FKJTyEvSo58HOxayXqq+t4fTenVQVy5WsfMMj6dIvDpW6ddu5tiUXsmDDcTJL5VyFYV29WDSxF1195T3Bt8UFM6iLJ6v3Z5JVqiHE04E7B4SKINxGWnyPuLa2lttvvx0fHx969+59Scm8J554wqwDtDRxj1i4EmNdHeXffkvxp59hOJc7YRMWis/MmbjedBOKFhZSAPme3Y4dO6iqqiIuLs4qA7DOqOM/J//Dh0c+pFpXDcAtEbfwVNxT+Dq2PqGo3ZWlw6Gv5f/1CIf+90J9Nfz0FGTvl48J7Ac3L4XAWLNfviQni9QDe01lKiPiBuITGt6qc2WX1fLSjyf47YSckOXnaseLN8dwU+8AsSf4CtoyFrQ4EP/rX//i0Ucfxd7eHi8vrwb/eAqFgrNnz5p1gJYmArFwOUatlvLvvqPk40/QF8r312yCg/F+7DHcJt6CooXLx1VVVTg7O5t+p6qqqlAqlaalaWuyK2cXb+x/g7MV8t+DGK8Y5g6cS6xvrGUH1lKJq+CHWSBdlISqUMp1opHA1kXejjTgITBz72OjwUD6kUPkp54GwNnDi6jBw3Bwbvlsu15v4LMdaSzbeoY6nRG1UsED13XhidFRONtZ320OS+hQgdjf358nnniCOXPmmHqbdmYiEF/btNnZlH+3Bl1WFjYhIbjffhs2vr6Ur1tP8Ucfoc/LA0AdEID3/z2K+5QpKFrRWCE5OZmUlBT69OlDaKj1JsNkVWXx1v632Ja1DQBPe0+e7P8kk7tOtr7tSGXp8H7/hkH4YpGjYdJycDV/GdHaygpO79lJbYV8iyMwugehvfuibEWw33GmiAU/HOdssZyxP6iLJ4sn9yLaz7zL551dh8qa1mq1TJs27ZoIwsK1rXzdevJeeMHUeAGg5NNPUbm6YigvB0Dt64vXozNwv+02lFeRxWxra4skSVScS+6yNrW6Wj47+hlfHf8KrVGLSqHib93/xv/F/h+utlb6AfbQ15cPwiAvQ5s5CEuSZCpTaTTosbGzp+vAIXj4t/w6eRUaXv7pJD8flT8sejvb8cJNPZgUGyiWoTuYFgfi6dOn8+233/L888+3xXgEoUPQZmdfEoQBMBoxlJej9PDA5/8exX3aNJSt6DpWX1+PwWAwdTLr0qULbm5uVleeUpIkNqZvZMmBJRTUyvcdBwUMYu7AuUS6W3lCZ3FK06+Xmbftq16r5eyhfRRnyed18/UnauAQbB1aliCl1Rv5Ymca7205Q63WgFIB04eG8/QN0bjaW3Gt7k6sxYHYYDDw5ptvsmnTJvr06XNJstY777xjtsEJgqWUf7fm0iB8EfepU/C8995WnbuoqIiDBw/i6urKkHMVtRQKhdUF4VOlp3h176scKjwEQJBzEM/GP8v1oddb94zLaJTrQqdsbvo4D/Pte64qLebMnp3U1VSjUCgJ6dmboO49W/x93JVazPwfjpNSKCfHxYV5sHhSL2ICrXRV4hrR4kB89OhR+vXrB8CxY8cavGbVv3yCgLwFqWrzZsq/X9Pkcfr8pssANsXJyQmj0Yher0en01ldYY7yunKWJy7nu9PfYZSM2KvsebD3g9zX8z7s1faWHt7VydwDG+dA7uGmj1Oq5ezpqyRJErmnk8k8mogkGbFzdCZq0FBcvX1adJ7Cyjpe/vkkG47kAuDlZMucCd25tX8wSqX4u9zRtTgQb9u2rS3GIQgWI0kSmsOJVKxbR+Wvv2Ksrr7ie2yCm9+U3mg0Ul5ebmpL6OjoyLBhw3B1dbWqD696o541p9ew7PAyKrWVAIwLH8czcc8Q4GzlndfKs2DzggtFOexcYcSzcnOGn2eDUX/hWKUaJi6/6vaF2joNKfv3UJ5/LngGhxIZNwh1Cz6Y6Q1Gvtqdwbu/n6a6Xo9CAX8fFMY/xnbDzVEsQ1sLkbcuXLN0eXlU/LCBinXr0GZcuN9nExSE8+jRlK1c2fjytFqN++23NesaWq2WXbt2UVNTw8iRI3F2lgsmuLl17O412VXZrD2zluyqbIJdgunq3pXPjn3GmbIzAER5RDF34FwG+A+w8EivkrYGdr4n14bWawCFPNO9/kVwPjcrjRh5bh9xhrwc3f/eqw7C5fl5nNm/G925MpVd+sXj2yWyRR/M9qeX8uL6YyTny+VT+4a48/KkXqIzkhVqViCeOnUqX375Ja6urkydOrXJY9euXWuWgQlCW5CXnrdQsW4dNbt3n9sPCgpHR1zHjcNtymQc4+NRKJXY9+hB3osvgv6i2ZBaTcDLi7Ft5ozY1tYWBwcH6uvr0Wg0pkDckf2Q8gMLdi3A0EjGsKutK4/3e5zbom9DrbTiz/GSBEe/g80LoVJunEDYMBj/GgT0bXisRziMnm+WyxqNBrKOHSXn1AlAwtHVnejBw3B0c2/2OYqq6nnt15OsPSSP293RhufGd2dafIhYhrZSzfpNcnNzM31S6+if5AXhr5paenYcMAC3KVNwHTcW5V8KZ7hPmYzjgHh5H3F2NjbBwbjfftsVg3BhYSHe3t6mLX59+/ZFqVRaxb3g7KrsywZhBQo+veFTYrxjLDAyM8o5CL/Ogex98mP3ULhhMcRMgja8VVBXU83pPTupLpWrr/lFdCW8bxyqZhZ+MRgl/r0ng7d/O0VVnbwMfeeAEP45rjseTh3/Z0u4vGb9BHzxxRe89NJL/OMf/+CLL75o6zEJglno8vMvLD2np5uetwkKwm3yZNwmT8I2pOnOOLbBwfg+/VSzr5mUlERGRgbdu3cnKioKAHt760lg+u70d40GYQAJic2Zm603EFfmwZZFckY0yC0Kh8+GIbPApm3/jYqzMkg9uA+DTovKxpbIuIF4hzQ/6/pQZhkvrj/G8Vz53nyvIFcWT+pFv9DWNXwQOpZmry0tWrSIRx991LTvURA6ImNd3YWl5127Liw9OzicW3qeguOA+BY1YGgJLy8vMjMzaWHBOovTG/VsSN3AqpOrmjwuuzq7nUZkRjoN7F4OO94FnVxdir53ycvNrm2bZGbQ60k/cpCCs/KeZBcvH6IGDcXeqXm3KEprtLzxazLfHsgCwNVezbPju3PXwFBUYhm602h2ILa2PyznZWVlcc8991BYWIharebFF1/k9ttvt/SwBDOSJAlNYiIV69ZT+csvjS49u4wdi8rZ/DWbq6qqMBqNpls2QUFBuLu7W019aKNkZGPaRj448gEZlVcuUBHs3PxscYuTJDjxA/z2IlRkys8FD4QJr0NQXJtfvraiXC5TWVkOKAjqHkNIz97NKlNpMEqs3p/JmxtPUaHRAXJHpDkTuuPt3PICMkLH1qJsC2vaanGeWq1m6dKlxMbGkp+fT1xcHDfeeKPV/KEULu+yS8+BgReWntuwbnN+fj4HDx7EycmJESNGmO4JW8PPliRJbM3ayvLDy0kpl2drHnYe3Bp9K18c+6LR5Wm1Qs3UqKaTNTuMvCOwcS5k7JQfuwbBmEXQ+7Y2vQ8M8ve24GwK6YkHMRoN2Ng7EDVwKO5+zeuglZRdzovrj3EkWy532t3fhZcn9yI+3LMthy1YUIsCcXR09BWDcWlp6VUNyNwCAgIICJCXn/z9/fH29qa0tNQq/lgKl2py6XnsWHnpeeCANlt6vpinpydqtRpHR0cMBoNV1F+XJIndubtZdngZx0rkgjwuNi5M7zmdv8f8HScbJ8Jdw1m4ayF66UK2uFqhZtGwRQS7dPAZcXUhbF0Mh74BJFA7wLAnYdgTYNv2v/N6rZbUg3spyZZn4O7+gUQNGIJNM/IEymu1vLXpFKv2ZSJJ4GKnZvbYaO4ZHIZa1fF/toTWa1EgXrRokdmzpv/44w/eeustDh48SF5eHuvWrWPy5MkNjlmxYgVvvfUW+fn59O3bl2XLljFw4MAWX+vgwYMYDAZCrpCgI3QskiRRd+QI5WvPZT1XVZlec4yPl5eex41rk6Xni+l0OgoLCwkKCgLkrUkjR460mmSsgwUHef/Q+6aSlA5qB+7ucTf39bwPN7sLv9eTuk4izi9O3kdcnU2wczBTo6Z27CCs18Lej+B/b4L23M9Hr9vghkXg1j7jriwu4szeXdTXymUqQ3vHEhjd/YqTF6NRYs3BbF7fmExpjRaAKf2CmDuhO76u1vGzJVydFgXiO++8E19f8zb0rqmpoW/fvjzwwAON7lH+9ttvmT17Nh999BGDBg1i6dKljBs3jlOnTpnGEhsbi/7ivZ7n/PbbbwQGyl1LSktLuffee/n000/NOn6h7egKCi4sPaelmZ5vr6XnBmPR6di2bRv19fU4Ojri4SFnq1pDED5efJxlh5exM1deprVV2nJHtzt4qPdDeDk0Xt862CWYJ/o/0Z7DbB1JglO/wm/zoPRcL/TAfjD+DQgd1D5DMBrJOXWCrONHkSQj9k7ORA0ehoun9xXfezy3ghfXH+NQZjkA0X7OvDSpF4MjrKvuuHB1mt2PWKVSkZeXZ/ZA3GAwCsUlM+JBgwYxYMAAli9fDsjlAkNCQnj88ceZM2dOs85bX1/PDTfcwMMPP8w999xzxWPr6+tNjysrKwkJCRH9iNuJsa6Oqi1bqFi3Xl56NhoBUNjb4zru/NLzwHZZev6rxMREysrKiI2NNQXijuxM2RlWJK5gS+YWQF5enhI1hUf6PIK/U/PuV3ZoBSdg01w4u11+7OwHYxZCnzuhnX4+tJpazuzbTUVhPgDeoeFE9B+I+go9qSs0Ot79/TRf707HKIGTrYqnxkRz37BwbMQydIfUIfoRWyJrWqvVcvDgQebOnWt6TqlUMmbMGHbv3t2sc0iSxH333cf1119/xSAM8Nprr7Fo0aJWj1loOdPS8/ms54uWnh3i43A3LT23X1UqSZLIyMggKCjI1GGsV69eKJXKDn8vOKMygw8SP+DXtF+RkFCg4OaIm/m/vv9HiGsnuC1TUwLbX4UDn4NkBJUdDJkp7wm2a79m92V5OaTs34Ouvg6lSi2XqQyPaHIpWpIk1h3O4dVfkimulj/w39wngBduisHfreOvrghto9mB2HhuZtKeiouLMRgM+Pn5NXjez8+P5OTkZp1j586dfPvtt/Tp04f169cD8M0339C7d+9Gj587dy6zZ882PT4/IxbM73JLz+rAANwnT8Zt0iRsw8zXaq4lDh8+TE5ODlVVVaafFXUzKyBZSl51Hh8lfcQPKT+Ysp5vCLuBmbEzrb83MIBBB/s/g+2vQZ2cUUyPiTB28VXXfm5KXXU1BWkp1NdUY+fkjE9YFwrTUsk9fRIARzcPuUyla9P5M8n5lcxff5x96XJCa4SPEy9N7MV1UVdewhY6t479l8UMrrvuuhZ9iLCzs8OuFY3eheYx1tdTvWUL5evWU7NzZ4daer5YaGgohYWFVnE7olhTzKdJn/Ld6e/QGeU9p8ODhjOr3yxivKy0CtZfndksL0MXn5Yf+/WW60J3Gd6mly1MP0vqgb1IkvxzqtNqOfTrBpw9PHFy98C/azThffqjVF1+b3BVnY73Np/hi13pGIwSDjYqHh/dlYeui8BW3bFXV4T20aEDsbe3NyqVioKChr1fCwoK8PfvBPe4rhGSJFGXlET5unVU/vyXpee4ONynTMZl/Ph2XXr+q6KiIgB8fOSOO97e3owePdq0LN0RldeV8/nxz/nPyf9QZ6gDYKD/QB7v9zixvrGWHZy5FJ+BTc/Dmd/kx47ecP0LcgekZhTGuBp11dUNgnBNRTlluTlIRiPlWi09E8YQGNX9su+XJIkfk/J4+acTFFbJy9Dje/rz4i0xBLk7tOnYBevSoQOxra0tcXFxbNmyxZTAZTQa2bJlC7NmzWrTa69YsYIVK1ZgaKwNntAsuoICKjZsoGLderRnz5qeVwcE4DZ5Eu6TJ1ts6fliubm5HDx4EHt7e0aNGmVagu6oQbhaW803J77h6xNfU62Tq4j18e7D4/0fZ3DAYAuPzkw0ZfJWpH2fyL2AlTYwaAaM/KfcI7gdFKSlIElGDAYD5fm51JaXA2Dr6IhXcCi6urrLvjelsIr5PxxnV2oJAGFejiya2JOEbm2X7CpYL4sH4urqalJSUkyP09LSSExMxNPTk9DQUGbPns306dOJj49n4MCBLF26lJqaGu6///42HdfMmTOZOXOmKVNOaJ6mlp5dxt6A+5QpOA4aZPGl54v5+fnh5OTUpjsCzEGj17A6eTWfH/uc8vpyALp5dOPxfo8zIniEVVa+u4RBD4e+hK2vgOZccaDoCTDuFfBq3/vcddXV1FZUUJafi/Hc9khXH19cfXxRKBTU19Zc8p6aej3vbz3Dv3akoTdK2KmVzBzVlUdGRGBv07YzeMF6WTwQHzhwgFGjRpken0+Umj59Ol9++SXTpk2jqKiI+fPnk5+fT2xsLBs3brwkgUuwnAZLz7/8irGy0vRaR1l6vlhtbS05OTmm7kgqlYqRI0eiauI+nyVpDVrWnF7Dp0c/pVgjt9ALdw1nZr+ZjA0bi1LRcT7UXJWz2+WylIUn5Mc+3WHcq9B1dLsPRauppSjjrKlCltrODs/AIOwcLxSNufj/S5LExmP5vPTTCfIq5JnymB6+LLilJyGeolGO0LRm7yO+VrXl3jFrpysopPLHDZSvW482NdX0vNrf/8LSc3i45QbYCJ1Ox+bNm9Hr9QwYMKBD5xqc74j00ZGPyKvJAyDIOYj/6/t/3BRxE2qlxT9Hm0fpWbkxQ/JP8mMHDxg1D+LuB1X7fo2SJFGYlkp60mHqa6rJTz2Di5c3rt6+KC7qdqRQKOk3/hbsnZ1JK65hwYbj/HFazjMI9nBg4S09GRMjJgudSYfYR3ytuVbvEWuzsyn/bg26rCxsQkJwv/02bIMvlAg01tdTvXUr5evWUfPnRUvPdna4jB2L+5TJ8tJzB51d2tjYEB4eTllZGS4u7bfntCUa64jk6+DLI30eYWrUVGxUHfPedYvVVcKOt2HPh2DQgkIFAx6ChDng2P4NDjTVVaQe2EtlkZwc6u4fQFiffuSeOmlK2AI5CEfGD0KydWDJb6f4+H9n0RqM2KqUPDoygsdGdRXL0EKLiBnxFVxLM+LydevJe+EFuPjDh1pNwOKXsIuMvJD1fPHSc//+uE2ZjOv48ag6YGDT6/WcOXOGLl26mMpRGo3GDlmU43IdkR7s/SDTuk3DXt1JCj4YDZC4ErYshppC+bnI0fIytO/ls5DbimQ0kns6mazjSRiNBpQqNaG9+hDQtRsKpZLUrELWbt5LcUkF3l5uTB0ziLNVEot+PE52mQaAkdE+LJrYk3Bv0Uyms2rLWCAC8RVcK4FYm51N6rjxDYPwZZxfenabNAm7Ll3aYXStd+DAAfLy8ggICCA+Pt7Sw2lUczoidRoZu+DX5yA/SX7s1VUOwFFj27w9YWNqystI2b+HmnI5MczN15/IuEHYn8tnWHMwm+e+T8JgvPBnUgGcfxToZs/8W3oyrqdf50iWEy5LLE0Lba78uzVNB2GVCtcJE3CbMhmnwYM77NLzX0VHR1NZWUloOzWHaKnGOiL9vcffmd5zeoOOSFavPBN+nw/H18mP7dzkrUgDHwG1bbsPx2gwkHXiqGnZWWVjS3jf/g1KVGaV1l4ShOFCEP77oFCev6kHjrbiz6hwdcRP0DVKkiR0OTloEo+gSTpCxYYNTR7vMmY0QW+/1U6ja72srCwUCgXB5+5ru7q6MmrUqA43W2msI9K07tN4sNeDl+2IZJW0NfDnu7BrGejrQKGE/tPlohxOlintWFlUSMqBvdRVy7dYvIJD6dIvHlv7hkU2Vu/PvCQIX8zN0UYEYcEsxE/RZXS2ZC1DVRV1R4+iSUo6F3yTMJSWNvv9tuEdewka5MIciYmJqNVqvL29TfeEO1IQ7vQdkc4zGuHof2HzQqiSM74JHw7jXwf/XhYZkl6nIyPpMAVnzwBga+9Al34D8Aq+tJa80Six52xJk+fLKtW0yTiFa48IxJdhzQU9JIOB+pQU02xXc+QI2tSzcu/Wi9nYYN+9Ow59+mATGkLhm281vjytVuN++23tM/irEBAQgJeXF35+fh2uXnhmZSYrEld03o5IF8vaDxvnQM4B+bFHOIx9GbrfbJH7wACludmcPbQfraYWAN8uXQnv0w+1bcNlcUmS2HaqkLc3neZEXmVjpzIJ8RRlKgXzEIG4E9AVFlKXlITmyBE0R5LQHDuGVFt7yXE2QUE49O2DQ9++2Pfpg31MDMqLApbK1Y28F1+Ec1WEADlr+uXFDbYwdRRlZWVkZmbSp08fFAoFCoWCoUOHWnpYDeRV5/Fx0sesT1nfOTsiXawyV54BJ30rP7Z1huHPwODHwMYyGd+6ujrSEg9QnCVvA7N3diEybiBuvpeuPuxOLeGtTckcyiwHwNFWRZ3OQGOr02qlgjsHdMy8A8H6iEBsZYx1ddSdOCEH3CPyjFefm3fJcUpHR+z79MGhTx8cYvvi0KcPau+m78m5T5mM44B4eR9xdjY2wcGX7CPuKPR6PXv27EGv1+Ph4dHhkrEa64g0IngEs2Jn0cOrh4VHZ2Y6jXwP+M93QVcLKCD2bhj9IrhYZrldkiSKMtJIP3IIvbYeUBDYrQchMb1R/aWdZWJWOW9vOsWfKXLVMnsbJdOHhvPoiEi2JBcy5/sk9BdFY7VSwRu39hEVswSzEduXrsCS25ckSUKXkXFhpnvkCHWnTjWcsQIoFNhFRTWY7dpFRlpNZnNrpaWlUVFRQUxMDLa27Z9525hroiPSeZIEx9fC7wugIkt+LmQwTHgdAvtZbFh1NdWcPbSf8vxcAJzcPYiMG4SzZ8MkuOT8Spb8dprfT8gFPGxUCv42MJRZo7ri63phBp9VWsvq/ZlklWoI8XTgzgGhIghfg8Q+Ygu4OFnr9OnT7RKIDRUVaJKOmma6dUeSMFRUXHKcytsbh77yLNehb1/se/VC5dyJ9po2oq6ujuPHjxMdHd0hK2JdEx2RLpZ7WK4LnblbfuwWAjcsgp5TLXYfWDIayUs5TdbxJAx6HUqliuCYXgR264HyopaJacU1vPv7aX5MykWSQKmAqf2DeXJ0lAiwwmWJQGxBbfXNl3Q66k6flme5R5LQJCWhTUu75DiFrS32MTFy4D0341UHBnaoTOD2cOjQIXJycvDy8upQ94GviY5IF6sqgK0vweGVgAQ2jv/f3p2Hx1Xed/9/z6IZ7cto30aStXuTvEnYYIixwZgCxmpS0vA0JklJQxyyOLSF63cVSK8SkpDfrxBwmqRPA0mTFPI0yLhOIOFxAiaW8W7jRZIlWfu+SzOSZj2/P440spBkS7akGY2+r+vSZXTmzMw95lgf3ff53vcNt30DNj0OAd4rXhoa6Kf6xIdYetTh5fCYOJatKyI4fLzQsqVvmB8cquL/nGryTEv6i1WJfOOuHLLifGNDEuG7ZEGPRU5RFJxtbVfd1/2IkYsXUabYzzQgzTza2y1Qe7u5OWh8ZNjVm/Lz87HZbKxYscLbTQGm3hEpIyKDPYV7uCvtrsW/I1JvHZz+ufpnVDqs/jRU/hYO/79gH1TPWfVXsO1ZiEj2WjPdbhfN5RdpqriI4naj0weQtnoN8cuyPL8EdVls7PtTNb/8sAG7S10z+s68OPbelcPK5MU1I0L4J+kRX8eN/BbkHhpi+MKFCZXMzo6OSedpw8MJWrXK09sNXL0afVTUXH+ERcftdlNVVYVWq/VsVegtTYNNvFn1Jk2DTaSEpbAzcyenOk75945IZ38Fb30FlGnm0Cevg3u+C6kbFrZdHzPY3UXNyWMMDfQBEJWYzLK1RRiD1eHl/iEHP/mghleP1DFkVz9LcYaJf7gnl3VpC7+phFjcpEfsAzr3/ZDAv/lfkyqIFbcbe22tZ5GM4XPnsFVVTZ6Pq9NhzM2Z0Ns1pKeh8cHNB7yto6ODy5cvo9VqSU5OJjjYO/ft3qp+i2fKnvFMOwL49/P/7vlvv9wRqbfu2iF893PqdCQvXrcup4OGCx/RWlUJKAQYA8koXEd0ahoajQarzclrZXX8+P0aBkbUwsaClAie2J7LbVkx/ne7QCx6EsQz1PPTn2L/5S+Jf/IfCUhOVoeXz51j+PwF3IODk87XJyR4iqmCClYTuGIF2iBZAGAmEhISMJvNxMbGei2EmwabJoXw1f521d/yd6v/zn92RBpz+ufThzDAcI9XQ7ivrZWaU8exDakFcbFpGaQXrCXAGMiIw8WvjjXww/eq6bLYAciND2Pv3TncvVw2ZRC+S4J4NpxO2v/luUmHNUFBBK1YQVChOnUoqKCAgHjZFHymWltbqauro7i42LM9YUFBgVfb9B/n/2PaEAbQoPGvEFYUqD6kBvG19NYvTHs+xmG3UXfuNJ11VwAwBoewbF0RUQlJOFxu/ut4Az84VEVrv1p3kR4dzDfuyuG+1UnotBLAwrdJEE/jWmtNayMjCduyxdPbNWZno9HLX+WNcDqdnD9/HpvNRl1dHcuWLfNaW6wOK+/UvkNpdSnnOs9d89wmS9MCtWqeuRxw4Tdw5AfQcfH650elzX+brqIoCt1NDdSeOYnDNgJoSMzKwbyqAI1Wz1tnm/nXdy9T162uJJcYEchXt2bzyXUpBOjkto9YHCQ9pnGttaZDb72VpOe/7aWW+Re9Xs+qVasYGBggPT19wd9fURTOdJzhzao3+UP9Hxh2qgv5a9CgMH0dY0qo7602Niu2QbX3e/SHMDD6S0VACKzYBR+9Dm7n5Odo9bD2swvXxKEhrpw5QW+L2r6g8Agy1xUTFh3Du5fa+f/evUxFm3pbKDrEwJe3ZPFwsZnAAP9eyEb4HwniGxDgg0s+LhYDAwN89NFHLF++HJNJrVxNTEwkMTFxQdvROdTJgZoD7K/eT91Aned4eng6u7J3sT5+Pbvf3o1TmRxIeo2ekuySBWztHBpsh2M/gpP/ASOji8WExEHx38GGL0BQFKTfCgcenxjGWj088Io6lWmeKYpC+5Vq6j86g8vpQKPVkpK3gqTc5ZTV9vL9N8o419gHQFigni/dkckjm9IJMcqPM7E4yZU7W4tkJyJfVVdXR29vL5cuXeK2225b0Pd2uB0cbjpMaVUpf27+s+cecJA+iHvS72FX9i4KYws9RT3PbnqWZ8uenRDGeo2eb936LVLCFtkvY11VUPYDOPc6uNRCJqKz1IU4Vn964qYMhZ+BtE2j84jr1eHotZ9dkBAeHhyg5tRxBjrVZSdDTTFkrS+mvM/N3//0BB9eUbfuDArQ8fnb0vni5kwigv2kYl0sWRLEs+HDOxH5MkVRPOGWn5+Poijk5uYu2Ptf6btCaXUpB2oO0DMyvgdzYWwhJdkl3J1+NyEBk5cI3Zm1k3Xx69R5xJYmUkJTKMkuWVwh3HAMjrwElb+DsaH2lCK49WuQe+/0FdBR6bD16YVqJW63i5bLFTRdPI/b7UKr02NeWUBPcDxfKa3ijxXqPHyDTsvDt5j58ieyiA3zra0uhbhRsqDHdYzdI67+9vOkTjGPWEzPbrdz6dIltFotq1evXtD3ttgt/L7u97xZ/SYfdX7kOR4dGM0DWQ/wYNaDLIvwXmHYvHK74fLbagA3Hhs/nnuvGsBm31r72tLbQ83JY1j71F+SIuMTwbycfWUt/PYjddEUnVbDp9al8PjWbJIjZRqgWHiyoIcPiN3zZQwLvPvSYjc4OEhjYyMajYasrKx5nxOsKAqnO05TWlU6ofBKp9GxOWUzJVkl3JZyGwFaPx3KdIyoewGXvQzdVeoxnQFWP6QOQccu3CjETLicTpouXaDlcjmK4kZvMBKYvpyfVtp58+1TuBV1/4j7VyfxjbtyyIjx741NxNIlQSzmlNvt9swFjo6OJi8vj5iYmHkN4Y6hDk/hVf3A+DzX9PB0SrJLuD/zfmKCrr0X86I23AsnfwrHfgwW9d4qxgjY8Hko/pLX9gS+lv6OdmpOHWfEMgBAQHQi/9MTwX/9ug6HSx2k25YfzzfvziE/UX4BFv5Ngnga15pHLCZTFIXa2lrq6urYvHkzAQFqr3O+1op2uEYLr6pL+aD5A9yKupj/WOFVSXYJBbEF/r2aUn8TfPhvcOo1sKsrTRGerC5BufazEOh7Aea026k/f4b2K9Xq91oDRxxx/OxPQ4w42gC4LSuGb96dwxqzrLsulga5R3wd83lfwJ+43W7ef/99LBYLy5cvJzMzc17ep6avhtKqUv7nyv9MKLxaE7eGXVm72J6+neAAP99Ttu2COvx84b/HpxjFLVfv/64oAb1v7tbV09LElVPHsY8MY3O6OTsUxs/qAuhzqI+vNUfyxPZcNmX68eiFWLTkHrHwSVcPQ2u1WgoKCrBYLJjN5jl9H4vdwjt16opXUxVe7craRUZExpy+p89RFKj7QC3Aqv6/48fTN6sBnLVNvaHqg+wjw9SeOUV3Uz1Ol8L5Lgf/1RZGk1MdNclPDOfvt+ewJTfOv0cwhJiGBLG4IZ2dnZ6FOcYW4zCZTJ5FOm6Woiicaj9FaXUp79a/O6Hw6vaU2ynJLuHW5Fv9t/BqjMsJ5QfUAG49qx7TaCH/Abj1q+qWhD5KURQ662upO3ca28gIF1sH+W27kYvuGNwaHctiQ9h7Vw73rkxEK+tBiyVMgljckO7uboaGhqipqZnTVbHGCq9Kq0ppGGzwHM+IyGBX1i7/L7waYx+Cs79Uh6D7RgvQ9EGw5mHYuAdMvj31asRq4cqp4/S0tVLROsD7TTZOKUkM6UNIjgria9uyKVmTjF7WgxZCgljMnNPpRD+6uUVOTg46nY6MjJsfEh4rvHqz+k3+3PxnT+FVsD6YezLuYVfWLv8vvBpj7YLj/w7Hf6JuOQgQZIKiL0LRoxDi27+EKG43rdWXabhwlsqWfspqe/nIFUOrMZWYsED+8c4sPl2UilEv60ELMUaCWFzX0NAQ586dQ6/Xs2HDBkC9J3yzFdE1fTW8WfUmB68cnFB4tTZuLQ9mPbg0Cq/G9FyBo/vgzC9hdBieyDR1/m/hw2Dw/b+Hof4+qk9+yIXLDZTVdFM9bKAuOBtjeBj/eEcmuzelEWyQHzlCfJz8qxDX5XK56OlRg9JqtRIScuMLK3gKr6pK+ahrvPAqJiiGBzLVFa/8vvDqas2n1C0Iyw/A6EgAiYVqAVb+A6Dz/X+ibpeLpvKLHDt6krLqDhr6HTQEpTJkiueLt2fyt5szCA/083v5QtwE3/9XLrzC4XB45gKHhYVRUFBAVFTUDYXw1YVXf6j7AyMudfN2vUbP7Sm3syt7F7cl34Zeu0QuR0VRK5+PvKRWQo/J2qYGcPpmn62A/riBrk4++L/v8d5HtdR3D9EbEElrVD5/fVs2X7ojk+hQWQ9aiOtZIj/5xEy53W4uXbpEU1MTd9xxB0FB6rq+KTewxna7tZ3/ufI/UxZelWSVcF/mfUuj8GqM0w4XfqMWYHVcVI9p9bDyk+oQdMJK77ZvFlxOB2UffMjbfzxGdYcFh0ZPU1gWd29azeNbc0iICLz+iwghAAniaS3VlbU0Gg19fX04HA7a2tpmXYzlcDl4v+l93qx6kyMtRyYUXu3I2MGDWQ8uncKrMSMDcPpn6ipYA83qMUMorHsEbnkMIhbXRiIXy2t4/c3fc7mhAwXoMsZQeEsxL21fgTna9+9lC+FrZGWt61gKK2vZbDYMBoMnHAcHBxkZGSE2NnbGr1HdW01pdemUhVe7sndxd9rdS6fwasxgGxz7EZz4Kdj61WMhcXDLl2D95yHId5dwbOwZ4vUTDTT0DGM2BfHpDWY0Tgf/+423qbhYgVsBm9aAuXADX33wFrLjw7zdZCHmlaysJeZNU1MTFy5cIDc319P7DQsLIyzs+j9YB+2DnsKr813nPcdjg2I9hVfpEenz1XTf1XkZyn6g7oTksqvHorPV4efVD0GAbw/b/vepJp7+9XFMI50Y3TbOaAz85h09ySPt6NzqepSxmTl88a+2U5Ae7eXWCrH4SRAvcU6nc1bD0IqicLL9JPur909ZeDW24tWSKby6WsOHagFW5e/Gj6Xeoq6AlbMDtL6/eEVjzxDf+9UfWWGpRYOCTnER6egj0G2jVx9JYHwKD//VvWwuzPJ2U4XwG0vwp+XS5na7sdvtBAaqvbK0tDQCAgJISkoCoGmwiTer3qRpsImUsBRKsktICUuh3dqurnhVXUrjYKPn9ZZFLKMku4S/WPYXS6vwaozbrQbvkZeg6fj48dy/UAPYfIv32nYD/uuDCtIstWgUNyGuISKcA2gUN6BBi5tlGzZJCAsxxySIl5CBgQFOnTpFQEAAt956KxqNBo1GQ3JyMgBvVb/FM2XP4FLGC9T+48J/kBWRRXV/9aTCq13Zu1gds9q/C6966+D0z9U/o9LV7QWj0sExAh+9rlZAd6tb+qEzQMGnYePjEJvjvTbfgMaeIfafaeYPH5wiVnESZe/F6LYBYNca6A2IxKkNoKuxDljv1bYK4W8kiJcQg8HAyMgIDoeDoaGhCXOCmwabJoUwgFtxc7nvMqAWXpVkl3BX2l1Lo/Dq7K/gra/A1X8nR16C3HvVYWhrh3rMGAEbvgDFfwdhCd5p6w3oH3Lw2/OtlJ5p4kRdLwCrrV3E2TrQKm4UjYYBfTgWXYhnXnOs0e3NJgvhlySI/ZzFYiE0NBSAwMBANmzYQEREBDq9jvqBesp7yqnsqeSd2ncmhfDVPpXzKZ7e+PRCNdv7eusmhzCo+/+WH1D/OzxZ3YBh7WfBuDiqhu1ON3+q7GD/mWYOlXdgd6nBqsPF9oh+cgx2Gurd2LUB9ARE4bxqdyutBrasSvNW04XwWxLEfsrtdnPq1Cna29vZdNsmOtwdlHeXU9FTQUVPBZW9lVgd1hm/nsVhmcfW+qDTP58cwlfL2QEP/SfofH/pRkVRON3QS+mZZg5+1ErfkMPzWF5CGDtzQlluqyfAqcVpNxOo1/J+sxMX47cctBq4a3kiK1ev8MZHEMKvSRD7GavDSmVPJeU95fzx3B+paKigr6oPrWlyxa5RZyQ7Mpu86DxaLa0caTky7eumhC6uRSduiGMY6sug5o9qEF+LIcTnQ7iuy0rpmWb2n22mvnvIczw+3MjOwmQeLEwiYrCFhgtnUdxuDIFBLL99K3m3DpH+wZ+50NRL/7CTiCA9K1OiWLv5NgJHR1eEEHNHgngR6x7upqKngvIetad7ofkCzbZmGM1ct+JGSVLQBekIM4SRb8on15RLvimfPFMeGREZnmlGTYNN3F96P07FOel99Bo9JdklC/nRFoaiQEc51BxSw7e+DJwjM3tulG8O0fZY7fz2oxbePNPMmYY+z/Fgg457ViZQsiaFjZnROEeGqT5xlPqONgBMyalkrisiwKhW038iJo782mpsQ1aMwSHEZ2RJCAsxTySIFwFFUWiyNKmhOzq8XNlTScdwh+cce4edkZYRjHFGUrNSPWGbb8onLzqPpJCka1Y3p4Sl8OymZ3m27NkJYazX6PnWrd8iJcxPesTWbrjyJzV4a/4Ig60THw9Lgsw7IXEV/P7/Ue8Jf5xWr94X9hEjDhd/rOjgzdPNvFfZgdOtLpan1cDm7FhK1iZz1/J4zxaE3U2N1Jw6htNuQ6vTk1G4jriMzAnXR2BoKGmrCr3xcYRYciSIfYzD7aC2v3ZS6A46Biedq0FDWngaeaY8Es2JOOudrMtex9Zbt97Qe+/M2sm6+HXqPGJLEymh4/OIFy2nHZpOjPd6W84CV63qqg+EtFsha6sawLF54zsfGcPhwOMTw1irhwdeUacweZHbrXCirofSM8389nwrgyPjbVyZHM6uNSncX5BIXNj4Kl4up4O6c6dpv6JOtwqNiiaraCPB4REL3n4hxDhZa/o65nN90SHHEJd7L3sKqMp7yqnurcbutk86N0AbQFZkFvnRak83KywLc5CZeFO855yenh5MJtOctnFR6q4Z7/HWHgb7xwrN4lZA1p1q8Jo3XXvJSc884np1OHpsHrGXVHdYKD3TxP4zLTT3DXuOJ0UEsnNNMiVrkqdc99nS083lY2WMWAYADcm5y0lduQqtVreArRdi8ZK1pv1A70ivZ6rQ2D3duv46FCb/HhQaEOq5lzv257KIZQSMFgf19fVx/PhxBvWDxH4iFu3o0olLNoRH+qH2g/Feb2/dxMeDo2HZFrXXu2wLhCfO/LWj0mGrd6dtdVlsHDjbQumZZs4393uOhxn17FiVwK41KRRnmNBqJ996UBSFlspyGi6eUwuygoLJLtpIRNzime8shL+TIJ7Gx7dB/NHZH/GZNZ+57jCtoii0Wls9YVvRrfZ024fapzw/Jihm/F7u6J/JYcloNdOvSxwSEuJZFWt4eHjCwhxLgtulDjGPBW/j8YlTjbR6dY3nsV5vQsGiWOf5asN2F3+41EbpmWY+qOrCNXrfV6/VcEdOLLvWJrMtP57AgOl7tLahIapPHKV/tCArOsXMsnVFBBiMC/IZhBAzI0PT1zE2HJH/b/kYg408u+lZdmbtBMDpdlLXX+fp6Y4NLw/YB6Z8LXOYWQ3b6Hxyo3LJj86f0frMiqLQ1dU1YVvCwcFBQkJCPL1hv9ffPB68V96D4d6Jj5syx+/zpt+2aBbYuJrLrfDhlW5KzzTzzoU2LLbx+74FqZGUrEnmvtWJRIdeP0i7mxqoOXUcp92GTh9AeuE64tKX+fdypELMIxma9hFOxcnTZU9T1lJG42Ajl3svY3PZJp2n1+jJjMz0hG6eKY/cqFxCDbOf/uF2uzly5Ah9fX1s3LiRmBg1uGeyTeGiZh8andN7CKoPQVflxMeN4ZBx+3j4erl46mZUtA1QeqaZt8600DYwPn0q1RTErsJkdq5JJjN2ZteOy+mg9uxpOmrHC7KyizcRFOafe2kL4Q8kiGfJrbj5Xe34NnfB+mByTbmeYeVcUy5ZkVkYdIY5eT+tVktkZCRWqxW7fXIRl99QFGi/eNWc3qNw9S85Gi0krR0P3uT1oFu8l2/7wAgHzqrzfctbx0dQwgP13FeQxK41yaxPi5pVD3awp4uqY2WMWAYBDcl5y0ldIQVZQvi6xfuTzIuWRSzjsYLHyDPlYQ43X/N+7o3o7OwkMjKSgAC1OCsvL4+cnByMRj+7t2fpnDin1/Kx++jhKeP3eTPugODFXYxmtTn5/UX1vu+R6i5Gb/sSoNNwZ14cu9YksyUvDqN+dsGpuN00V16i8eJ5FMWNMTiErA0biYiLv/6ThRBeJ0F8A7aat3JPxj3z8tqVlZVcvnwZs9lMQUEBgCeQFz2nHRqPjQ83t3008XF9kHp/d6zXG5MzPqd3kXK63Byp6ab0dBO/v9jOsGO8qGx9WhQPjt73jQy+sREU25CVquNHGehUf4mJTklj2boNUpAlxCIiQTxL873cY2xsLFVVVej1ehRFWdzFNYoyOqd3dLi59gP4+EYT8auumtO7EfSLP0AUReFii3rf98C5FjoHx4fY06OD2bUmhV1rkjFH39xWkl2N9dScOo7LYUenDyBjzXpi0zIW9zUjxBIkQTwL87Hco9VqZXh42FOEZTKZ2Lp1K0FBQXP2HgtquA9q31eDt/qP0N8w8fHgGDV0x+b0hvnP8GlL3zD7zzZTerqZqo7xRUSiggO4f/S+b2Fq5E0HpdPhoPbsSTrrrgAQaoomu/hWgkL9vIBPCD8lQTxDjyx/ZEbziGejp6eHo0ePEhAQwJYtWzxD0IsqhN0uaD493uttOvmxOb0BYL5lfLg5ftWimtPb2DPE6ycaaOgZxmwK4tMbzKSaxnuygyMO3j7fxptnmjhW28PYZECDXstd+fHsWpPM7TmxGPRz85kHu7uoOj5ekJWSv4KU5SulIEuIRUyCeIa+VPglwud4CkhkZCQhISEYjUZcLpdv3Av2LOlYp04JmmpJx77GiXN6R/onPh6dPd7rTbsVjItz157/PtXEP/7mI89iGgA/fv8Kz+1aSUyokdIzzbx7qR2b0+15vDjDRMnaZO5ZmUhE0Nz9/1TcbporLtF4abwgK7toE+GxcXP2HkII75AFPa5jLidxO51OmpubSUsb30LPZrP5TjX02V/BW1+ZvErVvd+H8OTx8O26PPF5xghYdsd4rzfSvLDtngeNPUN84vvvTQjh6WTFhbJrTTI7C5NIibq5+75TGbFaqDpexmBXJwAxqWksW1uE3jA3U+SEENcnC3r4AbfbzeHDh7Farej1epKTkwF8J4R76yaHMKg7Dx38+sRjGq06j3cseJPWLuo5vVP51fGGa4ZwUICWvy5KY9eaZFYmh89bgVRXQx01p09IQZYQfsy/fnr6MK1WS0pKCo2Njb4RvooCQ93QVQXdVXDqZ5ND+GrGMFhRooZvxh0QFLlgTZ1vfUN2KtoGKW8doKJ1kPK2AS4091/zOdvy43n6/uXz1ianw0HtmRN01tcCEGqKIaf4VgJDF+cwvxBiehLE86ihoYGYmBiCg9XhyqysLDIzM9HpFrCwxmmDnivjgdtVPfpnFYz0zfx1srfDAz+Yt2YuBKfLTV23lUutg1S0DnjCt7V/5PpP/pibnXp0LQNdnVQfL2PEagE0pC5fSUr+SjSLqMhNCDFzEsTz5OLFi1y5coW4uDiKi4sB5m+DBkWBwbbxgO2uHg/evgZQ3NM8UQMRqRCTBUO90Hpm+veISpv+MR/Ua7VT3jpAeZsauuVtA1xut2B3Tv13kRIVRF5COMsTw8hLDCciSM/un57AOcXwtF6r4dMb5v4+uOJ201RxkaZLF0YLskLJLt5IeIwUZAnhzySI50laWhqNjY3ExsbO3cIcdqsast3VE3u23dVgt0z/PGM4RGdBTLZa0RyTpf4ZnQkBo1Oleuvg5XXqPeGP0+rV6mkf5HC5udJppaJtgPLW0eHltgHaByZvxgEQbNCRmxBGfmI4+Qlq6OYmhBEeOLnC+Tt/uZonf/PRhDDWazV89y9XT5jCNBc+XpAVa84gY816KcgSYgmQqunrmGmlXE9PD8PDw54iLFCrpPX6Wf6u43bDQNPEnm3XZfW/B5qnf55Gq04zis4eDdyrgjc0bmZLRZ79FRx4fGIYa/XwwCtQ+Nez+xzzoNtio7x1kIq2AS6N3s+t7rBgd03dyzWbgslPDCMvIZz8RDV8U6OC0Wpn/kvR2Dzixp5hUqeYRzwXOutruXL6BC6nA50+gGVrNxCbljGn7yGEuDlSNe3jenp6OHLkCDqdDpPJ5FmQ45ohPNI/uVfbXa0uCekcnv55QabJPduYbIjKAP1N9p4KPwNpm0bnEderw9FTzSOeZ3anm5pOCxVtatheGr2fe/VSkVcLNerJSwgjzxO6ai831Hjzl3eqKZi/3553068zFafdTu2Zk3Q2qAVZYdGxZBdtkoIsIZYYvw/ivr4+tm3bhtPpxOl08rWvfY1HH3109i/03ndg8xenDKWoqCiio6MJDg6eGL4uJ/TVX1UodVUv19ox/XtpA8C0bHLPNiZ7/ncgikqHrU/P73tcpWNwhIrRXu7Y0HJNpwWHa/JAjUYDaaZg8hPDyUsIJy8xjOWJ4SRHBs2ql+sLBro6qDp2FNuQBY1GS8rylaTkrZCCLCGWIL8fmna5XNhsNoKDg7FaraxcuZKTJ08SHR09o+d7hiOeDCM8KAAeeJmRvBJqa2vJy8tT7/1au3F3VqLtqZlYmdxTC27H9C8eGj+5ZxudBZFpfjcv1+Z0Ud1hUacHjfZwK9oG6LJMvcdyWKCe/NGwHRtazokPI2QOernepLjdNF66QFP5BUAhMCSUrKJNhMfEertpQohrkKHpm6DT6TzTh2w2G4qicMO/e7iduEv38Oeg3zI82IsxtJ9l2mYY7mXafow+UA3XScVSWRAYcWPt8GGKotAxaFMrlkd7uhWtg9R0WqasQNZoICMmRA3d0SKqvMQwkiOD/G7RihGLhcvHjmDp6QIgNi2DjDUb0PvC0qZCCK/xehAfPnyYF154gVOnTtHa2kppaSkPPvjghHP27dvHCy+8QFtbGwUFBbz88ssUFRXN+D36+vq44447qKqq4oUXXvDsdHQjtBo32W0HaBxwExOvA+NoWISnTO7ZxmSrxxfRcOP1Njm42ohD7eVOCN22QXqsU/dywwP1arVyYriniConPowgg39vWKAoCp31tdSeOakWZAUY1IIsc7q3myaE8AFeD2Kr1UpBQQGf//znKSmZvM/vG2+8wd69e/nRj35EcXExL774Itu3b6eyspK4OHV+ZWFhIU7n5Gk3f/jDH0hKSiIyMpJz587R3t5OSUkJn/zkJ4mPn932ewM2hfDR0DWbzZjX/A2a2OzxaUCGkBv49L5luk0OvlOyiluzYyYUTlW0DnClyzrlMpBaDSyLDfX0cMdCNzEi0O96udfjtNu5cvo4XY31AITFjBZkhUhBlhBC5VP3iDUazaQecXFxMRs2bOCVV14B1DWbU1NTefzxx3nyySdn/R5f/vKXufPOO/nkJz855eM2mw2bbbw6d2BggNTUVN7+TBDbs/RqkGz+5oIWNC2E6o5Btv/rB7hmeTlEBgeQP1qpnJcYRn5CONnxoQQG+HcvdyYGOjuoOl6GbciKRqMldfkqkvOWS0GWEIvQkr1HbLfbOXXqFE899ZTnmFarZdu2bRw9enRGr9He3k5wcDBhYWH09/dz+PBhHnvssWnPf/755/nWt7416fiyKK0awj68uMXVhu0uuq02ui12eqx2uq12eqw29U+L+v3YsR6LHav9GutMAxogOz7UMz1orGI5Lsy45Hq51+N2u2i6dIGm8ouAQmBoGNlFmwiLvvFbIkII/+XTQdzV1YXL5Zo0jBwfH09FRcWMXqO+vp4vfvGLniKtxx9/nFWrVk17/lNPPcXevXs934/1iBPCtOOLWyzwvFpFURiyuzyB2m0ZDdTRr26LnW6rzfPfPVY7w45rB+ts/cXqRF75zNo5fU1/NGwZpOrYESw93QDEpi8jo3C9FGQJIabl00E8F4qKijh79uyMzzcajVPujnQ88TMsv//rJGXc/OIOiqJgsTmvCtaJvVXP8dHearfVPmHz+Zky6LSYQgyYQgxEhxqIDjFgCjESHWoYPx5iIDrUyC8/rOd//7l22tdKm8dNDvzBVAVZmeuKiEldXGt0CyEWnk8HcUxMDDqdjvb29gnH29vbSUhIWNC2fL52K4Z/v8J3/jKUT65LmfCYoigMjDhHe6g2uiwTe6tjIdt91fHplmW8FqNeq4ZpqIHoEONosI59Px6yY8dDjfoZDxvv3pTOa2V1C7rJgb9w2G1cOXWC7ia1ICs8Jo7s4k0Ygxd/AZ8QYv75dBAbDAbWrVvHoUOHPAVcbrebQ4cO8ZWvfGVe33vfvn3s27cPl2t8iNfpVvj7/z7H2+dbsTnddFnU4eDeIfuUK0FdT1CAbka91bFgDTbo5u1+bKopeEE3OfAX/R3tVB0vwz48pBZkrVhFcq4UZAkhZs7rQWyxWKiurvZ8X1tby9mzZzGZTJjNZvbu3cvu3btZv349RUVFvPjii1itVj73uc/Na7v27NnDnj17PJVyYxQFDlVMvTxliEE3495qdIjR5+bPfnJdCsUZpnnf5MAfuN0uGi+ep7niEp6CrOJNhJmkIEsIMTteD+KTJ0+yZcsWz/djhVK7d+/mtdde46GHHqKzs5Onn36atrY2CgsLeeedd2Y9D3gurUgK5wu3ZUzorZpCDH4xZWc+NznwF8ODA1QdK8PSqxZkxaVnkrFmHTq9FGQJIWbPp+YR+6KxHnHq13+N1qj2DPdsyZSwWiJGLBbaa6uxWS0Yg0PR6LS0Xq7A5XSgNxjJXFdEdIrcPxfC3y3ZecTeNNU9YpDCpaWko+4KNSePoShuXC4XvS3NDA8OYEpKJjE7j+yijVKQJYS4aVJRMo09e/Zw6dIlTpw44TkmhUtLx4jFQs3JY7jdbrVXXFPF8EA/AG6Xi8y1RRLCQog5IT3iGXp0cwaPfGK5hPAS0XblMpa+HizdXdiHhwHQG4xEp6RiCAqio/4KaasKvdtIIYRfkCCeoa9tyyE8XELY3zlsI7Rfqab8g/cY6FSr4zUaDSFRJiLiE9COTkuyDVm92EohhD+RIBYCGBrop7Wqgs76OtwuJygKWr2eUFM0oVEmdPqJ/1RkWFoIMVckiKcxXbGW8B+KotDX3kprVSV9bS2e4yGRJlJXFNB48dyUz9NotMRnZC1UM4UQfk6mL13HfJasC+9wOR101tfRWlXB8ODA6FENpuQUkrLzCIuJRaPRTKiaHqPRaMlcX0xc+jLvNF4I4RUyfUmIOWAbstJWXUV7bTVOu7rntE4fQHxGJglZuQSGhk44Py59GeExceo84iErxuAQ4jOyJp0nhBA3Q4JY+L3B7i5aqyrobmr09G4DQ0JJzM4jNn3ZNbcoDAwNlepoIcS8kiAWfsntdtHT1EhLVSWWni7P8fDYeBKzczElJsvGDEIInyBBPA0p1lqcHHYb7Veqaau+jH14CACNVkuMOZ2k7DxCIqO83EIhhJhIirWuQ4q1Fgd1+lElnfW16vQjIMAYSEJmNvGZ2RgCg7zcQiHEYibFWkJMQVEU+tvbaK2qoHfC9KMoErPziElNQ6tb/DtiCSH8mwSxWHRcTiddDXW0VFV41n8GjWczhvDYODQajVfbKIQQMyVBLBYN29AQbTWXab8ycfpRXEYmCVk5BIWGebmFQggxexLEwucN9nTRWlVJd2PDhOlHCVm5xKUvQ28weLmFQghx4ySIhU9S3G66mxtprapksLvTczw8Jo7E7DxMSTL9SAjhHySIpyHTl7zDYbfRUXuFtupKzw5HGq2WmNQ0ErPzCI0yebmFQggxt2T60nXI9KWFMTw4QGt1JZ11tbicDkCdfhS/LJuEzCwMQbIFpRDCe2T6kvBLiqLQ39GuTj9qbfYcD46IIjE7l1hzukw/EkL4PQliseDGph+1VlUyNNA3elRDVFIySdm5hMfGy/QjIcSSIUEsFox9eIi2miraaqomTj9KX6ZOPwqToX8hxNIjQSzmnaWnm9aqSrqa6lHc6vQjY3AoCVk5xGdkyvQjIcSSJkEs5oXidtPT0kRLVQWDXePTj8JiYknKzsOUlCLTj4QQAgliMcecdjsddTW0Vl3GNmQBQKMZm36US6gp2sstFEII3yJBPA2ZRzw7w5ZB2qoq6ai74pl+pDcYScjMJiEzW6YfCSHENGQe8XXIPOLpKYrCQGc7LVWV9LY0A+qlFBweSWJ2LjHmdHR6+V1PCLH4yTxi4VPcLhedY9OP+ns9x6MSkkjMySciTqYfCSHETEkQiwlGLBbaa6uxWS0YQ0KJz8giMDQUAPvIMG3VVbRfqcJhGwFAq9N7ph8Fh0d4s+lCCLEoSRALj466K9ScPObZ4QigpbKcxJw8HCPDdDVePf0ohITMHOKWZRJgMHqryUIIsehJEAtA7QlfHcKKojA8OIilu4uGix+RmJWD3mAgLDqWxOxcopNTZfqREELMAQliAUB7bTWK4sZhszE00M9QXy9Ou119UKNBZzCw6s7thEXHeLehQgjhZySIBcOWQVoqy2mrqcIxMuI5rtXpCIkyEWqKJtacLiEshBDzQIJ4iRqxWuhubKC7qQFLbzf97W1qCGs0BIaEEhwRQVB4BNrR4WdjcIiXWyyEEP5JgngJsQ1Z6W5qoKuxHktPt+e4RqMlKScfvdFIYGjYpLm/Go2W+IyshW6uEEIsCRLE0/CXlbXsw0N0NzXS1VjPYHfnVY9oiIiLJzrFTHRyKgGBgVNWTWs0WjLXF3umMAkhhJhbsrLWdSzGlbXsI8P0jIbvQFcnYytegYbwmFiiU81Ep5gxBAZNeq5nHvGQFWNwyIR5xEIIsVTJylriuhy2EXqam+hqrKe/o53x8IWw6Fi155tixhh87TWfA0NDSVtVOL+NFUII4SFBvIg57DZ6mpvoHg3fq4eUQ03RRKekEZNqlkIrIYTwYRLEi4zTbqenRQ3fvo42z0pXACGRJqJTzcSkpMlwshBCLBISxIuA0+Ggt7WZrsZ6+tpaJoRvcEQUMSlmolPNBIUtjnvYQgghxkkQ+yiX00FvSzNdTQ30tbbgdo9XbweFR4yGb5pstCCEEIucBLEPcTmd9LW10NXYQG9rM26X0/NYYGg4MalmYlLTCAqPkG0GhRDCT0gQe5nb5aK3rYXupgZ6W5pxOR2exwJDQtWCK3MawRGREr5CCOGHJIi9wO120dfWRndTPT3NTRPC1xgcQnSK2vMNiTJJ+AohhJ+TIF4gbreL/o52uhsb6Glpwmm3eR4zBAV77vmGmqIlfIUQYgmRIJ5HittNf2cH3U31dDc1TgjfgMAgT7VzWHSshK8QQixREsRzTHG7GejqpLtJ3dnIYRvfVjDAGOhZ4So8JhbN6M5GQgghli4J4jmgKAqD3Z2ebQXtI8Oex/QGI9EpqUSnpBERGyfhK4QQYgIJ4ml8fPelhosfkbWq0LNilaIoWHq66W6sp6upAfvwkOe5ugAD0cmpRKeaiYiLR6vVeeUzCCGE8H2y+9J1jO248YfXfkJISAhJ2Xmg0dDd2IBtyOI5T6cPwJScQnRKGpEJCRK+QgjhR2T3JR/Q39HBgMNG48XzJGbloDcY0OkDiEpKJjrFTFRCElqdhK8QQojZkSCeocGeLoKNRjRaLTp9ALkbNxOZkIROL3+FQgghbpykyAwFhYURHRdPYFg4sekZRKeYvd0kIYQQfkCCeIaik1MJDg4GkP19hRBCzBmZSzNLGo2W+IwsbzdDCCGEn5AgngWNRkvm+mLPFCYhhBDiZsnQ9Awl5uRPmEcshBBCzAXpEc+QecVqCWEhhBBzToJYCCGE8CIJYiGEEMKLJIiFEEIIL5IgFkIIIbxIglgIIYTwIgliIYQQwoskiIUQQggvkiAWQgghvEiCWAghhPCiJRPEQ0NDpKWl8cQTT3i7KUIIIYTHkgni5557jltuucXbzRBCCCEmWBJBXFVVRUVFBTt27PB2U4QQQogJvB7Ehw8f5v777ycpKQmNRsP+/fsnnbNv3z7S09MJDAykuLiY48ePz+o9nnjiCZ5//vk5arEQQggxd7wexFarlYKCAvbt2zfl42+88QZ79+7lmWee4fTp0xQUFLB9+3Y6Ojo85xQWFrJy5cpJXy0tLbz11lvk5OSQk5OzUB9JCCGEmDGNoiiKtxsxRqPRUFpayoMPPug5VlxczIYNG3jllVcAcLvdpKam8vjjj/Pkk09e9zWfeuopfvGLX6DT6bBYLDgcDr75zW/y9NNPT3m+zWbDZrN5vu/v78dsNtPY2Eh4ePjNfUAhhBCL0sDAAKmpqfT19RERETG3L674EEApLS31fG+z2RSdTjfhmKIoymc/+1nlgQcemPXrv/rqq8o3v/nNa57zzDPPKIB8yZd8yZd8ydekr5qamllnz/Xo8WFdXV24XC7i4+MnHI+Pj6eiomJe3vOpp55i7969nu/7+vpIS0ujoaFh7n8LmgMbNmzgxIkTPvm6s32NmZ4/k/Oudc5sHxv7TdhXR0Xm6xqYi9f21WvgWo/LNTC3rz1f18BMzp3La2BsdNRkMs2obbPh00E81x555JHrnmM0GjEajZOOR0RE+OQ/QJ1ONy/tmovXne1rzPT8mZx3rXNu9LHw8PAldQ3MxWv76jVwrcflGpjb156va2Am587HNaDVzn1pldeLta4lJiYGnU5He3v7hOPt7e0kJCR4qVW+Zc+ePT77urN9jZmeP5PzrnXOjT7mq+azzTf72r56DVzrcbkG5va15+samMm5i+UaWBTFWkVFRbz88suAWqxlNpv5yle+MqNirZs1MDBAREQE/f39PvmbsJh/cg0IuQbEfF4DXh+atlgsVFdXe76vra3l7NmzmEwmzGYze/fuZffu3axfv56ioiJefPFFrFYrn/vc5xakfUajkWeeeWbK4WqxNMg1IOQaEPN5DXi9R/zee++xZcuWScd3797Na6+9BsArr7zCCy+8QFtbG4WFhfzgBz+guLh4gVsqhBBCzD2vB7EQQgixlPl0sZYQQgjh7ySIhRBCCC+SIBZCCCG8SIJYCCGE8CIJ4ptQW1vLli1bWL58OatWrcJqtXq7SWIBVVZWUlhY6PkKCgqachtP4d/+9V//lRUrVrB8+XK++tWvIvWvS9P3v/99VqxYwcqVK/nFL34xq+dK1fRNuOOOO/iXf/kXNm/eTE9PD+Hh4ej1Xp+aLbzAYrGQnp5OfX09ISEh3m6OWCCdnZ3ccsstXLx4kYCAAG6//Xa+//3vs3HjRm83TSyg8+fPs3v3bsrKylAUhS1btvDOO+8QGRk5o+dLj/gGjf3D27x5MwAmk0lCeAk7cOAAW7dulRBegpxOJyMjIzgcDhwOB3Fxcd5uklhg5eXlbNy4kcDAQIKCgigoKOCdd96Z8fOXbBAfPnyY+++/n6SkJDQazZRDivv27SM9PZ3AwECKi4s5fvy457GqqipCQ0O5//77Wbt2Ld/+9rcXsPViLtzsNXC1X//61zz00EPz3GIx1272GoiNjeWJJ57AbDaTlJTEtm3byMzMXMBPIObCzV4HK1eu5L333qOvr4/e3l7ee+89mpubZ/z+SzaIrVYrBQUF7Nu3b8rH33jjDfbu3cszzzzD6dOnKSgoYPv27XR0dADqb8EffPABP/zhDzl69Cjvvvsu77777kJ+BHGTbvYaGDMwMEBZWRn33nvvQjRbzKGbvQZ6e3s5ePAgdXV1NDc3U1ZWxuHDhxfyI4g5cLPXwVh9wJ133klJSQm33HILOp1u5g2Y8x2OFyFAKS0tnXCsqKhI2bNnj+d7l8ulJCUlKc8//7yiKIpSVlam3H333Z7Hv/e97ynf+973FqS9Yu7dyDUw5uc//7ny8MMPL0QzxTy6kWvg17/+tfLlL3/Z8/j3vvc95bvf/e6CtFfMj5v5WTDmC1/4gnLw4MEZv+eS7RFfi91u59SpU2zbts1zTKvVsm3bNo4ePQqoG0d3dHTQ29uL2+3m8OHD5Ofne6vJYo7N5BoYI8PS/mkm10BqaiplZWWMjIzgcrl47733yM3N9VaTxTyY6c+Csd5xZWUlx48fZ/v27TN+D6kumkJXVxcul4v4+PgJx+Pj46moqABAr9fz7W9/m9tvvx1FUbj77ru57777vNFcMQ9mcg0A9Pf3c/z4cX7zm98sdBPFPJvJNXDLLbdw7733smbNGrRaLVu3buWBBx7wRnPFPJnpz4KdO3fS399PSEgIr7766qyKdyWIb8KOHTvYsWOHt5shvCgiIoL29nZvN0N40XPPPcdzzz3n7WYIL/v4SNlsyND0FGJiYtDpdJN+wLa3t5OQkOClVomFJNeAkGtAwMJcBxLEUzAYDKxbt45Dhw55jrndbg4dOiQT9ZcIuQaEXAMCFuY6WLJD0xaLherqas/3tbW1nD17FpPJhNlsZu/evezevZv169dTVFTEiy++iNVq5XOf+5wXWy3mklwDQq4BAT5wHdxIebc/+NOf/qQAk752797tOefll19WzGazYjAYlKKiIuXDDz/0XoPFnJNrQMg1IBTF+9eBrDUthBBCeJHcIxZCCCG8SIJYCCGE8CIJYiGEEMKLJIiFEEIIL5IgFkIIIbxIglgIIYTwIgliIYQQwoskiIUQQggvkiAWQkzy2muvERkZ6e1mCLEkSBAL4aceeeQRNBoNGo0Gg8FAVlYW//zP/4zT6bzucx966CEuX748q/f7xCc+wde//vUbbK0QS9eS3fRBiKXgnnvu4dVXX8Vms/G73/2OPXv2EBAQwFNPPXXN5wUFBREUFLRArRRiaZMesRB+zGg0kpCQQFpaGo899hjbtm3jwIED9Pb28tnPfpaoqCiCg4PZsWMHVVVVnud9fGj62WefpbCwkP/8z/8kPT2diIgIPv3pTzM4OAiove/333+fl156ydMLr6uro7e3l4cffpjY2FiCgoLIzs7m1VdfXei/BiF8mgSxEEtIUFAQdrudRx55hJMnT3LgwAGOHj2Koijce++9OByOaZ9bU1PD/v37OXjwIAcPHuT999/nO9/5DgAvvfQSGzdu5NFHH6W1tZXW1lZSU1P5p3/6Jy5dusTbb79NeXk5//Zv/0ZMTMxCfVwhFgUZmhZiCVAUhUOHDvH73/+eHTt2sH//fo4cOcKmTZsA+OUvf0lqair79+/nU5/61JSv4Xa7ee211wgLCwPgb/7mbzh06BDPPfccERERGAwGgoODSUhI8DynoaGBNWvWsH79egDS09Pn94MKsQhJj1gIP3bw4EFCQ0MJDAxkx44dPPTQQzzyyCPo9XqKi4s950VHR5Obm0t5efm0r5Wenu4JYYDExEQ6Ojqu+f6PPfYYr7/+OoWFhfzDP/wDZWVlN/+hhPAzEsRC+LEtW7Zw9uxZqqqqGB4e5mc/+xkajeaGXisgIGDC9xqNBrfbfc3n7Nixg/r6er7xjW/Q0tLC1q1beeKJJ27o/YXwVxLEQvixkJAQsrKyMJvN6PXqnaj8/HycTifHjh3znNfd3U1lZSXLly+/4fcyGAy4XK5Jx2NjY9m9eze/+MUvePHFF/nJT35yw+8hhD+Se8RCLDHZ2dns3LmTRx99lB//+MeEhYXx5JNPkpyczM6dO2/4ddPT0zl27Bh1dXWEhoZiMpl49tlnWbduHStWrMBms3Hw4EHy8/Pn8NMIsfhJj1iIJejVV19l3bp13HfffWzcuBFFUfjd7343afh5Np544gl0Oh3Lly8nNjaWhoYGDAYDTz31FKtXr+b2229Hp9Px+uuvz+EnEWLx0yiKoni7EUIIIcRSJT1iIYQQwoskiIUQQggvkiAWQgghvEiCWAghhPAiCWIhhBDCiySIhRBCCC+SIBZCCCG8SIJYCCGE8CIJYiGEEMKLJIiFEEIIL5IgFkIIIbxIglgIIYTwov8fxPoO3CKENgoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(1, 1, figsize=(5, 5))\n", - "\n", - "# Group by k value\n", - "groups = {}\n", - "for result in data['results']:\n", - " label = f'k={result['parameters']['k']}' if result['parameters']['function'] == 'forward' else 'fft'\n", - " n = result['parameters']['n']\n", - " mean_time = result['timing']['mean']\n", - " \n", - " if label not in groups:\n", - " groups[label] = {'n': [], 'times': []}\n", - " \n", - " groups[label]['n'].append(n)\n", - " groups[label]['times'].append(mean_time)\n", - "\n", - "# Plot\n", - "for label in groups.keys():\n", - " ax.plot(groups[label]['n'], groups[label]['times'], 'o-', label='3d fft' if label=='fft' else label, alpha=0.5 if label=='fft' else 1, markeredgecolor='none')\n", - "\n", - "ax.plot([1e6, 1e9], [1e-3, 1], ls=':', c='k', alpha=0.3, label='O(N)')\n", - "ax.set(xscale='log', yscale='log', ylabel='Time [s]', xlabel='Points', title='Forward pass', ylim=(0.0001,5), xlim=(1e6, 1e9))\n", - "ax.legend(loc='upper left')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "22fcb19a", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "ec9a0838", - "metadata": {}, - "outputs": [], - "source": [ - "# Load data\n", - "with open('output/compare_scaling_results.json', 'r') as f:\n", - " data = json.load(f)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "a720cad6", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAANcCAYAAAC+GyV0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8U+X+wPFPku5NS/eiQFuohUIpRTYoVxEFERQ3qNdxleuqA9QrylURB4j+6HVdx1VxICjiQkVBEJBVyrCMUkpBoANK90qT8/sjNhI7SErbk6bft6+8MCcn53wzmiffPM/zfTSKoigIIYQQQgghhLCKVu0AhBBCCCGEEKIzkSRKCCGEEEIIIWwgSZQQQgghhBBC2ECSKCGEEEIIIYSwgSRRQgghhBBCCGEDSaKEEEIIIYQQwgaSRAkhhBBCCCGEDSSJEkIIIYQQQggbSBIlhBBCCCGEEDaQJEp0Kj169OCmm25SO4wu6/Dhw2g0Gt599121QxFCCNVIW6QuR2yL5D3V+UgSJUQzevTogUajOeuls36If/PNNzz55JMdcq6NGzfy5JNPUlJScs7Huummm6x6XaQxEkI4AmmL2k5btkUNmns9QkJC2uwcwj45qR2AEPZq0aJFVFRUmK9/8803fPTRR7z00kt0797dvH3YsGFqhHfOvvnmG9LT021qvKKjo6mursbZ2dmmc23cuJG5c+dy00034efnZ1ugf3HHHXcwbtw48/Xc3FzmzJnD7bffzsiRI83be/XqdU7nEUIIeyBtUWP20Bad6W9/+xvTp0+32Obu7t5mxxf2SZIoIZoxefJki+v5+fl89NFHTJ48mR49ejR7v8rKSjw9Pds3uA5WX1+P0WjExcUFNzc3VWMZOnQoQ4cONV/ftm0bc+bMYejQodxwww3N3s8RXxchhOOTtuhP9tQWnSkuLq7F9kc4JhnOJ9rMsWPH+Pvf/05YWBiurq7ExMRw5513UldXB8CTTz6JRqNpdL93330XjUbD4cOHzdsUReHpp58mIiICDw8Pxo4dy2+//dbovsXFxTz44IP069cPLy8vfHx8uOSSS9i5c2e7Pc4z3XTTTXh5eZGTk8OECRPw9vbm+uuvB5of3zxmzBjGjBljsa22tpYnnniC3r174+rqSmRkJA8//DC1tbWtikuv1zN37lxiY2Nxc3MjICCAESNG8MMPP5jjTk9PByyHIsCfY81ffPFFFi1aRK9evXB1dSUrK6vZcej79u1j2rRpBAYG4u7uTnx8PI899hhget0feughAGJiYsznOvP1bmsN76mff/6Zu+66i6CgICIiIsyPvakvHs29Pz/44AMGDRqEu7s7/v7+XHPNNRw9erTdYhdCnBtpi6Qtspe2CODFF19k2LBhBAQE4O7uzqBBg1i2bNlZ73e2567Bvn37uPLKK/H398fNzY2UlBRWrlzZXg9HnEF6okSbOH78OKmpqZSUlHD77bfTp08fjh07xrJly6iqqsLFxcWm482ZM4enn36aCRMmMGHCBDIyMrjooovMjWCDQ4cOsWLFCq666ipiYmIoKCjg9ddfZ/To0WRlZREWFmbe9+TJk1ad29vbG1dXV6tjra+v5+KLL2bEiBG8+OKLeHh4WH1fAKPRyKRJk/jll1+4/fbb6du3L7t37+all17iwIEDrFixwqbjgamxePbZZ7n11ltJTU2lrKyMbdu2kZGRwd/+9jfuuOMOjh8/zg8//MD777/f5DHeeecdampquP3223F1dcXf3x+j0dhov127djFy5EicnZ25/fbb6dGjBzk5OXz55Zc888wzTJkyhQMHDjQafhIYGAhAaWkper3+rI/Jzc0NLy8vm56Hu+66i8DAQObMmUNlZaVN9wV45plnePzxx5k2bRq33norRUVF/N///R+jRo1ix44dbTocRAhx7qQtkrZIjbaopqam0eva8Pq9/PLLTJo0ieuvv566ujo+/vhjrrrqKr766isuvfTSVj93AL/99hvDhw8nPDyc2bNn4+npydKlS5k8eTLLly/niiuuOOvjEedAEaINTJ8+XdFqtcrWrVsb3WY0GhVFUZQnnnhCaeot98477yiAkpubqyiKohQWFiouLi7KpZdear6voijKo48+qgDKjBkzzNtqamoUg8Fgcbzc3FzF1dVV+fe//22xHbDq8s477zT5GF944QWLOBVFUWbMmKEAyuzZsxvtHx0dbRFrg9GjRyujR482X3///fcVrVarrF+/3mK/1157TQGUDRs2NBlPS5KSkpRLL720xX1mzpzZ5OuRm5urAIqPj49SWFjY5G1nPkejRo1SvL29lby8PIt9z3ztmnruGowePdqq16Wp51JRFGXr1q2NYmp4T40YMUKpr6+32H/GjBlKdHR0o+P89f15+PBhRafTKc8884zFfrt371acnJwabRdCqE/aImmLOrotOtvrV1VVZbF/XV2dkpiYqFxwwQUW2//6Olnz3F144YVKv379lJqaGovHO2zYMCU2NrbF+4pzJz1R4pwZjUZWrFjBxIkTSUlJaXR7U8MmWrJ69Wrq6uq4++67Le573333MW/ePIt9z/yVzmAwUFJSgpeXF/Hx8WRkZFjs+9cu8Oacd955NsULcOedd9p8nwaffvopffv2pU+fPha/ZF1wwQUArFmzxuYJw35+fvz2229kZ2cTGxvbqrimTp1q/oWuOUVFRaxbt457772XqKgoi9usfd0XLFjA6dOnz7rfmb/kWuu2225Dp9PZfD+Azz77DKPRyLRp0yxel5CQEGJjY1mzZg2PPvpoq44thGh70hZJW6RWW3T55Zfzz3/+02Jbw+t3ZoGJ06dPYzAYGDlyJB999FGL5znbc1dcXMxPP/3Ev//9b8rLyykvLzffdvHFF/PEE09w7NgxwsPDz/qYROtIEiXOWVFREWVlZSQmJrbJ8fLy8gAafWgEBgbSrVs3i21Go5GXX36Z//znP+Tm5mIwGMy3BQQEWOx7ZkW3tuTk5GSeb9Ma2dnZ7N27t9lGorCw0OZj/vvf/+byyy8nLi6OxMRExo8fz4033kj//v2tPkZMTMxZ9zl06BDAOb32gwYNavV9z8aax9Cc7OxsFEVptuG3tSqUEKJ9SVskbZFabVFERESzr+tXX33F008/TWZmpsXcsrMld2d77g4ePIiiKDz++OM8/vjjTR6jsLBQkqh2JEmU6DDNfWCc2djYat68eTz++OPccsstPPXUU/j7+6PVarnvvvsajZnOz8+36pi+vr42lSZ1dXVFq21co6Wlx3tm74jRaKRfv34sXLiwyf0jIyOtjqXBqFGjyMnJ4YsvvuD777/nv//9Ly+99BKvvfYat956q1XH6KjyrMXFxY3mFzTF3d0dX19fm47d1GOw9n1oNBrRaDR8++23TfZm2To/SwhhH6QtMpG2yFJ7tEXr169n0qRJjBo1iv/85z+Ehobi7OzMO++8w4cfftjifc/23DW8rx588EEuvvjiJo/Ru3dvq+IUrSNJlDhngYGB+Pj4sGfPnhb3a/jlrqSkxGJCfsOvfQ2io6MB069iPXv2NG8vKipq1NW+bNkyxo4dy1tvvWWxvaSkxGL9DIDQ0FCrHs8777zTJgu1duvWrckF/fLy8iweV69evdi5cycXXnihzcNNWuLv78/NN9/MzTffTEVFBaNGjeLJJ580N1xtca6Gx3G2176lc02ZMoWff/75rOeaMWNGmywm2dLrcqZevXqhKAoxMTHExcWd83mFEO1L2qKmSVv0p45ui5YvX46bmxvfffedxZDPd955x6r7t/TcNTxmZ2fnduvdFC2TJEqcM61Wy+TJk/nggw/Ytm1bo7HoiqKg0WjMi5+uW7eOSZMmAaZ1LP73v/9Z7D9u3DicnZ35v//7Py666CLzh96iRYsanVun06EoisW2Tz/9lGPHjjX6BaY9x6E3pVevXqxfv566ujpzRaivvvqKo0ePWjRc06ZN45tvvuHNN9/k9ttvtzhGdXU1RqPR5rU+Tp06ZTGExMvLi969e1uU5m445l+/SNgiMDCQUaNG8fbbb5OWlmYxFr3hdf/ruf6qPedENaVXr16Ulpaya9cu87CIEydO8Pnnn1vsN2XKFB555BHmzp3LBx98YNH4KopCcXFxo2E6Qgj1SFvUNGmL1GuLdDodGo3Gopfz8OHDVlU6PNtzFxQUxJgxY3j99de5++67GyXnRUVFZ51LJs6NJFGiTcybN4/vv/+e0aNHm0ujnjhxgk8//ZRffvkFPz8/LrroIqKiovj73//OQw89hE6n4+233yYwMJAjR46YjxUYGMiDDz7Is88+y2WXXcaECRPYsWMH3377baNf9C677DL+/e9/c/PNNzNs2DB2797NkiVLLBqGBh39S82tt97KsmXLGD9+PNOmTSMnJ4cPPvjA3IA3uPHGG1m6dCn/+Mc/WLNmDcOHD8dgMLBv3z6WLl3Kd999Z/4y8OSTTzJ37lzWrFnTaH2PMyUkJDBmzBgGDRqEv78/27ZtY9myZRYTXxvGf99zzz1cfPHF6HQ6rrnmGpsf5yuvvMKIESNITk7m9ttvJyYmhsOHD/P111+TmZlpca7HHnuMa665BmdnZyZOnIinp2e7zolqyjXXXMOsWbO44ooruOeee6iqquLVV18lLi7OYgJ4r169ePrpp3nkkUc4fPgwkydPxtvbm9zcXD7//HNuv/12HnzwwQ6NXQjRMmmLGpO2SL226NJLL2XhwoWMHz+e6667jsLCQtLT0+nduze7du1q8b7WPHfp6emMGDGCfv36cdttt9GzZ08KCgrYtGkTv//+e4etU9ZlqVUWUDievLw8Zfr06UpgYKDi6uqq9OzZU5k5c6ZSW1tr3mf79u3KkCFDFBcXFyUqKkpZuHBho7KyiqIoBoNBmTt3rhIaGqq4u7srY8aMUfbs2dOoBGhNTY3ywAMPmPcbPny4smnTpkalW9tCc2VlPT09m73PggULlPDwcMXV1VUZPny4sm3btiZjq6urU5577jnlvPPOU1xdXZVu3bopgwYNUubOnauUlpaa93vggQcUjUaj7N27t8VYn376aSU1NVXx8/NT3N3dlT59+ijPPPOMUldXZ96nvr5eufvuu5XAwEBFo9GYS8w2lI594YUXGh23qbKyiqIoe/bsUa644grFz89PcXNzU+Lj45XHH3/cYp+nnnpKCQ8PV7RabbMlZlujpRLnTZU5VhRF+f7775XExETFxcVFiY+PVz744INmyx4vX75cGTFihOLp6al4enoqffr0UWbOnKns37+/TeIXQrQtaYsak7boT23dFgHKzJkzm739rbfeUmJjYxVXV1elT58+yjvvvNNke/PX95Q1z52iKEpOTo4yffp0JSQkRHF2dlbCw8OVyy67TFm2bNk5PS5xdhpF+Uv/sxDCbqWmphIdHc2nn36qdihCCCG6KGmLhABJooToJMrKyggMDCQzM5O+ffuqHY4QQoguSNoiIUwa18LspKqqqoiOjpY5CsJh+fj4UFtbK42WEJ2EtEvCEUlbJISJwyRRzzzzDOeff77aYQghhBCAtEtCCOHIHCKJys7OZt++fVxyySVqhyKEEEJIuySEEA5O9SRq3bp1TJw4kbCwMDQaTZO189PT0+nRowdubm4MGTKELVu2WNzeUIJUCCGEOFfSLgkhhDgb1ZOoyspKkpKSSE9Pb/L2Tz75hLS0NJ544gkyMjJISkri4osvprCwEIAvvviCuLg44uLiOjJsIYQQDkraJSGEEGdjV9X5NBoNn3/+OZMnTzZvGzJkCIMHD2bx4sUAGI1GIiMjufvuu5k9ezaPPPIIH3zwATqdjoqKCvR6PQ888ABz5sxp8hy1tbXU1taarxuNRoqLiwkICDCvaC2EEKL9KYpCeXk5YWFhaLWq/6bXJGmXhBCia7G6bVJviarGAOXzzz83X6+trVV0Op3FNkVRlOnTpyuTJk1qdP933nlHeeCBB1o8R8MCZ3KRi1zkIhf7uBw9erQtmpB2AdIuyUUucpFLV7ycrW1ywo6dPHkSg8FAcHCwxfbg4GD27dvXqmM+8sgjpKWlma+XlpYSFRXF0aNH8fHxOad4hRBCWK+srIzIyEi8vb3VDsVq0i4JIYRjs7ZtsuskylY33XTTWfdxdXXF1dW10XYfHx9prIQQQgWOPGRN2iUhhOicztY22ecg9D90794dnU5HQUGBxfaCggJCQkJUikoIIURXJe2SEEIIsPMkysXFhUGDBvHjjz+atxmNRn788UeGDh16TsdOT08nISGBwYMHn2uYQgghughpl4QQQoAdDOerqKjg4MGD5uu5ublkZmbi7+9PVFQUaWlpzJgxg5SUFFJTU1m0aBGVlZXcfPPN53TemTNnMnPmTMrKyvD19T3XhyGEEMJBSLskhBDibFRPorZt28bYsWPN1xsm186YMYN3332Xq6++mqKiIubMmUN+fj4DBgxg1apVjSb1tiej0UhdXV2HnU90Xs7Ozuh0OrXDEEKcg87QLgkhLBkMBvR6vdphiE6grb6r2dU6UWpo+MWvtLS0yQm8dXV15ObmYjQaVYhOdEZ+fn6EhIQ49GR5IdrC2T5/uyp5XoSwnqIo5OfnU1JSonYoohNp6buatZ/BqvdEqSU9PZ309HQMBkOz+yiKwokTJ9DpdERGRtrtYpDCPiiKQlVVFYWFhQCEhoaqHJEQojOxpl0SQlhqSKCCgoLw8PCQHzBFi9ryu5r0RLWQber1eg4ePEhYWJiMTxdWO3XqFIWFhcTFxcnQPiFaID0uTZPnRQjrGAwGDhw4QFBQEAEBAWqHIzqRlr6rWfsZLF0rLWj4NdDFxUXlSERn4uHhASBjs4UQQoh21NDONrS7QlirLb6rSRJlBekaFraQ94sQQgjRcaTdFbZqi/eMJFFCCCGEEEIIYYMum0Q58qKGY8aM4b777lM7DCGEEDZw5HZJCGHpr9/VevTowaJFi1SLR0033XQTkydPNl/vLN9ju2x1vo5c1NBgVNiSW0xheQ1B3m6kxvij03aurmdFUZgwYQKrVq3i888/t3izCyGEOHey2K4QXdfWrVvx9PRUOwy78Nlnn+Hs7Kx2GGfVZZOojrJqzwnmfpnFidIa87ZQXzeemJjA+MTOUwJ70aJFMuZYCCGEEKIdBAYGqh0CYCq0oHYC4+/vr+r5rdVlh/N1hFV7TnDnBxkWCRRAfmkNd36Qwao9Jzokjq+//hpfX1+WLFnSqvtnZmayYMEC3n777TaOTAghhBBC/HU4n0aj4b///S9XXHEFHh4exMbGsnLlSov77Nmzh0suuQQvLy+Cg4O58cYbOXnypPn2VatWMWLECPz8/AgICOCyyy4jJyfHfPvhw4fRaDR88sknjB49Gjc3tya/KyqKwpNPPklUVBSurq6EhYVxzz33mG+vra1l1qxZREZG4urqSu/evXnrrbcAU6Xrv//978TExODu7k58fDwvv/xyi89FU0Md582bxy233IK3tzdRUVG88cYbFvfZuHEjAwYMwM3NjZSUFFasWIFGoyEzM7PFc50LSaJsoCgKVXX1Vl3Ka/Q8sfI3mlqEq2HbkyuzKK/RW3W81i7n9eGHH3LttdeyZMkSrr/+epYsWYKXl1eLl/Xr15vvX1VVxXXXXUd6ejohISGtikEIIYQQoiMZDIZGC1cbjUYMBgNGo7HJfc/8rmXrvu1h7ty5TJs2jV27djFhwgSuv/56iouLASgpKeGCCy5g4MCBbNu2jVWrVlFQUMC0adPM96+srCQtLY1t27bx448/otVqueKKKxrFO3v2bO6991727t3LxRdf3CiO5cuX89JLL/H666+TnZ3NihUr6Nevn/n26dOn89FHH/HKK6+wd+9eXn/9dby8vADTcxMREcGnn35KVlYWc+bM4dFHH2Xp0qU2PRcLFiwgJSWFHTt2cNddd3HnnXeyf/9+wLSu08SJE+nXrx8ZGRk89dRTzJo1y6bjt4YM57NBtd5Awpzv2uRYCpBfVkO/J7+3av+sf1+Mh4ttL1d6ejqPPfYYX375JaNHjwZg0qRJDBkypMX7hYeHm////vvvZ9iwYVx++eU2nVsIIYQQQi3ffPMNABdffLF5vc+cnBz27dtHVFQUSUlJ5n2/++47DAYDF154oXn9oMOHD/Pbb78RHh5OcnKyed/Vq1dTV1fHmDFj8Pb2BuD3338nKiqqzR/DTTfdxLXXXgvAvHnzeOWVV9iyZQvjx49n8eLFDBw4kHnz5pn3f/vtt4mMjOTAgQPExcUxdepUi+O9/fbbBAYGkpWVRWJionn7fffdx5QpU5qN48iRI4SEhDBu3DicnZ2JiooiNTUVgAMHDrB06VJ++OEHxo0bB0DPnj3N93V2dmbu3Lnm6zExMWzatImlS5daJHxnM2HCBO666y4AZs2axUsvvcSaNWuIj4/nww8/RKPR8Oabb+Lm5kZCQgLHjh3jtttus/r4rdFlk6j09HTS09Mb/UrhKJYtW0ZhYSEbNmywqPTk7e1t/qM/m5UrV/LTTz+xY8eO9gpTCCHEHxy9XRJC2KZ///7m//f09MTHx4fCwkIAdu7cyZo1a8w9PmfKyckhLi6O7Oxs5syZw+bNmzl58qS5B+rIkSMWSVRKSkqLcVx11VUsWrSInj17Mn78eCZMmMDEiRNxcnIiMzMTnU5n/rG+Kenp6bz99tscOXKE6upq6urqGDBggC1PhcVzodFoCAkJMT8X+/fvp3///ri5uZn3aUjy2lOXTaJaUwXJ3VlH1r8bd3M2ZUtuMTe9s/Ws+71782BSY84+gc7dWWfVeRsMHDiQjIwM3n77bVJSUsxFIZYsWcIdd9zR4n2//fZbRo4cyU8//UROTg5+fn4Wt0+dOpWRI0eydu1am2ISQgjRPKnOJ0TbmTBhAgA63Z/fn3r16kXPnj0bFcpqGMKm1f45y6VHjx5ER0c32reht+XMfSMiIto2+D/8tcCDRqMxJ0IVFRVMnDiR5557rtH9QkNNhcsmTpxIdHQ0b775JmFhYRiNRhITE6mrq7PY/2xVASMjI9m/fz+rV6/mhx9+4K677uKFF17g559/xt3dvcX7fvzxxzz44IMsWLCAoUOH4u3tzQsvvMDmzZvP+vjP1NJzoZYum0S1hkajsXpI3cjYQEJ93cgvrWlyXpQGCPF1Y2RsYLuUO+/VqxcLFixgzJgx6HQ6Fi9eDNg2nG/27NnceuutFrf169ePl156iYkTJ7Z5zEIIIYQQbeHM5KnBmYlPR+zbnpKTk1m+fDk9evTAyanxd9NTp06xf/9+3nzzTUaOHAnAL7/80urzubu7M3HiRCZOnMjMmTPp06cPu3fvpl+/fhiNRn7++WdzgnmmDRs2MGzYMPNQPMCiuEVbiI+P54MPPqC2thZXV1fAVDK+vUkS1U50Wg1PTEzgzg8y0IBFItWQMj0xMaFd14uKi4tjzZo1jBkzBicnJxYtWmTTcL6QkJAmi0lERUURExPT1uEKIYQQQggrzJw5kzfffJNrr72Whx9+GH9/fw4ePMjHH3/Mf//7X7p160ZAQABvvPEGoaGhHDlyhNmzZ7fqXO+++y4Gg4EhQ4bg4eHBBx98gLu7O9HR0QQEBDBjxgxuueUWXnnlFZKSksjLy6OwsJBp06YRGxvLe++9x3fffUdMTAzvv/8+W7dubdPvkddddx2PPfYYt99+O7Nnz+bIkSO8+OKLAO26PI9U52tH4xNDefWGZEJ83Sy2h/i68eoNyR2yTlR8fDw//fQTH330EQ888EC7n08IIYQQQrSvsLAwNmzYgMFg4KKLLqJfv37cd999+Pn5odVq0Wq1fPzxx2zfvp3ExETuv/9+XnjhhVady8/PjzfffJPhw4fTv39/Vq9ezZdffklAQAAAr776KldeeSV33XUXffr04bbbbqOyshKAO+64gylTpnD11VczZMgQTp06ZdEr1RZ8fHz48ssvyczMZMCAATz22GPMmTMHwGKeVFvTKK2tne0gGsael5aW4uPjY3FbTU0Nubm5xMTEnNOLYDAqbMktprC8hiBvN1Jj/Nu1B0qoq63eN0I4upY+f7syeV6EsI60t6I5S5Ys4eabb6a0tLTJeVstvXes/QzussP5OrIKkk6rYWivgHY/jxBCiM5LqvMJIUTrvPfee/Ts2ZPw8HB27tzJrFmzmDZt2lkLX5yLLjucb+bMmWRlZXXIxDMhhBDibKRdEkKI1snPz+eGG26gb9++3H///Vx11VW88cYb7XrOLtsTJYQQQgghhOj8Hn74YR5++OEOPWeX7YkSQgghhBBCiNaQJEoIIYQQQnRaXbxGmmiFtnjPSBIlhBBCCCE6HWdnZwCqqqpUjkR0Ng3vmYb3UGvInCghhBBCCNHp6HQ6/Pz8KCwsBMDDw6NdF1cVnZ+iKFRVVVFYWIifnx86na7Vx5IkSgghhBBCdEohISEA5kRKCGv4+fmZ3zutJUmUEEIIIYTolDQaDaGhoQQFBaHX69UOR3QCzs7O59QD1aDLJlGOvKjhmDFjGDBgAIsWLVI7FCGEEFZy5HZJiPam0+na5IuxENbqsoUlOnRRQ6MBctfD7mWmf42dp4HMz8/nxhtvJCQkBE9PT5KTk1m+fLnaYQkhhMORxXaFEKLz6LI9UR0mayWsmgVlx//c5hMG45+DhEnqxWWl6dOnU1JSwsqVK+nevTsffvgh06ZNY9u2bQwcOFDt8IQQQgghhOhwXbYnqkNkrYSl0y0TKICyE6btWSs7JIyvv/4aX19flixZYvN9N27cyN13301qaio9e/bkX//6F35+fmzfvr0dIhVCCCGEEML+SRJlC0WBukrrLjVl8O3DQFOLef2xbdUs037WHK+Vi4J9+OGHXHvttSxZsoTrr7+eJUuW4OXl1eJl/fr15vsPGzaMTz75hOLiYoxGIx9//DE1NTWMGTOmVfEIIYQQQgjR2clwPlvoq2BeWBsdTDH1UM2PtG73R4+Di6dNZ0hPT+exxx7jyy+/ZPTo0QBMmjSJIUOGtHi/8PBw8/8vXbqUq6++moCAAJycnPDw8ODzzz+nd+/eNsUihBBCCCGEo5AkykEtW7aMwsJCNmzYwODBg83bvb298fb2tvo4jz/+OCUlJaxevZru3buzYsUKpk2bxvr16+nXr197hC6EEEIIIYRdkyTKFs4eph4ha+RthCVXnn2/65dB9DDrzm2DgQMHkpGRwdtvv01KSop5Be8lS5Zwxx13tHjfb7/9lpEjR5KTk8PixYvZs2cP5513HgBJSUmsX7+e9PR0XnvtNZtiEkIIIYQQwhFIEmULjcb6IXW9LjBV4Ss7QdPzojSm23tdANq2X9egV69eLFiwgDFjxqDT6Vi8eDFg23C+qqoqALRay6lzOp0Oo9HY5jELIYQQQgjRGUgS1V60OlMZ86XTAQ2WiZSpV4jx89slgWoQFxfHmjVrGDNmDE5OTixatMim4Xx9+vShd+/e3HHHHbz44osEBASwYsUKfvjhB7766qt2i1sIIYQQQgh71mWr86Wnp5OQkGAxX6jNJUyCae+BT6jldp8w0/YOWCcqPj6en376iY8++ogHHnjApvs6OzvzzTffEBgYyMSJE+nfvz/vvfce//vf/5gwYUI7RSyEEF1Th7RLQggh2oRGUVpZO9tBlJWV4evrS2lpKT4+Pha31dTUkJubS0xMDG5ubq0/idFgmiNVUQBewaY5UO3YAyXU1WbvGyEcXEufv12ZPC9CCKEeaz+DZThfR9DqIGak2lEIIYQQQggh2kCXHc4nhBBCCCGEEK0hSZQQQgghhBBC2ECSKCGEEEIIIYSwgSRRQgghhBBCCGEDSaKEEEIIIYQQwgaSRAkhhBBCCCGEDSSJEkIIIYQQQggbSBIlhBBCCCGEEDaQJMoBjRkzhvvuu0/tMIQQQgghhHBIkkR1AIPRwNb8rXxz6Bu25m/FYDSoHZLV3njjDcaMGYOPjw8ajYaSkpIm9/v6668ZMmQI7u7udOvWjcmTJ3donEIIIYQQQnQUJ7UDcHSr81Yzf8t8CqoKzNuCPYKZnTqbcdHjVIzMOlVVVYwfP57x48fzyCOPNLnP8uXLue2225g3bx4XXHAB9fX17Nmzp4MjFUIIIYQQomNIT1Q7Wp23mrS1aRYJFEBhVSFpa9NYnbe6Q+L4+uuv8fX1ZcmSJTbf97777mP27Nmcf/75Td5eX1/PvffeywsvvMA//vEP4uLiSEhIYNq0aecathBCCCGEEHapyyZR6enpJCQkMHjwYKvvoygKVfoqqy7lteU8u+VZFJTGx/njv/lb5lNeW27V8RSl8XGs8eGHH3LttdeyZMkSrr/+epYsWYKXl1eLl/Xr11t9/IyMDI4dO4ZWq2XgwIGEhoZyySWXSE+UEELYqDXtkhBCCHVolNZ+O3cQZWVl+Pr6Ulpaio+Pj8VtNTU15ObmEhMTg5ubG1X6KoZ8OESVODdftxkPZw+r9h0zZgwDBgwgNjaWxx57jC+++ILRo0cDUF5eTkFBQYv3Dw8Px93d3WLb2rVrGTt2LKdPn8bPz8+8/eOPP+baa68lKiqKhQsX0qNHDxYsWMD333/PgQMH8Pf3t+2BOoC/vm+EEE1r6fO3K5PnRQgh1GPtZ7DMiXJQy5Yto7CwkA0bNlj8qunt7Y23t3ebncdoNALw2GOPMXXqVADeeecdIiIi+PTTT7njjjva7FxCCCGEEELYA0mibODu5M7m6zZbte/2gu3c9eNdZ93vPxf+h0HBg6w6ty0GDhxIRkYGb7/9NikpKWg0GgCWLFly1sTm22+/ZeTIkVadJzQ0FICEhATzNldXV3r27MmRI0dsilkIIYQQQojOQJIoG2g0GquH1A0LG0awRzCFVYVNzovSoCHYI5hhYcPQaXVtHSq9evViwYIFjBkzBp1Ox+LFiwGYNGkSQ4a0PCQxPDzc6vMMGjQIV1dX9u/fz4gRIwDQ6/UcPnyY6Ojo1j8AIYQQQggh7JQkUe1Ep9UxO3U2aWvT0KCxSKQ0mHqFZqXOapcEqkFcXBxr1qxhzJgxODk5sWjRIpuH8+Xn55Ofn8/BgwcB2L17N97e3kRFReHv74+Pjw//+Mc/eOKJJ4iMjCQ6OpoXXngBgKuuuqpdHpcQQgghhBBq6rLV+TrCuOhxLByzkCCPIIvtwR7BLByzsEPWiYqPj+enn37io48+4oEHHrD5/q+99hoDBw7ktttuA2DUqFEMHDiQlStXmvd54YUXuOaaa7jxxhsZPHgweXl5/PTTT3Tr1q3NHocQQgghhBD2Qqrz2VCdr7UMRgMZhRkUVRUR6BFIclByu/ZACXVJdT4hrCNV6Jomz4sQQqhHqvPZEZ1Wx+AQWfdDCCGEEEIIRyDD+YQQQgghhBDCBpJECSGEEEIIIYQNJIkSQgghhBBCCBtIEiWEEEIIIYQQNpAkSgghhBBCCCFsIEmUEEIIIYQQQthAkighhBBCCCGEsIEkUUIIIYQQQghhA0miHNCYMWO47777zNd79OjBokWLVItHTTfddBOTJ082X//rcyOEEEIIIYStnNQOQLS/rVu34unpqXYYduGzzz7D2dlZ7TCEEEIIIUQn1ul7okpKSkhJSWHAgAEkJiby5ptvqh2S3QkMDMTDw0PtMNDr9WqHgL+/P97e3mqHIYRwYNIuCSGE4+v0SZS3tzfr1q0jMzOTzZs3M2/ePE6dOqV2WHblr8P5NBoN//3vf7niiivw8PAgNjaWlStXWtxnz549XHLJJXh5eREcHMyNN97IyZMnzbevWrWKESNG4OfnR0BAAJdddhk5OTnm2w8fPoxGo+GTTz5h9OjRuLm5sWTJkkaxKYrCk08+SVRUFK6uroSFhXHPPfeYb6+trWXWrFlERkbi6upK7969eeuttwAwGAz8/e9/JyYmBnd3d+Lj43n55ZdbfC6aGuo4b948brnlFry9vYmKiuKNN96wuM/GjRsZMGAAbm5upKSksGLFCjQaDZmZmS2eSwjRNUm7JIQQjq/TJ1E6nc7cy1JbW4uiKCiK0q7nNBgMGAwGi21GoxGDwYDRaGxy3zNjsnXf9jB37lymTZvGrl27mDBhAtdffz3FxcWA6VfUCy64gIEDB7Jt2zZWrVpFQUEB06ZNM9+/srKStLQ0tm3bxo8//ohWq+WKK65oFO/s2bO599572bt3LxdffHGjOJYvX85LL73E66+/TnZ2NitWrKBfv37m26dPn85HH33EK6+8wt69e3n99dfx8vICTM9NREQEn376KVlZWcyZM4dHH32UpUuX2vRcLFiwgJSUFHbs2MFdd93FnXfeyf79+wEoKytj4sSJ9OvXj4yMDJ566ilmzZpl0/GFEF2LGu2SEEKIDqao7Oeff1Yuu+wyJTQ0VAGUzz//vNE+ixcvVqKjoxVXV1clNTVV2bx5s8Xtp0+fVvr376+4u7srixcvtun8paWlCqCUlpY2uq26ulrJyspSqqurLbavXLlSWblypVJbW2veduDAAWXlypVKZmamxb5ff/21snLlSqWystK8LScnR1m5cqWyfft2i31XrVqlrFy5UikrKzNvy8vLs+nxKIqijB49Wrn33nvN16Ojo5WXXnrJfB1Q/vWvf5mvV1RUKIDy7bffKoqiKE899ZRy0UUXWRzz6NGjCqDs37+/yXMWFRUpgLJ7925FURQlNzdXAZRFixa1GOuCBQuUuLg4pa6urtFt+/fvVwDlhx9+aPEYZ5o5c6YydepU8/UZM2Yol19+ufl6U8/NDTfcYL5uNBqVoKAg5dVXX1UURVFeffVVJSAgwOI98OabbyqAsmPHjiZjaO59I4Sw1NLnr5rsuV0SQgjRvqz9DFa9J6qyspKkpCTS09ObvP2TTz4hLS2NJ554goyMDJKSkrj44ospLCw07+Pn58fOnTvJzc3lww8/pKCgoKPC77T69+9v/n9PT098fHzMz+nOnTtZs2YNXl5e5kufPn0AzEP2srOzufbaa+nZsyc+Pj706NEDgCNHjlicJyUlpcU4rrrqKqqrq+nZsye33XYbn3/+OfX19QBkZmai0+kYPXp0s/dPT09n0KBBBAYG4uXlxRtvvNEoBlueC41GQ0hIiPm52L9/P/3798fNzc28T2pqqk3HF0J0LtIuCSGEOBvVq/NdcsklXHLJJc3evnDhQm677TZuvvlmAF577TW+/vpr3n77bWbPnm2xb3BwMElJSaxfv54rr7yyyePV1tZSW1trvl5WVmZzzBMmTABMQzYa9OrVi549e6LRaCz2bRjCptX+ma/26NGD6OjoRvuOGzeu0b4RERE2x2eNv1ao02g05qF4FRUVTJw4keeee67R/UJDQwGYOHEi0dHRvPnmm4SFhWE0GklMTKSurs5i/7NVBYyMjGT//v2sXr2aH374gbvuuosXXniBn3/+GXd39xbv+/HHH/Pggw+yYMEChg4dire3Ny+88AKbN28+6+M/U0vPhRCi6+mM7ZIQQoiOpXpPVEvq6urYvn27ObkAU4Ixbtw4Nm3aBEBBQQHl5eUAlJaWsm7dOuLj45s95rPPPouvr6/5EhkZaXNcOp3OIoFqiEun01kkQGfue2bCZOu+HS05OZnffvuNHj160Lt3b4uLp6cnp06dYv/+/fzrX//iwgsvpG/fvpw+fbrV53N3d2fixIm88sorrF27lk2bNrF792769euH0Wjk559/bvJ+GzZsYNiwYdx1110MHDiQ3r17WxS3aAvx8fHs3r3b4gvO1q1b2/QcQtiqsLDQ/LknOpa9tktCCKEmRVE4fPhwo5oBjsyuk6iTJ09iMBgIDg622B4cHEx+fj4AeXl5jBw5kqSkJEaOHMndd99tUZjgrx555BFKS0vNl6NHj7brY+iMZs6cSXFxMddeey1bt24lJyeH7777jptvvhmDwUC3bt0ICAjgjTfe4ODBg/z000+kpaW16lzvvvsub731Fnv27OHQoUN88MEHuLu7Ex0dTY8ePZgxYwa33HILK1asIDc3l7Vr15oLR8TGxrJt2za+++47Dhw4wOOPP97mCc51112H0Wjk9ttvZ+/evXz33Xe8+OKLAI16EoXoCMePH2fz5s1s2bKlUc+vaH/SLgkhRGO7d+9m9+7d7NixQ+1QOozqw/nOVWpqqk2lpl1dXXF1dW2/gBxAWFgYGzZsYNasWVx00UXU1tYSHR3N+PHj0Wq1aDQaPv74Y+655x4SExOJj4/nlVdeYcyYMTafy8/Pj/nz55OWlobBYKBfv358+eWXBAQEAPDqq6/y6KOPctddd3Hq1CmioqJ49NFHAbjjjjvYsWMHV199NRqNhmuvvZa77rqLb7/9ts2eCx8fH7788kvuvPNOBgwYQL9+/ZgzZw7XXXedxTwpITpK9+7d8fDwoHv37jg5dfqPcIck7ZIQoquJiIjg2LFjjX5gcmQaRbGfuqsajYbPP/+cyZMnA6ZhEx4eHixbtsy8DWDGjBmUlJTwxRdfnPM5y8rK8PX1pbS0FB8fH4vbampqyM3NJSYmRr4wC7MlS5Zw8803U1pa2uS8LXnfiLZmNBothvbW1dXh4uKiYkRto6XPX3thb+2SEELYi67eNtn1cD4XFxcGDRrEjz/+aN5mNBr58ccfGTp06DkdOz09nYSEBAYPHnyuYQoH99577/HLL7+Qm5vLihUrmDVrFtOmTTtr4Qsh2kJ5eTlr166lqKjIvM0RGqnOStolIYSAY8eOsXbtWmpqaszbulrbpPpYkIqKCg4ePGi+npubS2ZmJv7+/kRFRZGWlsaMGTNISUkhNTWVRYsWUVlZaa6K1FozZ85k5syZ5mxTiObk5+czZ84c8vPzCQ0N5aqrruKZZ55ROyzRRRw+fJjKykr27t1L9+7dZS5eB5B2SQghmmc0GsnOzqayspLc3Fz69u2rdkiqUD2J2rZtG2PHjjVfbyhQMGPGDN59912uvvpqioqKzF9iBwwYwKpVq7rUmEuhrocffpiHH35Y7TBEF3Xeeeeh1WqJjY2VBKqDSLskhBDN02q1DB48mN9//524uDi1w1GNXc2JUoPMiRJtTd434lwYjUZOnDhBeHi42qG0O5n70zR5XoQQ9qa6upqKigoCAwPVDqXdWfsZrHpPVGfQxfNMYSN5v4jWUhSFTZs2UVxcjF6vp0ePHmqHJIQQoourrKxkw4YN1NfXM2LECPlx5w92XViiPVkzgbdhQV1Zi0XYoqqqCgBnZ2eVIxGdjUajISgoCGdnZzw9PdUOR3QwKSwhhLBHHh4e+Pj44OnpKd9tziDD+VroslMUhSNHjqDX6wkLC7Mo4yjEXymKQlVVFYWFhfj5+REaGqp2SKKTUBTFYr5TTU1NlxgKKsPWmibPixBCbX9tl/R6PRqNpkusTyjD+dqARqMhNDSU3Nxc8vLy1A5HdBJ+fn6EhISoHYboJA4ePEhxcTGDBw82N1hdIYESQghhn+rr69mxYwcBAQH07NkTkNE1TZEk6ixcXFyIjY2VIX3CKs7OzuZhoEKcTWVlJQcOHMBgMJhL6AshhBBqOnHiBPn5+RQVFREeHo6rq6vaIdmlLptEpaenk56ejsFgOOu+Wq1WfhkWQrQ5T09PBgwYQF1dnSRQwqZ2SQgh2ktkZCQVFRWEhIRIAtUCmRMlY8+FEB2orKwMZ2dn3N3d1Q5FdfL52zR5XoQQHa2wsJDu3bvL/H+s/wyWZ0oIITpIUVERv/zyC1u2bKG+vl7tcIQQQggOHDjA5s2b2bNnj9qhdCqSRAkhRAfx8vLCyckJV1dXWU9MCCGEXfD19UWj0eDi4qJ2KJ1Kl50TJYQQHc3d3Z3hw4fj4eFhUTpWCCGEUEtwcDBjxozBy8tL7VA6FemJEkKIdlJTU8PGjRs5ffq0eZunp6ckUEIIIVRTXFzMhg0b0Ov15m2SQNmuyyZRsjK8EKK97d+/n1OnTrFz504ZvifOStolIUR7MxqNZGZmUlxczIEDB9QOp1OT6nxSBUkI0U7q6+vZuXMnffr0wdPTU+1w7I58/jZNnhchRHsqKyvj0KFD9OvXT9a2bIJU5xNCCBWcOnXK/P9OTk4MGjRIEighhBCqqa+vp7S01Hzdx8eHAQMGSAJ1jiSJEkKINqAoChkZGWzcuJHjx4+rHY4QQghBTU0Nv/zyC7/++itVVVVqh+NQJIkSQog2oNFocHV1RaPRYDAY1A5HCCGEwNnZGZ1Oh1artSgkIc6dlDgXQog2kpCQQEREBL6+vmqHIoQQQqDT6czFatzc3FSOxrFIT5QQQrTS8ePH2blzp/m6RqORBEoIIYRqFEXht99+4+jRo+Ztbm5ukkC1gy7bE5Wenk56eroMuxFCtEp1dTUZGRkoikL37t0JDw9XOyTRyUm7JIQ4V7///juHDh1Cq9USGBgoyVM7khLnUkpWCNFKhw8fpqqqir59+8oCuq0gn79Nk+dFCNFaiqKQmZlJSEgIoaGhaofTKVn7Gdxle6KEEMJWNTU1aLVaXFxcAOjRo4e6AQkhhOjyysrK8Pb2RqPRoNFoGDhwoNohdQkyJ0oIIaxQWlrKunXr2Lp1K0ajUe1whBBCCI4cOcK6devYv3+/2qF0OZJECSGEFXQ6HQaDAb1eT11dndrhCCGEEGg0GhRFoaqqii4+Q6fDyXA+IYSwgpeXF0OHDsXLywsnJ/U/Og1GAxmFGRRVFRHoEUhyUDI6raw+L4QQXUlkZCTu7u50795d7VC6HPW/CQghhB0yGAzs3r2b3r174+XlBYCfn5+6Qf1hdd5q5m+ZT0FVgXlbsEcws1NnMy56nIqRCSGEaE+VlZXs37+fpKQkdDrTD2eSQKlDhvMJIUQTGtbZ2Lp1q10NkVidt5q0tWkWCRRAYVUhaWvTWJ23WqXIhBBCtCdFUdi8eTPHjh1j7969aofT5XXZJCo9PZ2EhATzKs5CCHGmPn360K1bN5KSkuymfLnBaGD+lvkoNE7qGrY9t+U5DEZZZ6gzknZJCNESjUZDUlISAQEBxMbGqh1OlyfrRMl6HEKIP1RWVuLp6al2GM3amr+VW7675az7vX3x2wwOsf8v4vL52zR5XoQQDYxGIzU1NXh4eKgdSpdh7Wdwl+2JEkKIBoqisG/fPtasWUNRUZHa4TSrqMq62KzdTwghhP3S6/Vs3ryZjRs3Ultbq3Y44i8kiRJCdHkajYbq6moURaGkpETtcJpVVldm1X6BHoHtHIkQQoiOUFNTQ11dHeXl5WqHIv5CqvMJIQSQlJREWFgYwcHBaofSiFEx8s6ed/i/jP9rcT8NGoI9gkkOSu6gyIQQQrQXZ2dnUlNTMRgMMrTXDklPlBCiSyouLubAgQPm61qt1i4TqKKqIu744Q4WZSzCgIEBgQMAU8J0pobrs1JnyXpRQgjRSeXm5lJQ8Gf1VU9PT0mg7JQkUUKILqempoZNmzaxf/9+jh8/rnY4zVr3+zqmrpzKryd+xd3JnbnD5vLeJe/x0piXCPIIstg32COYhWMWyjpRQgjRSR07dow9e/aQkZFBdXW12uGIs5DhfEKILsfNzY3Y2FhKS0vtsvepzlDHS9tf4oO9HwAQ3y2e50c/T0/fngCMix7H2MixZBRmUFRVRKBHIMlBydIDJYQQnVhoaCjdu3cnKCgId3d3tcMRZyFJlBCiS6ivrwfAycn0sRcXF4eiKHazBlSD3NJcHl73MPuK9wFwQ98buG/QfbjqXC3202l1naKMuRBCiObV1NTg5uYGmIaVn3/++XbXLommSRIlhHB4VVVVbNmyBQ8PDwYPHmxuoOypoVIUhRUHV/Dslmeprq/Gz9WPp4c/zejI0WqHJoQQoh0UFhayfft24uPj6dnTNNLAntol0bIuOydKVoYXouuoq6ujsrKSkpISuxxnXl5Xzqx1s5izcQ7V9dUMCRnC8knLJYHqYqRdEqJrqaiooL6+nvz8fBRFUTscYSON0sVfNVkZXoiuobCwEB8fH/OwCXuxs2gns9bN4ljFMXQaHf8c+E9uPu/mLjG/ST5/mybPixBdx9GjRwkPD0er7bL9GnbH2s9gGc4nhHA4iqJw4MABoqKizJNzg4KCznKvjmVUjLy9520W71iMQTEQ7hXOc6OeIykwSe3QhBBCtIO6ujpycnKIj483J02RkZEqRyVaS5IoIYTDycrK4tChQ+Tn5zNq1Ci7G2NeWFXIo+sfZXP+ZgAu6XEJjw99HG8Xb5UjE0II0R4URWHTpk2UlZVhNBo577zz1A5JnCNJooQQDqdnz57k5+cTGxtrdwnUz0d/5l8b/kVJbQnuTu48OuRRLu91ud3FKYQQou1oNBri4+PJysoiKipK7XBEG5AkSgjhEPR6Pc7OzgC4u7szduxYuxpjXmeoY+H2hSzZuwSAPv59eH7U88T4xqgcmRBCiPZyZtsUEhJCUFCQXbVNovXkVRRCdHpHjhxh9erVlJSUmLfZUyN1qPQQ1319nTmBuqHvDSyZsEQSKCGEcFBGo5GdO3fyyy+/oNfrzdvtqW0S50Z6ooQQnV5+fj719fX8/vvv+Pn5qR2OmaIofH7wc+ZvmU91fTX+bv48NfwpRkWMUjs0IYQQ7Uiv11NYWEhtbS2nTp0iJCRE7ZBEG5MkSgjR6SUnJ3P06FFiYuynZ6esroynNj3FqsOrABgSOoRnRzxLoEegypEJIYRob66urqSmplJbW2t31WFF25AkSgjR6VRWVnLq1Cnz5FwnJye7SqAyCzOZtW4WxyuP46RxMq39lHgzWo0M4xBCCEdVUFCAs7Mz/v7+APj6+qockWhPkkQJITqVmpoa1q9fj16vx8XFxa6GSBiMBt7a8xb/yfwPBsVAhFcEz496nn6B/dQOTQghRDvKz89n69atuLi4MGrUKPMahcJxSRIlhOhU3NzciIiI4PTp03Y1/6mgsoBHf3mULflbALgk5hLmnD8HLxcvlSMTQgjR3gIDA/H19cXPzw9XV1e1wxEdQJIoIYTdUxQFRVHMVY3OO+88jEYjOp1O5chM1h5dy+MbHjev/fTYkMeY1GuSrP0khBAOzGAwmNshnU7HsGHDcHKSr9ZdhbzSQgi7ptfr2b59O25ubgwYMAAwLVpoDwlUraGWBdsW8NG+jwDo69+X50c9Tw/fHuoGJoQQol2VlZWxZcsW+vTpQ0REBIAkUF2MVa92cnKyTQfVaDSsXLmS8PDwVgUlhBANysrKOHnyJFqtltjYWDw9PdUOCYBDJYd4aN1DHDh9AIDpCdO5N/leXHQuKkfWdUjbJIRQy4kTJ6iuriYnJ4fw8HAZedAFWZVEZWZm8sADD+Dldfax/YqiMH/+fGpra885uPaUnp5Oeno6BoNB7VCEEC0ICAggKSkJHx8fu0igFEVhefZyntvyHDWGGvzd/Hl6+NOMjBipdmhdjqO1TdIuCdF5xMXFodFoiImJkQSqi9IoiqKcbSetVkt+fr7Vde69vb3ZuXMnPXv2POcA21tZWRm+vr6Ulpbi4+OjdjhCCODo0aMEBwfj4mJfvTqltaXM3TSXH/J+AGBo6FDmjZxHd/fuKkfWOZ3r56+jtk3SLglhf4xGI0eOHCE6OlqSJgdn7WewVT1Rubm5BAZav0BkVlYWYWFhVu8vhBANsrOz2bdvHwEBAZx//vnmYhJqyyzM5OF1D3Oi8gROGifuSb6HGefNkLWfVCRtkxCiIyiKwq+//sqpU6eora0lPj5e7ZCEHbAqiYqOjrbpoJGRka0KRgghQkJCyMnJISgoyC4SKIPRwJu73+S1na9hUAxEekfy/KjnSeyeqHZoXZ60TUKIjqDRaIiMjKSsrIyAgAC1wxF2wuZvKKtWreKXX34xX09PT2fAgAFcd911nD59uk2DE0J0DUaj0fz/3t7eXHDBBfTu3VvFiEzyK/O59ftbSc9Mx6AYuKznZSy9bKkkUHZI2iYhRFs7s22KjIzkggsuoHt3Gb4tTGxOoh566CHKysoA2L17Nw888AATJkwgNzeXtLS0Ng9QCOHYioqKWLNmDRUVFeZt9jAX6qcjP3Hll1eyrWAbHk4ezBsxj2dHPiuL59opaZuEEG0pOzubjRs3WhR6sYe2SdgPmwva5+bmkpCQAMDy5cu57LLLmDdvHhkZGUyYMKHNAxRCOLbs7GyqqqrIzs5m4MCBaodDTX0NL257kU/2fwJAQkACz496nmgf24aOiY4lbZMQoq3U1NSQk5ODXq/nxIkT5nWghDiTzUmUi4sLVVVVAKxevZrp06cD4O/vb/4VUAghrDVo0CBycnLo06eP2qFw8PRBHlr3EAdLDgJw03k3cc/Ae3DWOascmTgbaZuEEG3Fzc2NlJQUKisrJYESzbI5iRoxYgRpaWkMHz6cLVu28Mknpl9rDxw4IG80IcRZ6fV6iouLCQ4OBsDV1dXcg6AWRVFYlr2M57c8b177ad6IeQwPH65qXMJ60jYJIc5FaWkpGo3GXNK6e/fuMv9JtMjmOVGLFy/GycmJZcuW8eqrr5pXfv/2228ZP358mwcohHAcdXV1rF+/nq1bt3Ly5Em1wwFMaz898PMD/HvTv6kx1DA8bDjLJy2XBKqTkbZJCNFaJ0+eZMOGDWzZssWuF+QW9sWqxXYdmSxqKETHysjI4PTp0wwePFj1v7mMggxmrZ9FfmU+Tlon7ku+jxsTbpS1nzqIfP42TZ4XITqWXq9n/fr1eHp6kpycjLOzDOHuytp0sd2mFBYWUlhYaFH+EaB///6tPaQQwkEpimJe4T0pKQmDwdChVY4MRgMZhRkUVRUR6BFIUvck3vrtLV7b+RpGxUiUdxTPj3qe87qf12ExdXUGo8KWQ8Vtflxpm4QQ1jizXXJ2dmbYsGG4urqatwlxNjYnUdu3b2fGjBns3buXhk4sjUZjfjOeWQpSCNG1GY1Gdu/ejbOzs3nek06nQ6fTdVgMq/NWM3/LfAqqCszbnLXO6I16ACb1msSjQx7F09mzw2Lq6lbtOcHcL7M4Vth2SZS0TUIIa9XU1LBt2zbi4uIICgoCTMUkhLCFzUnULbfcQlxcHG+99RbBwcGSsQshmnXq1CmOHDliXu3d29u7Q8+/Om81aWvTULActdyQQF3X5zoeGfJIh8bU1a3ac4I7P8igrceRS9skhLDWoUOHOH36NLt372bs2LFotTKEW9jO5iTq0KFDLF++nN69e7dHPEIIBxIYGEjfvn3x8fHp8ATKYDQwf8v8RgnUmX468hMPD34Ynbbjesa6MoNRYe6XWW2eQIG0TUII6/Xp0we9Xk9sbKwkUKLVbH7nXHjhhezcubM9YhFCOICTJ09SX19vvt67d2/zcImOlFGYYTGEryn5VflkFGZ0UERiS24xJ0pr2uXY0jYJIZqjKAoFBX+2B1qtlqSkJDw8PFSMSnR2NvdE/fe//2XGjBns2bOHxMTERhVMJk2a1GbBCSE6l7y8PHbv3k1wcDApKSmqDqnad2qfVfsVVRW1cySiQWF5+yRQIG2TEKJ5GRkZHD9+nMTERGJiYtQORzgIm5OoTZs2sWHDBr799ttGt8nkXSG6Nh8fHzQaDS4uLhaVjzpSraGWt3e/zRu73rBq/0CPwHaOSDQoq6k/+06tJG2TEKI5vr6+5Ofn4+TU6qLUQjRi83C+u+++mxtuuIETJ05gNBotLtJICdG1devWjdGjR5OUlKTKOPP1v6/nii+u4D87/0O9Uo+Ltvky6ho0hHiEkByU3IERdl1fZB7jqS9/a7fjS9skhGhO7969GT16NJGRkWqHIhyIzSn5qVOnuP/++wkODm6PeIQQnUh5eTk7d+4kJSXFXB7Wy8urw+PIr8znuS3PsfrIagCC3IN4KPUhdOh44OcHACwKTGgw9ZDNSp3VeYtKGA2QtxEqCsArGKKHgR0+FqNRYeEPB1i85iAA/cJ92HOsrM3PI22TEKLBsWPHOH78uMWwcjXaJuHYbP6peMqUKaxZs6Y9YmmVo0ePMmbMGBISEujfvz+ffvqp2iEJ0WXs2rWL06dPs2fPHlXOrzfoeWv3W0xaMYnVR1aj0+iYnjCdlVesZHyP8fytx99YOGYhQR6WhS2CPYJZOGYh46LHqRL3OctaCYsS4X+XwfK/m/5dlGjabkcqa+v5xwfbzQnUP0b3YsXMEbx6QzIhvm27Jou0TUIIgNraWnbu3El+fj5Hjx5VOxzhwDRKw6qEVnrmmWdYtGgRl156Kf369Ws0efeee+5p0wDP5sSJExQUFDBgwADy8/MZNGgQBw4cwNPTuoUzy8rK8PX1pbS0FB8fn3aOVgjHUlVVxd69e+nXrx8uLs0PnWsPW/O38vSvT3Oo9BAAyUHJPHb+Y8R1i2u0r8FoIKMwg6KqIgI9AkkOSu68PVBZK2HpdGhUKPyP+WfT3oME9Yso/H66ilv/t419+eW46LTMn9qPKckR5tsNRoU1u/L428CYNvn8daS2SdolIc7NiRMnKCkpoU+fPrJmnLCZtZ/BNidRLVU10Wg0HDp0yJbDtbmkpCS++uorq8e9SmMlhPWMRiOlpaV069ZNtRiKqop4cduLfJP7DQD+bv48kPIAE3tOdPzG0mgw9TiVHW9mBw34hMF9u1Ud2rf1cDH/eH87pyrr6O7lyhvTB5Ec1fg905afv47UNkm7JIRtqqurURRFSpaLNmHtZ7DNw/lyc3ObvbSmkVq3bh0TJ04kLCwMjUbDihUrGu2Tnp5Ojx49cHNzY8iQIWzZsqXJY23fvh2DwSATB4VoB3q9nk2bNrFp0yZKS0s7/Pz1xnqW7F3CpBWT+Cb3GzRouDr+alZOXsmkXpMcP4EC0xyoZhMoAAXKjpn2U8nSrUe57s1fOVVZx3lhPqz85/AmE6i2Jm2TEF1TaWkp69evZ8uWLRZrFArR3lRfprmyspKkpCTS09ObvP2TTz4hLS2NJ554goyMDJKSkrj44ospLCy02K+4uJjp06fzxhvWlTUWQtjGyckJJycntFoter2+Q8+dWZjJtV9fy/wt86nQV5AYkMhHl37Ev87/F76uvh0ai6oqWl482Ob92lC9wchTX2Xx8PJd6A0Kl/YL5dN/DCXMz73DY2kL0jYJ0Tm4urqi0WjQaDSSRIkOZdVwvrS0NJ566imr5xk98sgjPPTQQ/j7+9sWjEbD559/zuTJk83bhgwZwuDBg1m8eDFgGk4UGRnJ3XffzezZswHTJMK//e1v3Hbbbdx4440tnqO2tpba2lrz9bKyMiIjI2XYhBBW0Ov11NXVWf1ZcK5O15xmUcYiPsv+DAAfFx/uTb6XqbFTO++cptbSV8MnN8DB1Wffd8ZXEDOy/WP6Q1mNnrs/3MHPB0wLF98/Lo57Lux91t7Bcx225ihtk7RLQpybiooK3NzcZB0o0SbadDjfyy+/TFVVldUnT09Pp6SkxOr9m1NXV8f27dsZN+7PClparZZx48axadMmABRF4aabbuKCCy44awIF8Oyzz+Lr62u+yPAKIZp38OBBDh48aL7u7OzcIQmUUTHy6YFPmbhiojmBmtx7Ml9e8SXT4qd1vQSqOBfeusiKBEoDPuGmcucdJPdkJVekb+DnA0W4OWv5z/XJ3DsutkOGVzpK2yTtkhDWq6+vZ/v27RQXF5u3eXl5SQIlOpxV7zhFUYiLi7O6UaysrDynoBqcPHkSg8HQaN2P4OBg9u3bB8CGDRv45JNP6N+/v3nM+vvvv0+/fv2aPOYjjzxCWlqa+XrDL35CCEtFRUXs3bsXgKCgoA77RTzrVBbP/PoMu07uAiCuWxz/Ov9fDAwa2CHntzv7V8Hnt0NNKXgEwOBb4efn/7jxzIEEf3w+j5/fYUUlfsk+ycwPMyit1hPq68ab01NIDO+44ZWO0jZJuySE9Q4cOMDx48c5ffo0F1xwgSoLuwsBViZR77zzjs0H7qgFD0eMGIHRaLR6f1dXV1xdXdsxIiEcQ2BgIDExMXh5eXVIAlVWV8b/ZfwfSw8sxagY8XT25J8D/sk1fa7BSdsFf2E0GmDts7DuBdP18BSY9j/wjYDgRFg1y7LIhE+YKYHqgPLmiqLw/q95zP0yC4NRYWCUH6/fOIgg77Zd++lsHKVtknZJCOvFxcVRXl5OXFycJFBCVVZ9M5kxY0Z7x9Gk7t27o9PpKCiwnCRdUFBASEjIOR07PT2d9PR0DAbDOR1HCEdSXl6Op6enuWFKTExs93MqisJXh77ixW0vUlxjGp5xScwlPJjyYKNFcruMylOmRXQP/bF47ODb4OJ54PTHWlwJk6DPpaYqfBUF4BVsGsLXAT1QeoORJ1f+xpLNRwCYkhzOvCv64ebc8UMsHa1tknZJiKaVlZWZf8xzcnJiyJAhKkckhB1U52uJi4sLgwYN4scffzRvMxqN/PjjjwwdOvScjj1z5kyysrLYunXruYYphEPIz89n/fr17Nq1q8POmX06m5u/u5lHf3mU4ppiYnxj+O9F/+X5Uc933QTq923w+ihTAuXsAVPehEtf/DOBaqDVmYpH9LvS9G8HJFCnK+u48a3NLNl8BI0GHrmkDwuuSlIlgVJTe7VN0i4J0djevXv5+eefOXbsmNqhCGFB9TEyFRUVFhPXc3NzyczMxN/fn6ioKNLS0pgxYwYpKSmkpqayaNEiKisrufnmm1WMWgjHo9VqMRqN1NTUYDAY0Ona74txlb6KV3e+ygdZH1Cv1OPu5M7t/W9nRsIMnHXO7XZeu6YosPW/sOoRMOohoDdMex+CE9SODIADBeXc+r9tHCmuwsvViZevGcCFfTtmaJwapG0Swj40FJFuqzmNQrQV1ZOobdu2MXbsWPP1hsm1M2bM4N133+Xqq6+mqKiIOXPmkJ+fz4ABA1i1alWHjWsXoqsICgpi6NCh+Pv7t1tlNUVR+D7ve57f+jyFVab1dC6IvIBZqbMI8wprl3N2CnWV8NX9sOsT0/W+E+Hy/4CbfZS3/mlfAfd8lElFbT2R/u68NWMwccHeaofVrqRtEsI+9O3bl6CgILp37652KEJYsGqdKEd2ruuUCNFZ1dTUkJWVRWJiIi4uLme/wznKK8tj3uZ5bDy+EYAIrwgeGfIIoyJGtfu57drJg7D0RijMAo0Oxj0Jw+6GDigRfjaKovDGukPMX7UPRYEhMf68esMg/D3b5v0in79Nk+dFdGXFxcUcO3as2SrLQrQ3az+DW90TdfDgQXJychg1ahTu7u4oitIh64K0FZnAK7q6hnU2jEYjKSkp7Xaemvoa3tz9Ju/seQe9UY+L1oW/9/s7tyTegptTx1Zzszt7v4QVd0FtGXgGwVXvQI8RakcFQG29gUc/28PyjN8BuDY1irmTzsPFya6n0nbqtknaJdHV1dXV8euvv2IwGPDx8SE6OlrtkIRols09UadOneLqq6/mp59+QqPRkJ2dTc+ePbnlllvo1q0bCxYsaK9Y24X84ie6qvLycjIzM0lOTm63BXR/Pvozz255lmMVpgnBw8OH82jqo0T5RLXL+ToNQz389G/Y8LLpetRQuPId8AlVN64/FJbX8I/3t5NxpASdVsOcyxKYPjS6zZORtvz8daS2Sdol0ZUdOXKEwsJCBg4c2K5zc4VojrWfwTb/pHj//ffj5OTEkSNH8PDwMG+/+uqrWbVqVeuiFUJ0iDMn5np7ezNy5Mh2SaCOVRzj7p/u5p8//ZNjFccI9gjmpTEv8eqFr0oCVV4A70/+M4Ea+k+Y8aXdJFB7jpUyefEGMo6U4OPmxP9uTmXGsB5235sjbZMQnVN9fT21tbXm61FRUaSkpEgCJeyezcP5vv/+e7777jsiIiIstsfGxpKXl9dmgQkh2o7BYCAzM5OioqJ2S5wA6gx1/O+3//HGrjeoMdTgpHHixvNu5B/9/4GHs8fZD+DojvwKS2dART64eMHli+G8K9SOyuzb3SdIW7qTar2BnoGe/Hd6Cj0DvdQOyyrSNgnR+VRVVbFlyxacnJwYNmyYLJ4rOhWbk6jKykqLX/kaFBcXy4rrQtgpjUZDdXU19fX1lJaWtksSten4JuZtnsfhssMApASn8K/z/0Uvv15tfq5OR1Hg11fhh8fBWA/d4+HqDyAwTu3IAFMBiVd+PMhLqw8AMCoukP+7diC+7p2n3Ly0TUJ0PoqiUFNTg06no7q6ut1+4BOiPdicRI0cOZL33nuPp556CjB9OTMajTz//PMW5WDtnUzgFV2JVqtl8ODBVFZW4u/v36bHLqgs4MVtL7LqsGnIVIBbAA8OfpBLYy61+yFgHaK2HFbeDb99brqeOBUmvgKu9tHDU11n4MFlO/l61wkAbhkew6MT+uCk61y/CDtC2yTtkuhqPD09SU1NxcPDAze3Ll5oSHQ6NheW2LNnDxdeeCHJycn89NNPTJo0id9++43i4mI2bNhAr16d61dnmcArHNXx48cxGAxERkae03EMRgMZhRkUVRUR6BFIclAyOq0OvVHPh3s/5D+Z/6GqvgqtRsu1fa5l5oCZeLs49hpCVivaD5/cCCf3g9YJLp4HqbfbRflygBOl1dz23jb2HCvDWafh6cmJXD244+asteXnryO1TdIuCUelKAr79u0jIiICb29pJ4R9arcS54mJiRw4cIDFixfj7e1NRUUFU6ZMYebMmYSG2sfEaCG6ulOnTrF9+3Y0Gg2+vr6t/iK2Om8187fMp6CqwLwt2COYaXHTWJW3iuzT2QD0D+zPv4b8i74Bfdskfoew5zP44p+grwTvULjqfxA1RO2ozHYcOc3t72+nqLwWf08XXrthEKkxbdtL2ZGkbRLC/u3fv5+DBw9y/Phxxo4dK3OgRKcmi+3KL37CQW3fvh13d3f69u3bqmF1q/NWk7Y2DYXmPyL8XP24f9D9TO49Ga1GGkMADHr4/nHY/Krpeo+RpvLlXoHqxnWGz3f8zqzlu6mrN9InxJs3p6cQ6d/xhT/k87dp8rwIR1VXV8emTZuIi4uTHzeE3WrXxXZramrYtWsXhYWFGI1Gi9smTZrUmkMKIc5RbW0tLi4u5oQpOTm51XOSDEYD87fMbzGBcndyZ8WkFQR4BLTqHA6p7Dh8ejMc/dV0fcT9MPZfoGv1uuZtymhUeOH7/by6NgeAvyUE89LVA/BytY/4zpW0TULYn5qaGvN8JxcXF0aNGiXzZYVDsLnlXLVqFdOnT+fkyZONbtNoNJ1mQqxM4BWOpKSkhK1btxIREUHfvqYhdefSSGUUZlgM4WtKdX01h8oOSRLVIHcdLLsFKovA1QeueA36XKp2VGYVtfXc9/EOVu8tBGDm2F488Ld4tFrH+DLjCG2TtEvC0eTl5bFnzx5SU1MJDDT1xksCJRyFzeNv7r77bq666ipOnDiB0Wi0uHSmD/6ZM2eSlZXF1q1b1Q5FiHNWWVlJTU0NBQUF5/x3WG+sZ93RdVbtW1RVdE7ncgiKAr8sgvcuNyVQwYlw+1q7SqCOFlcx9T8bWb23EBcnLS9fM4CHLu7jMAkUOEbbJO2ScDSnT5/GaDRy4sQJtUMRos3Z3BNVUFBAWloawcHB7RGPEKIVwsPDAQgODm71Ku+/l//OZ9mf8cXBLyisLrTqPoEe9jPPRxU1pbDiLtj3lel60rVw6UJwsZ+FhTcfOsU/PtjO6So9Qd6uvDE9hQGRfmqH1eakbRLC/vTv35+AgIBzrhIrhD2yOYm68sorWbt2bacqFyuEozEYDBw4cIDY2FicnEx/xg2JlC3qDHX8dPQnPjvwGZtObDJv93Pxo85YR1V9VZP306Ah2COY5KDk1j0AR5C/B5beCMWHQOcClzwHg262m/LlAB9vOcK/Vuyh3qjQP8KXN25MIcTXMddikbZJCPVVVlZy/PhxYmNjAdMahZJACUdlcxK1ePFirrrqKtavX0+/fv1wdrZc0f6ee+5ps+CEEE3btm0bhYWFVFdXk5xseyJzqOQQy7OX82XOl5yuPW3ePjR0KFPjpjI2cizrfl9H2to0AIsCExpMScKs1FnotK3r9er0dn4CX94L9dXgGwnT/gfhg9SOyqzeYOSZb/byzobDAFzWP5QXrkzC3cVxXy9pm4RQl16vZ/369ej1etzc3CR5Eg7P5iTqo48+4vvvv8fNzY21a9daTBDUaDTSUAnRAWJjYykvL6dHjx5W36dKX8X3ed/zWfZn7CjcYd4e5B7E5NjJXNH7CiK8I8zbx0WPY+GYhU2uEzUrdRbjose1yWPpVOprYdUjsO0t0/VeF8CU/4Kn/RTXKK3S88+PMlifbSqw8MDf4vjnBb0dfjK3tE1CqMvZ2ZlevXpRUFBAUFCQ2uEI0e5sXicqJCSEe+65h9mzZzvEImmyHofoLPR6vcWv60aj0aq/waxTWSw/sJxvcr+hQl8BgE6jY1TEKKbGTmV4+HCctM3/nmIwGsgozKCoqohAj0CSg5K7Zg9UyVH4dAYc2266PnqW6WJHz8Whogpu/d82Dp2sxN1Zx0tXD2B8YojaYTWrLT9/HaltknZJdBYNxVsahpU3bOvsf4Oia2u3daLq6uq4+uqrO/0fiJSSFZ2Foijs37+fo0ePMnLkSPN6Gy39DZbXlfP1oa/5LPsz9hbvNW+P8IpgatxULu91udVFIXRaHYNDBp/bg+jscn6CZX+H6mJw84Mpb0LcRaqGZDAqbMktprC8hiBvN+rqDdz90Q7KauoJ93PnjemDOC/MV9UYO5IjtE3SLonORK/Xs23bNrRaLampqebe3878NyiELWzuibr//vsJDAzk0Ucfba+YOpT84ifsXX19Pb/88gvl5eX079+f6OjoJvdTFIUdhTtYnr2c7w9/T42hBgBnrTPjoscxNXYqg0MGo9VIA2c1oxHWL4A1zwAKhCbBtPegWw9Vw1q15wRzv8ziRGlNo9tSorvx2o2D6O7lqkJktmnLz19HapukXRKdQWlpKRs2bABgxIgR8l4VDqPdeqIMBgPPP/883333Hf379280eXfhwoW2RyuEaJaTkxOpqamcPn26yQp8xTXFfJnzJcuzl5Nbmmve3tuvN1Njp3JZz8vwc/PrwIgdRPVp+OwOyP7OdD15BlzyPDirW91u1Z4T3PlBBs39+jVjWHSnSKDamrRNQnQsX19fkpOT8fDwkARKdEk2J1G7d+9m4MCBAOzZs8fiNkefuCxERykuLkav15vXvPHw8MDD48+1h4yKkV+P/8ry7OX8dPQn6o31ALg7uXNJzCVMiZ1C/+795W+ytY5nwtLpUJIHTm5w6QIYeIPaUWEwKsz9MqvZBEoDzPtmHxP6haFzoIV0rSFtkxDtLy8vj8DAQHN7FBJiv3MuhWhvNidRa9asaY84hBB/OH36NJs2bUKj0TQaIpFfmc+Kgyv4PPtzjlceN29PDEhkatxUxvcYj5eLlxphO46M9+DrB8FQC37RcPX7pmF8dmBLbnGTQ/gaKMCJ0hq25BYztJf9VAzsCNI2CdG+cnJyyMrKwtvbm5EjR7Z6YXchHIXNSZQQon35+fkREBCATqfDw8MDvVHPut/X8Vn2Z/xy7BeMihEAbxdvLut5GVNjpxLvH69y1A5AXwPfPAg73jddjxsPV7wG7t3UjesMheXNJ1Ct2U8IIawVHh7OoUOHiIyMlARKCKxMoqZMmcK7776Lj48PU6ZMaXHfzz77rE0CE6IrMRgM5kZJo9EwePBgjlUcY/HOxXyR8wUnq0+a900JTmFq3FTGRY3DzUnd+TkO4/Rh0/C9EztBo4Wxj8GINLCjKlP1BiPf7cm3at8g767xvpC2SYj2dWbb5ObmxtixYy3KmQvRlVn1l+Dr62seU+7r23VK5grREaqqqti6dSsRERFE9Ijgx7wfWZ69nC35W8z7+Lv5c3nvy5nSewo9fHuoF6wjOvA9fHYb1JSARwBMfQt6jVU7KgvFlXXc/VEGGw6eanE/DRDi60ZqjH/HBKYyaZuEaD+FhYVkZmYyePBgunUz9chLAiXEn6wucf7vf/+bBx980GJye2d25nocBw4ckFKyQjV5eXms2riKrSe3std/L2X1ZQBo0DA8fDhTY6cyOnI0zlrnsxxJ2MRogLXzYd3zpuvhKTDtf+AboW5cf5F1vIzb39/G76er8XDRceP5UbyxzlSF8cwP74bSCa/ekMz4xNAOj7M12qKUtyO1TdIuCXuybds2Tpw4QWhoKCkpKWqHI0SHsbZtsjqJ0ul0nDhxgqCgoDYL0h7IehxCLVX6KlYdXsXy7OVs/W0rzn7OaF20hHiGMKX3FCb3nkyoV+f4Mmz3jAbI2wgVBeAVDN3jYcUdpkV0AQbfBhfPAycXdeP8i5U7j/Pwsp3U6I1EB3jwxo0pxId4N7lOVKivG09MTOg0CRS0zeevI7ZN0i4Je1BfX8+hQ4fo3bu3LKArupQ2XyfKxjV5heiSDEYDGYUZFFUVEegRSHJQMjrtnxNwFUVhd9Fu3l7/NhurNlJtrAbAM9iTsVFjmRI7haGhQy3uI85R1kpYNQvK/qxmiEYHigGc3GHSK9B/mnrxNcFgVHh+1T5eX3cIgNFxgbxyzUB8PUy9keMTQ/lbQghbcospLK8hyNs0hK+rlTUHaZuEaCt1dXUUFhYSEWHqjXdyciIuLk7lqISwXzYNbpW1NoRo3uq81czfMp+CqgLztmCPYGanzmZwyGC+OvQVn2V/xs4dO9Gf1uMc4EzfxL5MiZ3CxF4T6e7eXcXoHVTWSlPBiL+urKQYTP9e+LjdJVAlVXXc/dEO1mebioncOaYXD14U3yhB0mk1Xa6MeXOkbRLi3Oj1etavX09VVRVarZawsDC1QxLC7tmURMXFxZ21sSouLj6ngITojFbnrSZtbRrKX76sF1QVcP/a+3HSOFGvmBbE9ezuSbx7PDdfdDPjk8bLF8D2YjSYeqBaWpp2UzoM+QfYSc/fvvwybn9vO0eKq3B31vHiVUlc2r/zDM9Ti7RNQpwbZ2dnQkJCyM/Px9vbW+1whOgUbEqi5s6dKxWQhPgLg9HA/C3zGyVQZ9Ib9MT7x3Nl/JVMiJmAu8YdFxf7mn/jcPI2Wg7ha0SBsmOm/WJGdlhYzfl61wke/HQn1XoDkf7uvHFjCn1DZT6MNaRtEqJ1jEajeb5TQkICcXFxODtLESMhrGFTEnXNNdc41ORdIc5VnaGO5QeWWwzha7TPqTrqCut44K4HGBY1rAOj6+LKT1i3X0Xzr11HMBgVXvx+P6+uzQFgZGx3/u/agfh5SJJtLWmbhLCN0Whk165dGI1GkpOTAdOwWEmghLCe1UmUDDkSAopriskszCSzMJMdhTv47dRv6I36ZvdXDAp1+XUY64xkHcySJKqjlB6DDa9Yt69XcPvG0oLSKj33fLyDnw8UAXDHqJ48dHE8TjqphGUtaZuEsF1paSm///47AD179sTPz0/dgITohKQ6nxDNUBSF3LJcc8KUWZjJ4bLDjfbzdvamXF/e5DE0Og3uPd2pL60nKSGpnSMWAPy2Ar6817R4LhpanBPlEwbR6iS2BwrKue29beSdqsLNWcvzVyYxKUkmc9tK2iYhbNetWzf69++Pm5ubJFBCtJLVSZTRaGzPOIRQXa2hlj0n95gTpsyiTEprSxvt18u3FwOCBjAwaCADggYQ7hnO+M/GU1hViIKCsdaIUW/Eycv05+Xk7kR4QDjJQckd/ZC6ltpy+HY2ZH5guh6WDEnXwrcP/7FDE0vTjp+vSlGJVXtOkLZ0J1V1BiK6ufP6jYM4L0zm9LSGtE1CWKewsBBfX19cXV0BiIqKUjkiITo3m+ZECeFITlafZGfhTnYU7mBH0Q6yTmVRb6y32MdV50pi90QGBg1kYNBAkgKT8HVt/GV3dups0tamYaw2UpldCYBnvCc6V9MX9Fmps2Ttp/b0+3ZY/nc4nQtoYGQajHkEdM7gHdJ4nSifMFMClTCpQ8M0GhUW/nCAxWsOAjCsVwCLr0vG31PmPwkh2s+RI0fYuXMn/v7+DB06VBbPFaINdNkkKj09nfT0dAwGg9qhiA5gVIwcKjnEjqId5jlNR8qPNNqvu3t3c7I0MGggff374qw7+0TbcdHjWDhmIc/++iy5rrmmjRrTOlGzUmcxLnpcWz8kAaYy5r8shDXPmtZ+8omAKW9Aj+F/7pMwCfpcaqrCV1FgmgMVPazDe6BKq/Xc/0kmP+0rBODWETHMvqSPzH8SZtIuifbi7++Ps7OzlC8Xog1plC4+oLysrAxfX19KS0vx8ZFywo6iur6aPSf3mOcz7SzaSVldmcU+GjT08utl7mUaEDSACK8ImyeqK4pivo/BaGDz75s5VXuKEO8QkoOSpQeqvZQcgc/ugCMbTdfPmwKXvQTufqqG1ZSDheXc9t52ck9W4uqkZf7UflwxMELtsFQnn79Nk+dFtIUz2yaA6upq3N3dVYxIiM7B2s/gLtsTJeyTwWggozCDoqoiAj0CrU5CiqqKTMPy/kiY9p7aa17ctoGbzo1+gf0YEGiaz5QUlISPy7l9QdHr9Wzfvp3w8HAiIyPRaXVSga8j7F4GX6VBbSm4eMOlL0L/q8EOK7V9/1s+aUt3UlFbT5ivG29MTyExXOY/CSHaT1lZGTt27CA5Odnc+yQJlBBtS5IoYTdW561m/pb5FmsuBXsEMzt1tsVwOKNi5GDJQXMv047CHRyrONboeEHuQeYCEAODBhLnH4eztm3XwPj9998pKiqipKSEkJAQWWOjvdWUwTcPwa6PTdcjUk3D9/xj1I2rCUajwss/ZvPyj9kADInxJ/36ZLp7uaocmRDC0e3bt4+ysjJ+++03zj//fLXDEcIhSRIl7MLqvNWkrU1D+Us56sKqQu5fez93Jt2JTqNjR9EOdhXualRSXIOG2G6x5mF5A4MGEuYZ1u5ryPTo0YPKykoiIyMlgWpvRzbDZ7dBSR5otDDqYRj1EOjs72OsvEbP/Z/sZPVe0w8CNw3rwWOX9sVZ5j8JITrAgAEDyMrK4rzzzlM7FCEclv19+xBdjsFoYP6W+Y0SKMC87dWdr1psd3dyp3/3/uaEqX9gf7xdOmbCbGFhIYGBgWg0GjQaDYmJiR1y3i7LUA/rX4SfnzcVj/CLgilvQpR9/rqaU1TB7e9tI6eoEhcnLfOu6MeVg2T+kxCi/RiNRk6dOkVgYCAALi4uDBgwQN2ghHBwkkSJDmdUjBRWFXKk7Ah55XlsPr7ZYghfcwYHD+bC6AtNQ/O6xeGk7fi3b1ZWFjk5OcTGxtKnT58OP3+Xc/owLL8Nft9iut7/apjwArjZ55yi1VkF3P9JJuW19YT6uvHaDYNIivRTOywhhAOrr6/n119/paSkhCFDhpgTKSFE+5IkSrQLRVE4VXOKvLI8U7JUlseR8iMcLjvM0bKj1BhqbD7mlXFXMqHnhHaI1noNVVqcnORPp10pCuxaCl8/AHXl4OoDly6E/lepHVmTjEaFxWsOsvCHAwCk9jDNfwr0lvlPQoj25eTkhKenJxUVFe0+hF0I8Sf5JijOSUlNCXnlpkTpcNlhi4SpUl/Z7P10Gh3hXuFE+UThpnNj9ZHVZz1XoIf6v65FRETg5+eHl5eX2qE4ruoSU/K0Z5npetRQuOJ16BataljNqaitJ+2TTL7PMvWmTh8azb8uTcDFSeY/CSE6RlJSEjU1NXh4eKgdihBdhiRR4qzK68rNyVFDwtSQNP117aUzadAQ5hVGlHcUUT5RRPtEmy9hXmHmSnkGo4GLl19MYVVhk/OiNGgI9ggmOSi53R5jc4qKisjJyWHw4MHodKZS65JAtaO8jfDZ7VB6FDQ6GPMIjEzr8IVxrXWoqILb39/OwcIKXHRanp6cyLTBkWqHJYRwcNnZ2dTV1ZkLR2i1WkmghOhgkkR1Yq1dU6kpVfoqjpYfNSVKf1yOlJsSp+Ka4hbvG+QRRLRPNFHeUfTw6WFOmCK8I3DVnX04k06rY3bqbNLWpqFBY5FIaTANTZiVOqvDF601GAzs2LGD2tpaDh48SHx8fIeev0sx6OHn52D9AlCM0C0Gpv4XIlLUjqxZP+0r4N6PMymvqSfYx5XXbhjEwKhuaoclhHBwp0+fZt++fQCEhobi7++vckRCdE2SRHVS1q6pdKZaQy2/l//eaNhdXmkehdWFLZ4vwC3AlCj9kSBFeZv+jfSOxMP53H/9Ghc9joVjFjb5mGalzmr2MbUnnU5HSkoKR48eJTY2tsPP32WcyjGVLj+23XR9wA1wyXxw7Zhqi7ZSFIX0NQdZ8MMBFAUGRXfj1RuSCfJ2Uzs0IUQX0K1bN/r06YOLi4skUEKoSKMoSuPxU11IWVkZvr6+lJaWmosG2Lvm1lRq6LWZnTqbCO8Iy16lsiOcqDzR5HC5Br6uvkR7R1sMvYvyiSLaOxovl44ZwtaWvWutUVdXR21trXmFd9GOFAUyl8A3D4O+0lRxb+LLcN4VakfWrMraeh78dCff7skH4PohUTwx8TyZ/9RKnfHztyPI8yL+qqysDA8PDylqJEQHsPYzWP4aOxlr1lR6dsuzzd7f09nTlCD9JVmK9onG11X9stE6rY7BIYNVOXdlZSWbN2/GYDAwcuRI3NykZ6HdVBXDV/dD1grT9egRMOV18LXf9ZQOn6zk9ve3caCgAmedhn9fnsi1qVFqhyWEcHD5+flkZGQQEBBAamqqVOATwk502SQqPT2d9PR0DAaD2qE0SVEU01pK5X9WvTtcdpj9xfutWlMpwiuCvgF9LYbeRflEEeAWIB/AzXBxcUGj0aDVaqmvr1c7HMeVux4+vwPKjoHWCcY+BsPvtdviEQBr9xdyz0c7KKupJ9DbldduSGZQtAyjEW3L3tsloQ43NzcaBg0ZDAbpjRLCTshwPhWHTSiKwuna0xblwRv+PVJ+hOr66lYf+7mRz6m+plJnVFVVhZOTEy4uLmqH4njq62DNM7DhZUAB/16m4hHhHV910VqKovDqzzm88N1+FAUGRvnx2g2DCPaRXsq2IMPWmibPi/irhveC/AgqRPuT4Xx2pKFE+F8TpbzyPMrrypu9n06jI8wrzGLIXY2+hoUZC896TntYU8neGY1G9uzZQ1BQECEhIQBSIra9nMyG5bfCiUzT9eQZMP5ZcPFUNayWVNXV89CyXXy96wQA1wyOZO7l5+HqZL89ZkKIzq+mpoZdu3bRr18/3N3dAfD1VX+4vRDCkiRRf9hesJ1RXqNaXcSgur7aouLd4dLDVpcID/EMMc9TOjNhCvcKx1nnbLGvwWhgyb4ldrmmUmdz+PBh8vLyOHbsGOPGjcPZ2fnsdxK2URTI+B+segT0VeDeDSb9H/SdqHZkLTpyqorb39/GvvxynLQanpx0HtcPiZJfgYUQ7W7nzp0UFhZiMBgYOnSo2uEIIZohSdQfZv44k7DMsBZLhOsNeo5WHCWvNM9irlJeWd5Z5yl1d+9unpt05iXSOxI3J+uHBtnrmkqdUY8ePSguLiYyMlISqPZQeQq+vAf2fWW6HjMarngNfMLUjess1mcX8c8Pd1Barae7lyuv3pDM4B4y/0kI0TH69+9PZmYmSUlJaocihGiBzIn6Y9xj31f74uRuyikfHfKoRYnwhkTpeOVxjIqx2WP5uPhYLDZrLhPuHdXmJcKbWicqxCNEtTWVOouysjKZY9ARctbA5/+AinzQOsO4J+D8maC131LgiqLw5vpDzP92H0YFkiL9eO2GZEJ93dUOzWHJ3J+myfPStSiKQnl5ubzWQtgJmRPVCg29Os9sfqbZfTycPCwWnTVfvKPxc/ProEhNi9OOjRyr6ppKnc2hQ4fIysoiISGBnj17qh2OY6qvhR//DZsWm653j4Opb0Fof3XjOovqOgOzlu9i5c7jAFw1KIKnJifi5ix/T0KI9mM0GsnIyKCgoIDhw4fj5+endkhCCCtJEtWMMM8w+gb0NS8225AsdXfvbjfzItRcU6mzUhSFiooKtcNwTIX7TMUjCnabrqf8HS56Glzsu1jH0eIq7nh/O1knynDSapgzMYEbz4+2m79zIYTj0mg0GI2mES6VlZWSRAnRiUgS1Yx7k++VEuEOpmfPnnh7exMYKJUL25SiwNb/wvf/gvoa8AiAy9Mh/hK1IzurDQdP8s8PMzhdpSfA04X/XJ/MkJ4BaoclhOgiNBoNycnJlJeX061bN7XDEULYQJKoZkiJ8M6vvLycnJwc+vfvj/aPuTiSQLWxiiJY+U84sMp0vdeFMPlV8A5WN66/MBgVtuQWU1heQ5C3G4N7dOPdjYeZ981ejAr0C/fl9RsHEeYn85+EEO3r2LFjVFdX07t3bwCcnJwkgRKiE5Ik6i+kRLhjMBqN/Prrr9TU1ODu7k58fLzaIXVeRgPkbYSKAvAKhuhhoNVB9mpYcSdUFoLOFf72b0i93e6KR6zac4K5X2ZxorTGvM3NWUuN3jSEZkpyOPOu6Cfzn4QQ7a60tJSMjAwA/P398feXyp9CdFaSRJ1BSoQ7Dq1WS//+/Tl06BAxMTFqh9N5Za2EVbOg7Pif27xDIaQ/ZH9nuh7YF658C4LPUyfGFqzac4I7P8hotKJaQwJ11aAInr+yv8x/EkJ0CF9fX2JiYtDpdNL7JEQnJ0nUGYI9gqVEeCdmNBqpq6vDzc207lZwcDDBwfY1rKxTyVoJS6fDX1OQ8hOmC8CQf8C4J8HZ/obBGYwKc7/MamJJ6j/9cvAkRgV0kkMJIdpJTU0NLi4u5mHliYmJKkckhGgLkkT9If3CdEb1GiU9UJ1UbW0t27Zto66ujhEjRsjiuefKaDD1QLWUgngEwMXzTEP77NCW3GKLIXxNOVFaw5bcYob2kmISQoi2d/r0abZu3UpgYCADBw5UOxwhRBuyr8kLKhoUPEgSqE6uqqqK2tpaKWHeFvI2Wg7ha0rVKdN+dqqwvOUEytb9hBDCVvX19dTV1VFWVoZer1c7HCFEG5KeKOEQXF1dGTJkCFqtFi8vL7XD6fzK863br6KgfeM4BzV6g1X7BXm7tXMkQoiuKjAwkNTUVPz9/XFykq9cQjgS6YkSndbBgwc5deqU+bqPj48kUOdKUSBnDaxfYN3+XvY552zZ9t+Z88WeFvfRAKG+bqTGSHUsIUTbqK+vZ/fu3dTV1Zm3BQUFSQIlhAOSv2rRKeXl5bF3715cXFwYO3YsLi4uaofUuSkKHFoLa+fD0V+tuIMGfMJM5c7tSI3ewNwvf+OjLUcBSAj1Ye+JMsBydldDHYknJiag00pVCSFE29ixYwf5+flUVlZy/vnnqx2OEKIdSRIlOqWIiAiOHj1KRESEJFDnoqnkSecKKbdAUF/48t6GHc+40x9Jx/j5dlVU4sipKu5csp3fjpeh0cC9F8Zy9wWx/JCV32idqBBfN56YmMD4xFAVIxZCOJq+fftSXl4uaxMK0QVIEiU6jdraWlxdXQHQ6XQMHz5c1vdprZaSp+H3gs8fyYV7t8brRPmEmRKohEkdHnZzVmcVkLY0k7Kaerp5OLPomoGMjgsEYHxiKH9LCGFLbjGF5TUEeZuG8EkPlBCiLZzZNnl5eTF27Fhpm4ToAhwiibriiitYu3YtF154IcuWLVM7HNEO8vPzycjIoH///kRERABII9Ua1iZPDRImQZ9LTVX4KgpMc6Cih9lND1S9wciCHw7w6tocAAZG+ZF+XTJhfpbrVum0GiljLjqctE2OTVEU9u3bR15eHiNGjDDPyZW2SYiuwSGSqHvvvZdbbrmF//3vf2qHItpJSUkJBoOB48ePm5MoYYOmkicnNxh0c9PJ05m0OogZ2SFh2qKwvIZ7PtrBr4eKAbhpWA8endAXFyeplyPsg7RNjk1RFIqLi9Hr9RQVFUlhIyG6GIdIosaMGcPatWvVDkO0o/j4eDw8PIiMjFQ7lM5FUeDQmj+Sp82mbQ3J04j7wDtE1fBaa0tuMf/8MIPC8lo8XXTMn9qfiUlhaoclhAVpmxybVqslJSWF4uJiQkNlfqUQXY3qP9muW7eOiRMnEhYWhkajYcWKFY32SU9Pp0ePHri5uTFkyBC2bNnS8YGKDlVTU8O+fftQFFNBA41GQ1RUlAyTsJaiQM5P8PbF8P4VpgTKyQ2G3An37oRL5nfKBEpRFN5Yl8O1b/5KYXktsUFefPHPEZJAiTYnbZNoSnFxMUePHjVfd3V1lQRKiC5K9SSqsrKSpKQk0tPTm7z9k08+IS0tjSeeeIKMjAySkpK4+OKLKSws7OBIRUcxGo1s3LiR7OxsDh48qHY4nUtzydP5d3Xq5AmgrEbPHe9vZ943+zAYFS4fEMaKmcPpHSRDaETbk7ZJ/FVZWRmbNm1i586dFBcXqx2OEEJlqg/nu+SSS7jkkkuavX3hwoXcdttt3HzzzQC89tprfP3117z99tvMnj3b5vPV1tZSW1trvl5WVmZ70KJdabVaYmNjOXjwIGFh0sNgleaG7TUUjOikiVODrONl3LlkO3mnqnDRaXl8YgI3DJGeSdF+OrJtknapc/Dx8SE0NBSj0Yivr6/a4QghVKZ6EtWSuro6tm/fziOPPGLeptVqGTduHJs2bWrVMZ999lnmzp3bViGKNqTX63F2dgYgMjKS8PBwtFrVO0vtm4MnTwBLtx3l8RV7qK03Eu7nzn+uTyYp0k/tsEQX1tZtk7RL9qu+vh6dTmf+wWbAgAFoNBr5AUcIof5wvpacPHkSg8FAcHCwxfbg4GDy8/PN18eNG8dVV13FN998Q0RERIuN2COPPEJpaan5cubYZqEOg8FARkYGv/76KwaDwbxdEqgWKAoc/BHeuqjpYXvjn+30CVSN3sCsZbt4eNkuauuNjIkP5Ku7R0gCJVTX1m2TtEv2qaqqil9++YWsrCzzNq1WKwmUEAKw854oa61evdrqfV1dXc2L4gn7UFtbS1FREXq9ntOnT9O9e3e1Q7JfDXOe1s6H3/+YxO5gPU8AeacqufODDLJOlKHRQNq4OGaO7Y1WFsgVnYi1bZO0S/aptLSU8vJy9Ho9sbGxuLi4qB2SEMKO2HUS1b17d3Q6HQUFBRbbCwoKCAlxjC+LAjw8PEhJSQEgIEAWRG1SF0meAL7/LZ8HPt1JeU09/p4uvHLNQEbESmIt7Ie0TV1DaGgoSUlJBAUFSQIlhGjErsdLubi4MGjQIH788UfzNqPRyI8//sjQoUPP6djp6ekkJCQwePDgcw1TtMLx48ctJk8HBARIAtWUM4ftfTDFlEA5ucH5Mx1m2F6DeoORZ7/dy+3vb6e8pp5B0d34+p4RkkAJu9NebZO0S+pSFIWcnBzq6+vN26KionBzc1MxKiGEvVK9J6qiosKijHVubi6ZmZn4+/sTFRVFWloaM2bMICUlhdTUVBYtWkRlZaW5IlJrzZw5k5kzZ1JWViZVdjrYsWPHyMjIwN3dnVGjRskvfE1ptufp73/0PAW3fP9OprC8hrs/3MHmXFPZ4FuGx/DIhD446+z6dx7hwNRom6RdUtfOnTs5evQoxcXFksgKIc5K9SRq27ZtjB071nw9LS0NgBkzZvDuu+9y9dVXU1RUxJw5c8jPz2fAgAGsWrWq0YRe0XkEBQXh5eVFUFCQuRqf+IOiQM6PfyRPW03bHDh5Avj10Cnu/mgHReW1eLroeP7KJC7tL4tXCnVJ29T1REdHk5+fT3h4uNqhCCE6AY2iKIraQaip4Re/0tJSfHx81A7HYRkMBnQ6nfl6fX09Tk6q5/D2owsmT4qi8Pq6Q7zw3X4MRoW4YC9evWEQvQJl8dyuQj5/mybPS8eRtkkI8VfWfgZ32U+K9PR00tPTLUpqi/ZRUlLC1q1b6d+/v/lXWmmk/tAFkyeA0mo9D366kx+yTBPzpwwM5+krEvFwkfeF6LqkXepYeXl5HDhwgBEjRuDu7g5I2ySEsJ70RMkvfu1uz5495Obm0q1bN0aMGKF2OPahiyZPAHuOlXLXkgyOFFfhotPyxKQErkuNkrVXuiD5/G2aPC/tz2g0sn79esrKyoiLiyM+Pl7tkIQQdkJ6ooTdSEhIwNnZmV69eqkdSvszGiBvI1QUgFcwRA8D7Z9DRZpOntxh8N9h2D0OnTwBfLL1CI9/8Rt19UbC/dx59YZk+kf4qR2WEKKL0Wq1pKamcvz48a7RNgkh2pwkUaLNGQwGjh07RlRUFGBqrLrEr3xZK2HVLCg7/uc2nzAY/xz0nWgqVb72WTi2zXRbF0qequsMzPliD59u/x2AC/oEsXBaEn4eUplRCNExKisrqaioMA8rd3d3lwRKCNFqkkSJNmU0Gtm4cSMlJSUYDAZiYmLUDqljZK2EpdOBv4yOLTsBS28E/15QnGPa1oWSJ4DDJyv5xwfb2ZdfjlYDD1wUz52je6HVyvA9IUTHqKio4JdffsFoNDJ8+HApIS+EOGddNomSCbztQ6vVEhYWRlVVVddppIwGUw/UXxMo+HNbcQ7o3CD11i6TPAGs2pPPQ5/upLy2nu5eLrxyzUCG9ZbFc4VoirRL7cfT05Nu3bqh1+tl8VwhRJuQwhIygbdNGI1GtNo/F0atq6vrOovo5q6H/1129v2mvQ8Jk9o/HjugNxh54bv9vLHuEAAp0d1YfF0yIb7y5UX8ST5/mybPS9tQFMWiYE19fT1ardairRJCiL+SwhKiQyiKwv79+ykpKSE1NdXcOHWZBKr0GPz2uXX7GuraNxY7UVBWw90f7mDL4WIAbh0Rw6xL+uCsky8uQoiOodfr2bZtG927dyc2NhaQ8uVCiLYlnyjinFRVVXHo0CEMBgOFhYWEhISoHVL7qiiE3HVweL3p3+JD1t/Xy/GH8G3KOcXdH+3gZEUtXq5OvHhVf8YnhqodlhCiiykoKODkyZOUlJQQFRWFq6ur2iEJIRyMJFHinHh6epKcnEx9fb1jJlBVxX8kTOtN/xbts7xdo4WQJDiVDXUVzRxEY6rSFz2s3cNVi9Go8Nq6HF78bj9GBfqEePPqDYOI6e6pdmhCiC4oIiKCqqoqQkJCJIESQrQLSaKEzU6fPo2LiwuenqYvyA6VPNWUmtZ5yv2jp6lgD40KRgT3g5hREDPSlBi5+Z5RnY+/7P/HePzx8y3Xi3IgpVV6Hvg0k9V7CwGYmhzB05MTcXdxzMcrhLBPx48fJyQkxDysPC4uTuWIhBCOrMsmUVIFqXUKCgrYtm0bHh4ejBgxAmdnZ7VDOje1FXDkVzi8zpQ4ncgExWi5T2AfU9LUYyT0GAEe/o2PkzAJpr3XzDpR8x22oMSeY6XcuWQ7R4urcXHSMnfSeVwzONJiMrcQwjrSLrVeVlYWOTk5REZGMmDAALXDEUJ0AVKdT6og2aSmpob169fj5+fHwIEDO99EXX01HN3y57ymY9vBWG+5j38vUy9TQ+LkFWT98Y0GU09WRYFpDlT0sE7fA2UwKmzJLaawvIYgbzdSY/zRauDjrUd5YuVv1NUbifR359XrB5EY3kXK2os2IZ+/TZPnxXZFRUVs2bKFPn36yAK6QohzItX5RJs5s0ysm5sbI0aMwM3NrXP0NtTXwbFtf85pOroFDLWW+/hG/Tk8r8dI8A1v/fm0OtNxHMSqPSeY+2UWJ0przNtCfFzpEeDFr7mnABjXN4gFVw3A16OT90oKITqVM9umwMBALrjgAtzd3VWOSgjRVUgSJVpUVVXFtm3bSExMxN/fNIzNrhspQ71pSF7uz6bE6ehm0FdZ7uMd+mcvU8xI6NZDjUjt3qo9J7jzg4xGSwjnl9WSX1aLBnh4fB/uGNUTrbYTJNRCCIdRWFjIvn37OP/8881Lath12ySEcDiSRIkWZWdnU1payu7duxk1alT79z7ZOhzOaID83X+WHM/bBHXllvt4dD9jeN4oCOgFnaEXTUUGo8LcL7MaJVBn8vd04XZJoIQQHcxoNLJnzx4qKyvJzs7mvPPOUzskIUQXJEmUaFFiYiKKohAfH9/+CVTWymYKMzz3Z2EGoxGK9v45PO/welNFvTO5+ZkKQMSMMl0C+0jSZKMtucUWQ/iacqqyji25xQztFdBBUQkhBGi1WgYPHszhw4fp27ev2uEIIbqoLptESRWkpimKQlFREUFBpmIKOp2uYyodmUuE/6Xvo+wELL0RkmeYkqXDv0DVSct9XLyhx/A/h+cF94M/StyK1iksbzmBsnU/IcTZSbvUvLq6OiorK+nWrRsA3t7e9OvXT+WohBBdmVTnkypIZoqisHXrVgoKCkhOTiY8/BwKLNjCaIBFiZY9UC1x9oCo8/8cnheaBLou+3tAmztdWceclXv4cueJs+770W3nS0+UaDX5/G2aPC+Wqqqq2LRpE3q9npEjR5rXKBRCiPYg1fmEzTQaDd7e3hQVFbXv0L2aMjidC8W5UHwIjmyyLoEacAMk3whhyeDk0n7xdVFlNXr+uz6Xt3/JpaK2vsV9NUCIr6ncuRBCtCc3NzdcXV0B03woIYSwB5JECQt9+vQhMjISLy+v1h9EUaDq1J9J0uk//m24/tfheNbqNdbUAyXaVGVtPe9uPMwb6w5RWq0HICHUh7F9AvnPmhzAcpBlQ3r9xMQEdFJUQgjRzhrmQGk0GnMlPiGEUJskUV3ckSNHOHnyJAMHDkSj0aDRaKxLoIxGKD/RdJJ0+jDUlrV8f4/u4B8D/j1Bo4WdH539nF7BVj0mYZ0avYEPfs3j1bU5nKqsAyA2yIu0v8Vx8XkhaLUa+oX7Nl4nyteNJyYmMD4xVK3QhRAOzGg0snv3brp160ZUVBSAuSdKCCHshSRRnZmt5cD/oqqqit27d2M0GgkJCSEsLMxyB4MeSo6cMfTujJ6l04eh/ixFBXzCTUlStx6mfxuSpm4x4HbGGFOjwbSuU9kJGhWWAEBjqtIXPczqxyaaV1dvZOm2oyz+6SD5ZabXMDrAg/vHxTExKcyid2l8Yih/SwhhS24xheU1BHmbhvBJD5QQor0cO3aMI0eO8PvvvxMUFISbm5vaIQkhRCOSRHVW1pQDPwsPDw/69YmlpjCHsLIdcPgzy56lkqOgtFAlSqMDv6g/EqS/JEndosHZyoUPtTpT3EunYxos1sTgsfHzbUoQRWP1BiOf7zjGyz9m8/vpagDCfN2458JYpg6KwFnXdEVDnVYjxSOEEB0mMjKS06dPExISIgmUEMJuSRLVGbVYDnw6THvPMpGqKTUPt6s8tg9dWR5uFUehOJeo8rMUdHByMyVF5gSpx58Jk28k6Jzb5jElTDLF3WRiON/qxFA0ZjQqfLX7BIt+OMChk5UABHq78s+xvbkmNRJXJ0lOhRDqOn36NH5+fuaiRv3791c5IiGEaFmXTaI67XocRoMp0Why2Nsf2764C7K+MA25Kz4E1cUAFFcrbDlmwNMZhkXq/hyS5epj2Yt0Zq+SV0jHrbmUMAn6XHpOQxTFnxRF4fusAl764QD78ssB6ObhzJ1jenHj+T1wd5HnVQh70mnbpXN06NAhfvvtN3r16kVCQoLa4QghhFVknajOsB5HTZmpd6bsGBxaCxtfsf0YnoFUekaz/oQrnoFRpA4biWtIvClp8vCH9ixpLjqUoiisyz7Jgu/3s+v3UgC83Zy4fWRPbh4Rg5drl/3tRNiZTvH5q4Ku9rwcO3aMjIwMoqOjpQdKCKE6WSfKVoc3QuLfOrbXQ1Gg+rQpOWpIksqON/7/ugrbj504FRIu/3Monqs3nsCwsjI8PT3R6aQXwhH9eugUC77fz9bDpwHwcNFx8/Ae3DayJ34eUhpYCGF/wsPD8fDwoFu3bmqHIoQQVpMkqsFH0yAw3KbCDC0yGqGyqHFiVH7CMkk6W4W7Bm6+pmp3Tm5wPOPs+w+6GX3E+ezcuZM4TwWfP6rDdoVfNbuijCOnWfj9AX45aFqDy9VJy43nR/OPMb3o7iWlgYUQ9qOsrIz9+/czcOBAnJxMX0MkgRJCdDaSRJ2pucIMf2Woh4p80/5N9iIdh/LjYKy37rwe3U0FFHzC//j3zEs4eIeC6x9rNxkNsCjRqnLgWbv3cOLECSoqKhg9erR5wq5wHL8dL2Xh9wf4cV8hAM46DdcMjmLm2N6E+EpVKyGEfVEUhW3btlFZWcm+fftITExUOyQhhGgVSaIsKIAGvnkQ3LuZihs0lSRVFIBitOJ4GvAOMSU13qFnJElnJEveoeBsw5ddG8qBJyQkUFVVRUJCgiRQDuZgYTkv/ZDN17tPAKYy5FOTw7n7glgi/T1Ujk4IIZqm0WgYOHAg2dnZxMfHqx2OEEK0miRRjSimJOl/l7W8m9bpj8QorIlepD/+3yu47UqAn6mFcuBlI+bg80cvmrOzM0OHDm378wvV5J2q5OXV2azIPIZRMdUDmZQUxr0XxtIz0Evt8IQQohGj0Uh1dTWenp6AaeheamqqylEJIcS5kSSqOZ6B0D2+mSQpzHS7mqW3/1IOXPEMYk+5D3lHfye1sJCgoCD1YhNt7lhJNYt/ymbptt8xGE29jxefF0za3+KJD/FWOTohhGhabW0tW7dupbq6mpEjR8riuUIIhyFJVHOufAdiRqodRcu0OnOMGsC4cyeKolBRUSFJlIMoLK/hP2ty+HDzEeoMpiGkY+IDeeBv8fSL8FU5OiGEaJlOp6O+vh6DwUBVVZUkUUIIhyFJVCN/FmbobPr160d4eDjdu3dXOxRxjoor63j95xz+t+kwNXpT8nR+T38evCielB7+KkcnhBDWcXJyIjU1FUVRzMP5hBDCEUgSZcGyMIO9KyoqoqioyLzCu1arlQSqkyut1vPW+kO89UsulXUGAAZG+fHQRfEM6y2vrRDC/mVnZ+Pl5UVoaCgAHh5S7EYI4Xi6bBKVnp5Oevr/s3ff8U3V6wPHP0m6Ny2d0AkUKKPMIsgogjIE3CAOEO5Ff8JFsXIF9Aq4EK+ylIqK6woooFwRB3iZgoAUKCBQNmVY6IBC90zO749IpLSUdOWk6fP21Rfm5JucJzltnjznfEc8er3+r40eQcYCqjbWiapjBQUFJCQkYDAY8PLyIigoSO2QRA3kFZXy+Y4zfLT1NFkFJQC0CfJg8l0tiW3pK7MrCtEAVJiX6pk//viDo0ePotPpaNSokXTfE0LYLI2iKBUtNtRgZGdn4+npSdaBtXi0vbNeXIG65uTJk+Tk5BAdHY1Wq1U7HFENhSV6lv52lkVbTnE5rxiAFn5uPH9XJAPaBEjxJGya6fM3K0sWAr9OfX5fFEVh9+7d+Pv7ExoaqnY4QghRZeZ+BjfYK1HlhPWw+gKqpMR4hcLe3jhtevPmzdUMR9RAcamBFXvOs3DTCdKyiwAI83HhuTsjGdI+CJ1WiichRP2Qn59v6rKn0Whk+nIhRIMgRVQ9kZubS0JCAi4uLnTr1k2uUNRTpXoD/92XwrsbT/DHlQIAmng580y/5tzfqSn2OrmiKISoPy5evMi+ffuIjIyUE3tCiAZFiqh6Qq/XU1hYiMFgoLCwEGdnZ7VDEhXQGxQSkjNJzynEz92JmHBvdFoNBoPCDwcvMn/9cU5fygPA192RiXc0Z0TXYBztrPsqqBBCVKSwsBC9Xs/ly5dp1qyZnOATQjQYUkTVE56ensTExODu7o6jo6Pa4YgKrDt0kVe+T+JiVqFpW4CnE/d0CGLL0QyOpeUA4O3qwNN9mvHYbaE4O0jxJISov8LDw3FyciIgQMZwCiEaFimirJTBYODIkSOEh4eb+prL9OXWa92hizy9NJEbZ2lJzSrkw19OA+DuZMdTvSN44vZw3BzlT08IUf8UFhZy4sQJ2rRpY5rQ6NpU5kII0ZDINzkrlZSURHJyMpcuXaJ3795yhs+K6Q0Kr3yfVK6Aup6box2/TO6Lt5uDxeISQojapCgKO3fuJDc3F61WS5s2bdQOSQghVCOj2K1U8+bNcXNzo1WrVlJAWSlFUTifmc/b646W6cJXkdyiUlN3PiGEqI80Gg1t2rTBw8OD8PBwtcMRQghVyZUoK1JUVGQa7+Tk5ERsbKwUUFZEURTOXM5n1+nL7ErOZNfpy1y4RfF0vfQc89sKIYQ1UBSF4uJiU27y8/PD11cWABdCCCmirMTp06c5evQot912G97e3gCSpFSmKAqnMnL57XSmqWhKzykq08ZepyG8sSvH03Jv+Xx+7k51FaoQQtQ6vV7Pvn37yM7OplevXqY1CiU3CSGEFFFWQVEULl++jF6vJy0tzVRECcsyGBSOp+ew63Qmu5Ivk5CcyaXc4jJtHHRaOgR70S3Cm9sifOgU0ggHOy0939pEalZhheOiNBhn6YsJl+MqhKg/SktLuXr1KkVFRVy5cgU/Pz+1QxJCCKshRZQV0Gg0dOzYkYsXLxIcHKx2OA2GwaBwJDW7TNF0Jb+kTBtHOy2dQhrRLcKbbuE+dAzxwsm+/LTkM4ZG8fTSRDRQppDSXHe/Titnb4UQ9YejoyMxMTGUlpbKyT0hhLiBFFEqycnJISMjg4iICADs7OykgKpjpXoDSRfLFk3ZhaVl2jjb6+gS1ohu4d50i/ChfVNPsxbCHdg2kEWPdapwnagZQ6MY2FamABZCWL+UlBQcHR1NS2p4eHioHJEQQlgnKaJUUFhYyK+//kppaSnOzs6yxkYdKdEbOJiSZSqa9py5Qm5R2aLJ1UFHlzBj17xuEd60a+KJva56k1YObBvInVEBJCRnkp5TiJ+7sQufXIESQtQHFy9eJDExEXt7e/r06YOzs7PaIQkhhNVqsEVUfHw88fHx6PV6i+/bycmJ0NBQrl69io+Pj8X3b830BqXaRUhRqZ7f/8gyzZ639+wV8ovLHl93JztiwrxN3fPaBHlgV82iqSI6rYbuzeSYCiGqTs28BODv70+jRo3w9vbGyUkmwhFCiMpoFEWpbI1Qm5ednY2npydZWVl12m3BYDCgKAo6nbFrmKIoKIpiWvFdwLpDF8t1hwuspDtcYYme/eevmq407T17haJSQ5k2Xi72fxZNPnQL96Z1oIdcGRLCSljq87e+seT7UlJSYpp1D4y5SvKSEKIhM/czuMFeibKkoqIi9uzZg7OzM506dQKMk0nINLF/WXfoIk8vTSw3u11qViFPL01k0WOd6BPpR+K5K+w6fZnfkjPZf/4qxTcUTT6uDqarTN0ivIn0c0crRZMQQpRz5coVdu/eTatWrQgJCQGQAkoIIcwkRZQF5OXlceXKFXJycsjLy8PV1VXtkKyK3qDwyvdJFU4Pfm3bxK/2oSgKN9RM+Lo7miaBuC3cm+Z+blKcCiGEGTIyMigqKuLs2bMEBwfLZ6cQQlSBFFEW4O3tTadOnfDw8JAC6gYlegNrD10s04Wv4nbGcirQ08lUNHUL9ya8saskfiGEqIYWLVpgZ2dHSEiIfI4KIUQVSRFVR5KTkwkKCsLR0RGAoKAglSOyPL1BISOniItZBVzMKuTCVeO/F7MKuHDV+G9GThEGM0flTR8SxZjbwyTZCyFENZSWlnL27FkiIiJMXcqvLbMhhBCiaqSIqgNHjx7lxIkTpKSk0KNHjzrrY16TmexqSlEULucVc/FqIReyCrj4Z4F0IavQ9P9p2YWUmlEh6bSgN9yyGa0DPaSAEkKIalAUhd9++40rV65QUlJCq1at1A5JCCHqNSmi6kBwcDBnz56ladOmdVZAVXUmu6pQFIWsghLT1aLrC6NrV5NSswopNqPy0Wk1+Ls7EujlTKCnE0F//hvo+ee/Xk40cnag99ubSc0qrHBclAbjorUx4d41el1CCNFQaTQawsPDyc/Px9/fX+1whBCi3pMiqpbo9XrT9OWurq7069cPO7u6eXvNmcmuskIqp7CkbPc6Uze7a1eVCikoufU6JRoN+LoZC6QgTycCPJ0I8nQm0MtYJAV5OeHr5mjWOkwzhkbx9NJENFDmdWmuu1+mJhdCiKq5Pjc1adIEf3//OstNQgjRkMgnaS24ePEiBw8epHv37ri7uwPUWZK61Ux2GuDl7w7jYm9HWk5huTFIF68WklNUata+fFwdCPD8qyC6/t9ATyf8PZxwsKudK20D2way6LFO5a6uBdTS1TUhhGhIFEXh6NGjZGRkcPvtt5sKKSmghBCidsin6Z8STmfSt717ta52nDlzhqKiIk6fPk10dHStxaQoCoUlBq4WFHM1v4Sr+SUkJF+udCY7BcjIKWLUZwmVPreHk91fXev+vJIU+OdVpCBPZwI8nXCy19XaazHHwLaB3BkVoNo4LyGEsBVFRUWcO3eO4uJi0tLSGuTkRkIIUZekiPrT2P/sponfqWpd9ejcuTNnzpyhRYsWFd6vKAq5RaVczS8hq8BYDF0rjIy3/yySCkrIuu6+qwUl5RaTNZe/hyOR/u6m7nXXd7ML9HTC1dE6D71Oq6F7Mx+1wxBCiHrNycmJrl27UlBQIAWUEELUAev8Jq2SW40p0hsUcgpLSMvM4ezFdBw8fP4qivI1fHUs6c8i6M/C6M+iKKugxKxZ6m7GTqvBy8UeT2d7dFoNx9Nyb/mY+SM6SjEihBANSGZmJjqdDk9PT8C4RqEQQoi6IUXUda6VOXErD/Dj7xfJKiwl689i6Gp+CdmFJRhKSig8fwhFX4JjUEt0Lp5mP7+DnZZGLvZ4OTvg6WKPl7M9Xi72eLk44Hnt/50dTAXTtftcHXSmqb31BoWeb22SmeyEEEKYZGRkkJCQgIODA7169cLJyUntkIQQwqZJEVWB/GI93/9+scL7NHb2uHk2wlkpJKhpYxo38viz6HH4swiyL3v7usKoNsYY6bQamclOCCFEGV5eXri4uODu7o69vb3a4QghhM2TIuom7u0QRM8WvtcVRXZ4uTji6WyPndY4baxaiUpmshNCCKEoiqmXgr29Pbfffjv29vayKLkQQliAFFE3MaJrCN2b+aDX6zlw4ABFDg74tm1rur+uFtE1l8xkJ4QQDVd+fj67d++mZcuWBAQEAODg4KByVEII0XBIEXWDG8cUZWZmkpKSgkajISwsDDc3N3UDvI7MZCeEEA3T2bNnyc7OJikpCX9/f7n6JIQQFiZF1HUqGlPk6+tL27Zt8fDwsKoCSgghRMPVqlUrDAYDzZo1kwJKCCFUoG6ftFryww8/0LJlS1q0aMHHH39c7ecJ8HRi0WOd6OirpaSkxLQ9PDwcHx+54iOEEMI8tZWXrlEUhZSUFNNtjUZDmzZtZBY+IYRQSb2/ElVaWkpcXBybN2/G09OTzp07c99991W56Pl0dFf6tg/l7JlkEhIO4+fnR0xMjJzhE0IIUSW1lZeut3v3btLS0igsLKRZs2a1GK0QQojqqPdXohISEmjTpg1NmjTBzc2NQYMG8b///a/KzxMTYZyUwcfHB51Oh7u7ex1EK4QQwtbVVl66XuPGjdHpdLi4uNRSlEIIIWpC9SJq69atDB06lKCgIDQaDatXry7XJj4+nrCwMJycnOjWrRsJCQmm+y5cuECTJk1Mt5s0aVKmy0NVeXp60rdvX6KiouQqlBBCNEDWlpcAIiIi6Nu3L4GBsoSFEEJYA9WLqLy8PKKjo4mPj6/w/hUrVhAXF8eMGTNITEwkOjqaAQMGkJ6eXqtx5Ofnm/7f2dm5Vp9bCCFE/WEteWn37t0YDAbTbclNQghhPVQvogYNGsTrr7/OfffdV+H9c+fOZdy4cYwZM4aoqCg++OADXFxc+PTTTwEICgoqc4YvJSWFoKCgm+6vqKiI7OzsMj8Ax44dq8VXJYQQor6ylrx06dIl/vjjj1p8ZUIIIWqL6kVUZYqLi9m7dy/9+/c3bdNqtfTv35+dO3cCEBMTw6FDh0hJSSE3N5e1a9cyYMCAmz7nm2++iaenp+knODgYgHbt2tXtixFCCFHvWTIvRUZGEhISUrcvSAghRLVYdRF16dIl9Ho9/v7+Zbb7+/uTmpoKgJ2dHXPmzKFv37506NCB559/vtIZkKZNm0ZWVpbp5/z586bnEUIIISpjybwks/AJIYT1sonKYdiwYQwbNsysto6Ojjg6OtZxREIIIRoyyUtCCGHbrPpK1LUpXdPS0spsT0tLIyAgQKWohBBCNFSSl4QQQoCVF1EODg507tyZjRs3mrYZDAY2btxI9+7da/Tc8fHxREVF0bVr15qGKYQQooGQvCSEEAKsoDtfbm4uJ0+eNN1OTk5m//79eHt7ExISQlxcHKNHj6ZLly7ExMQwf/588vLyGDNmTI32O2HCBCZMmEB2djaenp41fRlCCCFshOQlIYQQt6J6EbVnzx769u1ruh0XFwfA6NGj+fzzzxkxYgQZGRlMnz6d1NRUOnTowLp168oN6hVCCCFqg+QlIYQQt6JRFEVROwg1XTvjl5WVhYeHh9rhCCFEgyGfvxWT90UIIdRj7mewVY+JqkvS91wIIYQ1kbwkhBD1h1yJkjN+QgihCvn8rZi8L0IIoR65EiWEEEIIIYQQdUCKKCGEEEIIIYSoAtVn51Pbtd6M2dnZKkcihBANy7XP3Qbeq7wcyUtCCKEec3NTgy2i4uPjiY+Pp6ioCIDg4GCVIxJCiIYpJydH1kVC8pIQQliTW+WmBj+xxNWrV2nUqBHnzp2zeBLv2rUru3fvVuV5zHnMrdpUdv/N7qto+43bsrOzCQ4O5vz58xYfVG3tx8ScdlU9LuYcKzWPyY2xWPJ51DomN9tua38riqLQuXNnjh8/jlYrvcuvUTMvgfy93Wxbff97q+7z1Mb3hcrayDGR7wu1yZK5qcFeibrm2pvj6elp8YOt0+lqZZ/VeR5zHnOrNpXdf7P7Ktp+s7YeHh5yTKrRrqrHpSrHSo1jcrNYLPE8ah2Tm223xb8VBwcHKaBuoGZeAvl7u1Xb+vz3ptb3hcrayDGR7wu1yZK5STKXiiZMmKDa85jzmFu1qez+m91X0fbaeh9qg7UfE3PaVfW4VOVYqUWt46LWMbnZdjkmwhLk761q8ViCteemmrSRYyLfF2qTJY9Lg+/OJ+txWB85JtZHjol1kuNim+S4Wic5LtZHjon1aUjHpMFfiXJ0dGTGjBk4OjqqHYr4kxwT6yPHxDrJcbFNclytkxwX6yPHxPo0pGPS4K9ECSGEEEIIIURVNPgrUUIIIYQQQghRFVJECSGEEEIIIUQVSBElhBBCCCGEEFUgRZQQQgghhBBCVIEUUUIIIYQQQghRBVJEVSIsLIz27dvToUMH+vbtq3Y4AkhOTqZv375ERUXRrl078vLy1A6pwTt27BgdOnQw/Tg7O7N69Wq1w2rw5s2bR5s2bYiKiuKZZ55BJmK1HZKbrI/kJusiecl62VJukinOKxEWFsahQ4dwc3NTOxTxpz59+vD666/Tq1cvMjMz8fDwwM7OTu2wxJ9yc3MJCwvj7NmzuLq6qh1Og5WRkcFtt93G4cOHsbe3p3fv3rzzzjt0795d7dBELZDcZH0kN1kvyUvWw9Zyk/yFi3rj2h9dr169APD29lY5InGjNWvW0K9fP0lUVqC0tJTCwkIASkpK8PPzUzkiIWyT5CbrJnnJuthSbrLZ7nxbt25l6NChBAUFodFoKryMGx8fT1hYGE5OTnTr1o2EhIQy92s0Gvr06UPXrl1ZtmyZhSK3XTU9JidOnMDNzY2hQ4fSqVMnZs2aZcHobVdt/K1cs3LlSkaMGFHHEdu+mh4TX19fJk+eTEhICEFBQfTv359mzZpZ8BWIm5HcZH0kN1kfyUvWSXJTWTZbROXl5REdHU18fHyF969YsYK4uDhmzJhBYmIi0dHRDBgwgPT0dFObX3/9lb1797JmzRpmzZrF77//bqnwbVJNj0lpaSnbtm3j/fffZ+fOnaxfv57169db8iXYpNr4WwHIzs5mx44dDB482BJh27SaHpMrV67www8/cObMGVJSUtixYwdbt2615EsQNyG5yfpIbrI+kpesk+SmGygNAKB8++23ZbbFxMQoEyZMMN3W6/VKUFCQ8uabb1b4HJMnT1Y+++yzOoyyYanOMdmxY4dy1113me7/97//rfz73/+2SLwNRU3+Vr744gvl0UcftUSYDUp1jsnKlSuV8ePHm+7/97//rbz11lsWiVeYT3KT9ZHcZH0kL1knyU2KYrNXoipTXFzM3r176d+/v2mbVqulf//+7Ny5EzBW2zk5OYBxUOKmTZto06aNKvE2BOYck65du5Kens6VK1cwGAxs3bqV1q1bqxVyg2DOcblGukxYhjnHJDg4mB07dlBYWIher2fLli20bNlSrZCFmSQ3WR/JTdZH8pJ1aoi5qUFOLHHp0iX0ej3+/v5ltvv7+3P06FEA0tLSuO+++wDQ6/WMGzeOrl27WjzWhsKcY2JnZ8esWbPo3bs3iqJw1113MWTIEDXCbTDMOS4AWVlZJCQksGrVKkuH2OCYc0xuu+02Bg8eTMeOHdFqtfTr149hw4apEa6oAslN1kdyk/WRvGSdGmJuapBFlDkiIiI4cOCA2mGIGwwaNIhBgwapHYa4gaenJ2lpaWqHIa7zxhtv8MYbb6gdhqhlkpusk+Qm6yN5yTrZUm5qkN35GjdujE6nK/fHlZaWRkBAgEpRNWxyTKyTHBfrI8fEdsmxtT5yTKyPHBPr1BCPS4MsohwcHOjcuTMbN240bTMYDGzcuLHeLvhV38kxsU5yXKyPHBPbJcfW+sgxsT5yTKxTQzwuNtudLzc3l5MnT5puJycns3//fry9vQkJCSEuLo7Ro0fTpUsXYmJimD9/Pnl5eYwZM0bFqG2bHBPrJMfF+sgxsV1ybK2PHBPrI8fEOslxuYHa0wPWlc2bNytAuZ/Ro0eb2rz33ntKSEiI4uDgoMTExCi//fabegE3AHJMrJMcF+sjx8R2ybG1PnJMrI8cE+skx6UsjaIoSt2VaEIIIYQQQghhWxrkmCghhBBCCCGEqC4pooQQQgghhBCiCqSIEkIIIYQQQogqkCJKCCGEEEIIIapAiighhBBCCCGEqAIpooQQQgghhBCiCqSIEkIIIYQQQogqkCJKCCGEEEIIIapAiigh6pHPP/8cLy8vtcMQQgghTCQ3iYZIiighLOyJJ55Ao9Gg0WhwcHCgefPmvPrqq5SWlt7ysSNGjOD48eNV2l9sbCyTJk2qZrRCCCEaAslNQlSNndoBCNEQDRw4kM8++4yioiJ++uknJkyYgL29PdOmTav0cc7Ozjg7O1soSiGEEA2J5CYhzCdXooRQgaOjIwEBAYSGhvL000/Tv39/1qxZw5UrVxg1ahSNGjXCxcWFQYMGceLECdPjbuwyMXPmTDp06MCSJUsICwvD09OThx9+mJycHMB4ZvGXX35hwYIFpjOMZ86c4cqVKzz66KP4+vri7OxMixYt+Oyzzyz9NgghhLAikpuEMJ8UUUJYAWdnZ4qLi3niiSfYs2cPa9asYefOnSiKwuDBgykpKbnpY0+dOsXq1av54Ycf+OGHH/jll1+YPXs2AAsWLKB79+6MGzeOixcvcvHiRYKDg3n55ZdJSkpi7dq1HDlyhEWLFtG4cWNLvVwhhBD1gOQmIW5OuvMJoSJFUdi4cSM///wzgwYNYvXq1Wzfvp0ePXoAsGzZMoKDg1m9ejUPPfRQhc9hMBj4/PPPcXd3B+Dxxx9n48aNvPHGG3h6euLg4ICLiwsBAQGmx5w7d46OHTvSpUsXAMLCwur2hQohhKg3JDcJcWtyJUoIFfzwww+4ubnh5OTEoEGDGDFiBE888QR2dnZ069bN1M7Hx4eWLVty5MiRmz5XWFiYKUkBBAYGkp6eXun+n376aZYvX06HDh144YUX2LFjR81flBBCiHpNcpMQ5pMiSggV9O3bl/3793PixAkKCgr4z3/+g0ajqdZz2dvbl7mt0WgwGAyVPmbQoEGcPXuW5557jgsXLtCvXz8mT55crf0LIYSwDZKbhDCfFFFCqMDV1ZXmzZsTEhKCnZ2xV23r1q0pLS1l165dpnaXL1/m2LFjREVFVXtfDg4O6PX6ctt9fX0ZPXo0S5cuZf78+Xz00UfV3ocQQoj6T3KTEOaTMVFCWIkWLVpwzz33MG7cOD788EPc3d2ZOnUqTZo04Z577qn284aFhbFr1y7OnDmDm5sb3t7ezJw5k86dO9OmTRuKior44YcfaN26dS2+GiGEELZAcpMQFZMrUUJYkc8++4zOnTszZMgQunfvjqIo/PTTT+W6RVTF5MmT0el0REVF4evry7lz53BwcGDatGm0b9+e3r17o9PpWL58eS2+EiGEELZCcpMQ5WkURVHUDkIIIYQQQggh6gu5EiWEEEIIIYQQVSBFlBBCCCGEEEJUgRRRwuqFhYXxxBNPqB1GlZ05cwaNRsPnn3+udih1JjY2ltjYWLXDEEKIOie5yHrZWi6aOXNmtaeWF5YjRZQQN9iyZQsajabCn4cffljt8OrEhQsXmDlzJvv376/zfeXn5zNz5ky2bNlS4+eq7Fjd+COEEPWJ5KK6VZu56Jonnnjipsds3bp1tbYfYR1kinMhbuKZZ56ha9euZbaFhYWpE0wdu3DhAq+88gphYWF06NDB7Mf973//q/K+8vPzeeWVVwBqfOawdevWLFmypMy2adOm4ebmxksvvVSj5xZCCGsguejW1M5F13N0dOTjjz8utz06OrrW9iGsgxRRQtxEr169ePDBB9UOwyrl5+fj4uKCg4ODqnH4+/vz2GOPldk2e/ZsGjduXG779QwGA8XFxTg5OdV1iEIIUSOSi27OWnLR9ezs7CrNP8J2SHc+USMpKSn87W9/IygoCEdHR8LDw3n66acpLi4Gbt6v9/PPP0ej0XDmzBnTNkVReP3112natCkuLi707duXw4cPl3tsZmYmkydPpl27dri5ueHh4cGgQYM4cOBAnb3O2tp/amoqY8aMoWnTpjg6OhIYGMg999xT5n0AWLt2Lb169cLV1RV3d3fuvvvuCt8Lc61fv56ePXvi5eWFm5sbLVu25MUXXwSMXUauneUcM2aMqevBtf7zsbGxtG3blr1799K7d29cXFxMj62oH3phYSEzZ84kMjISJycnAgMDuf/++zl16hRnzpzB19cXgFdeecW0r5kzZ1b7tZlDo9Hwj3/8g2XLltGmTRscHR1Zt26dqbvMjd05bjaG4OjRozz44IN4e3vj5OREly5dWLNmTZ3GLoS4NclFkovqQy7atm0bDz30ECEhITg6OhIcHMxzzz1HQUHBLR9b2Xt3TVFRETNmzKB58+am53/hhRcoKiqqq5fUoMmVKFFtFy5cICYmhqtXr/Lkk0/SqlUrUlJS+Oabb8jPz6/ymaHp06fz+uuvM3jwYAYPHkxiYiJ33XWXKQlec/r0aVavXs1DDz1EeHg4aWlpfPjhh/Tp04ekpCSCgoJMbS9dumTWvt3d3XF0dCyzLScnp9zjvb29q7T/Gz3wwAMcPnyYiRMnEhYWRnp6OuvXr+fcuXOm7hlLlixh9OjRDBgwgLfeeov8/HwWLVpEz5492bdvX5W7cRw+fJghQ4bQvn17Xn31VRwdHTl58iTbt28HjF3iXn31VaZPn86TTz5Jr169AOjRo4fpOS5fvsygQYN4+OGHeeyxx/D3969wX3q9niFDhrBx40Yefvhhnn32WXJycli/fj2HDh2if//+LFq0iKeffpr77ruP+++/H4D27dsDxgSQk5Nj1utq3Lhxld6HTZs2sXLlSv7xj3/QuHFjwsLCuHr1qtmPP3z4MLfffjtNmjRh6tSpuLq6snLlSu69915WrVrFfffdV6V4hBC1Q3KR5KIbqZ2Lbjxe9vb2eHp68vXXX5Ofn8/TTz+Nj48PCQkJvPfee/zxxx98/fXX1X7vwNjDYtiwYfz66688+eSTtG7dmoMHDzJv3jyOHz/O6tWrzXo9ogoUIapp1KhRilarVXbv3l3uPoPBoCiKosyYMUOp6Nfss88+UwAlOTlZURRFSU9PVxwcHJS7777b9FhFUZQXX3xRAZTRo0ebthUWFip6vb7M8yUnJyuOjo7Kq6++WmY7YNbPZ599ZnrM5s2bb9ouOTnZ7P0nJyeXee4rV64ogPL222/f9D3NyclRvLy8lHHjxpXZnpqaqnh6epbbbo558+YpgJKRkXHTNrt37y73PlzTp08fBVA++OCDCu/r06eP6fann36qAMrcuXPLtb12XDMyMhRAmTFjRrk2134vzPm5mTZt2pSJSVGMvwdarVY5fPhwme3XjvXmzZvLbL/x2CmKovTr109p166dUlhYWOY19ejRQ2nRosVN4xFC1C3JRZXvX3JRWXWZi0aPHl1hm2ux5efnl9vXm2++qWg0GuXs2bOmbTf+vprz3i1ZskTRarXKtm3bymz/4IMPFEDZvn37TR8rqkeuRIlqMRgMrF69mqFDh9KlS5dy91d1NrQNGzZQXFzMxIkTyzx20qRJzJo1q0zb68/S6fV6rl69arq0nZiYWKbt+vXrzdp/mzZtym2bPn266UzYNQEBAVXa//WcnZ1xcHBgy5Yt/O1vf6NRo0bl2qxfv56rV68ycuTIMmeydDod3bp1Y/PmzWa9nut5eXkB8N133zFmzBi02qr34nV0dGTMmDG3bLdq1SoaN27MxIkTy91nzu/EgAEDzD5mVdWnTx+ioqKq9djMzEw2bdrEq6++Sk5OTpkzlAMGDGDGjBmkpKTQpEmT2gpXCGEGyUXm7f96kovqNhc5OTnx/fffl9l27T12dnY2bcvLy6OgoIAePXqgKAr79u0jJCSkwuc05737+uuvad26Na1atSpzzO644w4ANm/eXOaqnqg5KaJEtWRkZJCdnU3btm1r5fnOnj0LQIsWLcps9/X1LfcBbzAYWLBgAe+//z7Jycno9XrTfT4+PmXa9u/fv9oxtWvXrsLHV2X/13N0dOStt97i+eefx9/fn9tuu40hQ4YwatQoAgICADhx4gTw14fejTw8PKr8OkaMGMHHH3/M3//+d6ZOnUq/fv24//77efDBB81OYk2aNDGrS8ypU6do2bIldnbV+2gJDAwkMDCwWo+9lfDw8Go/9uTJkyiKwssvv8zLL79cYZv09HQpooSwMMlFkosqomYu0ul0Nz3e586dY/r06axZs4YrV66UuS8rK+umz2nOe3fixAmOHDliGut1o/T09Gq9HnFzUkSJOnWzMz7Xf9hX1axZs3j55ZcZO3Ysr732Gt7e3mi1WiZNmoTBYCjTNjU11azn9PT0LHOGqLb2f6NJkyYxdOhQVq9ezc8//8zLL7/Mm2++yaZNm+jYsaPp8UuWLDEls+tVJyE4OzuzdetWNm/ezI8//si6detYsWIFd9xxB//73//Q6XRmPYclFBQUVJpIrlfR+1OZil6Dub+f147L5MmTGTBgQIWPad68eZXiEUJYjuSisiQXVa4ucpFer+fOO+8kMzOTKVOm0KpVK1xdXUlJSeGJJ56o9JiZ894ZDAbatWvH3LlzK3yO4OBgs+IU5pMiSlSLr68vHh4eHDp0qNJ2187cXb161XQ5Gv4623dNaGgoYDyTEhERYdqekZFR7mzNN998Q9++ffnkk0/KbL969Wq5AZ7mnkn67LPPzF6Jvir7r0izZs14/vnnef755zlx4gQdOnRgzpw5LF26lGbNmgHg5+dXozOXN9JqtfTr149+/foxd+5cZs2axUsvvcTmzZvp379/rS1G26xZM3bt2kVJSQn29vYVtqlsXytWrDCrqwYYZ9Cqqet/P6934+/ntd9Je3v7Wj0uQoiakVwkuagi1piLDh48yPHjx/nPf/7DqFGjTNvN7TZ4q/euWbNmHDhwgH79+skC8xYiRZSoFq1Wy7333svSpUvZs2dPub7oiqKg0WhMH8Rbt25l2LBhgLEf8H/+858y7fv374+9vT3vvfced911l+kDYP78+eX2rdPpyn1off3116SkpJS7GlCTfug3U5X9Xy8/Px+tVltmbaJmzZrh7u5umn50wIABeHh4MGvWLPr27Vvuwz8jI+Oml+pvJjMzE29v7zLbri1ieG2/rq6uQPlioqoeeOABfvzxRxYuXMhzzz1X5r5rvxMuLi433VddjomqSGhoKDqdjq1bt3Lvvfeatr///vtl2vn5+REbG8uHH37IxIkTy30hqs5xEULUnOQiyUUVscZcdO1K2/XHTFEUFixYcMvHmvPeDR8+nJ9++onFixfz5JNPlmlbUFCAwWAwvb+idkgRJapt1qxZ/O9//6NPnz6m6TQvXrzI119/za+//oqXlxd33XUXISEh/O1vf+Of//wnOp2OTz/9FF9fX86dO2d6Ll9fXyZPnsybb77JkCFDGDx4MPv27WPt2rXlzqgNGTKEV199lTFjxtCjRw8OHjzIsmXLypw1vKYurhpUZf/XO378OP369WP48OFERUVhZ2fHt99+S1paGg8//DBg7Ge+aNEiHn/8cTp16sTDDz9seq9+/PFHbr/9dhYuXAgY1zIKDw9n9OjR5dYzut6rr77K1q1bufvuuwkNDSU9PZ3333+fpk2b0rNnT8CYQL28vPjggw9wd3fH1dWVbt26VXkc0ahRo/jiiy+Ii4sjISGBXr16kZeXx4YNGxg/fjz33HMPzs7OREVFsWLFCiIjI/H29qZt27a0bdu2TsdEVcTT05OHHnqI9957z/RF64cffqiw73h8fDw9e/akXbt2jBs3joiICNLS0ti5cyd//PGHxdaGEUKUJblIctGNrDEXtWrVimbNmjF58mRSUlLw8PBg1apV5a5wVsSc9+7xxx9n5cqV/N///R+bN2/m9ttvR6/Xc/ToUVauXMnPP/9c4eQrogbUmBJQ2I6zZ88qo0aNUnx9fRVHR0clIiJCmTBhglJUVGRqs3fvXqVbt26Kg4ODEhISosydO7fctLKKoih6vV555ZVXlMDAQMXZ2VmJjY1VDh06pISGhpabVvb55583tbv99tuVnTt3lpvitLquTSv79ddfV3i/ufu/cVrZS5cuKRMmTFBatWqluLq6Kp6enkq3bt2UlStXVhjDgAEDFE9PT8XJyUlp1qyZ8sQTTyh79uwxtTl48KACKFOnTq309WzcuFG55557lKCgIMXBwUEJCgpSRo4cqRw/frxMu++++06JiopS7OzsysTdp08fpU2bNhU+d0XveX5+vvLSSy8p4eHhir29vRIQEKA8+OCDyqlTp0xtduzYoXTu3FlxcHC46RSz1XWzKc4nTJhQYfuMjAzlgQceUFxcXJRGjRopTz31lHLo0KEKp9k9deqUMmrUKCUgIECxt7dXmjRpogwZMkT55ptvai1+IUTVSS6SXGQNuWj06NGKq6vrTe9PSkpS+vfvr7i5uSmNGzdWxo0bpxw4cKBcvrlxinNz37vi4mLlrbfeUtq0aaM4OjoqjRo1Ujp37qy88sorSlZWVo1emyhPoyi1MLBACGFx77//Pi+88AKnTp266YKDQgghRF2SXCQaqqpP0i+EsAqbN2/mmWeekaQlhBBCNZKLRENlM1ei8vPzad26NQ899BDvvPOO2uEIIYRo4CQvCSGE7bKZK1FvvPEGt912m9phCCGEEIDkJSGEsGU2UUSdOHGCo0ePMmjQILVDEUIIISQvCSGEjVO9iNq6dStDhw4lKCgIjUbD6tWry7WJj48nLCwMJycnunXrRkJCQpn7r01HKoQQQtSU5CUhhBC3onoRlZeXR3R0NPHx8RXev2LFCuLi4pgxYwaJiYlER0czYMAA0zou3333HZGRkURGRloybCGEEDZK8pIQQohbsaqJJTQaDd9++y333nuvaVu3bt3o2rWraVE3g8FAcHAwEydOZOrUqUybNo2lS5ei0+nIzc2lpKSE559/nunTp1e4j6KiItPqzteeLzMzEx8fH9PK5EIIIeqeoijk5OQQFBSEVqv6Ob0KSV4SQoiGxezcpN4SVeUByrfffmu6XVRUpOh0ujLbFEVRRo0apQwbNqzc4z/77DPl+eefr3Qf1xYwkx/5kR/5kR/r+Dl//nxtpJA6AZKX5Ed+5Ed+GuLPrXKTHVbs0qVL6PX6cmsP+Pv7c/To0Wo957Rp04iLizPdzsrKIiQkhPPnz+Ph4VGjeIUQQpgvOzub4OBg3N3d1Q7FbJKXhBDCtpmbm6y6iKqqJ5544pZtHB0dcXR0LLfdw8NDkpUQQqjAlrusSV4SQoj66Va5yTo7of+pcePG6HQ60tLSymxPS0sjICBApaiEEEI0VJKXhBBCgJUXUQ4ODnTu3JmNGzeathkMBjZu3Ej37t1r9Nzx8fFERUXRtWvXmoYphBCigZC8JIQQAqygO19ubi4nT5403U5OTmb//v14e3sTEhJCXFwco0ePpkuXLsTExDB//nzy8vIYM2ZMjfY7YcIEJkyYQHZ2Np6enjV9GUIIIWyE5CUhhBC3onoRtWfPHvr27Wu6fW1w7ejRo/n8888ZMWIEGRkZTJ8+ndTUVDp06MC6devKDeqtSwaDgeLiYovtT9Rf9vb26HQ6tcMQQtRAfchLQoiy9Ho9JSUlaoch6oHa+q5mVetEqeHaGb+srKwKB/AWFxeTnJyMwWBQITpRH3l5eREQEGDTg+WFqA23+vxtqOR9EcJ8iqKQmprK1atX1Q5F1COVfVcz9zNY9StRaomPjyc+Ph69Xn/TNoqicPHiRXQ6HcHBwVa7GKSwDoqikJ+fT3p6OgCBgYEqRySEqE/MyUtCiLKuFVB+fn64uLjICUxRqdr8riZXoiqpNktKSjh58iRBQUHSP12Y7fLly6SnpxMZGSld+4SohFxxqZi8L0KYR6/Xc/z4cfz8/PDx8VE7HFGPVPZdTa5E1YJrZwMdHBxUjkTUJy4uLoCxCJciStQVvUFPYnoiGfkZ+Lr40smvEzqt/L4JIRqOa2OgruVdIcxVG9/VpIgyg1waFlUhvy+irm04u4HZCbNJy/9rrSJ/F3+mxkylf2h/FSMTQgjLk7wrqqo2fmdkkI8QQtQjG85uIG5LXJkCCiA9P524LXFsOLtBpciEEEKIhqPBFlG2vKhhbGwskyZNUjsMIUQt0xv0zE6YjUL5oazXtr2V8BZ6g0xMUB/Zcl4SQpR143e1sLAw5s+fr1o8anriiSe49957Tbfry/fYBltETZgwgaSkJHbv3l3n+9IbFHaeusx3+1PYeeoyekP9m8tDURQGDRqERqNh9erVaocjRIOUmJ5Y7grU9RQUUvNTSUxPtGBUorZYMi8JIazL7t27efLJJ9UOwyr897//5bXXXlM7jFuSMVF1bN2hi7zyfRIXswpN2wI9nZgxNIqBbevPFNjz58+XPsdCqCwjP6NW2wkhhLAOvr6+aocAGCdasLe3VzUGb29vVfdvrgZ7JcoS1h26yNNLE8sUUACpWYU8vTSRdYcuWiSOH3/8EU9PT5YtW1atx+/fv585c+bw6aef1nJkQoiq8HYyL7H4ulhHMhZCCGGeG7vzaTQaPv74Y+677z5cXFxo0aIFa9asKfOYQ4cOMWjQINzc3PD39+fxxx/n0qVLpvvXrVtHz5498fLywsfHhyFDhnDq1CnT/WfOnEGj0bBixQr69OmDk5NThd8VFUVh5syZhISE4OjoSFBQEM8884zp/qKiIqZMmUJwcDCOjo40b96cTz75BDDOdP23v/2N8PBwnJ2dadmyJQsWLKj0vaioq+OsWbMYO3Ys7u7uhISE8NFHH5V5zI4dO+jQoQNOTk506dKF1atXo9Fo2L9/f6X7qgkpoqpAURTyi0vN+skpLGHGmsMVjFzAtG3mmiRyCkvMer7qLuf15ZdfMnLkSJYtW8ajjz7KsmXLcHNzq/Rn27Ztpsfn5+fzyCOPEB8fT0BAQLViEELUXFZRFp8c/KTSNho0BLgE0Mmvk4WiEkII66TX68stXG0wGNDr9RgMhgrbXv9dq6pt68Irr7zC8OHD+f333xk8eDCPPvoomZmZAFy9epU77riDjh07smfPHtatW0daWhrDhw83PT4vL4+4uDj27NnDxo0b0Wq13HfffeXinTp1Ks8++yxHjhxhwIAB5eJYtWoV8+bN48MPP+TEiROsXr2adu3ame4fNWoUX331Fe+++y5Hjhzhww8/xM3NDTC+N02bNuXrr78mKSmJ6dOn8+KLL7Jy5coqvRdz5syhS5cu7Nu3j/Hjx/P0009z7NgxwLiu09ChQ2nXrh2JiYm89tprTJkypUrPXx3Sna8KCkr0RE3/uVaeSwFSswtpN/N/ZrVPenUALg5VO1zx8fG89NJLfP/99/Tp0weAYcOG0a1bt0of16RJE9P/P/fcc/To0YN77rmnSvsWQtSe01dPM3HTRM7lnMNB60CxoRgNmjITTGgwdredEjNF1osSQjR4P/30EwADBgwwrfd56tQpjh49SkhICNHR0aa2P//8M3q9nn79+pnWDzpz5gyHDx+mSZMmdOr014mpDRs2UFxcTGxsLO7u7gD88ccfhISE1PpreOKJJxg5ciQAs2bN4t133yUhIYGBAweycOFCOnbsyKxZs0ztP/30U4KDgzl+/DiRkZE88MADZZ7v008/xdfXl6SkJNq2bWvaPmnSJO6///6bxnHu3DkCAgLo378/9vb2hISEEBMTA8Dx48dZuXIl69evp39/4xIbERERpsfa29vzyiuvmG6Hh4ezc+dOVq5cWabgu5XBgwczfvx4AKZMmcK8efPYvHkzLVu25Msvv0Sj0bB48WKcnJyIiooiJSWFcePGmf381dFgi6j4+Hji4+PLnaWwFd988w3p6els3769zExP7u7upj/6W1mzZg2bNm1i3759dRWmEOIWtv6xlSlbp5BbkkuQaxDv3vEu53POV7hO1JSYKbJOVD1m63lJCFE17du3N/2/q6srHh4epKenA3DgwAE2b95suuJzvVOnThEZGcmJEyeYPn06u3bt4tKlS6YrUOfOnStTRHXp0qXSOB566CHmz59PREQEAwcOZPDgwQwdOhQ7Ozv279+PTqcznayvSHx8PJ9++innzp2joKCA4uJiOnToUJW3osx7odFoCAgIML0Xx44do3379jg5OZnaXCvy6lKDLaImTJjAhAkTyM7OxtPT06zHONvrSHq1/GXOiiQkZ/LEZ7eeYenzMV2JCb/1OAdn+6qdWe7YsSOJiYl8+umndOnSxTQpxLJly3jqqacqfezatWvp1asXmzZt4tSpU3h5eZW5/4EHHqBXr15s2bKlSjEJIcynKAqfH/6ceXvnoaDQ2b8zc2Pn4u3kTUvvlvQN7ktieiIZ+Rn4uvjSya+TXIGq56qTl4QQFRs8eDAAOt1fn4vNmjUjIiKi3ERZ17qwabV/jXIJCwsjNDS0XNtrV1uub9u0adPaDf5PN07woNFoTIVQbm4uQ4cO5a233ir3uMBA48RlQ4cOJTQ0lMWLFxMUFITBYKBt27YUFxeXae/q6lppHMHBwRw7dowNGzawfv16xo8fz9tvv80vv/yCs7NzpY9dvnw5kydPZs6cOXTv3h13d3fefvttdu3adcvXf73K3gu1NNgiqjo0Go3ZXep6tfAl0NOJ1KzCCsdFaYAATyd6tfBFp639We+aNWvGnDlziI2NRafTsXDhQqBq3fmmTp3K3//+9zL3tWvXjnnz5jF06NBaj1kIYVSkL2Lmjpn8cPoHAB6MfJAXY17EXvdXEtFpdXQNkPWEhBCiItcXT9dcX/hYom1d6tSpE6tWrSIsLAw7u/LfTS9fvsyxY8dYvHgxvXr1AuDXX3+t9v6cnZ0ZOnQoQ4cOZcKECbRq1YqDBw/Srl07DAYDv/zyi6nAvN727dvp0aOHqSseUGZyi9rQsmVLli5dSlFREY6OjgAWWSpCiqg6otNqmDE0iqeXJqKBMoXUtZJpxtCoOimgromMjGTz5s3ExsZiZ2fH/Pnzq9SdLyAgoMLJJEJCQggPD6/tcIUQQHp+OpM2T+LgpYPoNDqmxkxlRMsRssSAEEIIkwkTJrB48WJGjhzJCy+8gLe3NydPnmT58uV8/PHHNGrUCB8fHz766CMCAwM5d+4cU6dOrda+Pv/8c/R6Pd26dcPFxYWlS5fi7OxMaGgoPj4+jB49mrFjx/Luu+8SHR3N2bNnSU9PZ/jw4bRo0YIvvviCn3/+mfDwcJYsWcLu3btr9XvkI488wksvvcSTTz7J1KlTOXfuHO+88w5AneZOmZ2vDg1sG8iixzoR4OlUZnuApxOLHutkkXWiWrZsyaZNm/jqq694/vnn63x/QojqO5hxkId/eJiDlw7i6ejJh3d+yMOtHpYCSgghRBlBQUFs374dvV7PXXfdRbt27Zg0aRJeXl5otVq0Wi3Lly9n7969tG3blueee4633367Wvvy8vJi8eLF3H777bRv354NGzbw/fff4+PjA8CiRYt48MEHGT9+PK1atWLcuHHk5eUB8NRTT3H//fczYsQIunXrxuXLl8tclaoNHh4efP/99+zfv58OHTrw0ksvMX36dIAy46Rqm0ap7tzZNuJa3/OsrCw8PDzK3FdYWEhycjLh4eE1Ogh6g0JCcibpOYX4uTsRE+5dp1eghLpq6/dGNCzfn/qemTtmUmwoprlXc969412C3YPVDqtOVfb525DJ+yKEeSTfiptZtmwZY8aMISsrq8JxW5X97pj7Gdxgu/NZchYknVZD92Y+db4fIUT9ozfoWZC4gM8OfwZAbHAss3vNxtW+8oG+wvbI7HxCCFE9X3zxBRERETRp0oQDBw4wZcoUhg8ffsuJL2qiwRZRMguSEEJtOcU5TNk6hW0pxgWux7Ubxz86/gOtRnpaN0SSl4QQonpSU1OZPn06qampBAYG8tBDD/HGG2/U6T4bbBElhBBqOpt9lombJpKclYyTzonXbn+NgeED1Q5LCCGEqHdeeOEFXnjhBYvuU4ooIYSwsB0XdjD5l8nkFOfg7+LPgjsW0ManjdphCSGEEMJMUkQJIYSFKIrC0iNLeWfPOxgUA9G+0czvO5/Gzo3VDk0IIeqtBj5HmqiG2vidkSJKCCEsoFhfzGu/vcbqk6sBuKfZPUzvPh0HnYO6gQkhRD1lb29cgDw/P79OJxAQtic/Px/463eoOqSIEkKIOnap4BKTNk/iQMYBtBotk7tM5rHWj8n6T0IIUQM6nQ4vLy/S09MBcHFxkc9VUSlFUcjPzyc9PR0vLy90Ol21n0uKKCGEqENJl5N4ZtMzpOWn4e7gzju936FHkx5qhyWEEDYhICAAwFRICWEOLy8v0+9OdUkRJYQQdWRd8jpe3v4yhfpCwjzCeO+O9wjzDFM7LCGEsBkajYbAwED8/PwoKSlROxxRD9jb29foCtQ1DbaIsuVFDWNjY+nQoQPz589XOxQhGiSDYmDhvoUsPrgYgF5NevFW77dwd3BXOTJhzWw5LwlR13Q6Xa18MRbCXA12RccJEyaQlJTE7t27635nBj0kb4OD3xj/NdSfBJmamsrjjz9OQEAArq6udOrUiVWrVqkdlhBWK68kj0mbJ5kKqDFtx/DeHe9JASVuyaJ5SQghRI002CtRFpO0BtZNgewLf23zCIKBb0HUMPXiMtOoUaO4evUqa9asoXHjxnz55ZcMHz6cPXv20LFjR7XDE8KqnM85zzObnuHk1ZM4aB2Y2WMmQ5sNVTssIYQQQtSyBnslyiKS1sDKUWULKIDsi8btSWssEsaPP/6Ip6cny5Ytq/Jjd+zYwcSJE4mJiSEiIoJ//etfeHl5sXfv3jqIVIj6K+FiAiN/HMnJqyfxdfbl84GfSwElhBBC2CgpoqpCUaA4z7yfwmxY+wJQ0WJef25bN8XYzpznq+aiYF9++SUjR45k2bJlPProoyxbtgw3N7dKf7Zt22Z6fI8ePVixYgWZmZkYDAaWL19OYWEhsbGx1YpHCFujKArLjy7nyfVPklWURVuftnx191e0822ndmhCCCGEqCPSna8qSvJhVlAtPZlivEI1O9i85i9eAAfXKu0hPj6el156ie+//54+ffoAMGzYMLp161bp45o0aWL6/5UrVzJixAh8fHyws7PDxcWFb7/9lubNm1cpFiFsUYm+hDcT3uTr418DcHfE3czsPhMnOyeVIxNCCCFEXZIiykZ98803pKens337drp27Wra7u7ujru7+QPcX375Za5evcqGDRto3Lgxq1evZvjw4Wzbto127eRMu2i4MgszidsSx960vWjQMKnzJMa0GSMLPQohhBANgBRRVWHvYrwiZI6zO2DZg7du9+g3EGrGwpv2Lubt908dO3YkMTGRTz/9lC5dupi+2C1btoynnnqq0seuXbuWXr16cerUKRYuXMihQ4do06YNANHR0Wzbto34+Hg++OCDKsUkhK04lnmMZzY9w4W8C7jZu/FW77fo3bS32mEJIYQQwkKkiKoKjcb8LnXN7jDOwpd9kYrHRWmM9ze7A7S1v65Bs2bNmDNnDrGxseh0OhYuXAhUrTtffn4+AFpt2aFzOp0Og8FQ6zELUR9sOLuBF399kYLSAkLcQ3jvjveI8IpQOywhhBBCWJAUUXVFqzNOY75yFKChbCH1Z3efgbPrpIC6JjIyks2bNxMbG4udnR3z58+vUne+Vq1a0bx5c5566ineeecdfHx8WL16NevXr+eHH36os7iFsEYGxcCHBz7k/QPvA9A9sDtv93kbT0dPlSMTQgghhKU12Nn54uPjiYqKKjNeqNZFDYPhX4BHYNntHkHG7RZYJ6ply5Zs2rSJr776iueff75Kj7W3t+enn37C19eXoUOH0r59e7744gv+85//MHjw4DqKWAjrk1+Sz+RfJpsKqMdaP8b7/d+XAkrUKovkJSGEELVCoyjVnDvbRmRnZ+Pp6UlWVhYeHh5l7issLCQ5OZnw8HCcnGow25ZBbxwjlZsGbv7GMVB1eAVKqKvWfm+EVbiQe4FnNj3DsSvHsNPaMf226dzX4j61w7IJlX3+NmTyvgghhHrM/QyW7nyWoNVBeC+1oxBCVNHetL3EbYkjszATbydv5vedT0e/jmqHJYQQQgiVSRElhBAV+Ob4N7yx6w1KDaW09m7Ngr4LCHQLvPUDhRBCCGHzpIgSQojrlBhKeHv323x19CsABoQN4LXbX8PZzlnlyIQQQghhLaSIEkKIP10tvMrkXyazK3UXABM7TmRcu3GygK4QQgghypAiSgghgJNXTjJx00T+yP0DFzsX3uz1JneE3KF2WEIIIYSwQlJECSEavC3ntzBl6xTyS/Np4taEd+94l8hGkWqHJYQQQggrJUWUEKLBUhSFTw59wruJ76Kg0DWgK3P6zKGRUyO1QxNCCCGEFZMiSgjRIBWUFjBj+wzWnlkLwIiWI5gSMwV7rb3KkQkhhBDC2kkRJYSweXqDnsT0RDLyM/B18SXILYi4LXEkXU7CTmPHtG7TGN5yuNphVo0s4i2EEEKoRoooGxQbG0uHDh2YP3++2qEIoboNZzcwO2E2aflppm1atBgw4OXoxdzYuXQN6KpihNWQtAbWTYHsC39t8wiCgW9B1DD14hJCCCEaCK3aATQEeoOe3am7+en0T+xO3Y3eoFc7JLN99NFHxMbG4uHhgUaj4erVqxW2+/HHH+nWrRvOzs40atSIe++916JxClGRDWc3ELclrkwBBWDAAMA/OvyjfhZQK0eVLaAAsi8atyetUScuIYQQogGRK1F1rKKz4P4u/kyNmUr/0P4qRmae/Px8Bg4cyMCBA5k2bVqFbVatWsW4ceOYNWsWd9xxB6WlpRw6dMjCkQpRlt6gZ3bCbBSUm7b5+ODHPBj5ILr60g3OoDdegarwNSmABtZNhVZ3S9c+IYQQog7Jlag6dLOz4On56cRtiWPD2Q0WiePHH3/E09OTZcuWVfmxkyZNYurUqdx2220V3l9aWsqzzz7L22+/zf/93/8RGRlJVFQUw4fXs/ElwuYkpieW+9u7UWp+KonpiRaKqBac3VH+ClQZCmSnGNsJIYQQos402CIqPj6eqKgounY1vyuPoijkl+Sb9ZNTlMObCW9WeBZc+fO/2QmzySnKMev5FOXmZ9Mr8+WXXzJy5EiWLVvGo48+yrJly3Bzc6v0Z9u2bWY/f2JiIikpKWi1Wjp27EhgYCCDBg2SK1FCdRn5GbXazirkVl4UVrmdsCrVyUtCCCHU0WC7802YMIEJEyaQnZ2Np6enWY8pKC2g25fdai2GtPw0eizvYVbbXY/swsXepUrPHx8fz0svvcT3339Pnz59ABg2bBjdulX+Gpo0aWL2Pk6fPg3AzJkzmTt3LmFhYcyZM4fY2FiOHz+Ot7d3lWIWoracyT5jVjtfF9+6DaQ2ufnXbjthVaqTl4QQQqijwRZRtu6bb74hPT2d7du3lzmr6e7ujru7e63tx2AwDtB/6aWXeOCBBwD47LPPaNq0KV9//TVPPfVUre1LCHPoDXoW7l/Ixwc/rrSdBg3+Lv508utkochqSF8CSatv0UhjnKUv1LyTM0IIIYSoHimiqsDZzpldj+wyq+3etL2M3zj+lu3e7/c+nf07m7XvqujYsSOJiYl8+umndOnSBY1GA8CyZctuWdisXbuWXr16mbWfwMBAAKKiokzbHB0diYiI4Ny5c1WKWYiayi7OZsrWKfya8isAfYP7suX8FoAyXWs1GP8epsRMqR+TSuRnwtejIXnrdRs1lJ1gwviaGDhbJpUQQggh6pgUUVWg0WjM7lLXI6gH/i7+pOenVzgu6tpZ8B5BPerkS1yzZs1M3ep0Oh0LFy4Ear87X+fOnXF0dOTYsWP07NkTgJKSEs6cOUNoaGj1X4AQVXTq6ime3fwsZ7PP4qRzYmaPmdwdcfdNZ8icEjOlXsyQSfoR+OphuHIGHNzg/o/+mqWv3DpRs2WdKCGEEMICpIiqIzqtjqkxU4nbEocGjSpnwSMjI9m8eTOxsbHY2dkxf/78KnfnS01NJTU1lZMnTwJw8OBB3N3dCQkJwdvbGw8PD/7v//6PGTNmEBwcTGhoKG+//TYADz30UJ28LiFutPHcRl7c9iL5pfkEugayoO8CWvu0BqB/aH/6BvclMT2RjPwMfF186eTXqX5cgTq2Flb9HYpzwSsURi4H/z+v+ra62zgLX26acQxUaA+5AiWEEEJYiBRRdah/aH/mxs5V9Sx4y5Yt2bRpk+mK1Jw5c6r0+A8++IBXXnnFdLt3796AcdzTE088AcDbb7+NnZ0djz/+OAUFBXTr1o1NmzbRqFGjWnsdQlTEoBhYdGARHxz4AICYgBje7vM23k5lJzTRaXX1a1FdRYFtc2DT64ACYb1g+Bfgct3r0uog3Lxut0IIIYSoXRqlunNn24hrsyBlZWXh4eFR5r7CwkKSk5MJDw/Hycmp2vvQG/T18yy4qJba+r0RlcstzmXatmls+WMLAI+1foy4LnHYa+3VDaymivPhuwlw+L/G213HwcA3QVfPX1cFKvv8bcjkfRFCCPWY+xksV6IsoN6dBRfCyiVnJfPs5mdJzkrGQevAjB4zGNbMBsYCZf0Byx+BiwdAaweD34YuY9WOSgghhBA3kCJKCFGv/HL+F6Zum0puSS7+Lv4s6LuANo3bqB1WzZ1PgOWPQl46uPjA8CUQdrvaUQkhhBCiAlJECSHqBYNiYPHvi4nfH4+CQie/TsyJnUNj58Zqh1Zz+5bBD5NAXwz+beHhL6GRzG4phBBCWCspooQQVi+vJI9//fovNpzbAMDDLR/mha4vYF/fxwnpS2H9dPgt3ni79VC49wNwdFM3LiGEEEJUSoooIYRVO5d9jmc3P8vJqyex19rzr9v+xf0t7lc7rJoruALfjIVTm4y3+0yFPlNAq1U3LiGEEELckhRRQgir9WvKr7yw9QVyinPwdfZlXt95RPtGqx1WzWUcNy6gm3kK7F3g3kXQ5l61oxJCCCGEmaSIEkJYHUVR+PTQpyxIXICCQrRvNPNi5+Hr4qt2aDV3Yr3xClRRNngGG8c/BbZXOyohhBBCVIEUUUIIq5Jfks/0HdP5+czPADzQ4gFe7PYiDjoHlSOrIUWBHe8Zx0ChQEgP4wK6bjZQGAohhBANjBRRQgir8UfOHzy7+VmOXzmOndaOaTHTGN5yuNph1VxJIXz/DPy+wni702gY/A7Y1fPCUAghhGigZASzDYqNjWXSpEmm22FhYcyfP1+1eNT0xBNPcO+995pu3/jeCOux88JOHv7xYY5fOY6Pkw+f3PWJbRRQ2Rfh88HGAkqjMxZPQxdIASWEEELUY3IlqgHYvXs3rq6uaodhFf773/9ib1/Pp8W2MYqi8EXSF8zdOxeDYqCtT1vm9Z1HgGuA2qHV3B97YfkjkJsKzo3gof9ARB+1oxJCCCFEDdX7K1FXr16lS5cudOjQgbZt27J48WK1Q7I6vr6+uLi4qB0GJSUlaoeAt7c37u7uaoch/lRQWsC0X6fxzp53MCgG7ml2D58P+tw2CqgDK+CzQcYCyrcVjNskBVQDIXlJCCFsX70votzd3dm6dSv79+9n165dzJo1i8uXL6sdllW5sTufRqPh448/5r777sPFxYUWLVqwZs2aMo85dOgQgwYNws3NDX9/fx5//HEuXbpkun/dunX07NkTLy8vfHx8GDJkCKdOnTLdf+bMGTQaDStWrKBPnz44OTmxbNmycrEpisLMmTMJCQnB0dGRoKAgnnnmGdP9RUVFTJkyheDgYBwdHWnevDmffPIJAHq9nr/97W+Eh4fj7OxMy5YtWbBgQaXvRUVdHWfNmsXYsWNxd3cnJCSEjz76qMxjduzYQYcOHXBycqJLly6sXr0ajUbD/v37K92XqNyF3AuMXjuaH0//iE6jY1rMNF67/TUcdY5qh1YzBr1x8ohvnwR9EUQOgr+tB+8ItSMTFiJ5SQghbF+9L6J0Op3pKktRURGKoqAoSp3uU6/Xo9fry2wzGAzo9XoMBkOFba+Pqapt68Irr7zC8OHD+f333xk8eDCPPvoomZmZgPEs6h133EHHjh3Zs2cP69atIy0tjeHD/xqfkpeXR1xcHHv27GHjxo1otVruu+++cvFOnTqVZ599liNHjjBgwIBycaxatYp58+bx4YcfcuLECVavXk27du1M948aNYqvvvqKd999lyNHjvDhhx/i5uYGGN+bpk2b8vXXX5OUlMT06dN58cUXWblyZZXeizlz5tClSxf27dvH+PHjefrppzl27BgA2dnZDB06lHbt2pGYmMhrr73GlClTqvT8orzdqbt5+IeHOZJ5hEaOjVh812Ieaf0IGo1G7dBqpjDLuP7T9j+L+V6TjVOYO3moG5ewKDXykhBCCAtTVPbLL78oQ4YMUQIDAxVA+fbbb8u1WbhwoRIaGqo4OjoqMTExyq5du8rcf+XKFaV9+/aKs7OzsnDhwirtPysrSwGUrKyscvcVFBQoSUlJSkFBQZnta9asUdasWaMUFRWZth0/flxZs2aNsn///jJtf/zxR2XNmjVKXl6eadupU6eUNWvWKHv37i3Tdt26dcqaNWuU7Oxs07azZ89W6fUoiqL06dNHefbZZ023Q0NDlXnz5pluA8q//vUv0+3c3FwFUNauXasoiqK89tpryl133VXmOc+fP68AyrFjxyrcZ0ZGhgIoBw8eVBRFUZKTkxVAmT9/fqWxzpkzR4mMjFSKi4vL3Xfs2DEFUNavX1/pc1xvwoQJygMPPGC6PXr0aOWee+4x3a7ovXnsscdMtw0Gg+Ln56csWrRIURRFWbRokeLj41Pmd2Dx4sUKoOzbt6/CGG72eyOM7+/SpKVK9H+ilbaft1UeWvOQciHngtph1Y5LJxXlvS6KMsNDUV7zU5Tfv1Y7IqtX2eevmqw5LwkhhKhb5n4Gq34lKi8vj+joaOLj4yu8f8WKFcTFxTFjxgwSExOJjo5mwIABpKenm9p4eXlx4MABkpOT+fLLL0lLS7NU+PVW+/Z/Le7p6uqKh4eH6T09cOAAmzdvxs3NzfTTqlUrAFOXvRMnTjBy5EgiIiLw8PAgLCwMgHPnzpXZT5cuXSqN46GHHqKgoICIiAjGjRvHt99+S2lpKQD79+9Hp9PRp8/Nx5HEx8fTuXNnfH19cXNz46OPPioXQ1XeC41GQ0BAgOm9OHbsGO3bt8fJycnUJiYmpkrPL4yK9EW8vP1lZifMRq/oGRIxhC8GfUGgW6DaodXcqU2wuC9cOg7uQTB2HbR7UO2oRDVJXhJCCHErqs/ON2jQIAYNGnTT++fOncu4ceMYM2YMAB988AE//vgjn376KVOnTi3T1t/fn+joaLZt28aDD1b8BaaoqIiioiLT7ezs7CrHPHjwYMDYZeOaZs2aERERUa470rUubFrtX/VqWFgYoaGh5dr279+/XNumTZtWOT5z3DhDnUajMXXFy83NZejQobz11lvlHhcYaPzCO3ToUEJDQ1m8eDFBQUEYDAbatm1LcXFxmfa3mhUwODiYY8eOsWHDBtavX8/48eN5++23+eWXX3B2dq70scuXL2fy5MnMmTOH7t274+7uzttvv82uXbtu+fqvV9l7IWpHal4qz21+jkOXD6HVaHm+8/M8HvV4/e++pyiw6wP4+UVQDNC0K4xYBu7+akcmaqA+5iUhhBCWpfqVqMoUFxezd+9eU3EBxgKjf//+7Ny5E4C0tDRycnIAyMrKYuvWrbRs2fKmz/nmm2/i6elp+gkODq5yXDqdrkwBdS0unU5XpgC6vu31Xxar2tbSOnXqxOHDhwkLC6N58+ZlflxdXbl8+TLHjh3jX//6F/369aN169ZcuXKl2vtzdnZm6NChvPvuu2zZsoWdO3dy8OBB2rVrh8Fg4Jdffqnwcdu3b6dHjx6MHz+ejh070rx58zKTW9SGli1bcvDgwTJfcHbv3l2r+7B1iWmJjPhhBIcuH8LT0ZMP+n/AqDaj6n8BVVoEa/4B66YaC6gOj8ITP1qkgEpPTzd97gnLsta8JIQQalIUhTNnzpSbM8CWWXURdenSJfR6Pf7+Zb+U+Pv7k5qaCsDZs2fp1asX0dHR9OrVi4kTJ5aZmOBG06ZNIysry/Rz/vz5On0N9dGECRPIzMxk5MiR7N69m1OnTvHzzz8zZswY9Ho9jRo1wsfHh48++oiTJ0+yadMm4uLiqrWvzz//nE8++YRDhw5x+vRpli5dirOzM6GhoYSFhTF69GjGjh3L6tWrSU5OZsuWLaaJI1q0aMGePXv4+eefOX78OC+//HKtFziPPPIIBoOBJ598kiNHjvDzzz/zzjvvANT/IqCOKYrCymMr+dvPfyOzMJPIRpEsv3s53YO6qx1azeWkwX+Gwr6loNHCgDfhnniwq/uZBS9cuMCuXbtISEgod+VX1D3JS0IIUd7Bgwc5ePAg+/btUzsUi1G9O19NxcTEVGmqaUdHRxwd6/kUynUsKCiI7du3M2XKFO666y6KiooIDQ1l4MCBaLVaNBoNy5cv55lnnqFt27a0bNmSd999l9jY2Crvy8vLi9mzZxMXF4der6ddu3Z8//33+Pj4ALBo0SJefPFFxo8fz+XLlwkJCeHFF18E4KmnnmLfvn2MGDECjUbDyJEjGT9+PGvXrq2198LDw4Pvv/+ep59+mg4dOtCuXTumT5/OI488UmaclCirWF/MrF2zWHViFQADwwbySo9XcLFXf72yGruw37iAbnYKOHnCg59B834W233jxo1xcXGhcePG2NnV+49wmyR5SQjR0DRt2pSUlJRyJ5hsmUZRrGfeVY1Gw7fffsu9994LGLtNuLi48M0335i2AYwePZqrV6/y3Xff1Xif2dnZeHp6kpWVhYdH2WmICwsLSU5OJjw8XL4wC5Nly5YxZswYsrKyKhy31dB/b9Lz04nbEseBjANo0DCp8yTGtBljG1fuDq2C1ROgtAB8WsDI5dC4eZ3v1mAwlOnaW1xcjM7OnoTkTNJzCvFzdyIm3Budtn69x5V9/loLa8tLQghhLSrKTQ4ODipGVDvM/Qy26u58Dg4OdO7cmY0bN5q2GQwGNm7cSPfuNesSFB8fT1RUFF27dq1pmMLGffHFF/z6668kJyezevVqpkyZwvDhw2858UVDdCDjAA//8DAHMg7g7uDOov6LGNt2bP0voAwG2PgafDPWWEA1vxPGbbRIAZWTk8OWLVvIyMgwbdt0/DI939rEyMW/8ezy/Yxc/Bs939rEukMX6zyehk7ykhBCQEpKClu2bKGwsNC0zRYKqKpQvS9Ibm4uJ0+eNN1OTk5m//79eHt7ExISQlxcHKNHj6ZLly7ExMQwf/588vLyTLMiVdeECROYMGGCqdoU4mZSU1OZPn06qampBAYG8tBDD/HGG2+oHZbV+e+J//L6b69TYiihuVdzFvRdQIhHiNph1VxRDvz3KTj2o/F2j2eg/0zQ6ip9WG05c+YMeXl5HDlyhMaNG/Pz4VSeXprIjV0IUrMKeXppIose68TAtjYwbbyKJC8JIcTNGQwGTpw4QV5eHsnJybRu3VrtkFShehG1Z88e+vbta7p9bYKC0aNH8/nnnzNixAgyMjJMX2I7dOjAunXrGlSfS6GuF154gRdeeEHtMKxWib6Et3a/xYpjKwDoH9Kf13u+jqt95dPb1wuZyfDVSMg4AjpHGPYuRD9s0RDatGmDVqulRYsWGBR45fukcgUUgAJoMN5/Z1RAvevaZ00kLwkhxM1ptVq6du3KH3/8QWRkpNrhqMaqxkSpQcZEidrWkH5vLhVc4vktz5OYnogGDf/o+A/GtRtX/7vvASRvhZWjoOAKuAXAw19C0851vluDwcDFixdp0qRJuft2nrrMyMW/3fI5vhp3G92b+dRFeLVKxv5UTN4XIYS1KSgoIDc3F19fX7VDqXPmfgarfiWqPmjgdaaoooby+3Lo0iEmbZ5EWn4abvZuvNX7LXo37a12WDWnKLD7Y1g7BRQ9BHWCh5eBR5AFdq2wc+dOMjMzKSkpISwsrMz96TmFFT/wBua2E0IIIW4lLy+P7du3U1paSs+ePeXkzp8abBEVHx9PfHx8pYuCXVtQt7i4WCYREGbLz88HwN7eXuVIaofeoCcxPZGM/Ax8XXzp5NeJH5N/5JUdr1BsKCbcM5wFfRcQ7hmudqg1V1oMa1+AvZ8Zb7cbbuzCZ2+Zv3+NRoOfnx85OTm4upbvDplVUGLW8/i52/YVUFtlTl4SQghLc3FxwcPDg6KiIpv5blMbpDtfJZfsFEXh3LlzlJSUEBQUVGYaRyFupCgK+fn5pKen4+XlRWBg/R/cv+HsBmYnzCYtP820zcXOhfxSY6EYGxzLmz3fxM3BTa0Qa0/eJWP3vbPbAY1x8ojbnwULdE1UFKVMF8jCwsJyXUFX7D7Hv749RInh5h/ZGiDA04lfp9xRL8ZESbe1isn7IoRQ2415qaSkBI1G0yDWJ5TufLVAo9EQGBhIcnIyZ8+eVTscUU94eXkREBCgdhg1tuHsBuK2xKHcMI3BtQJqQOgA/t3n32g1NnByIfUgfPUIZJ0DRw944GOIHGCRXZ88eZLMzEy6du1qSljXF1AlegOv/ZDEFzuNn0Edgj05cD4LoMyRuZbqZgyNqhcFlBBCCOtUWlrKvn378PHxISIiArCd3jW1SYqoW3BwcKBFixYUFxerHYqoB+zt7U3dQOszvUHP7ITZ5Qqo6x3IOGAc/1Xfv68nfQff/h+U5IN3hHEBXd+WFtl1Xl4ex48fR6/Xm6bQv96l3CLGL0skITkTgLg7I/lH3+b8LymVV75P4mLWX2OfAjydmDE0SqY3F0IIUSMXL14kNTWVjIwMmjRpgqOjo9ohWaUGW0RVpe+5Vqu1+VnWhLheYnpimS58FUnNTyUxPZGuAfV0YVCDAbb+G7a8abwd0Rce+gycG1ksBFdXVzp06EBxcXG5AurgH1k8tWQPF7IKcXO0Y96IDtwZZZxCe2DbQO6MCiAhOZP0nEL83J2ICfeWK1D1nIyJEkJYg+DgYHJzcwkICJACqhIyJkr6ngtRzk+nf2LKtim3bPdWr7cYHDHYAhHVkEEPZ3dAbhq4+UNgNHw3AY6sMd5/23i48zXQ1f15pezsbOzt7SudrGb1vhSmrPqdolID4Y1dWTyqM8393Os8NkuTz9+KyfsihLC09PR0GjduLOP/kTFRQogaKDWUmtXO16UerBeRtAbWTYHsC39t09qDocT475B50Olxi4SSkZHB7t27cXV15fbbby83QLdUb+CtdUdZvC0ZgL4tfZn/cEc8naUvuhBCiLpx/Phxjh07RmhoKO3bt1c7nHpDiighRBnrzqzj9d9er7SNBg3+Lv508utkoaiqKWmNcca9G8d2Gf6cKjx2qsUKKAA3Nzfs7OxwdHQst57Y1fxiJn61j20nLgEwoW8z4u5sKV30hBBC1ClPT080Gg0ODg5qh1KvSBElhACgRF/CnL1zWHZkGQDNPJtxKusUGjRlJpjQ/DmTxJSYKei0VjyJhkFvvAJ108kxNLDnU+j5HFjodTg7O3P77bfj4uJSZurYo6nZPPnFXs5l5uNsr+Odh6K5u71MECGEEKLu+fv7Exsbi5ubDSxXYkHS8VEIwcXcizyx7glTAfX3dn/nm2HfMC92Hn4ufmXa+rv4Mzd2Lv1D+6sRqvnO7ijbha8cBbJTjO3qSGFhITt27ODKlSumba6urmUKqLUHL3L/+zs4l5lPsLcz/x3fQwooIYQQdSYzM5Pt27dTUvLXAu5SQFVdg70SJbMgCWH0a8qvTN02layiLNwd3Hmz55v0Ce4DQP/Q/vQN7ktieiIZ+Rn4uvjSya+TdV+Buia38tkFq9yuGo4dO8bly5c5cOAAffr0KVM8GQwKc9cfZ+HmkwDc3tyHhSM70chVulM0VJKXhBB1zWAwsH//ftMSG23atFE7pHpLZueTWZBEA6U36Fl0YBEf/f4RCgpRPlHM6TOHpu5N1Q6tdiQshp8m37rd6B8gvFedhFBaWsqBAwdo1aoVrq6upu3ZhSVMWr6fTUfTAfh7z3CmDmqFna5hdQ6Qz9+KyfsihKhL2dnZnD59mnbt2tnE2pa1TWbnE0Lc1OWCy0zZNoVdF3cBMKLlCF7o+gIOOhu5CrLnM1g79RaNNOARBKE9anXXly9fxsfHBwA7Ozs6d+5c5v6T6bk8uWQPpzPycLTTMvuBdtzX0UYKVyGEEFantLSUvLw8PD09AfDw8KBDhw7qBmUDpIgSooFJTEvkn7/8k/SCdJztnJnRfQZ3R9ytdli1o7QIfvonJP7HeLtJF0jZ++ed1190/7Nb3cDZtTaphKIo7Nu3j5SUFDp37kxQUFC5NhuPpDFp+X5yikoJ9HTio8e70K6pZ63sXwghhLhRYWEhv/32G0VFRfTq1QsXFxe1Q7IZUkQJ0UAoisIXSV8wb+889IqeCM8I5sbOpZlXM7VDqx3ZF2DF45CyB9BAv+nGmfeOfF9+nSiPIGMBFTWs1nav0WhwdHREo9GUG9NiMCjEbz7J3A3HURSICfMm/tFO+LrLSvBCCCHqjr29PTqdDq1WW2YiCVFzUkQJ0QBkF2czfft0Np7bCMDg8MHM6D4DF3sbOSN1dqdxPai8dHDyggc+gRZ/zh4YNQxa3W2chS83Ddz8jV346mByjKioKJo2bWrqMgGQV1TK8ysPsO5wKgCP3xbKy0OicLBrWOOfhBBCWJ5Op6Nr164AODk5qRyNbZEiSggbdzTzKHFb4jifcx57rT1Tuk5heMvhZWaKq7cUBXZ/DOumgqEU/NrAw0vBO6JsO62uTiaPuHDhAhkZGURHRwPGq1HXF1BnL+fx5Bd7OZaWg71Ow2v3tOXhmJBaj0MIIYQAY6+TpKQkPDw8CA4OBqR4qisNtoiSqWSFrVMUhW9Pfssbv71BsaGYINcg5sbOpU1jG5nOtKQQfnwe9i813m5zP9yzEBxcK39cLSkoKCAxMRFFUWjcuDFNmjQpc/+2Exn848t9ZBWU4OvuyAePdaZzaCOLxCbqJ8lLQoia+uOPPzh9+jRarRZfX18poOqQTHEuU8kKG1RQWsDrv73OmlNrAOjTtA9v9HwDT0cbmcQg6w9Y8Rhc2AcaLfR/BXpMBAtfXTtz5gz5+fm0bt3adGVPURQWbzvN7LVHMSjQIdiLDx/vjL+HJLIbyedvxeR9EUJUl6Io7N+/n4CAAAIDZeH26pApzoVooM5knSHulzhOXDmBVqNlYseJjG07Fq3GRsbgJG+Dr5+A/Evg7A0PfgrN+lpk14WFhWi1WhwcjFPBh4WFlbm/oFjP1P/+znf7jZNYPNS5Ka/d2xYne1mHQwghRN3Izs7G3d0djUaDRqOhY8eOaofUIEgRJYQN+fnMz8zYMYO8kjx8nHx4u8/bdA3oqnZYtUNRYNcH8PNLoOghoB2MWAaNQi2y+6ysLHbt2oWrqyvdu3dHqy1blP5xJZ+nluzl8IVs7LQapg+N4vHbQm1j7JkQQgirdO7cOX7//XeaN29Oq1at1A6nQZEiSggbUKIvYe7euSw9Yhwf1MW/C//u/W98XXxVjqyWFOfDD5Pg9xXG2+2Gw9AF4GC52QV1Oh16vZ6SkhKKi4vL9DP/7fRlxi9LJDOvGG9XB95/tBO3RfhYLDYhhBANk0ajQVEU8vPzURRFTtxZkBRRQtRzF3MvMnnrZH7P+B2Av7X9G//o+A/stDby533lrHH8U+rvoNHBgDeg2/9ZfPyTm5sb3bt3x83NDTs743urKApf7DzLaz8kUWpQaBPkwYePd6ZpIxuZOl4IIYRVCw4OxtnZmcaNG6sdSoNjI9+yhGiYfk35lWnbpnG16CruDu7M6jmL2OBYtcOqPae3wNdjoCATXHzgof/UyVTlFdHr9Rw8eJDmzZvj5uYGgJeXl+n+olI9L68+xMo9fwAwLDqItx5oj7ODjH8SQghRN/Ly8jh27BjR0dHodMZ8IwWUOqSIEqIe0hv0fPD7B3x44EMUFFp7t2Zu7FyaujdVO7TaoSiwcyGsnw6KAQI7wIil4BVssRAOHz7M+fPnuXLlCrGxsWW6SKRlF/LUkr3sP38VrQamDWrN33uFSzcKIYQQdUZRFHbt2kVeXh4ODg60bdtW7ZAatAZbRMl6HKK+ulxwmanbpvLbxd8AGB45nBdiXsBR56hyZLWkOA/WTIRDq4y3ox+BIXPB3tmiYbRq1Yrs7GyioqLKFEd7z17h/5buJSOnCE9ne94b2ZHekTYy9kyoSvKSEKIyGo2G6Ohojh07RosWLdQOp8GTdaJkPQ5Rj+xL38fkLZNJL0jH2c6Z6d2nMyRiiNph1Z7MZOP4p7RDoLWDgbOh698tNv4pLy8PV9ebL9a7POEcL393iBK9Qkt/dz4a1ZlQH8ss7muL5PO3YvK+CCGuMRgMFBYW4uIiY20tRdaJEsKGKIrCF0lfMG/vPPSKnnDPcObFzqOZVzO1Q6s9JzfCN2Oh8Cq4+sLwLyC0h0V2rSgKx44d4+TJk3Tr1g1f37JXlopLDbz2QxJLfjsLwMA2AcwZHo2ro3yECiGEqBslJSXs2bOHvLw8evXqhaOjjfQ4sRHyDUAIK5dTnMPL219m47mNAAwKG8TMHjNxsbeRs1KKAtvnw8ZXjeOfmnSG4UvAs4nFQtBoNBQUFKAoClevXi1TRF3KLWL80kQSzmSi0UBc/0gm9G2OVivjn4QQQtStwsJCiouLycnJkSLKykgRJYQVO5p5lLgtcZzPOY+d1o4pXacwouUI25nAoCgXvhsPSd8Zb3d8HO6eA3aWTxTR0dEEBQXh7+9v2nbwjyyeXLKHi1mFuDnaMX9EB/pH+VfyLEIIIUTtsLe3JyYmBr1eL117rZAUUUJYqf+e+C9v/PYGxYZiAl0DmRs7l7aNbWgmnsunYPmjkHEEtPYw+N/QeYzFxj9lZmZy6dIlIiMjAdBqtWUKqG/3/cHUVQcpKjUQ0diVj0Z1obmfm0ViE0II0TAlJyfj4uJiykeVjdMV6pIiSggrU1BawBu/vcF3p4xXZ3o16cWsnrPwcvJSN7DadPx/sOrvUJQFbv7G7nsh3Sy2+8LCQnbu3InBYMDNzY2goCDTfaV6A7PXHuXjX5MBuKOVH/Mf7oCHk73F4hNCCNHwpKSkcOjQIezs7IiNjcXZ2bKz0oqqkSJKCCtyJusMcb/EceLKCbQaLRM7TmRs27FoNVq1Q6sdBgP8Ogc2vQEo0DTGOIGER6BFw3BycqJFixZkZWWVufp0Ja+YiV/t49eTlwD4R9/mxN0ZKeOfhBBC1LnAwEAaN26Mn5+fFFD1gBRRQliJn8/8zIwdM8grycPbyZu3e79NTGCM2mHVnsJsWP00HP3BeLvLWBj4Ftg5WGT3paWlANjZGT/2IiMjURTFNL7syMVsnlyyh/OZBbg46HjnoWgGt7NscSeEEKJhKSwsxMnJCTB2K7/ttttsZ9yzjZMiSgiVlehLmLt3LkuPLAWgk18n3u7zNn4ufipHVosunYDlj8Cl46BzME4e0WmUxXafn59PQkICLi4udO3a1ZSgrv3708GLPL/yAAUleoK9nVk8qgutAmQQrxBCiLqTnp7O3r17admyJREREQBSQNUjDbaIkpXhhTVIzUvl+V+e5/eM3wEY23YsEztOxE5rQ3+aR3+Cb5+ComxwD4IRS6BpF4uGUFxcTF5eHsXFxRQUFJgWLdQbFOauP0b85lMA9GzemIWPdMTLxTJXx4S4nuQlIRqW3NxcSktLSU1NJTw8XAqoekajKIqidhBqkpXhhVq2p2xn6rapXC26iru9O2/0fIO+IX3VDqv2GAzwy1vwy2zj7ZAeMPw/4KbOFbb09HQ8PDxM3SayCkp4bsV+Nh1NB2Bcr3CmDGyFnc5Gxp/VA/L5WzF5X4RoOM6fP0+TJk3QaiX3WAtzP4Nt6HS3EPWD3qDng98/4MMDH6Kg0Nq7NXNi5xDsHqx2aLWnMAv++yQcX2e8HfMUDHgDdJaZ4U5RFI4fP05ISAjOzs7oDQqncnSkX7iMn7sT3q72PL00kdOX8nC00/LWA+25t6PlFvcVQgjR8BQXF3Pq1ClatmxpKpqCg20o9zcwUkQJYUGZhZlM2TqF3y7+BsBDkQ8xJWYKjjobWoU8/SiseBQunwSdIwydDx0esWgISUlJnD59mtTUVPK9W/DqD0e4mFVoul8DKECQpxMfPt6Fdk09LRqfEEKIhkVRFHbu3El2djYGg4E2bdqoHZKoISmihLCQfen7mPzLZNLz03G2c+bl215maLOhaodVu5LWGGfgK84Fj6bG8U9NOlk8jIiICFJTU/lD78G/lu3jxj7L125PujNSCighhBB1TqPR0LJlS5KSkggJCVE7HFELpIgSohbpDXoS0xPJyM/A18WXTn6d0Gq0LElawry98yhVSgnzCGNe7DyaN2qudri1x6CHzbNg2zvG22G94MHPwM3XYiGUlJRgb2/sLujs7EzvPrH0fntLuQLqGg0wb/1xHujUFJ2sAyWEEKIOXJ+bAgIC8PPzk/FPNkKKKCFqyYazG5idMJu0/DTTNj9nPwJcA/j9knH2vUFhg5jRYwau9q5qhVn7Cq7AqnFwcr3x9m0T4M5XQWe5j5dz585x+PBhunfvjpeXFwB7zl4t04XvRgpwMauQhORMujfzsUygQgghGgSDwcDBgwfJzMykZ8+epkJKCijbIUWUELVgw9kNxG2JQ7nhukd6QTrpBeloNVqmxkzl4ZYP29YUpmlJxvWfriSDnRMMew/aD7d4GKmpqZSWlvLHH3+Yiqj0nJsXUNczt50QQghhrpKSEtLT0ykqKuLy5csEBASoHZKoZVJECVFDeoOe2QmzyxVQ12vk2IjhkcPrZwFl0MPZHZCbBm7+ENoDtDo4/C2sngAleeAZAg8vhcBoVULs1KkT58+fJzw8HDCu/7TlWLpZj/Vzd6rL0IQQQjRAjo6OxMTEUFRUhJ+fOkt7iLolRZQQNZSYnlimC19FLhdeJjE9ka4BXS0UVS1JWgPrpkD2hb+2eQRBUEc4+qPxdngf4/gnV8t1icvLy+Py5cumwbl2dnamAiorv4RnV+xjy7GMSp9DAwR4OhET7l3X4QohhGgA0tLSsLe3x9vbmFc8PWXiIlsmRZQQNZSRX/mX9aq2sxpJa2DlKLjxClv2hb+Kqh7PQL8ZFh3/VFhYyLZt2ygpKcHBwaFMF4kjF7N5aslezmXm42SvZWRMMJ9vPwuUfRXXrgfOGBolk0oIIYSosdTUVHbv3o2DgwO9e/fG2dlZ7ZBEHZMiSoga8nC8+WrW1/N1sdxMdTVm0BuvQFXSRRFnb+g/09i1z4KcnJxo2rQpV65cMY1/AvhufwpTVv1OYYmBpo2c+fDxzrQJ8qRbuA+vfJ9UZpKJAE8nZgyNYmDbQIvGLoQQwjb5+vri6emJl5cXjo42tPajuCkpooSogd8zfmf2rtmVttGgwd/Fn05+ll8vqdrO7ijbha8iBZnGduG96jwcRVFQFMU0q1GbNm0wGAzodDpK9Abe/Okon25PBqBXi8a8+3BHGrk6ADCwbSB3RgWQkJxJek4hfu7GLnxyBUoIIURN6PV6dDrjiUSdTkePHj2ws5Ov1g2FHGkhqqFEX8IHv3/Axwc/xqAY8HDwILs4Gw2aMhNMaP7sODYlZgo6C1+xqZHcysd4VbldDZSUlLB3716cnJzo0KEDYFy0UKfTkZFTxD++TGRXciYAE/o2I+7OluUKJJ1WI9OYCyGEqDXZ2dkkJCTQqlUrmjZtCiAFVANj1tHu1KlqZ9A1Gg1r1qyhSZMm1QpKCGt24soJXvr1JY5kHgFgcPhgXuz2IrtTd5dbJ8rfxZ8pMVPoH9pfrXCrx82/dtvVQHZ2NpcuXUKr1dKiRQtcXY1rbO07d4WnlyaSml2Im6Md7zwUzcC2MoVsQyK5SQihlosXL1JQUMCpU6do0qRJ/Zx9V9SIWUXU/v37ef7553Fzc7tlW0VRmD17NkVFRTUOri7Fx8cTHx+PXq9XOxRRT+gNepYkLeHdfe9SYijB09GTl297mQFhAwDoH9qfvsF9SUxPJCM/A18XXzr5dapfV6AADAa4sO8WjTTGWfpCe9R5OD4+PkRHR+Ph4WEqoL5KOMeM7w5TrDfQzNeVDx/vQnO/W38+Cdtia7lJ8pIQ9UdkZCQajYbw8HApoBoojaIolYwcN9JqtaSmppo9z727uzsHDhwgIiKixgHWtezsbDw9PcnKysLDw7wJAkTDcz7nPP/69V8kpicC0Ltpb2Z2n1m/JoswR246rH4aTm64bqOGCue2G/4FRA2rkzDOnz+Pv78/Dg4OZbYXleqZ8d1hlu8+D8CANv6881A07k72dRKHqFs1/fy11dwkeUkI62MwGDh37hyhoaFSNNk4cz+DzboSlZycjK+v+V8Wk5KSCAoKMru9ENZKURRWnVjFv3f/m4LSAlzsXHih6wvc3+J+2/sQPbUJ/vsU5KWDnRMMmAWujWHd1PLrRA2cXWcF1IkTJzh69Cg+Pj7cdtttpskkLlwt4OlliRw4fxWNBibf1ZKn+zRDKxNENFiSm4QQlqAoCr/99huXL1+mqKiIli1bqh2SsAJmFVGhoaFVetLg4OBqBSOENcnIz2DGjhlsS9kGQCe/TrzR8w2aujdVObJaVloMm1+H7QuMt31bw4Ofgn+U8XarIcZZ+HLTjGOgQnvU6bTmAQEBnDp1Cj8/P1MBtfPUZf7xZSKX84rxdLbn3ZEd6RNpY1cBRZVJbhJCWIJGoyE4OJjs7Gx8fGSSImFU5WlE1q1bh5ubGz179gSMfbgXL15MVFQU8fHxNGrUqNaDFMLS1p1Zx+u/vU5WURb2Wnue7fQsj7V+rP6Nb7qVzNPwzd/ggrGbIl3+BgPeAPvrFgnU6up8GnODwWAqmNzd3bnjjjtwcHBAURQ++TWZN9ceRW9QiAr04MPHOxPs7VKn8Yj6R3KTEKK2XZ+bgoODK+xmLhoubVUf8M9//pPs7GwADh48yPPPP8/gwYNJTk4mLi6u1gMUwpKyirJ4YesL/POXf5JVlEVr79asHLKS0W1G214B9ftK+KC3sYBy8oThS2DI3LIFlAVkZGSwefNmcnNzTdscHBzILy7l2eX7ef3HI+gNCvd1bMKqp3tIASUqJLlJCFGbTpw4wY4dO8pM9CIFlLhela9EJScnExVl7OazatUqhgwZwqxZs0hMTGTw4MG1HqAQlrI9ZTvTt08nvSAdnUbH39v9nafaP4W9zsYmLSjKgZ/+CQe+Mt4O6Q73LwYvdbo6nThxgvz8fE6cOEHHjh0BOHs5j6eW7OVoag52Wg3/urs1o3uE2d44NFFrJDcJIWpLYWEhp06doqSkhIsXL5rWgRLielUuohwcHMjPzwdgw4YNjBo1CgBvb2/TWUAh6pP8knzm7JnDyuMrAQjzCGNWz1m0822ncmR14MI+Y/e9zFOg0ULvF6D3P0Gn3gKBnTt35tSpU7Rq1QqAzcfSefarfWQXltLYzZH4RzrSLUL6oIvKSW4SQtQWJycnunTpQl5enhRQ4qaq/M2pZ8+exMXFcfvtt5OQkMCKFSsAOH78uPyiiXpnf/p+Xvz1Rc7nGKfMfrT1ozzb6Vmc7Szbpa3OGQzw2/uwYSYYSsCjifHqU9jtFg+lpKSEzMxM/P2NC/U6OjoSFRWFwaDw7sYTzNtwHEWBjiFeLHq0MwGeThaPUdQ/kpuEEDWRlZWFRqMxTWnduHFjGjdurHJUwppVeUzUwoULsbOz45tvvmHRokWmld/Xrl3LwIEDaz1AIepCsb6Y+XvnM3rdaM7nnCfANYDFdy1masxU2yugctPhy4fgfy8ZC6hWQ+D/flWlgCouLmbbtm3s3r2bS5cumbZnF5bw5JK9zF1vLKAe7RbC8idvkwJKmE1ykxCiui5dusT27dtJSEiw6gW5hXUxa7FdWyaLGjY8xzKP8eKvL3L8ynEAhjUbxtSYqbg7uKscWR2oaO2nLmNBxbFFiYmJXLlyha5du+Lh4cHxtByeWrKX5Et5ONhpef2etgzvKlNRNwTy+VsxeV+EsKySkhK2bduGq6srnTp1wt7exsZCiyqp1cV2K5Kenk56ejoGg6HM9vbt21f3KYWoU3qDns8Of0b8/nhKDaV4O3kz/bbp9Avtp3Zote9Waz9ZmKIopkkhoqOj0ev1ODg48NPBi0z++gD5xXqCPJ344PHOtG/qpUqMwjZIbhJCmOP6vGRvb0+PHj1wdHSUCYyE2apcRO3du5fRo0dz5MgRrl3E0mg0pl/G66eCFMJanMs+x0u/vsT+jP0A9A3uy4zuM/BxtsEJCzJPw6q/Q8pe4+0uY+GuN8DB8lODGwwGDh48iL29vWnmNJ1Oh4KGN9ce4cNfTgPQo5kP743siI+bo8VjFLZBcpMQwlyFhYXs2bOHyMhI/Pz8AONkEkJURZWLqLFjxxIZGcknn3yCv7+/VOzCqimKwspjK5mzdw4FpQW42bsxNWYqw5oNs83f3d+/hh+eg+Ic49pPwxZC1DDVwrl8+TLnzp0zrfbu7u5OZl4xz3y1j19PGsdEPdk7ghcGtMROV+UhmkKYSG4SQpjr9OnTXLlyhYMHD9K3b1/TgrpCVEWVi6jTp0+zatUqmjdvXhfxCFFr0vLSmLFjBtsvbAegW0A3Xrv9NQLdAlWOrA4U5f659tOXxtsqr/10ja+vL61bt8bDwwN3d3cO/pHF/y3dS8rVAlwcdPz7wfYMaR+kaozCNkhuEkKYq1WrVpSUlNCiRQspoES1VbmI6tevHwcOHJBEJayWoij8lPwTb+x6g5ziHBx1jjzX+TlGthqJVmODH5YX9sM3Y61m7adLly7h5eWFnZ1x/9c+K77Z+wcvfnuQ4lIDYT4ufPh4F1oG2OBkHkIVkpuEEDejKArp6emmpTW0Wi3R0dEqRyXquyp/y/r4448ZPXo0hw4dom3btuVmMBk2TL2uQ0JcKbzC67+9zv/O/g+Atj5teaPXG0R4RqgcWR0wGGDXIlg/Q/W1n645e/YsBw8exN/fny5duqDRaCguNfDaD0ks+e0sAP1a+TF3RAc8nWX2I1F7JDcJIR7kuFQAAE+6SURBVG4mMTGRCxcu0LZtW8LDw9UOR9iIKhdRO3fuZPv27axdu7bcfTJ4V6hp6x9bmbFjBpcKLmGnseOp6Kf4e7u/Y6dV54pMncrNgNVPw8n1xtuthsCw98DFW9WwPDw80Gg0ODg4GM/85RQxflkie89eAWBS/xY8c0cLtFoZryJql+QmIcTNeHp6kpqaauohIURtqPI6UWFhYQwZMoSXX37ZdFm0PpP1OOq/vJI83t79NqtOrAKgmWcz3uj1Bm182qgcWR2xwrWfrpebm4ubmxu7z2QyflkiGTlFuDvZMX9EB/q1rv+fGaL21Obnry3lJslLQtS+a7lJiFups3WiLl++zHPPPVfvk5SwDXtS9/Cv7f8iJTcFDRpGRY1iYqeJOOpscKpsfQlses1q1n4CyMnJ4cCBA3Tp0sU0Payrqytf7DzDq98nUWpQaOnvzoePdyassatqcQrbJ7lJCHFNSkoKFy5cMHUrB6SAErWuyqPs77//fjZv3lwXsVTL+fPniY2NJSoqivbt2/P111+rHZKwgCJ9EXP2zGHsz2NJyU2hiVsTPhnwCZO7TrbNAirzNHw64K8CqstYGLdJ1QIK4Pfff+fKlSscOnQIgMISPc9/fYDp3x2m1KBwd/tA/ju+hxRQos5JbhJCABQVFXHgwAFSU1M5f/682uEIG1blK1GRkZFMmzaNX3/9lXbt2pUbvPvMM8/UWnDmsLOzY/78+XTo0IHU1FQ6d+7M4MGDcXWVL222KulyEi/9+hInr54E4IEWD/DPrv/E1d5Gj3m5tZ/eg6h71I4KgI4dO3LkyBHatWvH+cx8/m/pXg5fyEargWmDWvP3XuGyXo+wCMlNQggAR0dHOnbsyNWrVwkOVneZD2HbqjwmqrJZTTQaDadPn65xUDURHR3NDz/8YPYfjvQ9rz9KDaV8cvATPjjwAaVKKT5OPrzS4xX6BPdRO7S6YYVrPxkMBrKysmjUqFGZ7dtOZPDMV/u4kl+Ct6sDC0d2pEfzxipFKeqL2vz8taXcJHlJiKopKChAURRcXFzUDkXYAHM/g6vcnS85OfmmP9VJUlu3bmXo0KEEBQWh0WhYvXp1uTbx8fGEhYXh5OREt27dSEhIqPC59u7di16vlzMP9ZjeoGd36m5+Ov0Tu1N3ozcYZ9RKzkpm1NpRLNy/kFKllDtD7+Tbe7613QLqwn74sLexgNJooc9UGP2DqgVUSUkJO3fuZOfOnWRlZQHGtTcWbTnF6E8TuJJfQvumnnw/sacUUMLiJDcJ0TBlZWWxbds2EhISKC0tVTsc0YCoPtdjXl4e0dHRjB07lvvvv7/c/StWrCAuLo4PPviAbt26MX/+fAYMGMCxY8fw8/MztcvMzGTUqFEsXrzYkuGLWrTh7AZmJ8wmLT/NtM3fxZ8eQT1Ym7yWQn0h7g7uvNTtJQaHD7bNbmIVrv30EYT1VDsy7OzssLOzQ6vVUlJSQm5RKf/8+gBrD6UCMLxLU169py1O9jqVIxWi5iQ3CVE/ODo6otFo0Gg0lJaWyjTmwmLM6s4XFxfHa6+9ZnZf7mnTpvHPf/4Tb++qrVmj0Wj49ttvuffee03bunXrRteuXVm4cCFg7E4UHBzMxIkTmTp1KmAcRHjnnXcybtw4Hn/88Ur3UVRURFFRkel2dnY2wcHB0m1CZRvObiBuSxwKN/917B7YnVdvf5UA1wALRmZBVrr2k96gkJCcSXpOId5OOqKbuJFRCE8t2cvJ9FzsdRpmDmvDIzEhtlnYijpT025rtpKbJC8JUTO5ubk4OTlJASVqRa1251uwYAH5+flm7zw+Pp6rV6+a3f5miouL2bt3L/379zdt02q19O/fn507dwLG7kRPPPEEd9xxxy0LKIA333wTT09P0490r1Cf3qBndsLsSgsoDwcP3u/3vu0WUKc2waIexgJK5wh3z4ERS1UvoD79aQddXljCyMW/8ezy/Tz++V76zNvB3Qu2cTI9F38PR1Y81Z1Hu4VKASUszlZyk+QlIcxXWlrK3r17yczMNG1zc3OTAkpYnFm/cYqiEBkZafaXpLy8vBoFdc2lS5fQ6/Xl1v3w9/fn6NGjAGzfvp0VK1bQvn17U5/1JUuW0K5duwqfc9q0acTFxZluXzvjJ9STmJ5YpgtfRbKLs9mXsY+uAV0tFJWFlFv7qdWfaz+pv1Dw8q2HmPbpOhTAKdgZraNxwO6V/BIAmvu68eWT3fBzd1IxStGQ2UpukrwkhPmOHz/OhQsXuHLlCnfccQdabZWH9wtRK8wqoj777LMqP7GlFjzs2bMnBoPB7PaOjo44OtrgOkL1WEZ+Rq22qzcyT8Oqv0PKXuPtzmNgwCxwUH92Ib1BYcH2NHSe/mgd/iqgrpdXXIqPq/wtCfXYSm6SvCSE+SIjI8nJySEyMlIKKKEqs4qo0aNH13UcFWrcuDE6nY60tLJXKdLS0ggIqFm3rvj4eOLj49Hr9TV6HlEz+SX57Liww6y2vi6+dRyNBVnp2k85OTm4urqSkHyFi1mFOPiG3bTtxaxCEpIz6d7Mx3IBCnEdW8tNkpeEqFh2drZpbIqdnR3dunVTOSIhqjHFuSU5ODjQuXNnNm7caNpmMBjYuHEj3bt3r9FzT5gwgaSkJHbv3l3TMEU1lBhKWHlsJYP/O5jvTn1XaVsNGgJcAujk18lC0dWholz49mn479+NBVRId/i/7VZRQKWmprJt2zZ+//130nMKzXqMue2EsCV1lZskLwlR3pEjR/jll19ISUlROxQhylB9FF5ubi4nT5403U5OTmb//v14e3sTEhJCXFwco0ePpkuXLsTExDB//nzy8vIYM2aMilGL6lIUhU3nNjE/cT5nss8A0NStKXeE3MGSpCXGNtdNMKHBONZhSswUdNp6PnX2hf3wzVjIPGVc+6n3C9D7n6BT/c8QMA6MNxgMFBYWYrA370y4jIcStkpykxDW4dok0rU1plGI2qL6t7c9e/bQt29f0+1rg2tHjx7N559/zogRI8jIyGD69OmkpqbSoUMH1q1bZ7F+7aL27Evfx9w9c9mfsR+ARo6NeCr6KYZHDsdeZ09Hv44VrhM1JWYK/UP73+RZrYxBD2d3QG4auPlDaA9jwfTb+1a59tP1/Pz86N69O9vOFfDyt4cqbasBAjydiAlXd/ZAIeqK5CYhrEPr1q3x8/OjcWNZxF1YF7PWibJlNV2nRNza6azTLNi7gE3nNwHgpHNiVJtRjGkzBjcHtzJt9QY9iemJZORn4OviSye/TvXnClTSGlg3BbIv/LXNLQDc/eHiAeNtK1n7CaCwsJCkpCTatm2Lg4MDOYUlzPjuMP/dZ+wyEeHryumMPDRQZvL5a/OgLXqsEwPbBlo6bGFD5PO3YvK+iIYsMzOTlJSUm86yLERdM/czuNpXok6ePMmpU6fo3bs3zs7OKIpSr9aJkQG8dS8jP4P3D7zPtye+Ra/o0Wq03Nf8PsZ3GI+fi1+Fj9FpdfVzGvOkNbByFNy41lVuqvFHaweD3oIufwMr+Tu5ts6GwWBA59eMZ5fv51xmPloNPNOvBf/o25wNR9J45fskLmb9NfYpwNOJGUOjpIASVqk+5ybJS6KhKy4u5rfffkOv1+Ph4UFoaKjaIQlxU1W+EnX58mVGjBjBpk2b0Gg0nDhxgoiICMaOHUujRo2YM2dOXcVaJ+SMX+3LLc7ls8OfsSRpCQWlBQDEBscyqdMkmnk1Uzm6OmDQw/y2Za9A3cjND+KOghVdVcvJyWFv4j725nry/vYU9AaFJl7OLHi4A13C/rpSpjcoJCRnkp5TiJ+7sQufTls/vpQK61abn7+2lJskL4mG7Ny5c6Snp9OxY0d0OuvJmaLhMPczuMqz8z333HPY2dlx7tw5XFz+WjtmxIgRrFu3rnrRCptQoi/hyyNfcve3d/PR7x9RUFpAe9/2/Gfgf3jvjvdss4AC4xioygoogNx0YzuVXT8wN0dvx/tH7Xlv2x/oDQpDo4P46dleZQooAJ1WQ/dmPtzToQndm/lIASWskuQmIeqn0tJSioqKTLdDQkLo0qWLFFDC6lW5O9///vc/fv75Z5o2bVpme4sWLTh79mytBSbqD0VR+Pnsz7yb+C7nc84DEOYRxrOdnqVfSL9605Wm2nLTbt2mKu3qgF6vZ//+/WRkZNCrVy9+OZ3NtP8eJKugBFcHHa/e05b7OzWx/WMlbJbkJiHqn/z8fBISErCzs6NHjx6yeK6oV6pcROXl5ZU5y3dNZmamrLjeAO1O3c3cPXM5dNk4m5uPkw/jO4znvhb3Ya+1Vzk6C8k8bV47N/Vm7dJoNBQUFJBXUMQ/l+3kp9PGs37RTT1Z8HBHwhq7qhabELVBcpMQ9Y+iKBQWFqLT6SgoKMDVVXKRqD+qXPL36tWLL774wnRbo9FgMBj497//XWY6WGsXHx9PVFQUXbvWw0kMrMCJKyeYsHECY38ey6HLh3C2c2Z89Hh+uv8nhrcc3jAKqKwUWP4obH7jFg01xmnNQ3tYJKyKaLVaXIIimX9Qw0+ni9BoYHxsM755uocUUMIm2EJukrwkGhpXV1diYmLo1auXFFCi3qnyxBKHDh2iX79+dOrUiU2bNjFs2DAOHz5MZmYm27dvp1mz+jXuRQbwVk1qXirx++NZc2oNBsWATqPjwcgH+b/o/6OxcwNZw8Ggh90fw8bXoDjHOPNe5EA4+uOfDSqYEHz4FxA1zKJhXrhwAb1eT5MmTfn419O8/fMxSvQKAR5OzBvRge7NfCwajxA3qs3PX1vKTZKXhK1SFIWjR4/StGlT3N3d1Q5HiArV2RTnbdu25fjx4yxcuBB3d3dyc3O5//77mTBhAoGBMuWxrcouzubTg5+y9MhSivTGrmB3ht7JMx2fIcwzTN3gLCn1IHz/LKTsNd5u2hWGLgD/NhWvE+URBANnW7yAunz5Mnv37uVqQQk/pJ1gV4pxlsSBbQJ48/52NHJ1sGg8QtQ1yU1CWL9jx45x8uRJLly4QN++fWUMlKjXZLFdOeNXqWJ9McuPLuejgx+RVZQFQCe/TsR1iSPaN1rl6CyoOA+2zIad8aDowdED+s+AzmPh+iRg0Btn4ctNM46BCu2h2rTm8V//j4W/nCXfNRAXBzumD/3/9u49run73h/4Kwm5cI1cwlUQBERRAVHwbqWyWq2XX/tbZ7fu1HbnuLPW/brV+VvbnXVd92vXrut6OStbd7aztjvt1nY3q7a1F6v1AhYQFRFREEHkrlwCgYQk3+/vj2gQBQUM+X6TvJ6Ph49Hv998E97Jp8k773xu6bgnJ56LR5Bs8PN3eHxdyFsNDAygqKgI06ZN448bJFsTutmu2WxGeXk52traIAjCkNvWrXPvL+40MQRRwIdnP8SrR15FY28jAGCqfioemfsIbpl8i299Ea/+FPhgC9B1znGcvh64/RdAyDAJQKkCkpa6N75LLBYLNBoNLDYBz3xwEn8qHYAiKBYzY0Lwn1+fg5TIIEniInIX5iYi+TGbzdDpdAAAjUaDZcuW+dZ3CPJaYy6idu3ahfvuuw8XLly45jaFQuExO61zZ/iRFTUV4aXDL+Fkx0kAQKR/JB7KegjrU9bDTzmuutsz9bQCux4DTvzDcRwyGbjjV0Da7dLGNYyuri6UlJTAop2EV0r7UN3WC4VCgU1Lk7B1ZRq0ftxvg7ybN+Qm5iXyNvX19aioqEBubi4MBgMAsIAirzHm4Xypqam47bbb8JOf/ARRUdIt2ewqHDYxqKqjCi8dfgmFTY5NYQPVgfjXWf+Kb6Z/E/5+/hJH50aCAJS9CXz2JGDuBhRKYP6DQN6PAK08e3POnz+PX769C3+vuAhVzAwYQgLw4tcysWyaQerQiEbkys9fb8pNzEvkLY4ePYqGhgZMmTIFGRkZUodDNCoTNpyvtbUVW7Zs8fgkRYOaepvw6pFXsbN2J0SI8FP6YUPaBnw749sI04VJHZ57tVU5Fo5oOOQ4jsl0LBwRO0fauK7jQq8FT3zahE/PqaGKmYEV6TF4/qsZiAji3jjkO5ibiOQnIyMD4eHhiI+PlzoUIpcbcxH11a9+FXv37vWo5WJpeN2Wbvy+/Pf4c9WfYRWsAIBViavwf7L/D+KDfewDz2oG9r8AHHgZEKyAOhC49cdA7rcBlfyGMNrtdpw+fRpNgh6P/rMSF3otCAiNxI/vmIF/WTCFwyXI5zA3EUnPZDKhqakJqampABx7FLKAIm815m+Hr776Ku6++27s378fs2fPhlo9dFPVhx9+2GXB0cQw28z4c9Wf8Yfjf0DPQA8AIDc6F1vmbsHMiJkSRyeB2i+And8HOmodx9NWAat/CUyS7wd/4aEv8dquI/i8wQZtdArSooLxn1+fg7Ro7rtBvom5iUhaVqsV+/fvh9VqhU6nY/FEXm/MRdRf/vIXfPLJJ9DpdNi7d++QX7wVCgUTlYzZBTt21u7Eq0dfRYupBQCQGpqKR7IfwZK4Jb7Xe2G6CHzyH8CxvziOg6KB1c8DM9YBMn4tatp68NMvOlFR3QVNVDI2LpyCx1fPgE7NxSPIdzE3EUlLrVYjOTkZra2tiIyMlDocogk35oUloqOj8fDDD+Oxxx7zik3SfGECryiKONB4AC+VvYTqzmoAQHRgNL6b9V2smboGKon2MZKMKDoKp4//A+jvAKAAcv4NWPEEoNNLHd2IBgYG8Ncjzfh/OythtgoI9ffDC1/LwooZnANCnsmVn7/elJt8IS+RdxAEAYIgwM/Pb8g5T38Pkm+bsIUlBgYGsGHDBo9/g/jKUrInLpzAi4dfRHFLMQAgWBOMTbM34evTvw6dn07i6CRw8Yxj6N7ZfY7jyJmOhSPicyQN63pEUcSXR47jqXf2o1KIhcJPg6WpEfjV3ZmIDPHBNiQahjfkJl/JS+QdrFYrSktLoVQqkZub6+z99eT3INFYjLkn6pFHHoHBYMCPfvSjiYrJrTz5Fz+7YEdZWxna+9phCDAgOzLb2avU0NOAX5f9Gh/VfQQAUCvV+Mb0b2BTxibotfLtbZkwtgHg4CvAvl8Cdgvg5w8sfxRY+F1Apb7x/SW0r6oF//7C27jY1Y2A6Kn48YZl+NbiJCiV8h1ySDQarvz89abc5Ml5iXxHd3c3Dh48CABYsmQJ/18lrzFhPVF2ux3PP/88Pv74Y2RkZFwzeffFF18ce7Q0Zp/Vf4bnip9Da1+r81xUQBS+O+e7qOqowrun3oVNsEEBBdZMXYPvzvkuYoNiJYxYQvVFjmXLL5xyHCffCtzxIhCWJG1cNzBgE/Dip6fxu31nYNcnIjVWwO/+/TbMivPBIpjoBpibiNxLr9cjOzsbAQEBLKDIJ425iDp+/DjmzHHsmVNRUTHkNp9bmEAin9V/hi17t0DE0E7E1r5WPHHwCefxothFeGTuI5geNt3dIcpDfyfw6ZOOjXMBINAArHwWmP1VWS8cAQBHqhvw2F+P4JTR0bN47+JpeGLNDARo5LfcOpEcMDcRTbz6+noYDAYEBAQAcMxFJPJVY/5GtmfPnomIg0bJLtjxXPFz1xRQV/JT+OHVFa9icdxiN0YmI6IIVPwd2PU4YGpznMu+D8h/CgiQ9+bBoiji9T0VePL3/8SATYAhJRMv3LsAt8+KkTo0IlljbiKaWGfOnEFlZSWCg4OxdOlSqFQ+tigV0VX4s7aHKWsrGzKEbzg20QaNSuOmiGSmsw744AdAzWeO44hpwJqXgUT5F5TdfVb8aNtx7DzWBJtfIDKSJuGPP8hHfDj3fiIiImnFxcWhtrYW8fHxLKCIMMoi6q677sIbb7yBkJAQ3HXXXde99h//+IdLAqNr9dv68XHdx6O6tr2vfYKjkRm7FTj0G2DPs4CtH1BpgKVbgSXfB/y0Ukd3Q0U17dj6t+No7OqHWqXE/71/Db6zPBV+Kq5yRDQS5iaiiWW3250Fk06nQ15e3pDlzIl82ajeCXq93jmmXK/npHZ3EkURZW1leL/mfXxS/wlMVtOo7mcIMExwZDJy/rBj4YjW447jxKXAmpeAiFRp4xoFm13ACx+U45V3d0EZFIGUlGS8cs8cZMVPkjo0ItljbiKaOG1tbTh69ChycnIQGhoKACygiK4w6iXOf/azn2Hr1q3OyYSe7sr9OE6fPi27pWQbexux/cx27DizAw09Dc7zsYGx6B7oHrGYUkCBqIAo7Prfu7x/E12zEfj8/wHFvwcgAv6hwG3PAFnfkP3CEQDQ0NGH771zBMXHT2Og/SyWTY/FHx6/H5MCufcT+QZXLOXtTblJ7nmJfEtpaSmam5sRExODefPmSR0OkduMNjeNuohSqVRobm5GZGSky4KUAzntx9Fn7cOn9Z/i/TPvo6SlxHk+wC8AtyXehvXJ65EdlY3Pz32OLXu3AMCQBSYUcBQOLy5/EflT8t0bvLud3AF8+EOgp8lxnHEPsPIZIDBC2rhG6f2jjfjxPyvQY7EhWOuH7+YEY2N+NnQ6FlDkO1zx+euNuUlOeYl8l81mQ21tLVJSUriBLvkUl+8TNcY9eWmUBFHA4dbD2FazDZ/Wf4p+Wz8AR0GUG5OL9cnrsSJhBQLUg7+y5k/Jx4vLXxx2n6hHcx/17gKq+7yjeDr1geM4NMkxdC85T9q4RqnHbMUT2yrwty+OQBViQE5iOF7akIX4MM//FZ1ICsxNRK4xMDCAtrY2TJ48GYBj6N60adMkjopIvsY0uJV7bbhOg7EB22sdw/Uaexud5xOCE7AueR3WJq+97ua4+VPykRefh7K2MrT3tcMQYEB2ZLbnD+ET7EB9IdDbCgRFAVMWAUqV43zx7x3D9wZ6AaUfsPh7wLL/C6j9pY56VMrOdeJ77xxBTeVxiL0X8fWsCDz7bwu4eATRTWJuIro5VqsV+/fvR19fH5RKJWJjR/7+QUQOYyqipk2bdsNk1dHRcVMBeTOT1YRP6j7BtpptKGsrc54PUgdhZeJKrE9ZjyxD1qi/EKiUKuRE50xUuO5XuR3Y9ShgbBo8FxILzH8QOPEPoOmI41z8fMey5VHpkoR5PXZBRPHZDrT1mBEZrENukmNfqt/urcFLn1XDLoiYPHkyvpkcjbtXzmMBReQCzE1EN0etViM6OhotLS0IDua2GkSjMaYi6qmnnuIKSGMkiAKKW4rxfs37+Kz+M5jtZgCO4XoLYxdiXfI63JpwK/z9PKM3ZcJUbgfeuw+4ehNhYxPw6ROO/9bqga/8FMi+H5Dh+OxdFc14akclmrvNznORwVqE+KtR3WqEQqHE2sxYPP2/ZsFfJUKj8dG9vIhcjLmJaHwEQXDOd0pPT8e0adOgVqsljorIM4ypiLrnnnu8avLuRKo31uP9mvexo3YHWkwtzvOJIYlYn7Iea6auQXRgtIQRyohgd/RAXV1AXcnPH3ioCNDHuS2ssdhV0YwH3yq75hm09VjQ1NgARU8bXvju1/C13EQOPSJyMeYmorERBAHl5eUQBAHZ2dkAHMNiWUARjd6oiyh+8buxnoEefFz3Md6veR9H2486zwerg7EqaRXWpaxDRkQGX8ur1RcOHcI3HFs/0FEryyLKLoh4akflsCWgKNhh7WiCXi0gK9TGtidyMb6niMauu7sb58+fBwBMnToVkyZNkjYgIg/E1flukl2w41DzIbx/5n18fu5zWOwWAIBSocSi2EVYn7weeQl50Kq0EkcqYz3No7uut/XG10ig+GzHkCF8V1IoVdDGTIPJ1IkOVZibIyPyfsxNRGMXGhqKjIwM6HQ6FlBE4zTqIkoQhImMw+PUdtdie8127Kjdgba+Nuf5ZH0y1qesxx1T70BkAIeXXJelFzj6NrD/V6O7PihqYuMZp7aeoQWUMGCGaLdC5e+YnKvUBkCpDbjmOiK6ecxNRKPT1tYGvV4Prdbxo25CQoLEERF5tjHNifJ13ZZu53C98gvlzvMhmhCsTlqN9SnrMTN8JoeX3Eh3I1D8O+DwG4C5+9JJBUaeE6VwrNI3ZZF74huDmrYevHmwznksWPpgaTwJANBOngmlZnDz3MhgbqRLRETud+7cORw7dgxhYWFYuHAhN88lcgGfLaIKCgpQUFAAu90OADjcehjLgpZds8+STbChsKkQ289sx55zezAgDAAAVAoVlsQtwfqU9bhl8i3QqLjS2g01HQGKCoAT/wQEm+NcWDKw8CHHynv/2HTpwiuLqUsF6e3POfaLkokLvRa8/Nlp/KW4AXZhMF6FWguF2vErn+JSklIAiNYPLndORDScq/MSkauEhYVBrVZz+XIiF1KIPj6g3Gg0Qq/XY8ZvZyA2PBaP5T6G/Cn5qOmswfYzjuF6F/ovOK9PDU3F+mTHcL0I/wgJI/cQgh04vctRPNUfHDyfuBRYuBlIXTm4XPmw+0TFOQqo9HXujXsEZqsd/33gLH679wx6LY5CcMX0SCydFoGntlcCAAS7FVAooVCqLpeA+O03s3H7rBiJoiaSp8ufv93d3QgJCZE6HNng60KuIIrikJEx/f398Pf38e1UiEZhtJ/BPtsTNZzWvlY8svcRxAfFo6G3wXl+knYS7ph6B9Ynr8f0sOkcrjcaAybg6J+BQ79xrKoHAEo/YNb/BhY8BMRmXXuf9HXA9Dscq/X1tjrmQE1ZJIseKEEQsf1YE3758Sk0dvUDAGbFheDRr6RC3VWHuDg/RH8z+9I+UYP3i9br8OTadBZQRETkNkajEUeOHEF2draz94kFFJFrsYgaRkNvA1RQYVn8MqxPWY9lccugVnHvhFExNgHF/wWUvg6YuxzndHpg3reA3G875jZdj1IFJC2d8DDH4svai3jmw5MoP++ojmL0Ovzw9jSsz4xDfX0dKtrb0dXVhRUrVuAr6bei+GwH2nrMiAx2DOFTKVl0ExGR+1RVVcFoNOLEiRNYsGCB1OEQeSUWUSN4YfkLyJ+SL3UYnqPpqKPXqeLvg/OdQpMcQ/Yyvw5ogyQNbzxq23vx3EdV+KTSsbR6oEaFh/JS8K9LkqBTO3rHEhMTYTKZEB8f79ykcGFyuGQxExERZWVlobKyEjNnzpQ6FCKvxSJqBAP2AalDkD9BuGK+04HB81MWO4qnabfLYijeWHWYBvCfu6vx1qF62AQRSgXw9dwEfD9/GgzBWrS1tUFrMEChUEChUGDWrFlSh0xERD5MEARcvHgRBoMBAKDRaJCVlSVtUERejkXUCAwBBqlDkC/nfKffAh1nHOcUKmDWXY75TnHZ0sY3TmarHW8W1uHVPTXoMTt6026dHonHV01HapRjTHllZSXOnDmD1NRUTJ8+XcpwiYiIYLPZcOjQIXR1dWH+/PnOQoqIJhaLqKsooEBUQBSyIz2zEJhQxuZL853+ODjfSasH5t3vmO+knyxldOMmiiJ2lDfj+V1VON/pWDRiRkwIfnzHDCxOGboC4+VVWvz8+NYhIiLp+fn5ITAwEL29vVz4isiN+E3wCopLC1I/mvvoNftF+bTmcseQvYq/A4LVcS400dHrlHWvR853uqy0rgNPf3ASRxu6AABRIVpsvS0Nd2VPHnZBiMmTJ2PSpEkICvLc50xERN4lMzMTZrMZAQEBUodC5DNYRF0hKiAKj+Y+ygUlAMd8p+pPgKJXgbr9g+cTFjrmO6Wt9sj5TpfVXzThuY+q8FFFCwAgQKPCd25Jxr8tTUKAZvBt0d7ejjNnziAnJwcqleP5soAiIiIpVVdXY2BgwLlwhFKpZAFF5GYsoi4pWFGAZcnL2AM10Acc+4tjpb2LNY5zChUw805g4UNA3Fxp47tJXX0D+PXnNfhTUR2sdseiERty4vFI/jREhuiGXGu323HkyBFYLBbU1NQgLS1NoqiJiIgcOjs7UVVVBQCIiYlBWFiYxBER+SYWUZfMjZrr2wVUTwtQ/Hug9L+B/k7HOa0emLvRMd9pUry08d2kAZuAPxXV4def16C73zEkcdk0A360ejqmRw+/G7VKpcK8efPQ0NCA1NRUd4ZLREQ0rNDQUEyfPh0ajYYFFJGEWET5upbjQNFvgON/HZzvNGmKY77TnHsBbbC08d0kURTxUUULfrGrCvUX+wAAaVHB+NEdM3DLtGtXMBoYGIDFYnHu8B4WFsYkRUREkjIajQgICHAuasQf9oikxyLKFwkCUPOZY77T2S8Gz8cvcMx3mn6HR893uuzIuU4888FJlNY7etYMwVr84CvTcPe8+GEXjTCZTPjyyy9ht9uxdOlS6HS6a64hIiJyp5aWFpSVlSE8PBy5ublcgY9IJny2iCooKEBBQQHsdrvUobiPtR849o5jvtOF045zChWQvt5RPE2eJ218LtLQ0Ydf7KrCzvJmAIBOrcS3lyXj35dNRaB25P/lNRoNFAoFlEolbDabu8IlIgLgo3mJbkin00EURQCOubrcYoNIHhTi5XemjzIajdDr9eju7nbuAeR1elqBkj845jv1XXSc04YA2fcB8/8dmJQgbXwu0t1vRcGeGrxxsA4DdgEKBfDV7Mn4wW1piNaPrlepr68Pfn5+0Gg0ExwtEfnE5+848HWhq13+f4G9UEQTb7Sfwfw5w5MJdqC+EOhtBYKigCmLhg7Daz1xab7Te4B9wHFOnwAseBCY801A5x3J2WoX8PaheryyuxqdfY55XYtTwvGj1TMwM1Y/4v0EQUBFRQUiIyMRHR0NAFwiloiIJGU2m1FeXo7Zs2fD398fAKDXj5zLiEgaLKI8VeV2YNejgLFp8FxILLDyOUAT4Ngct3bP4G2Tcy/Nd1oDqLyj2UVRxCeVrXjuoyqcvWACAKREBuE/Vs/A8jTDDX+xq6urQ319PRobG5Gfnw+1Wu2OsImIiEZ07NgxtLW1wW63Y+HChVKHQ0Qj8I5v076mcjvw3n0ArhqJaWwC/nrf4LFCCcxY5yie4nPdGuJEKz/fhac/OInisx0AgPBADR75yjTckxMPP5VyVI+RmJiIjo4OxMfHs4AiIiJZyMjIwNGjR5GZmSl1KER0HSyiPI1gd/RAXV1ADaEA5n/HMWwvdIq7InOLxq5+/HJXFbYddfTAaf2U+LelSfjOLckI1t24EDIajc7xrUqlEvPmecdiGkRE5JlEUURPT48zN/n7+7MHisgDsIjyNKd2DR3CNyzRsUy5BxZQdkFE8dkOtPWYERmsQ25SGFRKBXrMVvxm7xn894GzGLAJAIC75sRh68o0xE7yH9Vj19bWorKyEunp6Zg6depEPg0iIqIbEgQBZWVlaG1txeLFizFp0iSpQyKiUWIRJXf9nY7FI87uB+r2A60Vo7tfb+vExjUBdlU046kdlWjuNjvPRYfosHy6AZ+eaMVFk2NxjPlJYfjxHemYPXnsE21FUURvb6/LYiYiIhovhUIBQXD8MGgymVhEEXkQFlFyY+4G6oscBVPdfqC5HNcfujeCoCiXhzaRdlU048G3yq55pi1GM94pbgAATI0IxOOrZyB/RuS4lnmdOnUqgoODYTAYXBAxERHRzVEoFMjOzkZPTw9CQ0OlDoeIxoBFlNQsvcC5Q0DdPkdvU/NRQBSGXhOeCiQuAZKWAgmLgD/cChibMXxxpXCs0jdlkRuCdw27IOKpHZXXLRVD/P3w4feWQqdWXeeqoXp6enDmzBlkZGRAqXQsNsECioiIpNTY2Ij+/n6kpKQAAPz8/FhAEXkgFlHuNtAHNBy6NDzvANBUBgi2odeEJjkKpsRljuIpJGbo7bf/4tLqfAoMLaQu9c7c/tzQ/aJkrvhsx5AhfMMx9ttw5FwXFiaHj+oxBUHAoUOHYDab4e/vj7S0NFeESkRENG7d3d0oKysDAISFhSEsLEziiIhovFhETTSrGThfPDin6XwpIFiHXjMpYbBgSloK6Cdf/zHT1wFf+9Pw+0Td/pzjdg9Qf9GEneXNePtQ/aiub+u5fqF1JaVSiYyMDNTW1iIpKWm8IRIREbmMXq9HUlISVCoVe5+IPByLKFezWYDGw4NFU0MxYLcMvSYkDkhceqm3aen4VtFLX+dYga++0LGIRFCUYwifzHugmrr68UF5M3aUN6H8fPeY7hsZrLvu7YIgYGBgADqd47qoqChERXnW3DAiIvIuZrMZGo3GOax81qxZEkdERK7AIupm2a1AY5ljTlPdAeDcl4Ctf+g1QdGXCqYljqIpbCowjoURrqFUOR5X5tp6zPjoeAt2HGtCaX2n87xSASxOicDq2dF4+bNqtBktI83yQrTesdz5SCwWC0pLSzEwMIAlS5Zw81wiIpJcZ2cnSkpKYDAYMGfOHKnDISIXYhF1WV0hMOsrN+7JsduA5mODC0GcOwRYTUOvCTQMFkxJy4DwFNcUTR6kwzSAXRUt2FnehEO1FyFcqo4UCiAnMQxrM2OxalY0IoK0AIDQAA0efKtspFleeHJtOlTK67+GfX19sNvt6O3t5TAJIiKSnM1mw8DAAIxGI6xWK3/gI/IiLKIu+8vXAEOcY9GGK+cUCXagpXxwIYj6QmCgZ+h9/cOAxMWOeU1JSwHDdJ8rmgDAaLbikxOt2HGsCQdrLsAmDJZDWfGTsDYzFnfMjkG0/tphebfPisFvv5l97T5Reh2eXJuO22fFXHOfK2m1WsyfPx9KpRJBQUGue1JERETjZDAYkJubi7CwMPj58SsXkTfhO/pKxmbHqne3PQ0olI45TfUHHXs3XUmnB6YsGZzTFJkOXBrr7GtMFhs+O9mKneXN+OJUOwbsg8uzz4wNwZqMWKzJiEF8WMANH+v2WTH4Sno0is92oK3HjMhgxxC+kXqgampqEBoaivBwx4p9ISEhrnlSRERE42Cz2XDy5EmkpaVBo9EAACIjIyWOiogmAouoIS71nHzyH0NPa0McizZcHqIXPVv2CzhMJLPVjr2n2rCjvBm7T7bCbB0snFIig7A2IxZrMmOQbBh7j5BKqRjVMub19fU4efIkNBoN8vLynMmKiIhIKkeOHEFLSwtMJhMWLFggdThENIFYRI0kNhtIX+/obYrOBFS+/VIN2AQcqGnHjmPN+LSyFb2Wwb2tpoQHOAuntKhgKNwwlHHy5MloaGjA5MmTWUAREZEszJgxAz09PdybkMgH+HZlcD0LNwOzvyp1FJKy2QUcqu3AjmNN2HWiBd39g/tbxep1WJMZi7UZsZgVF+KWwslisUCrdSxEoVKpsHjxYrf8XSIiopFcmZuCgoKQl5fH3ETkA7yiiLrzzjuxd+9erFixAn/7299c86BBvrm/kCCIKKnrwM7yZnx4vBkXTQPO2wzBWtwxOwZrM2MwJz4UyhusludKLS0tKCsrQ0ZGBiZPdmxGzCRFRHI2IbmJZEMURVRVVaG+vh5LlixxLmrE3ETkG7yiiPre976Hb33rW3jzzTdd8GgKICTWMQfKR4iiiKMNXdhxzFE4tRgHV8cLDVBj1ewYrMmIwfyk8BsuMz5Rurq6YLfb0dTU5CyiiIjkzLW5ieRGFEV0dHTAarWivb2dK8MS+RivKKKWL1+OvXv3uuCRLhUItz/n9QtHiKKIymYjdhxrxs7yJpzvHNwgOFjnh5Uzo7EmIwaLUyKgVkm/8mBaWhoCAgIQHx8vdShERKPiutxEcqRUKjFv3jx0dHQgJub623AQkfeR/Nvxvn37sHbtWsTGxkKhUGDbtm3XXFNQUIDExETodDrMnz8fxcXFExNMSCzwtT8N3SfKy1S39uDFT09jxa++wB3/eQCvfXEG5zv7EaBRYV1mLH5/3zyU/jgfL9ydieVpkZIVUGazGVVVVRBFx4qJCoUCCQkJHCZBRG4hq9xEstHR0YGGhgbnsVarZQFF5KMk74kymUzIzMzEt771Ldx1113X3P7uu+9iy5YteO211zB//ny8/PLLWLlyJU6dOuXavRe+/h4w6yse1QNlF8RR7alUd8GEneVN2FnejKqWwY2CNX5K3JoWibWZsbh1eiT8NfJ47oIgoLCwECaTCSqVCqmpqVKHREQ+Rja5iWTDaDSiqKgIoigiMDAQYWFhUodERBKSvIhatWoVVq1aNeLtL774IjZt2oQHHngAAPDaa6/hgw8+wB//+Ec89thjY/57FosFFovFeWw0Gh3/kbjIowqoXRXNeGpHJZq7B+cvxeh1eHJtOm6fFYPGrn58cKlwKj8/uFmwWqXAslQD1mTGIH9GFIJ1ainCvy6lUonU1FTU1NQgNjZW6nCIyAe5MzeNmJdIVkJCQhATEwNBEKDX66UOh4gkJnkRdT0DAwM4fPgwHn/8cec5pVKJ/Px8FBUVjesxn332WTz11FOuClESuyqa8eBbZZe3BnZq7jbjO2+VYaohELXtJud5lVKBRcnhWJsRi5Uzo6EPkF/hBABWqxVqtSO2+Ph4xMXFQamUfMQpEdEQrs5N3pCXvJXNZoNKpXIOJc/KyoJCoeDQciKSdxF14cIF2O12REUNXW48KioKVVVVzuP8/HwcO3YMJpMJkydPxl//+lcsXLhw2Md8/PHHsWXLFuex0Wj0qMUK7IKIp3ZUXlNAXelyAZWbFIa1mbFYNSsaEUFa9wQ4Dna73dl+ixYtgkrl6BFkAUVEcuTq3OTpeclb9fX1obi4GAaDATNnzgTAvEREg2RdRI3WZ599NuprtVqtc1M8T1R89uKQIXwjKfhGNu7I8IzJrhaLBe3t7bBarejs7ERERITUIRER3bTR5iZPz0veqru7Gz09PbBarUhNTYVGo5E6JCKSEVkXUREREVCpVGhtbR1yvrW1FdHR0RJF5X69FhsOVLdjT1U7PqpoHtV9bIIwwVG5TkBAAObNmwcACA8PlzgaIqLrY27yDTExMcjMzERkZCQLKCK6hqz7pTUaDebOnYvdu3c7zwmCgN27d484XG+0CgoKkJ6ejpycnJsN0+VEUURNWy/+sL8W3/j9Icz52Sf4zltleLe0AUazbVSPERmsm+Aob05TU9OQydPh4eEsoIjII0xUbpJzXvIFoijizJkzsNkG82xCQgJ0OnnnUyKShuQ9Ub29vaipqXEenz17FkePHkVYWBgSEhKwZcsWbNy4EfPmzUNubi5efvllmEwm54pI47V582Zs3rwZRqNRFqvsmK12HKq9iD1Vbdhzqh3nOvqG3J4YHoC86ZG4JdWAx/5RjlajZdh5UQoA0XrHcudy1djYiLKyMvj7+2PZsmX8hY+IZEeK3CS3vORrjh07hoaGBnR0dLCQJaIbkryIKi0tRV5envP48uTajRs34o033sCGDRvQ3t6On/zkJ2hpaUFWVhZ27dp1zYReT9TY1e8omqracPDMBZitg0PwNCol5k8Nw/K0SNw6PRJJEYHO2366biYefKsMCmBIIXV5raAn16YPu1+UXERGRiIoKAiRkZHO1fiIiOTEl3OTr5oyZQpaWloQFxcndShE5AEUoiheb6E3r3f5F7/u7m6EhIRM6N+y2gWU1Xfi81Nt2FvVjlOtPUNujw7RIW+6AXlpkVicEoFA7cg17o32iZIbu93uXHUPcCwb6+cneQ1PRBJy5+evJ+Hr4j7MTUR0tdF+BvvsJ0VBQQEKCgpgt9sn9O9c6LVg76l27DnVhn2n29FzxZwmpQLITghF3vRI5KVFYkZM8Kj3nrh9Vgy+kh6N4rMdaOsxIzLYMYRPjj1QXV1dKCkpQUZGhvNXWiYpIqKh3JWXyKG+vh6nT5/GkiVL4O/vD4C5iYhGjz1RLv7FTxBEHG/sxp5TjmF65Y3duPIVDg1QY3laJJanGXDLNAMmBXj/fKCKigqcPXsWoaGhWLJkidThEJFMsMdleHxdJp4gCNi/fz+MRiOmTZuGtLQ0qUMiIplgT5QbdfdbcaD6Aj6vasMXp9twoXdgyO0zY0Nw6/RILE+LRFb8JFn2Fk2k9PR0qNVqJCcnSx0KERERlEolcnNz0dTUxNxEROPCImocRFFEdVsvPr+0KERpfSfswmB3U5DWD0tSIpA33YDlaZGICvGt5VHtdjsaGxuRkJAAwJGs+CsfERFJyWQyobe31zms3N/fnwUUEY0bi6hLims7kJcRPGIvUf+AHUW1Fy4VTu1o7OofcnuyIRB5l1bSm5cYBo2frLfgmjCCIKCwsBBdXV2w2+1ISkqSOiQiIvJxvb29OHDgAARBwOLFi7mEPBHdNJ8toq6ewPutN0sQF3lmyOp2DR19+LyqDZ9XtaGo9iIGbFcsQe6nxMKp4bj10qIQCeEBkjwPuVEqlYiNjUVfXx+TFBHRGHBhiYkTGBiI0NBQWK1Wbp5LRC7BhSUuTR6L//57UGkDIALInxGJsxdMONNuGnJtrF6HvOmO3qaFyeEI0PhsDXoNQRCgVA72vg0MDHATXSK6Li6gMDy+Lq4hiuKQFW9tNhuUSuWQXEVEdDUuLDEOl6vJz062AQBUSgXmTgl19jZNiwoa9RLkvkIURZw6dQpdXV3Izc11JicWUEREJBWr1YrS0lJEREQgNTUVAJcvJyLX4ifKCB5ekYJ/XTIVen+11KHIWl9fH2pra2G329HW1obo6GipQyIiIh/X2tqKCxcuoKurCwkJCdBqtVKHRERehkXUCJINQSygRiEwMBDZ2dmw2WwsoIiISBYmT56Mvr4+REdHs4AiognBImoEkcGceDqSzs5OaDQaBAYGAgCLJyIiklxTUxOio6Odw8qnTZsmcURE5M18dnZlQUEB0tPTkZOTM+S8AkCMXofcpDBpApO51tZWFBYWori4GFarVepwiIi8xkh5iW6ssrIShw8fRnl5udShEJGP8NkiavPmzaisrERJSYnz3OUlI55cmz7iflG+Tq/XQ6PRICiIi2wQEbnScHmJRsdgMECpVCI4OFjqUIjIR3A43xWi9boh+0SRw5XLxOp0OixZsgQ6nY5FFBERSebK3GQwGHDrrbfC399f4qiIyFewiLrkjxtzkJcxhT1QV+nr60NpaSlmzZqFsDDHEEcmKSIiklJbWxuqqqqwYMEC55YazE1E5E4+O5zvarlTw1hADaO6uhrd3d04fvw4fHxfZiIikgFBEFBRUYHu7m5UV1dLHQ4R+Sj2RNF1zZo1C6IoIi0tjcP3iIhIckqlEjk5Oairq8OMGTOkDoeIfJTP9kRxFaThiaKItrY257FKpUJWVhaHSRARTTDmpZENDAygs7PTeRwcHIzZs2c7lzMnInI3hejjY7SMRiP0ej26u7sREhIidTiSEkURJSUlaG1tRXZ2NuLi4qQOiYi8GD9/h8fXZai+vj4UFRXBarVi6dKlzj0KiYgmwmg/g/kTDjkpFAoEBwdDqVRy6B4REcmCTqeDVquFWq2GIAhSh0NEBIBzougq06dPR3x8PIKCgqQOhYiIyDkHSqFQOFfiIyKSGnuifNy5c+dQVlbmXHlPoVCwgCIiIskIgoBjx47h3LlzznNarZYFFBHJCosoH9bX14fjx4+jsbERzc3NUodDRESExsZGnDt3DsePH4fZbJY6HCKiYXE4nw8LCAjA7NmzYTabERsbK3U4REREiI+PR2dnJ6Kjo6HT6aQOh4hoWCyifIzJZIJKpXImpoSEBIkjIiIiX9fZ2YlJkyY5FzXKyMiQOCIiouvz2eF8vrgfR0dHB/bv34+SkhLY7XapwyEioiv4Yl4CgNraWhw4cAAnT56UOhQiolHz2SJq8+bNqKysRElJidShuI1Wq3X+t81mkzASIiK6mi/mJWAwNzEvEZEn4XA+HxIYGIhFixYhMDAQKpVK6nCIiIgQFxeHgIAAhIaGSh0KEdGo+WxPlC+wWq0oLS2F0Wh0ngsJCWEBRUREkjEajSgpKRnS88QCiog8DYsoL1ZZWYnm5uYh+0ARERFJRRRFlJaWoqWlBVVVVVKHQ0Q0bhzO58XS09PR19eH9PR054pHREREUlEoFJgzZw6qq6uRlpYmdThEROPGnigvc+XQPbVajYULF0Kv10sYERER+TJBEGAymZzHoaGhyM3NhVqtljAqIqKbwyLKS4iiiOPHj2Pfvn1oa2uTOhwiIiJYLBYUFhaisLAQZrNZ6nCIiFyGRZSXUCgUEAQBoiiit7dX6nCIiIigUqlgs9lgt9vR19cndThERC7DOVFeZPbs2YiLi0NERITUoRAREcHPzw+5ubkQRRGBgYFSh0NE5DLsifJg7e3tqKysdB4rlUoWUEREJKnq6mo0Nzc7jwMCAlhAEZHX8dmeqIKCAhQUFMBut0sdyrj09/ejuLgYgiBg0qRJiI2NlTokIiK6CZ6elwDg/PnzqKqqgkqlQmhoKHQ6ndQhERFNCIXo4xsIGY1G6PV6dHd3IyQkROpwxqSmpgY9PT3IzMyEUslORSLyLJ78+TuRPPl1EUURJSUliIqKwpQpU6QOh4hozEb7GeyzPVGeyGq1AoBzWdiUlBQpwyEiIkJfXx8CAgIAOBY5ys3NlTgiIqKJx+4LD9Hb24v9+/fj8OHD8PHOQyIikonm5mbs3bsXNTU1UodCRORWLKI8hN1uh9lsRm9vL/faICIiWTCbzbDb7bh48SJ/4CMin8LhfB5Cr9cjNzcXwcHB0Gq1UodDRESEpKQk6HQ6REdHQ6FQSB0OEZHbsCdKpgRBwIkTJ4ZsThgREcECioiIJGM2m3H8+HEIguA8FxMTwwKKiHwOiyiZqqysRG1tLUpKSjhEgoiIJCeKIoqKilBXV4eTJ09KHQ4RkaRYRMlUSkoKgoKCMH36dP7CR0REklMoFJg5cyZCQkKQlJQkdThERJLinCgZsVgszuF6Op0Oy5cvZwFFRESSEUURAwMDztwUGRkJg8HA3EREPo89UTJRW1uL3bt3o6Ojw3mOSYqIiKRit9tx+PBhHDx40LlPIcDcREQEsIiSBVEUcfHiRdjtdrS2tkodDhEREWw2G7q6utDf34/Ozk6pwyEikhUO55MBhUKBOXPmoLm5GfHx8VKHQ0REBK1Wi9zcXNhsNoSFhUkdDhGRrLAnSiI9PT2ora11Hvv5+bGAIiIiSTU2NuLChQvO45CQEBZQRETDYE+UBMxmMw4cOACbzQZ/f3/ExMRIHRIREfm45uZmlJWVQa1W45ZbboG/v7/UIRERyZbP9kQVFBQgPT0dOTk5bv/bOp0OU6ZMQXh4OMLDw93+94mISH6kzEsAEBUVhdDQUCQkJECn00kSAxGRp1CIPr6Tq9FohF6vR3d3N0JCQibs7wiCAFEUoVKpADgWkxBFEUqlz9axROTj3PX562nc+bpYrVao1WrnsSAIzEtE5NNG+xnMT0o3sFgsKCoqwrFjx5znFAoFExUREUmms7MTe/bswblz55znmJeIiEaHn5ZuYDKZ0NnZiba2NphMJqnDISIiQnt7OywWC+rr6+Hjg1KIiMaMC0u4QVhYGLKzsxESEoLAwECpwyEiIkJqair8/PyQkJDADXSJiMaIPVET5OzZs7BYLM7j2NhYBAUFSRgRERH5MpvNhjNnzjh7nRQKBaZOnQo/P/6eSkQ0ViyiJkBVVRUqKipQUlICQRCkDoeIiHycKIo4dOgQKisrcerUKanDISLyeCyiJkB8fDw0Gg0mT57MSbpERCQ5hUKBpKQkaLVaREVFSR0OEZHHYx++i9jtdufy5YGBgVixYgWHSBARkaSuzE1xcXGIiopibiIicgF2k7hAc3Mzdu/ejZ6eHuc5JikiIpKKKIo4efIkDh48CLvd7jzP3ERE5Bosolygrq4OFosFtbW1UodCREQEi8WCc+fOobu7G62trVKHQ0TkdfiTlAvMnTsXdXV1SE1NlToUIiIi6HQ65OTkoL+/H7GxsVKHQ0TkdVhEjYPZbEZHR4czMWk0GkybNk3iqIiIyJd1dHRApVJBr9cDcOxRSEREE4NF1BhZLBbs378fFosFarUaBoNB6pCIiMjHtbe3o7i4GBqNBkuXLoVOp5M6JCIir8Y5UWOk1WphMBgQGBiIgIAAqcMhIiLCpEmTEBAQgNDQUKjVaqnDISLyeuyJGiVRFKFQKAAAGRkZsNvtTFRERCSZK/OSWq3G4sWLoVarneeIiGjisCfqBux2O8rKynDixAnnOaVSyQKKiIgk09fXh3379qGlpcV5TqPRsIAiInITFlE30NHRgcbGRtTV1aG3t1fqcIiIiFBfXw+j0YjKykqIoih1OEREPofD+W7AYDBg1qxZCAkJQVBQkNThEBERYfr06RAEAcnJyex9IiKSgFf0RO3cuRNpaWlITU3FH/7wh5t+vNbWVlitVudxUlISwsPDb/pxiYjIN7g6L4miiMbGRuexQqHAzJkzuQofEZFEPL4nymazYcuWLdizZw/0ej3mzp2LO++8c9xFT21tLU6cOIHIyEjk5ubyFz4iIhoTV+clACgpKUFrayvMZjOSk5NdGC0REY2Hx/dEFRcXY+bMmYiLi0NQUBBWrVqFTz75ZNyPFx4eDpVKheDgYBdGSUREvsLVeQkAIiIioFKpuLUGEZFMSF5E7du3D2vXrkVsbCwUCgW2bdt2zTUFBQVITEyETqfD/PnzUVxc7LytqakJcXFxzuO4uLghQx7GSq/XIy8vD+np6eyFIiLyQXLLSwAwdepU5OXlISYm5qYeh4iIXEPyIspkMiEzMxMFBQXD3v7uu+9iy5YtePLJJ1FWVobMzEysXLkSbW1tLo2jr6/P+d/+/v4ufWwiIvIccslLJSUlEATBeczcREQkH5IXUatWrcLTTz+NO++8c9jbX3zxRWzatAkPPPAA0tPT8dprryEgIAB//OMfAQCxsbFDfuFrbGxEbGzsiH/PYrHAaDQO+QcAp06dcuGzIiIiTyWXvHThwgWcP3/ehc+MiIhcRfIi6noGBgZw+PBh5OfnO88plUrk5+ejqKgIAJCbm4uKigo0Njait7cXH330EVauXDniYz777LPQ6/XOf/Hx8QCA2bNnT+yTISIij+fOvDRt2jQkJCRM7BMiIqJxkXURdeHCBdjtdkRFRQ05HxUV5dyl3c/PD7/61a+Ql5eHrKws/OAHP7juCkiPP/44uru7nf8aGhqcj0NERHQ97sxLXIWPiEi+vKJyWLduHdatWzeqa7VaLbRa7QRHREREvox5iYjIu8m6J+rykq6tra1Dzre2tiI6OlqiqIiIyFcxLxERESDzIkqj0WDu3LnYvXu385wgCNi9ezcWLlx4U49dUFCA9PR05OTk3GyYRETkI5iXiIgIkMFwvt7eXtTU1DiPz549i6NHjyIsLAwJCQnYsmULNm7ciHnz5iE3Nxcvv/wyTCYTHnjggZv6u5s3b8bmzZthNBqh1+tv9mkQEZGXYF4iIqIbkbyIKi0tRV5envN4y5YtAICNGzfijTfewIYNG9De3o6f/OQnaGlpQVZWFnbt2nXNpF4iIiJXYF4iIqIbUYiiKEodhJQu/+LX3d2NkJAQqcMhIvIZ/PwdHl8XIiLpjPYzWNZzoiYSx54TEZGcMC8REXkO9kTxFz8iIknw83d4fF2IiKTDnigiIiIiIqIJwCKKiIiIiIhoDCRfnU9ql0czGo1GiSMhIvItlz93fXxU+TWYl4iIpDPa3OSzRVRBQQEKCgpgsVgAAPHx8RJHRETkm3p6ergvEpiXiIjk5Ea5yecXlujq6kJoaCjOnTvn9iSek5ODkpISSR5nNPe50TXXu32k24Y7f/U5o9GI+Ph4NDQ0uH1StdzbZDTXjbVdRtNWUrbJ1bG483GkapORznvbe0UURcydOxenT5+GUsnR5ZdJmZcAvt9GOufp77fxPo4rvi9c7xq2Cb8vuJI7c5PP9kRddvnF0ev1bm9slUrlkr85nscZzX1udM31bh/ptuHOj3RtSEgI22Qc1421XcbSVlK0yUixuONxpGqTkc5743tFo9GwgLqKlHkJ4PvtRtd68vtNqu8L17uGbcLvC67kztzEzCWhzZs3S/Y4o7nPja653u0j3TbceVe9Dq4g9zYZzXVjbZextJVUpGoXqdpkpPNsE3IHvt/GFo87yD033cw1bBN+X3Ald7aLzw/n434c8sM2kR+2iTyxXbwT21We2C7ywzaRH19qE5/vidJqtXjyySeh1WqlDoUuYZvID9tEntgu3ontKk9sF/lhm8iPL7WJz/dEERERERERjYXP90QRERERERGNBYsoIiIiIiKiMWARRURERERENAYsooiIiIiIiMaARRQREREREdEYsIi6jsTERGRkZCArKwt5eXlSh0MAzp49i7y8PKSnp2P27NkwmUxSh+TzTp06haysLOc/f39/bNu2TeqwfN5LL72EmTNnIj09HQ8//DC4EKv3YG6SH+YmeWFeki9vyk1c4vw6EhMTUVFRgaCgIKlDoUtuueUWPP3001i6dCk6OjoQEhICPz8/qcOiS3p7e5GYmIj6+noEBgZKHY7Pam9vx4IFC3DixAmo1WosW7YML7zwAhYuXCh1aOQCzE3yw9wkX8xL8uFtuYnvcPIYl990S5cuBQCEhYVJHBFdbfv27VixYgUTlQzYbDaYzWYAgNVqRWRkpMQREXkn5iZ5Y16SF2/KTV47nG/fvn1Yu3YtYmNjoVAohu3GLSgoQGJiInQ6HebPn4/i4uIhtysUCtxyyy3IycnB22+/7abIvdfNtkl1dTWCgoKwdu1aZGdn4+c//7kbo/dernivXPbee+9hw4YNExyx97vZNjEYDNi6dSsSEhIQGxuL/Px8JCcnu/EZ0EiYm+SHuUl+mJfkiblpKK8tokwmEzIzM1FQUDDs7e+++y62bNmCJ598EmVlZcjMzMTKlSvR1tbmvObAgQM4fPgwtm/fjp///OcoLy93V/he6WbbxGazYf/+/fjNb36DoqIifPrpp/j000/d+RS8kiveKwBgNBpRWFiI1atXuyNsr3azbdLZ2YmdO3eirq4OjY2NKCwsxL59+9z5FGgEzE3yw9wkP8xL8sTcdBXRBwAQ//nPfw45l5ubK27evNl5bLfbxdjYWPHZZ58d9jG2bt0qvv766xMYpW8ZT5sUFhaKt912m/P2559/Xnz++efdEq+vuJn3yp/+9Cfx3nvvdUeYPmU8bfLee++JDz30kPP2559/XvzFL37hlnhp9Jib5Ie5SX6Yl+SJuUkUvbYn6noGBgZw+PBh5OfnO88plUrk5+ejqKgIgKPa7unpAeCYlPj5559j5syZksTrC0bTJjk5OWhra0NnZycEQcC+ffswY8YMqUL2CaNpl8s4ZMI9RtMm8fHxKCwshNlsht1ux969e5GWliZVyDRKzE3yw9wkP8xL8uSLucknF5a4cOEC7HY7oqKihpyPiopCVVUVAKC1tRV33nknAMBut2PTpk3Iyclxe6y+YjRt4ufnh5///OdYtmwZRFHEbbfdhjVr1kgRrs8YTbsAQHd3N4qLi/H3v//d3SH6nNG0yYIFC7B69WrMmTMHSqUSK1aswLp166QIl8aAuUl+mJvkh3lJnnwxN/lkETUaU6dOxbFjx6QOg66yatUqrFq1Suow6Cp6vR6tra1Sh0FXeOaZZ/DMM89IHQa5GHOTPDE3yQ/zkjx5U27yyeF8ERERUKlU17y5WltbER0dLVFUvo1tIk9sF/lhm3gvtq38sE3kh20iT77YLj5ZRGk0GsydOxe7d+92nhMEAbt37/bYDb88HdtEntgu8sM28V5sW/lhm8gP20SefLFdvHY4X29vL2pqapzHZ8+exdGjRxEWFoaEhARs2bIFGzduxLx585Cbm4uXX34ZJpMJDzzwgIRReze2iTyxXeSHbeK92LbywzaRH7aJPLFdriL18oATZc+ePSKAa/5t3LjRec2vf/1rMSEhQdRoNGJubq546NAh6QL2AWwTeWK7yA/bxHuxbeWHbSI/bBN5YrsMpRBFUZy4Eo2IiIiIiMi7+OScKCIiIiIiovFiEUVERERERDQGLKKIiIiIiIjGgEUUERERERHRGLCIIiIiIiIiGgMWUURERERERGPAIoqIiIiIiGgMWEQRERERERGNAYsoIg/yxhtvYNKkSVKHQURE5MTcRL6IRRSRm91///1QKBRQKBTQaDRISUnBz372M9hsthved8OGDTh9+vSY/t7y5cvx/e9/f5zREhGRL2BuIhobP6kDIPJFt99+O15//XVYLBZ8+OGH2Lx5M9RqNR5//PHr3s/f3x/+/v5uipKIiHwJcxPR6LEnikgCWq0W0dHRmDJlCh588EHk5+dj+/bt6OzsxH333YfQ0FAEBARg1apVqK6udt7v6iETP/3pT5GVlYX/+Z//QWJiIvR6Pe655x709PQAcPyy+MUXX+CVV15x/sJYV1eHzs5O3HvvvTAYDPD390dqaipef/11d78MREQkI8xNRKPHIopIBvz9/TEwMID7778fpaWl2L59O4qKiiCKIlavXg2r1Trifc+cOYNt27Zh586d2LlzJ7744gs899xzAIBXXnkFCxcuxKZNm9Dc3Izm5mbEx8fjiSeeQGVlJT766COcPHkSv/3tbxEREeGup0tERB6AuYloZBzORyQhURSxe/dufPzxx1i1ahW2bduGgwcPYtGiRQCAt99+G/Hx8di2bRvuvvvuYR9DEAS88cYbCA4OBgD8y7/8C3bv3o1nnnkGer0eGo0GAQEBiI6Odt7n3LlzmDNnDubNmwcASExMnNgnSkREHoO5iejG2BNFJIGdO3ciKCgIOp0Oq1atwoYNG3D//ffDz88P8+fPd14XHh6OtLQ0nDx5csTHSkxMdCYpAIiJiUFbW9t1//6DDz6Id955B1lZWfjhD3+IwsLCm39SRETk0ZibiEaPRRSRBPLy8nD06FFUV1ejv78fb775JhQKxbgeS61WDzlWKBQQBOG691m1ahXq6+vxyCOPoKmpCStWrMDWrVvH9feJiMg7MDcRjR6LKCIJBAYGIiUlBQkJCfDzc4yqnTFjBmw2G7788kvndRcvXsSpU6eQnp4+7r+l0Whgt9uvOW8wGLBx40a89dZbePnll/Ff//Vf4/4bRETk+ZibiEaPc6KIZCI1NRXr16/Hpk2b8Lvf/Q7BwcF47LHHEBcXh/Xr14/7cRMTE/Hll1+irq4OQUFBCAsLw09/+lPMnTsXM2fOhMViwc6dOzFjxgwXPhsiIvIGzE1Ew2NPFJGMvP7665g7dy7WrFmDhQsXQhRFfPjhh9cMixiLrVu3QqVSIT09HQaDAefOnYNGo8Hjjz+OjIwMLFu2DCqVCu+8844LnwkREXkL5iaiaylEURSlDoKIiIiIiMhTsCeKiIiIiIhoDFhEERERERERjQGLKCIiIiIiojFgEUVERERERDQGLKKIiIiIiIjGgEUUERERERHRGLCIIiIiIiIiGgMWUURERERERGPAIoqIiIiIiGgMWEQRERERERGNAYsoIiIiIiKiMWARRURERERENAb/HwW0Zqx/6ZlCAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(2, 2, figsize=(10, 10))\n", - "\n", - "for i, cuda in enumerate([True, False]):\n", - " for j, strict in enumerate([True, False]):\n", - " # Filter for cuda=True and strict=True\n", - " filtered_results = []\n", - " for result in data['results']:\n", - " params = result['parameters']\n", - " if params[\"cuda\"] == cuda and params[\"graph\"][\"strict\"] == strict:\n", - " filtered_results.append(result)\n", - "\n", - " # Group by k value\n", - " k_groups = {}\n", - " for result in filtered_results:\n", - " k = result['parameters']['k']\n", - " n = result['parameters']['n']\n", - " mean_time = result['timing']['mean']\n", - " \n", - " if k not in k_groups:\n", - " k_groups[k] = {'n': [], 'times': []}\n", - " \n", - " k_groups[k]['n'].append(n)\n", - " k_groups[k]['times'].append(mean_time * 1000)\n", - "\n", - " # Plot\n", - " for k in sorted(k_groups.keys()):\n", - " axes[i,j].plot(k_groups[k]['n'], k_groups[k]['times'], 'o-', label=f'k={k}')\n", - "\n", - " axes[i,j].plot([10**5, 10**8], [10**0, 10**3], ls=':', c='k', alpha=0.3, label='linear scaling')\n", - "\n", - " axes[i,j].set(xscale='log', yscale='log', ylabel='Time [ms]', xlabel='Points', title=f'cuda={cuda}, strict={strict}', ylim=(0.7,10000), xlim=(1e5, 3e8))\n", - " axes[i,j].legend()\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "id": "5571f010", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAANcCAYAAAA0NLw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8U3X3wPFPkqZ7l27opLQUyih7l6EiWhQHbpzoIzgQUEAURBRRZDiqKAo+PiLKUARFEJSNssoum7ZAoQNK907u74/8iJQWSJuWdJz38+rr8d7ccZqGnJzc7z1flaIoCkIIIYQQQgghLEZt6QCEEEIIIYQQorGTwkwIIYQQQgghLEwKMyGEEEIIIYSwMCnMhBBCCCGEEMLCpDATQgghhBBCCAuTwkwIIYQQQgghLEwKMyGEEEIIIYSwMCnMhBBCCCGEEMLCpDATQgghhBBCCAuTwkw0KEFBQTzxxBOWDqPRSkpKQqVS8c0331g6FCGEsBjJRZbVEHORvKYaBynMhKimoKAgVCrVDX/qa2JYtWoVb7311k0517Zt23jrrbfIysoy+1hPPPGESX8XSXBCiIZAclHNqclcdNm1/h4+Pj41dg7RcFhZOgAh6qs5c+aQl5dnXF61ahWLFi1i9uzZNGnSxLi+e/fulgjPbKtWrSIuLq5KCTEwMJDCwkK0Wm2VzrVt2zamTJnCE088gaura9UCvcpzzz3HgAEDjMuJiYlMmjSJZ599ll69ehnXh4aGmnUeIYSoCyQXVVQXctGVbrnlFoYNG1ZunZ2dXY0dXzQcUpgJUU133313ueXU1FQWLVrE3XffTVBQ0DX3y8/Px8HBoXaDu8nKysrQ6/VYW1tja2tr0Vi6detGt27djMu7du1i0qRJdOvWjUcfffSa+zXEv4sQouGTXPSvupSLrtSiRYvr5h8hLpOhjOKmSUlJ4emnn8bPzw8bGxuCg4N5/vnnKSkpAeCtt95CpVJV2O+bb75BpVKRlJRkXKcoCu+88w5NmzbF3t6evn37cujQoQr7ZmZmMnbsWKKionB0dMTZ2Znbb7+dffv21drveaUnnngCR0dHTp48yaBBg3BycuKRRx4Brj1ePCYmhpiYmHLriouLmTx5Ms2bN8fGxoZmzZrx2muvUVxcXK24SktLmTJlCmFhYdja2uLh4UHPnj1Zu3atMe64uDig/DAM+Hfs/ocffsicOXMIDQ3FxsaGhISEa47rP3LkCEOHDsXT0xM7OzvCw8OZOHEiYPi7v/rqqwAEBwcbz3Xl37umXX5Nbdy4kREjRuDl5UXTpk2Nv3tlH2au9fr87rvv6NChA3Z2dri7u/Pggw9y5syZWotdCGEeyUWSi+pKLgL48MMP6d69Ox4eHtjZ2dGhQweWLl16w/1u9NxdduTIEe677z7c3d2xtbWlY8eOrFixorZ+HWEmuWImbopz587RuXNnsrKyePbZZ4mIiCAlJYWlS5dSUFCAtbV1lY43adIk3nnnHQYNGsSgQYOIj4/n1ltvNSbWy06dOsXy5cu5//77CQ4OJi0tjS+++II+ffqQkJCAn5+fcdsLFy6YdG4nJydsbGxMjrWsrIzbbruNnj178uGHH2Jvb2/yvgB6vZ7BgwezZcsWnn32WVq2bMmBAweYPXs2x44dY/ny5VU6HhgS0HvvvcczzzxD586dycnJYdeuXcTHx3PLLbfw3HPPce7cOdauXcv//ve/So+xYMECioqKePbZZ7GxscHd3R29Xl9hu/3799OrVy+0Wi3PPvssQUFBnDx5kpUrV/Luu+9yzz33cOzYsQpDbzw9PQHIzs6mtLT0hr+Tra0tjo6OVXoeRowYgaenJ5MmTSI/P79K+wK8++67vPnmmwwdOpRnnnmGjIwMPvnkE3r37s2ePXtqdCiMEMJ8koskF1kiFxUVFVX4u17++3300UcMHjyYRx55hJKSEn744Qfuv/9+fv31V+64445qP3cAhw4dokePHvj7+zN+/HgcHBxYvHgxd999N8uWLWPIkCE3/H3ETaYIcRMMGzZMUavVys6dOys8ptfrFUVRlMmTJyuVvSQXLFigAEpiYqKiKIqSnp6uWFtbK3fccYdxX0VRlNdff10BlMcff9y4rqioSNHpdOWOl5iYqNjY2Chvv/12ufWAST8LFiyo9HecMWNGuTgVRVEef/xxBVDGjx9fYfvAwMBysV7Wp08fpU+fPsbl//3vf4parVY2b95cbru5c+cqgLJ169ZK47metm3bKnfcccd1txk5cmSlf4/ExEQFUJydnZX09PRKH7vyOerdu7fi5OSkJCcnl9v2yr9dZc/dZX369DHp71LZc6koirJz584KMV1+TfXs2VMpKysrt/3jjz+uBAYGVjjO1a/PpKQkRaPRKO+++2657Q4cOKBYWVlVWC+EsDzJRZKLbnYuutHfr6CgoNz2JSUlSuvWrZV+/fqVW3/138mU565///5KVFSUUlRUVO737d69uxIWFnbdfYVlyBUzUev0ej3Lly8nNjaWjh07Vni8siEj17Nu3TpKSkp48cUXy+07atQopk2bVm7bK79N1Ol0ZGVl4ejoSHh4OPHx8eW2vfry/7W0atWqSvECPP/881Xe57IlS5bQsmVLIiIiyn3j1q9fPwDWr19f5Zu6XV1dOXToEMePHycsLKxacd17773GbxKvJSMjg02bNvHyyy8TEBBQ7jFT/+4zZ87k0qVLN9zuym+cTTV8+HA0Gk2V9wP46aef0Ov1DB06tNzfxcfHh7CwMNavX8/rr79erWMLIWqe5CLJRZbKRXfddRcvvPBCuXWX/35XNgG5dOkSOp2OXr16sWjRouue50bPXWZmJn/99Rdvv/02ubm55ObmGh+77bbbmDx5MikpKfj7+9/wdxI3jxRmotZlZGSQk5ND69ata+R4ycnJABXeiDw9PXFzcyu3Tq/X89FHH/HZZ5+RmJiITqczPubh4VFu2ys7+dUkKysr4/1L1XH8+HEOHz58zcSTnp5e5WO+/fbb3HXXXbRo0YLWrVszcOBAHnvsMdq0aWPyMYKDg2+4zalTpwDM+tt36NCh2vveiCm/w7UcP34cRVGu+WGiqt3AhBC1S3KR5CJL5aKmTZte8+/666+/8s4777B3795y9+rdqGC80XN34sQJFEXhzTff5M0336z0GOnp6VKY1TFSmIk641pvQlcmsKqaNm0ab775Jk899RRTp07F3d0dtVrNqFGjKoxBT01NNemYLi4uVWpza2Njg1pdsc/O9X7fK6/i6PV6oqKimDVrVqXbN2vWzORYLuvduzcnT57kl19+4Y8//uCrr75i9uzZzJ07l2eeecakY9ysVr+ZmZkV7teojJ2dHS4uLlU6dmW/g6mvQ71ej0ql4vfff6/0qltV73cTQtQNkosMJBeVVxu5aPPmzQwePJjevXvz2Wef4evri1arZcGCBXz//ffX3fdGz93l19XYsWO57bbbKj1G8+bNTYpT3DxSmIla5+npibOzMwcPHrzudpe/YczKyirXNOHyt5KXBQYGAoZv70JCQozrMzIyKgwzWLp0KX379uXrr78utz4rK6vc/C4Avr6+Jv0+CxYsqJHJid3c3CqdxDI5Obnc7xUaGsq+ffvo379/lYfaXI+7uztPPvkkTz75JHl5efTu3Zu33nrLmAxr4lyXf48b/e2vd6577rmHjRs33vBcjz/+eI1MoHq9v8uVQkNDURSF4OBgWrRoYfZ5hRC1S3JR5SQX/etm56Jly5Zha2vLmjVryg13XbBggUn7X++5u/w7a7XaWrsKK2qeFGai1qnVau6++26+++47du3aVWFsv6IoqFQq44S/mzZtYvDgwYBhnpX//ve/5bYfMGAAWq2WTz75hFtvvdX4RjpnzpwK59ZoNCiKUm7dkiVLSElJqfBNUW2O669MaGgomzdvpqSkxNgJ7Ndff+XMmTPlkuHQoUNZtWoV8+bN49lnny13jMLCQvR6fZXnorl48WK54TOOjo40b968XJv3y8e8+sNJVXh6etK7d2/mz5/P6NGjy43tv/x3v/pcV6vNe8wqExoaSnZ2Nvv37zcOCTl//jw///xzue3uueceJkyYwJQpU/juu+/KJXRFUcjMzKwwREkIYTmSiyonuchyuUij0aBSqcpdjU1KSjKpw+WNnjsvLy9iYmL44osvePHFFysU/BkZGTe8N0/cfFKYiZti2rRp/PHHH/Tp08fYZvf8+fMsWbKELVu24Orqyq233kpAQABPP/00r776KhqNhvnz5+Pp6cnp06eNx/L09GTs2LG899573HnnnQwaNIg9e/bw+++/V/jm8c477+Ttt9/mySefpHv37hw4cICFCxeWSzaX3exvlJ555hmWLl3KwIEDGTp0KCdPnuS7774zfii47LHHHmPx4sX85z//Yf369fTo0QOdTseRI0dYvHgxa9asMX7AeOutt5gyZQrr16+vMP/MlSIjI4mJiaFDhw64u7uza9culi5dWu7m5Mvj6V966SVuu+02NBoNDz74YJV/z48//piePXsSHR3Ns88+S3BwMElJSfz222/s3bu33LkmTpzIgw8+iFarJTY2FgcHh1q9x6wyDz74IOPGjWPIkCG89NJLFBQU8Pnnn9OiRYtyN+mHhobyzjvvMGHCBJKSkrj77rtxcnIiMTGRn3/+mWeffZaxY8fe1NiFENcnuagiyUWWy0V33HEHs2bNYuDAgTz88MOkp6cTFxdH8+bN2b9//3X3NeW5i4uLo2fPnkRFRTF8+HBCQkJIS0vj77//5uzZszdtHj1RBZZqBykan+TkZGXYsGGKp6enYmNjo4SEhCgjR45UiouLjdvs3r1b6dKli2Jtba0EBAQos2bNqtCiWFEURafTKVOmTFF8fX0VOzs7JSYmRjl48GCFdrJFRUXKmDFjjNv16NFD+fvvvyu0Aa4J12pR7ODgcM19Zs6cqfj7+ys2NjZKjx49lF27dlUaW0lJifL+++8rrVq1UmxsbBQ3NzelQ4cOypQpU5Ts7GzjdmPGjFFUKpVy+PDh68b6zjvvKJ07d1ZcXV0VOzs7JSIiQnn33XeVkpIS4zZlZWXKiy++qHh6eioqlcrYrvhyG+IZM2ZUOG5lLYoVRVEOHjyoDBkyRHF1dVVsbW2V8PBw5c033yy3zdSpUxV/f39FrVZfs11xdVyvXX5lLbMVRVH++OMPpXXr1oq1tbUSHh6ufPfdd9dsob1s2TKlZ8+eioODg+Lg4KBEREQoI0eOVI4ePVoj8QshapbkoookF/2rpnMRoIwcOfKaj3/99ddKWFiYYmNjo0RERCgLFiyoNN9c/Zoy5blTFEU5efKkMmzYMMXHx0fRarWKv7+/cueddypLly416/cStUOlKFddWxdC1FudO3cmMDCQJUuWWDoUIYQQjZTkIiGqRwozIRqInJwcPD092bt3Ly1btrR0OEIIIRohyUVCVJ8UZkIIIYQQQghhYRUntBBCCCGEEEIIcVNJYSaEEEIIIYQQFiaFmRBCCCGEEEJYmBRmQgghhBBCCGFhMsH0dej1es6dO4eTk5NxVnghhBA3h6Io5Obm4ufnh1ot3yNeJrlJCCEso7bzkhRmlYiLiyMuLo6SkhJOnjxp6XCEEKJRO3PmDE2bNrV0GBYnuUkIIeqG2spL0i7/OrKzs3F1deXMmTM4OztbOhwhhGhUcnJyaNasGVlZWbi4uFg6nDpDcpMQQlhGbecluWJ2HZeHiDg7O0vyE0IIC5HheuVJbhJCCMuqrbwkg/aFEEIIIYQQwsKkMBNCCCGEEEIIC5PCrBJxcXFERkbSqVMnS4cihBBCAJKbhBCioZPmH9eRk5ODi4sL2dnZ1x3Hr9PpKC0tvYmRifpKq9Wi0WgsHYYQ9YKp78GNjTwvQlSdfFYTprreZ7Xafv+V5h9mUBSF1NRUsrKyLB2KqEdcXV3x8fGRhgZCCCFELZPPaqI6LPVZTQozM1z+h+7l5YW9vb180BbXpSgKBQUFpKenA+Dr62vhiIQQQoiGTT6riaqw9Gc1KcyqSafTGf+he3h4WDocUU/Y2dkBkJ6ejpeXlwxrFEIIIWqJfFYT1WHJz2rS/KOaLo9Ttre3t3Akor65/JqRse5CCCFE7ZHPaqK6LPVZTQqzSlSl85VcEhdVJa8ZIUR1SFdGIapH8q6oKku9ZqQwq8TIkSNJSEhg586dlg5FCCGEACQ3CSFEQyeFWSMUExPDqFGjLB2GEEIIIYS4ytWf04KCgpgzZ47F4rGkJ554grvvvtu43NA/w0rzjzpAp1fYkZhJem4RXk62dA52R6OuX5fdFUVh0KBBrF69mp9//rncPyIhhBBCCFE9O3fuxMHBwdJh1Ak//fQTWq3W0mHUGinMLGz1wfNMWZnA+ewi4zpfF1smx0YysHX9aac+Z84cGcMthBBCCFHDPD09LR0CYGiEYemiyN3d3aLnr20ylNGCVh88z/PfxZcrygBSs4t4/rt4Vh88f1Pi+O2333BxcWHhwoXV2n/v3r3MnDmT+fPn13BkQgghhBCN29VDGVUqFV999RVDhgzB3t6esLAwVqxYUW6fgwcPcvvtt+Po6Ii3tzePPfYYFy5cMD6+evVqevbsiaurKx4eHtx5552cPHnS+HhSUhIqlYoff/yRPn36YGtrW+nnREVReOuttwgICMDGxgY/Pz9eeukl4+PFxcWMGzeOZs2aYWNjQ/Pmzfn6668Bw3QGTz/9NMHBwdjZ2REeHs5HH3103eeismGe06ZN46mnnsLJyYmAgAC+/PLLcvts27aNdu3aYWtrS8eOHVm+fDkqlYq9e/de91yWIIVZDVIUhYKSMpN+cotKmbziEEplx/n//39rRQK5RaUmHU9RKjvSjX3//fc89NBDLFy4kEceeYSFCxfi6Oh43Z/Nmzcb9y8oKODhhx8mLi4OHx+fasUghBBCCHEz6XQ6dDpduXV6vR6dToder6902ys/a1Vl29owZcoUhg4dyv79+xk0aBCPPPIImZmZAGRlZdGvXz/at2/Prl27WL16NWlpaQwdOtS4f35+PqNHj2bXrl38+eefqNVqhgwZUuH3GT9+PC+//DKHDx/mtttuqxDHsmXLmD17Nl988QXHjx9n+fLlREVFGR8fNmwYixYt4uOPP+bw4cN88cUXODo6AobnsGnTpixZsoSEhAQmTZrE66+/zuLFi6v0XMycOZOOHTuyZ88eRowYwfPPP8/Ro0cByMnJITY2lqioKOLj45k6dSrjxo2r0vFvJhnKWIm4uDji4uIq/IO9kcJSHZGT1tRIDAqQmlNE1Ft/mLR9wtu3YW9dtT9nXFwcEydOZOXKlfTp0weAwYMH06VLl+vu5+/vb/zvV155he7du3PXXXdV6dxCCCGqprq5SQhR0apVqwC47bbbsLa2BuDkyZMcOXKEgIAA2rZta9x2zZo16HQ6+vfvb5zfKikpiUOHDuHv7090dLRx23Xr1lFSUkJMTAxOTk61Fv8TTzzBQw89BMC0adP4+OOP2bFjBwMHDuTTTz+lffv2TJs2zbj9/PnzadasGceOHaNFixbce++95Y43f/58PD09SUhIoHXr1sb1o0aN4p577rlmHKdPn8bHx4cBAwag1WoJCAigc+fOABw7dozFixezdu1aBgwYAEBISIhxX61Wy5QpU4zLwcHB/P333yxevLhcEXkjgwYNYsSIEQCMGzeO2bNns379esLDw/n+++9RqVTMmzcPW1tbIiMjSUlJYfjw4SYf/2aSwqwSI0eOZOTIkeTk5ODi4mLpcGrF0qVLSU9PZ+vWreXmxHFycjL5jWTFihX89ddf7Nmzp7bCFEII8f8aQ24SQpimTZs2xv92cHDA2dmZ9PR0APbt28f69euNV6audPLkSVq0aMHx48eZNGkS27dv58KFC8YrZadPny5XmHXs2PG6cdx///3MmTOHkJAQBg4cyKBBg4iNjcXKyoq9e/ei0WiMX/5XJi4ujvnz53P69GkKCwspKSmhXbt2VXkqyj0XKpUKHx8f43Nx9OhR2rRpg62trXGby4VjXSSFWQ2y02pIeLviZd7K7EjM5IkFN56L5psnO9E5+MY3OtppNSad97L27dsTHx/P/Pnz6dixo7Fxx8KFC3nuueeuu+/vv/9Or169+Ouvvzh58iSurq7lHr/33nvp1asXGzZsqFJMQgghhBA3w6BBgwDQaP79/BQaGkpISEiFZmaXh/Cp1f/eARQUFERgYGCFbS9fGbpy29pwdRMOlUplLK7y8vKIjY3l/fffr7Cfr6+hsVxsbCyBgYHMmzcPPz8/9Ho9rVu3pqSkpNz2N+oG2axZM44ePcq6detYu3YtI0aMYMaMGWzcuBE7O7vr7vvDDz8wduxYZs6cSbdu3XBycmLGjBls3779hr//la73XNQ3UpjVIJVKZfJwwl5hnvi62JKaXVTpfWYqwMfFll5hnrXSOj80NJSZM2cSExODRqPh008/Bao2lHH8+PE888wz5R6Liopi9uzZxMbG1njMQgghhBA14cqC7LJrFVPmbnuzRUdHs2zZMoKCgrCyqvi59OLFixw9epR58+bRq1cvALZs2VLt89nZ2REbG0tsbCwjR44kIiKCAwcOEBUVhV6vZ+PGjcaC9Upbt26le/fuxmGIQLkGJDUhPDyc7777juLiYmxsbADD9AN1lRRmFqJRq5gcG8nz38WjgnLF2eUybHJsZK3OZ9aiRQvWr19PTEwMVlZWzJkzp0pDGX18fCpt+BEQEEBwcHBNhyuEEEIIIW5g5MiRzJs3j4ceeojXXnsNd3d3Tpw4wQ8//MBXX32Fm5sbHh4efPnll/j6+nL69GnGjx9frXN988036HQ6unTpgr29Pd999x12dnYEBgbi4eHB448/zlNPPcXHH39M27ZtSU5OJj09naFDhxIWFsa3337LmjVrCA4O5n//+x87d+6s0c+QDz/8MBMnTuTZZ59l/PjxnD59mg8//BCgTk7zJF0ZLWhga18+fzQaHxfbcut9XGz5/NHomzKPWXh4OH/99ReLFi1izJgxtX4+IYQQQghRe/z8/Ni6dSs6nY5bb72VqKgoRo0ahaurK2q1GrVazQ8//MDu3btp3bo1r7zyCjNmzKjWuVxdXZk3bx49evSgTZs2rFu3jpUrV+Lh4QHA559/zn333ceIESOIiIhg+PDh5OfnA/Dcc89xzz338MADD9ClSxcuXrxY7upZTXB2dmblypXs3buXdu3aMXHiRCZNmgRQ7r6zukKl1HY/z3rs8g3W2dnZODs7l3usqKiIxMREgoODzf7D6vQKOxIzSc8twsvJls7B7rV6pUxYVk2+doRoyK73HtyYyfMihGkk34rKLFy4kCeffJLs7Oxr3gd3rddObb//ylDGOkCjVtEt1MPSYQghhBBCCNGgfPvtt4SEhODv78++ffsYN24cQ4cOvWFzEkuQwkwIIYQQQgjRIKWmpjJp0iRSU1Px9fXl/vvv591337V0WJWSwqwSMomnEEKIukZykxBCVN1rr73Ga6+9ZukwTCLNPyoxcuRIEhIS6nQ7TSGEEI2L5CYhhGjYpDATQgghhBANlvS5E1VlqdeMFGZCCCGEEKLB0Wq1ABQUFFg4ElHfXH7NXH4N3Sxyj5kQQgghhGhwNBoNrq6upKenA2Bvb18nJxUWdYeiKBQUFJCeno6rqysajeamnl8KMyGEEEII0SD5+PgAGIszIUzh6upqfO3cTFKYCSGEEEKIBkmlUuHr64uXlxelpaWWDkfUA1qt9qZfKbtMCrNGKCYmhnbt2jFnzhxLhyKEEEIIUes0Go3FPmwLYSpp/lEX6HWQuBkOLDX8v77+zFGTmprKY489ho+PDw4ODkRHR7Ns2TJLhyWEEEIIIUS9IlfMLC1hBaweBznn/l3n7AcD34fIwZaLy0TDhg0jKyuLFStW0KRJE77//nuGDh3Krl27aN++vaXDE0IIIYQQol6QK2aWlLACFg8rX5QB5Jw3rE9YcVPC+O2333BxcWHhwoVV3nfbtm28+OKLdO7cmZCQEN544w1cXV3ZvXt3LUQqhBBCCCFEwySFWSXi4uKIjIykU6dOVdtRUaAk37Sfohz4/TWgsgns/n/d6nGG7Uw5XjUnwvv+++956KGHWLhwIY888ggLFy7E0dHxuj+bN2827t+9e3d+/PFHMjMz0ev1/PDDDxQVFRETE1OteIQQQlSu2rlJCCFEvaBSZDr0a8rJycHFxYXs7GycnZ3LPVZUVERiYiLBwcHY2toaVpbkwzQ/C0QKvH4OrB1M2vRy84+wsDAmTpzIL7/8Qp8+fQDIzc0lLS3tuvv7+/tjZ2cHQFZWFg888AB//PEHVlZW2Nvbs2TJEm699Vbzfp8GrNLXjhCiguu9Bzdm8rwIIYRl1Pb7r9xj1kgtXbqU9PR0tm7dWu7bVycnJ5ycnEw+zptvvklWVhbr1q2jSZMmLF++nKFDh7J582aioqJqI3QhhBBCCCEaHCnMapLW3nDlyhTJ22DhfTfe7pGlENjdtHNXQfv27YmPj2f+/Pl07NgRlUoFwMKFC3nuueeuu+/vv/9Or169OHnyJJ9++ikHDx6kVatWALRt25bNmzcTFxfH3LlzqxSTEEIIIYQQjZUUZjVJpTJ5OCGh/QzdF3POU/l9ZirD46H9QF3z826EhoYyc+ZMYmJi0Gg0fPrppwAMHjyYLl26XHdff39/AAoKCgBQq8vfqqjRaNDr9TUesxBCCCGEEA2VFGaWotYYWuIvHgaoKF+cGa5eMXB6rRRll7Vo0YL169cTExODlZUVc+bMqdJQxoiICJo3b85zzz3Hhx9+iIeHB8uXL2ft2rX8+uuvtRa3EEIIIYQQDY10ZbSkyMEw9Ftw9i2/3tnPsP4mzGMWHh7OX3/9xaJFixgzZkyV9tVqtaxatQpPT09iY2Np06YN3377Lf/9738ZNGhQLUUshBBCCCFEwyNXzCwtcjBE3GG45ywvDRy9DfeU1eKVsg0bNpRbbtmy5Q07MV5LWFgYy5Ytq4GohBBCCCGEaLykMKsL1BoI7mXpKIQQQgghhBAWIkMZhRBCCCGEEMLCpDATQgghhBBCCAuTwkwIIYQQQgghLEwKMyGEEEIIIYSwMCnMhBBCCCGEEMLCpDATQgghhBBCCAuTwkwIIYQQQgghLEwKs0rExcURGRlJp06dLB2KEEIIAUhuEkKIhk4Ks0qMHDmShIQEdu7caelQakVMTAyjRo2ydBhCCCGqoKHnJiGEaOykMKsDdHodO1N3surUKnam7kSn11k6JJN9+eWXxMTE4OzsjEqlIisrq9LtfvvtN7p06YKdnR1ubm7cfffdNzVOIYQQQggh6jIrSwfQ2K1LXsf0HdNJK0gzrvO292Z85/EMCBxgwchMU1BQwMCBAxk4cCATJkyodJtly5YxfPhwpk2bRr9+/SgrK+PgwYM3OVIhhBBCCCHqLrliZkHrktcxesPockUZQHpBOqM3jGZd8rqbEsdvv/2Gi4sLCxcurPK+o0aNYvz48XTt2rXSx8vKynj55ZeZMWMG//nPf2jRogWRkZEMHTrU3LCFEEIIIYRoMKQwq0GKolBQWmDST25xLu/teA8FpeJx/v9/03dMJ7c416TjKUrF45ji+++/56GHHmLhwoU88sgjLFy4EEdHx+v+bN682eTjx8fHk5KSglqtpn379vj6+nL77bfLFTMhhBBCCCGuIEMZa1BhWSFdvu9SY8dLK0ij+w/dTdp2+8PbsdfaV+n4cXFxTJw4kZUrV9KnTx8ABg8eTJcu1/8d/P39TT7HqVOnAHjrrbeYNWsWQUFBzJw5k5iYGI4dO4a7u3uVYhZCCCGEEKIhksKskVq6dCnp6els3bq1XOtlJycnnJycauw8er0egIkTJ3LvvfcCsGDBApo2bcqSJUt47rnnauxcQgghhBBC1FdSmNUgOys7tj+83aRtd6ftZsSfI2643Wf9P6ODdweTzl0V7du3Jz4+nvnz59OxY0dUKhUACxcuvGGx9Pvvv9OrVy+TzuPr6wtAZGSkcZ2NjQ0hISGcPn26SjELIYQQQgjRUElhVoNUKpXJwwm7+3XH296b9IL0Su8zU6HC296b7n7d0ag1NR0qoaGhxiGFGo2GTz/9FKj5oYwdOnTAxsaGo0eP0rNnTwBKS0tJSkoiMDCw+r+AEEIIIYQQDYgUZhaiUWsY33k8ozeMRoWqXHGmwnD1alzncbVSlF3WokUL1q9fT0xMDFZWVsyZM6fKQxlTU1NJTU3lxIkTABw4cAAnJycCAgJwd3fH2dmZ//znP0yePJlmzZoRGBjIjBkzALj//vtr5fcSQgghhBCivpGujBY0IHAAs2Jm4WXvVW69t703s2Jm3ZR5zMLDw/nrr79YtGgRY8aMqfL+c+fOpX379gwfPhyA3r170759e1asWGHcZsaMGTz44IM89thjdOrUieTkZP766y/c3Nxq7PcQQgghhBCiPlMp1e2z3gjk5OTg4uJCdnY2zs7O5R4rKioiMTGR4OBgbG1tzTqPTq8jPj2ejIIMPO09ifaKrtUrZcKyavK1I0RDdr334MZMnhchhLCM2n7/laGMdYBGraGTT6cbbyiEEEIIIYRokGQooxBCCCGEEEJYmBRmQgghhBBCCGFhUpgJIYQQQgghhIVJYSaEEEIIIYQQFiaFmRBCCCGEEEJYmBRmQgghhBBCCGFhUpgJIYQQQgghhIU1isJsyJAhuLm5cd9991k6FCGEEELykhBCiAoaRWH28ssv8+2331o6jDojJiaGUaNGGZeDgoKYM2eOxeKxpCeeeIK7777buHz1cyOEELVB8pIQQoirWVk6gJshJiaGDRs2WDqMOmvnzp04ODhYOow64aeffkKr1Vo6DCFEAyd5SQghxNXq/BWzTZs2ERsbi5+fHyqViuXLl1fYJi4ujqCgIGxtbenSpQs7duy4+YHWY56entjb21s6DEpLSy0dAu7u7jg5OVk6DCFEHSZ5SQghRG2o84VZfn4+bdu2JS4urtLHf/zxR0aPHs3kyZOJj4+nbdu23HbbbaSnp9/kSOuvq4cyqlQqvvrqK4YMGYK9vT1hYWGsWLGi3D4HDx7k9ttvx9HREW9vbx577DEuXLhgfHz16tX07NkTV1dXPDw8uPPOOzl58qTx8aSkJFQqFT/++CN9+vTB1taWhQsXVohNURTeeustAgICsLGxwc/Pj5deesn4eHFxMePGjaNZs2bY2NjQvHlzvv76awB0Oh1PP/00wcHB2NnZER4ezkcffXTd56KyYZ7Tpk3jqaeewsnJiYCAAL788sty+2zbto127dpha2tLx44dWb58OSqVir179173XEKI+knykhBCiNpQ5wuz22+/nXfeeYchQ4ZU+visWbMYPnw4Tz75JJGRkcydOxd7e3vmz59f5XMVFxeTk5NT7qc6dDodOp2u3Dq9Xo9Op0Ov11e6raIo1d62NkyZMoWhQ4eyf/9+Bg0axCOPPEJmZiYAWVlZ9OvXj/bt27Nr1y5Wr15NWloaQ4cONe6fn5/P6NGj2bVrF3/++SdqtZohQ4ZUiHf8+PG8/PLLHD58mNtuu61CHMuWLWP27Nl88cUXHD9+nOXLlxMVFWV8fNiwYSxatIiPP/6Yw4cP88UXX+Do6AgYnpumTZuyZMkSEhISmDRpEq+//jqLFy+u0nMxc+ZMOnbsyJ49exgxYgTPP/88R48eBSAnJ4fY2FiioqKIj49n6tSpjBs3rkrHF0JUlJGRUe7LnrrkZuYlqLncJIQQovoURSExMbFWz1Gv7zErKSlh9+7dTJgwwbhOrVYzYMAA/v777yof77333mPKlClmx7Vq1SoAbrvtNqytrQE4efIkR44cISAggLZt2xq3XbNmDTqdjv79+xuHEyYlJXHo0CH8/f2Jjo42brtu3TpKSkqIiYkxDrc7e/YsAQEBZsd8tSeeeIKHHnoIgGnTpvHxxx+zY8cOBg4cyKeffkr79u2ZNm2acfv58+fTrFkzjh07RosWLbj33nvLHW/+/Pl4enqSkJBA69atjetHjRrFPffcc804Tp8+jY+PDwMGDECr1RIQEEDnzp0BOHbsGIsXL2bt2rUMGDAAgJCQEOO+Wq223N8zODiYv//+m8WLF5crIm9k0KBBjBgxAoBx48Yxe/Zs1q9fT3h4ON9//z0qlYp58+Zha2tLZGQkKSkpDB8+3OTjCyHK0+v17N+/n+zsbEuHUmU1nZeg5nKTEEKI6svNzTV+MV9b6vwVs+u5cOECOp0Ob2/vcuu9vb1JTU01Lg8YMID777+fVatW0bRp02smxwkTJpCdnW38OXPmTK3GX5e1adPG+N8ODg44Ozsbh+Hs27eP9evX4+joaPyJiIgAMA5XPH78OA899BAhISE4OzsTFBQEGAqtK3Xs2PG6cdx///0UFhYSEhLC8OHD+fnnnykrKwNg7969aDQa+vTpc8394+Li6NChA56enjg6OvLll19WiKEqz4VKpcLHx8f4XBw9epQ2bdpga2tr3OZy4SiEqB61Wk3bdm25ZH3J0qFUWU3nJZDcJIQQdYGzszPh4eG1eo56fcXMVOvWrTNpOxsbG2xsbMw+36BBgwDQaDTGdaGhoYSEhKBSqcpte3n4nlr9b40cFBREYGBghW0vXxW6ctumTZuaHW9lru5MqFKpjMMQ8/LyiI2N5f3336+wn6+vLwCxsbEEBgYyb948/Pz80Ov1tG7dmpKSknLb36gbZLNmzTh69Cjr1q1j7dq1jBgxghkzZrBx40bs7Oyuu+8PP/zA2LFjmTlzJt26dcPJyYkZM2awffv2G/7+V7recyGEqBmZmZkoioKHhwfrktcxfcd0zl08Z+mwao2peQlqLjcJIYSomtOnT+Pt7W18Dw4ODq7V89XrwqxJkyZoNBrS0tLKrU9LS8PHx8dCUZUvyC67spi6GdvWpujoaJYtW0ZQUBBWVhVfQhcvXuTo0aPMmzePXr16AbBly5Zqn8/Ozo7Y2FhiY2MZOXIkERERHDhwgKioKPR6PRs3bjQWrVfaunUr3bt3Nw5DBMo1IKkJ4eHhfPfddxQXFxv/0e7cubNGzyFEQ5eRkcH27dvRarXognSM/2c8CsqNd6yD6mpeEkIIUTWHDx/mxIkTNGnShK5du1a4YFIb6vVQRmtrazp06MCff/5pXKfX6/nzzz/p1q1btY8bFxdHZGQknTp1qokwG5yRI0eSmZnJQw89xM6dOzl58iRr1qzhySefRKfT4ebmhoeHB19++SUnTpzgr7/+YvTo0dU61zfffMPXX3/NwYMHOXXqFN999x12dnYEBgYSFBTE448/zlNPPcXy5ctJTExkw4YNxuYeYWFh7Nq1izVr1nDs2DHefPPNGi+aHn74YfR6Pc8++yyHDx9mzZo1fPjhhwA35R+wEA3B5Wkq3D3c+XDPh/W2KIPay0sguUkIIW6mpk2botVq8fb2vmmf6ep8YZaXl8fevXuNrccTExPZu3ev8T6h0aNHM2/ePP773/9y+PBhnn/+efLz83nyySerfc6RI0eSkJAgVz6uwc/Pj61bt6LT6bj11luJiopi1KhRuLq6olarUavV/PDDD+zevZvWrVvzyiuvMGPGjGqdy9XVlXnz5tGjRw/atGnDunXrWLlyJR4eHgB8/vnn3HfffYwYMYKIiAiGDx9Ofn4+AM899xz33HMPDzzwAF26dOHixYvlrp7VBGdnZ1auXMnevXtp164dEydOZNKkSQDl7jsTQpRXWFho/G+NRkP37t2hKWQUZ1gwKtNYIi+B5CYhhKhtV+YmJycn+vfvX66xXG1TKVf2Xq+DNmzYQN++fSusf/zxx/nmm28A+PTTT5kxYwapqam0a9eOjz/+mC5duph97pycHFxcXMjOzsbZ2bncY0VFRSQmJhIcHCwfwEU5Cxcu5MknnyQ7O7vS++DktSMau9OnT3PgwAHatm1b7j7ZVadWMW7zv9NN6Ap1HH7+cKXvwZZkybwE189NQgghqk6v13PgwAHOnTtH7969r9kDobbff+v8PWYxMTHcqHZ84YUXeOGFF25SREKU9+233xISEoK/vz/79u1j3LhxDB069IbNSYRorAoLC9Hr9aSlpZUrzGyt6scXFZKXhBCi4cnLy6OsrIyLFy/esDldbanzhZkQdV1qaiqTJk0iNTUVX19f7r//ft59911LhyVEndWiRQscHR3x8/MzrtuXsY9p26ddZy8hhBCidqjVajp06EBubi6enp4Wi0MKs0rExcURFxeHTqezdCiiHnjttdd47bXXLB2GEHXWuXPnSE1NpX379qhUKlQqFf7+/gAoisL3R77nw10fUqYvw9POk4zCDFRI85yrSW4SQoiaodfrOXLkCHZ2dsYW+La2tha/xaTON/+wBLnBWgghakZRURF79uwhJSWFlJSUco/lleQxduNYpu+YTpm+jFsDb2XF3SuYHTMbL3svC0Vcd0luEkKImnH+/HlOnjxJQkJCuYYfliZXzMxUx3uniDpIXjOiMbG1tSUqKoqCggLjVTKAo5lHGbNxDMk5yViprRjbcSwPRzyMSqViQOAA+jbry6aTm+hHPwtGL4QQoiHy9/fnwoULeHt716meAFKYVZNWqwWgoKCgTv1BRd1XUFAA/PsaEqKhSU9Px9HREXt7ewACAgLKPb78xHLe+ecdinXF+Dj48GGfD2nr2bbcNhq1hg7eHW5azEIIIRouRVE4c+YMTZs2Ra02DBhs27btDfa6+aQwqyaNRoOrqyvp6ekA2Nvby4TC4roURaGgoID09HRcXV3RaDSWDkmIGpecnMz+/ftxdXWlR48exgQIUFRWxLTt0/j5xM8A9PDvwfSe03G1dbVQtEIIIRqD+Ph4zp07R15eHpGRkZYO55qkMKuEqTdY+/j4ABiLMyFM4erqanztCNHQeHl5odVqcXNzK7c+OSeZMRvGcPTSUdQqNSPbjeSZqGdQq+RWZ1NJ8w8hhKgePz8/0tLS6vzcj3V+gmlLMnUSOZ1OR2lp6U2MTNRXWq1WrpSJBqekpARra2vjcnFxMTY2NsbltclreXPrm+SX5uNu6877vd+nq2/XGx5XJlKunDwvQghxYzfKTdXR6CeYrg80Go182BZCNDqKonDy5EmOHTtGjx49cHFxATAmvlJdKbN2z+K7w98BEO0VzYw+M6TjohBCiFpTWlrKvn37yM3NpVevXlhZGcodc4uym0EKMyGEENWWmZmJTqfj/PnzxsIMIDU/lbEbx7IvYx8AT7Z6khejX0SrlqY3Qgghao9er+fSpUuUlJRw6dIli04YXVVSmAkhhKgWlUpF+/btSUtLo2nTpsb1W1O2Mn7zeLKKs3DSOvFuz3fpG9C3agfX6yBpWw1HLIQQoqGzsbGhY8eOqFQqXF1dLR1OlUhhJoQQwmRJSUmUlpYSFhYGGO6bvFyU6fQ65u6fyxf7vkBBoaV7S2bGzKSZU7OqnSRhBaweBxkpN95WCCFEo6bT6Th48CBNmzbFw8MDoEIDqvpCCrNKSOcrIYSo6OLFixw4cAAwdF+8cujixcKLjN88nn/O/wPA/S3uZ1zncdhoqjimP2EFLB4GSF+qq0luEkKIio4fP87p06dJT0+nf//+5aZpqW+kK+N1SOcrIYQo78CBAzg4OBASEmJctyd9D2M3jCW9MB07Kzve7PomsaGxVT+4XgdzWkPOOQByihVcpufKe/BVJDcJIcS/dDodO3bsICwsjCZNmtTquaQroxBCCItJTU3F09PT2Hk2KirK+JiiKHyb8C2zd89Gp+gIdglmVp9ZNHdrXr2TJW8zFmVCCCFEZfR6PWlpafj6+gKG7ujdunWzcFQ1QwozIYQQlTpy5AjHjx8nICCAtm3blnsspySHSVsn8efpPwG4Pfh23ur2FvZa++qfMC/NnHCFEEI0cHq9nm3btnHp0iU6dOiAn5+fpUOqUVKYCSGEqJSHhwcnTpzA1ta23PrDFw8zesNozuadRavWMq7TOIaGD0WlUpl3wsyT5u0vhBCiQVOr1Xh4eJCXl9cg5xCWwkwIIYRRWVmZcTJOT09P+vXrh7294SqYoigsO76M97a/R4m+BD8HP2bFzKJVk1bmnVRXCuvegr8/NTN6IYQQDY2iKOj1emMhFhERQVBQEHZ2dhaOrOZJYSaEEAK9Xs+RI0c4d+4cvXv3xtraGsBYlBWUFvDu9ndZcXIFAH2a9uHdnu/iYuNyzWOaJOccLHkSzhi6OdLidji2+v8flN5UQgjRmBUXFxMfH4+VlRWdOnUCDHNoNsSiDKD+9pOsRXFxcURGRhpfAEII0dDp9XpSU1MpLCwkNTW13GOJ2Yk8suoRVpxcgVql5uXol/m438fmF2Un/4K5PQ1FmY0zPPAdPPwDDP0WnH3NO3YDJLlJCNHYFBYWkpmZSUZGBnl5eZYOp9ZJu/zrkJbEQojGJCcnh/z8fGOnK4DViauZvG0yBWUFNLFrwge9P6CTj5mFgV4Hm2bAhumAAj5RhmLMPaTcNjkH1+LS9nZ5D76K5CYhRGOSkpKCi4sLjo6Olg5F2uULIYSoeYqicOLECZydnfH29gbA2dnZmGhKdCV8uOtDFh1ZBEAnn0580PsDmtiZOUdM/gX4abjhahlA9ONw+/ugvWpYiloDQd3NO5cQQoh6pbS0lEOHDhEREWFsPOXv72/hqG4eKcyEEKIROn36NEeOHEGr1dKvXz/jPWUA5/LOMWbDGA5ePAjA8KjhjGg3Aiu1mSnj9HZY8gTkngMrO7hzNrR7qNJNdXqFHacyzTufEEKIemXfvn2cP3+ewsLCBjM3WVVIYSaEEI1Qs2bNOHfuHE2bNi1XlG06u4kJmyeQU5KDs7Uz7/V6j95Ne5t3MkWBfz6DtZNAXwYeYYahi96RlW6++uB5pqxMICVdCjMhhGhMWrZsSUFBAZGRleeHhk4KMyGEaCTS09Px8vICDHPBXPltZJm+jLi9cXx14CsAWnu0ZmbMTPwczZy8sygbfhkJh1callvdA4M/BhunSjdfffA8z38XL/0YhRCiESgrKyM7OxsPDw8AHBwc6N3bzC8D6zEpzIQQohGIj48nJSWFNm3aEBgYWO6xC4UXeG3Ta+xM3QnAQxEPMbbjWKw11pUdynTn98OSxyHzFKi1MPA96PQMXGMiap1eYcrKBCnKhBCiESguLubvv/+moKCAnj17SjMjpDATQohGwcXFhfPnz3N1I96dqTt5bdNrXCi8gL2VPVO6T2Fg8EDzTxj/P1g1FsqKwKUZ3P9faNrhurvsSMzkfHaR+ecWQghR51lbW2Nra0tpaSk6nc7S4dQJUpgJIUQDpdfrUasN01WGhobi5eWFk5NhCKFe0bPg4AI+3vMxekVPc9fmzIyZSYhLyPUOeWMlBYaCbO9Cw3LYrTDkC7B3v+Gu6blSlAkhREOm1+tRqVTGn+joaBRFwcbGxtKh1QlSmFUiLi6OuLg4qd6FEPWSTqfj4MGDFBQU0LVrV1T/P3TwclGWXZzNxC0T2Xh2IwCxIbG80fUN7LX25p34wglYPAzSD4FKDf3egB6vwP8XhzfcPbfYvPM3cJKbhBD1WUFBAbt378bHx4ewsDCAcs2nhEwwfV0yiacQoj7Kz89n48aN6HQ6unXrRpMm/849dujCIcZsHENKXgrWamsmdJnAvWH3Gou3ajv0M/zyIpTkgoMX3Pc1BJt2A7der/D5xpN8uOZoufvL9MUFnJkzVN6DryK5SQhRH505c4a9e/dibW1Nv3790Gq1lg6pymSCaSGEEFXi4OBA+/btsbKyMhZliqKw+Ohi3t/5PqX6Upo6NmVWzCxaerQ072RlJbD2Tdg+17Ac2APumw9OPibtnlVQwujF+/jrSDoAXYLd2ZEobfKFEKKhadasGcXFxfj7+9fLouxmkMJMCCHqOb1ez9GjRwkICMDBwQEAX19f4+MFpQW89fdb/J74OwD9mvVjas+pOFub+W1f1hnDhNEpuwzLPV+Bvm+AxrTUsu9MFiMWxpOSVYi1lZq3B7figU7NWHMo9f/nMSswLz4hhBAWU1RUxPHjx2nVqpXxfufmzZtbOKq6TQozIYSo5w4fPsypU6dIT0+nd+/e5YYlnsw6yegNozmVfQqNSsMrHV5hWOQw84cuHl8LPw2Hwktg6wJDvoRw07o5KorC//5J5p1fD1Oi0xPoYU/cw9G09ncBYGBrX26J9GH9/mRumWNemEIIIW4+RVH4559/yM3NRa1W06pVK0uHVC9IYSaEEPVcaGgo6enphIeHlyu4Vp5cydR/plJYVoiXnRcz+swg2jvavJPpdbDhPdg0w7Ds2w6G/hfcgkzaPa+4jAk/HWDlvnMA3BrpzYz72+JiV35Yi0atonPIjTs5CiGEqHtUKhWRkZEcPnyYoKAgS4dTb0hhJoQQ9YyiKGRlZeHm5gaAra0tMTExxqKsWFfM+zveZ8mxJQB09e3K9F7T8bDzMO/Eeemw7GlI3GRY7vQM3DYNrExrc3wsLZf/fLebUxn5WKlVjL89gqd7Bpt/9U4IIYTFlZaWUlxcjKOjIwBeXl54enrKe3wVSGEmhBD1iE6nY+fOnVy4cIEePXoYi7PLie9M7hnGbBjD4czDqFDxXNvn+E+b/6BRa8w7cfI2WPIk5KWC1gFiP4I295u8+0/xZ5n480EKS3X4ONvy6cPt6RgkV8SEEKIhyM3NZfv27ahUKnr37m1s7iFFWdVIYSaEEPWIRqNBq9WiVqspKio/IfP60+uZuGUiuaW5uNq4Mr3XdHr49zDvhIoCWz+CP98GRQeeETD0W/AMN2n3olIdU1YmsGjHaQB6hTVhzgPt8HCUyUSFEKKhsLW1NU4aXVxcLF0Xq0kKMyGEqAcURTF+89i2bVuKioqMw0VK9aV8Ev8JCw4tAKCNZxtm9pmJj4NpLeuvqfASLB8BR1cZlqOGQuwcsHYwaffki/mMWBjPoXM5qFTwUr8wXuofhkYt36AKIUR9d2Ve0mq1dOnSBRsbGynKzCCFmRBC1GGlpaXs3bsXBwcHIiMjAbCysjIWZekF6by68VXi0+MBeLTlo4zuMBqtxszEeG4PLH4cspJBYw23vw8dngQTh6WsOZTK2CX7yC0qw93BmjkPtKN3C0/zYhJCCFEn5ObmsmvXLlq1aoWXlxeAMS+J6pPCrBJxcXHExcWh0+ksHYoQopHLzMwkNTUVtVpNcHAwdnZ2xsf+Of8P4zaNI7MoEwetA1N7TOWWwFvMO6GiwO4F8Ps40JWAa6Ch66Jfe5N2L9XpmbHmKF9uOgVAdIArcY9E4+tid4M9xY1IbhJC1BXJycnk5eVx+PBhafBRg1SKoiiWDqKuysnJwcXFhezsbJydzZyIVQghqkGn1/HL9l8osysj2CeYaK9oVCoV8/bP47N9n6FX9LRwa8GsmFkEOgead7LiPPj1FTiw2LAcPgju/gzs3EzaPTW7iBcXxbMz6RIAT/cMZvztEWg16mqFI+/BlZPnRQhhaXq9nsOHDxMWFoa1tbWlw7lpavv916QrZjk5OVU+sCQLIYSoOp1Ox7FjxwgLC2NDygam75hOWkGa4cF94GnniYedB0cyjwAwpPkQXu/yOrZWtuadOOMo/PgYXDgKKg0MmAzdXzJ56OKW4xd4+Yc9XMwvwcnGig/ua8PtUb7mxXQDkpuEEOLmyM/P59y5c4SFhQHIpNG1xKTCzNXVtUqXKFUqFceOHSMkJKTagQkhRGO0a9cu0tPT2XBqA59f+ByF8oMaMgozyCjMwEptxaSukxgSNsT8k+5fAitfhtJ8cPSB+xdAYHeTdtXrFT5df4LZ646hKBDh48Tnj3YguIlpDULMIblJCCFqX2lpKZs3b6a0tBRbW1uaNWtm6ZAaLJPvMVu6dCnu7jeec0ZRFAYNGmRWUEII0ViFhYWRlZ3FD2d/QNFce6S5i7ULg0MHm3eysmJYPQF2fW1YDu4N934Njl4m7Z6ZX8KoH/ey6VgGAA90bMaUu1phqzVzzrQqkNwkhBC1S6vVEhoaSnp6Op6e0sSpNplUmAUGBtK7d288PDxMOmhISIi0yhRCCBPo9XoKCgqM3azc3d1xbe1K5vnM6+53segi8enxdPLpVL0TX0qGJY8bui8C9H4VYiaAiRNRx5++xMiF8ZzPLsJWq2bqXa25v+PN/RZVcpMQQtSOoqIi1Gq18f6x5s2bExoailpdvXuGhWlMKswSExOrdNCDBw9WKxghhGhMioqK2LlzJ4WFhfTu3RtbW8N9YheLLpq0f0ZBRvVOfPR3+Pk5KMo2NPa4Zx6EmdbNUVEUFmxNYtqqw5TpFYKbOPD5o9FE+Nz8e7ckNwkhRM27ePEiu3btwsXFhS5duhgnjpbOi7VP2uULIYSFaLVadDqd8arZ5cLM0960oSKmbmekK4O/psLWOYZl/45w/zfgatqVrtyiUl5bup/fD6YCcEeUL9PvjcLJVq5CCSFEQ3E5NxUXF1NaWtqoui5aWpUKs9zcXI4dO0Z4eDiOjo7Ex8czZ84cCgsLufvuu3nkkUdqK04hhGgQFEUxfuuo0Wjo1KkTarXaOD9ZUVkRK06suO4xVKjwtvcm2iva9BPnpsLSpyB5q2G5y3/glqlgZVrCPXw+hxEL40m8kI9Wo+L1QS15ontQnfgGVXKTEEKY58rc5OzsTNeuXXFxcUGjuXn3DIsqFGabNm3izjvvJC8vDzc3NxYtWsR9992Hv78/Go2Gn376iYKCAoYPH16b8QohRL1VXFzM7t27CQwMxN/fHwAHh3+7FybnJDNmwxiOXjpqXKdCVa4zowpD4hzXeRwaE+8HI3ETLH0a8tPB2hHu+hRamd7NcfGuM7y5/CDFZXr8XGyJeySa9gGmzW1W2yQ3CSGEeS5dusS+ffvo3Lkz9vb2ACY1VRI1z+Q7+N544w3uv/9+zpw5w6hRo3jggQd44YUXOHz4MAcPHmTKlCnExcXVZqxCCFGvnT59mosXL3Lo0CF0Ol25x9Ylr+PBXx/k6KWjuNu68+UtXzI7ZjZe9uU7JHrbezMrZhYDAgfc+IR6PWz6EL69y1CUebWCZzeaXJQVluh4dck+Xlu6n+IyPX1aePLbS73qTFEGkpuEEMJchw8fJjc3l8OHD1s6lEZPpSjKtfsxX8HV1ZV//vmHiIgISkpKsLOzIz4+nrZt2wJw4sQJ2rdvT25ubq0GfDPV9uzeQojGRVEUDhw4QEhIiLELY6m+lNm7Z/O/hP8BEO0VzQe9P8DbwRsAnV5HfHo8GQUZeNp7Eu0VbdqVsoJMQ4OP438Ylts9AoM+BGt7k2JNvJDP89/t5khqLmoVjL6lBSNimqNW37yhi6a8B0tuktwkhDBPUVERx44dIzIyEisraT9xPbX9/mvys5+Tk2O8rGltbY29vT1OTk7Gx52cnCgoKKjxAIUQor4qLS0lOTmZ5s2bA4YJjtu0aWN8PDU/lbEbx7IvYx8AT7R6gpeiX0Kr/reZhkatqXpL/LO7Da3ws8+Ala2hIIt+zOTdVx04z2tL95NXXEYTR2s+frA93Zs3qVoMN4nkJiGEqJqcnBxyc3ONQ+ptbW3L5SZhOSYXZle3yZS2mUIIcW16vZ4tW7aQl5eHSqUiNDS03ONbU7YyfvN4soqzcNI68U7Pd+gX0M+8kyoK7JgHa14HfSm4BcPQb8HXtIRbUqbnvd8Ps2BrEgCdg9z55OH2eDvbmhdXLZLcJIQQpsvNzWXz5s2A4R5nV1dXywYkyjG5MFMUhf79+xsvcRYUFBAbG2tsoVlWVlY7EQohRD2kVqsJCQnhxIkTNGny79UmnV7HF/u/YO6+uSgotHRvycyYmTRzMnNy5uJcWPESHPrJsNwyFu6KA1sXk3Y/l1XIyO/j2XM6C4Dn+oTw6q3hWGnq9mSikpuEEMJ0Tk5OeHl5odfrjY0+RN1hcmE2efLkcst33XVXhW3uvfde8yMSQoh6qqysjLKyMuN8ZIGBgTRt2tTYbjizKJNxm8bxz/l/ALivxX2M7zweG42NeSdOS4DFw+DicVBbwS1vQ9cRYOKVow1H03nlx71cKijFydaKWUPbcUukt3kx3SSSm4QQ4voKCgqws7MzjiaIjo5GrVbL6II6yOTmH41JXFwccXFx6HQ6jh07JjdYCyFuKC8vj507d6LVaunevTtqdfkrTXvS9zB241jSC9Kxs7Ljza5vEhsaa/6J9y6CX1+BskJw9of7FkBAF5N21ekVPlp3jE/Wn0BRoLW/M5893IEAj7rxLao0uShPcpMQoqrOnz/P3r17CQ4OJiIiwtLh1Hu1nZekMLsO+VAghDBVQUEBmzZtQqPR0L17d+P8ZIqi8G3Ct8zePRudoiPYJZhZfWbR3K25eScsLYLfX4P4/xqWQ/vBPfPAwbQmHRfyinn5hz1sPXERgEe6BPDmnZHYauvOZKLyHlw5eV6EEKY6d+4cu3fvxsPDg65du1b40lBUTZ3pynjy5Eneffdd5s+fD0BAQAB5eXnGxzUaDVu2bCE8PLzGgxRCiLrO3t6ezp074+DggI2NYWhiTkkOk7ZO4s/TfwJwe9DtvNX9Ley1VbgipddB8jbISwNHbwjsDlnJhqGLqQcAFcSMh96vgokTTu9MyuSF7+NJyynGTqvhvXuiuLu9f1V/5TpBcpMQQlybn58farUab29vGbpYD5hcmH3yySd4e/97z8GlS5eYNGkSXl6GyU9//PFHZs+ezdy5c2s+SiGEqGMKCgrYs2cPUVFRxm/NLrdtBziSeYTRG0ZzJvcMVmorxnUaxwPhD1QtMSasgNXjIOfcv+vs3A1Xy8oKwN4D7v3KcLXMBIqiMG/zKd5ffRSdXiHU04G5j3YgzNvpxjvXUZKbhBDiX+np6Zw4cYIuXboY72/28fGxcFTCVCYXZn/++Sdff/11uXX33nsvISEhAAQFBfHMM8/UbHRCCFFHHTlyhMzMTPbv30/Pnj2N6xVF4afjPzFt+zRK9CX4OfgxM2YmrZu0rtoJElYYropx1WjzwkzD/3uEwbBfwMW0K13ZhaW8umQffySkAXBXOz+mDYnCwaZ+TyYquUkIIQx0Oh379u2jqKiIEydOyEiBesjkjJyUlISfn59x+ZlnnsHF5d82zEFBQZw9e7ZmoxNCiDqqdevWKIpCZGSkcV1BaQHvbn+XFSdXANCnaR/e7fkuLjamtaw30usMV8quLsquVFoATqZ9C3owJZsRC+M5nVmAtUbNpNhIHukS0CCGtUhuEkIIA41GQ3R0NOfOnSMsLMzS4YhqMLkwU6vVnDt3jqZNmwIwe/bsco+npaWh1WprNjohhKgjioqKuHDhgvE90Nramg4dOhgfT8xOZPSG0ZzIOoFapebF9i/yVOunUKuqcaN18rbywxcrk5Ni2C641zU3URSFRTvO8NbKQ5SU6WnqZsdnj0TTpqlr1WOqoyQ3CSEas8zMTFQqFW5ubgB4eHjg4eFh4ahEdZn8iaFVq1asW7fumo+vWbOG1q2rOFRHCCHqgeLiYjZt2sTevXu5cOFChcdXJ67mwV8f5ETWCTxsPfjq1q94JuqZ6hVlYGj0YeZ2BSVljFm8j9d/PkBJmZ7+EV789mKvBlWUgeQmIUTjlZaWxrZt29i1axfFxcWWDkfUAJOvmD355JOMGjWKtm3bcscdd5R7bOXKlUyfPp05c+bUdHxCCGFxNjY2eHt7k5WVhZ2dnXF9ia6ED3d9yKIjiwDo5NOJD3p/QBM701rWX5OVrWnbOVY+CfSJ9DxGLNzNsbQ8NGoVY28N57neIajV9X/o4tUkNwkhGisPDw8cHBxwcXExNvoQ9ZvJhdnw4cP566+/iI2NJSIiwnhD4dGjRzl69Cj33nsvw4cPr7VAhRDiZiopKcHKyso458vlqy6Xk9+5vHOM3TiWAxcOADA8ajgj2o3ASm1mM43T2+G3sTfYSAXOfobW+VdZse8c45ftp6BEh6eTDZ8+1J4uIQ13WIvkJiFEY1JUVIStreHLOysrK3r27CnDtRuQKo2zWbRoEd9//z0tWrQwJr2wsDAWLlzI4sWLaytGIYS4qbKysti0aRMHDx40rtNoNMaibNPZTdy/8n4OXDiAs7Uzcf3jeCn6JfOKMkWBvz+DbwZB3nlwvNzY4+qrXP+/PHB6uXnList0TPrlIC8t2kNBiY5uIR789lLPBl2UXSa5SQjRGCQnJ/Pnn39y/vx54zopyhqWKn+KePDBB3nwwQdrIxYhhKgTSktLKSws5MKFC5SWlhoTX5m+jM/2fsa8A/MAaO3Rmg9jPsTf0czJmYuy4ZcX4LChmyOthsDgT+Dk+orzmDn7GYqyyMHGVWcyC3jh+3j2nc0GYGTfUF4Z0AIrTTXvcauHJDcJIRq6/Px89Ho9qamp+Pr6WjocUQtMKsxycnKME6iaIjc3Fyen+jthqRCicfP09KRjx454enpiZWV4m7xQeIFxm8axI3UHAA+GP8irnV7FWmNt3slSDxjmK8s8BWot3DYNOg8HlcpQfEXcYei+mJdmuKcssHu5K2V/Hk5j9OJ9ZBeW4mKnZfYDbekXUfm9Zw2N5CYhRGMSERGBs7OzsQutaHhMKszc3Nw4f/48Xl5eJh3U39+fvXv3Gif4FEKIuiwnJ4eEhAQ6dOhgvDp25beRu1J38eqmV7lQeAF7K3umdJ/CwOCB5p84/n+waiyUFYFLM7j/v9C0Q/lt1JpKW+KX6fTMWnuMzzacBKBtM1fiHm5PUzd78+OqJyQ3CSEaspSUFDIyMmjXrh1gmB5EirKGzaTCTFEUvvrqKxwdHU06aGlpqVlBCSHEzaIoCnv27DEWZ23btjU+plf0LDi4gE/2fIJO0dHctTkzY2YS4mLmB/uSAkNBtnehYTnsVhjyBdi7V9hUp1fYkZhJem4RXk62dA5252J+MS9+v4ftiZkAPNE9iNcHtcTaqvEMXQTJTUKIhqugoIC9e/ei1+vx8vLCz8/P0iGJm8CkwiwgIIB58+aZfFAfHx+5GVEIUS+oVCratWvHsWPHaNmypXF9dnE2E7dMZOPZjQDEhsTyRtc3sNeaeUXqwgnD0MX0Q6BSQ9+J0HM0qCsWVasPnmfKygTOZxcZ17k7WFOm05NTVIaDtYbp97Yhtm3jTNiSm4QQDZW9vT2RkZEUFxfL/WSNiEmFWVJSUi2HIYQQN09+fj5FRUV4eBg6Frq4uNCpUyfj44cuHGLMxjGk5KVgrbZmQpcJ3Bt2LyqVmfOAHfoZfnkRSnLBwQvu+xqCe1e66eqD53n+u3iUq9Zn5pcA4Otiy3fPdCHU07SrRQ2R5CYhREOSnp6Os7OzsR1+cHCwhSMSN5uZE+4IIUT9kp2dzbZt21CpVPTp06fchNGKorD46GLe3/k+pfpSmjo2ZVbMLFp6tLzOEU1QVgJr34Ttcw3LgT3gvvng5FPp5jq9wpSVCRWKsispCgR5OJgXlxBCiDohKSmJAwcO4O7uTvfu3c3/IlDUS1KYCSEaFScnJxwdHVGr1eUSX0FpAVP+nsKqxFUA9GvWj6k9p+JsbXrXv0plnYElT0DKLsNyj1HQ703QXPvtd0diZrnhi5VJzSliR2Im3UIb/jxlQgjR0F3uAuzi4oKiKFKYNVJSmAkhGrySkhKsrQ1t7dVqNZ07d0ar1aL+//u6TmadZPSG0ZzKPoVGpeGVDq8wLHKY+Ynx+Dr46RkovAS2LoYGH+G333C39NzrF2VV3U4IIUTdc2VucnBwoG/fvsZhjKJxksJMCNGgZWRkEB8fT8uWLQkICADAxsbG+Pivp37l7b/fprCsEC87L2b0mUG0d7R5J9XrYMN7sOlDQAHfdjD0v+AWZNLuTramNajwcpIELoQQ9Y2iKJw4cYITJ07Qs2dP4/yKUpSJBt9b+ddffyU8PJywsDC++uorS4cjhLjJsrKyKCkp4cyZMyjKv3dtFeuKmfr3VCZsnkBhWSFdfbuyOHax+UVZXjr8bwhsmgEo0OkZePoPk4uyY2m5TP310HW3UWFo/tE5uGJ7fVE/SG4SonG7ePEiZWVlnDt3ztKhiDqkylfMgoKCeOqpp3jiiSeM3z7XVWVlZYwePZr169fj4uJChw4dGDJkiLETmxCi4WvevDlarZaAgADj0MSzuWcZvWE0hzMPo0LFc22f4z9t/oNGrTHvZMnbYMmTkJcKWgeI/Qja3G/y7j/Fn2XizwcpLNXhaqclq7AUFZRrAnJ5cOXk2Eg0arkH4TLJTUKI+kKlUtG+fXsyMjJkwmhRTpWvmI0aNYqffvqJkJAQbrnlFn744QeKi4trIzaz7dixg1atWuHv74+joyO33347f/zxh6XDEkLUoszMTPbu3Wu8OqZSqQgKCjLeT7b+9HqG/jqUw5mHcbVx5fMBnzOy3UjzijJFga0fwTd3GoqyJuHw7HqTi7KiUh0TfjrA6MX7KCzV0SusCX+O6cPcR6PxcSk/tMXHxZbPH41mYGuZ1+ZKkpuEEHVZUlISp06dMi7b2NhIUSYqqFZhtnfvXnbs2EHLli158cUX8fX15YUXXiA+Pr5Gg9u0aROxsbH4+fmhUqlYvnx5hW3i4uIICgrC1taWLl26sGPHDuNj586dw9/f37js7+9PSkpKjcYohKg7SktL2bFjB2fOnCExMbHcY2X6MmbtnsVL618itySXtp5tWRK7hB7+Pcw7aWEW/PAIrJ0Eig6ihsLwv8Az3KTdky/mc+/n21i04zQqFbzcP4xvnuyMh6MNA1v7smVcPxYN78pHD7Zj0fCubBnXT4qySkhuEkLUVRkZGRw4cICEhARycnIsHY6ow6p9j1l0dDQff/wx586dY/LkyXz11Vd06tSJdu3aMX/+/HL3clRXfn4+bdu2JS4urtLHf/zxR0aPHs3kyZOJj4+nbdu23HbbbaSnp5t9biFE/aPVamndujX+/v7lhrOlF6Tz9JqnWXBwAQCPtnyUBbctwMeh8nnETHZuD3zRG47+BhpruGMW3PMl2Jg26fOaQ6nc+ckWDp3Lwd3Bmv8+2ZlXbmlRboiiRq2iW6gHd7Xzp1uohwxfvAHJTUKIusbT05NmzZoRGRmJs7OZU7CIBq3aXRlLS0v5+eefWbBgAWvXrqVr1648/fTTnD17ltdff51169bx/fffmxXc7bffzu23X7u19KxZsxg+fDhPPvkkAHPnzuW3335j/vz5jB8/Hj8/v3LfQqakpNC5c+drHq+4uLjc0Bf5VkOIui8nJweNRoODg2Gy5aZNm5YbHrL9/HZe2/QamUWZOGgdmNpjKrcE3mLeSRUFdi+A38eBrgRcAw1dF/3am7R7qU7PjDVH+XKTYVhLdIArcY9E4+tid4M9xY1IbhJC1AWpqal4eXkZh9G3a9fOsgGJeqHKhVl8fDwLFixg0aJFqNVqhg0bxuzZs4mIiDBuM2TIEDp16lSjgV6tpKSE3bt3M2HCBOM6tVrNgAED+PvvvwHo3LkzBw8eJCUlBRcXF37//XfefPPNax7zvffeY8qUKbUatxCi5qSlpbFr1y4cHR3p2bMnGs2/94npFT1fHfiKuL1x6BU9LdxaMCtmFoHOgeadtCQffn0F9v9oWA4fBHd/BnZuJu2eml3Ei4vi2Zl0CYCnewYz/vYItJoG3yS3VkluEkLUFQkJCZw8eZLg4GBat25t6XBEPVLlwqxTp07ccsstfP7559x9991otRXn2wkODubBBx+skQCv5cKFC+h0Ory9vcut9/b25siRIwBYWVkxc+ZM+vbti16v57XXXrtu16sJEyYwevRo43JOTg7NmjWrnV9ACGE2FxcXVGoViQWJZJ/IxtfFl2ivaHJLcpmwZQJbUrYAMKT5EF7v8jq2VmbOEZNxFBYPg4wjoNLAgMnQ/SUwcSLqrScu8NKiPVzML8HJxooP7mvD7VFyv1hNkNwkhKgrPDw8OHXqlHHyaCFMVaXCTKfTMX/+fAYPHoyb27W/HXZwcGDBggVmB1cTBg8ezODBg03a1sbGptzEs0KIuqesrAwrK8Nb15a0Lcy4OIOMsgxU6YbiyN3WHb2iJ6s4CxuNDRO7TGRI2BDzT3xgKax4CUrzwdEH7psPQaY1DtHrFT5df4LZ646hKNDS15nPH4kmqImD+XEJyU1CCIu7Mjd5e3vTt29f4xB7IUxVpbEzGo2G5557jqysrFoKx3RNmjRBo9GQlpZWbn1aWho+Pmbe0C+EqJPOnTvHunXryMrKYl3yOkZvGM0F3QXj/GQAmUWZZBVn4WnnycJBC80vysqK4dfRsOxpQ1EW3Bv+s9nkoiwzv4QnvtnJrLWGouyBjs34eUR3KcpqkOQmIYSl6PV6EhIS2LRpE6Wlpcb1UpSJ6qjyTQ2tW7cuNw+DpVhbW9OhQwf+/PNP4zq9Xs+ff/5Jt27dzDp2XFwckZGRtX4vghCias6dO0dpaSknTp5g+o7pKFy7w55KpaK5a3PzTngpGebfBru+Niz3fhUeWw6OXibtHn/6End8vJlNxzKw1aqZcV8b3r+vDbZaMyeyFhVIbhJCWIJOp+PcuXPk5+dX+EJGiKqq8j1m77zzDmPHjmXq1Kl06NChwjcCNdkGNC8vjxMnThiXExMT2bt3L+7u7gQEBDB69Ggef/xxOnbsSOfOnZkzZw75+fnGTljVNXLkSEaOHElOTg4uLi7m/hpCiBrSrl073NzcuGh/kbSD10+A6QXpxKfH08mnmh9ij66Gn5+DoixDY4975kGYad0cFUVhwdYkpq06TJleIbiJA58/Gk2Ej7RJri2Sm4QQlqDVaunYsSOFhYX4+so9w8I8VS7MBg0aBBjGx185fEhRFFQqFTqdrsaC27VrF3379jUuX775+fHHH+ebb77hgQceICMjg0mTJpGamkq7du1YvXp1hZuuhRD1U3p6OtnZ2YSFhQGGpgmhoaEcPXXUpP0zCjKqflJdGax/B7bMNiz7d4T7vwFX05ot5BaVMm7ZflYdSAXgjihfpt8bhZNtxWYUouZIbhJC3AyKonD8+HHc3Nzw9PQEwNXVFVdXV8sGJhqEKhdm69evr404KhUTE3PDyUBfeOEFXnjhhZsUkRDiZsnNzWX79u0AuLm50aRJE+Njdlamzfflae9ZxZOmwtKnIdnQzZEu/4FbpoKVaZ21Dp/PYcTCeBIv5KPVqHh9UEue6B5UrlAQtUNykxDiZkhKSuLo0aNYW1vTr1+/SjvAClFdVS7M+vTpUxtx1ClxcXHExcXV6DesQoiqcXJyIjg4GAB3d3fj+t1pu3nnn3euu68KFd723kR7RZt+wsRNhqIsPx2sHeGuT6GV6Y1DFu86w5vLD1JcpsfPxZa4R6JpH2Da3GbCfJKbhBA3Q2BgIOfOnSMwMFCKMlHjVMqNvvarRFZWFl9//TWHDx8GoFWrVjz11FMNbsz75XH82dnZNXp/ghCicpmZmTg7OxtbDl8ehgag0+v46sBXfLbvM/SKHk87TzIKM1ChKtcERIVh+1kxsxgQOODGJ9XrYets+OsdUPTgFQlDv4UmYSbFXFSqY9IvB1m86ywAfVp4MueBdrg5yPw15qrqe7DkJiFEbcjIyDAOW4TyuUk0LrX9/lvlroy7du0iNDSU2bNnk5mZSWZmJrNmzSI0NJT4+PgaD1AI0TgkJyezbds29u/fb1x3OfFlFGTw3Nrn+HTvp+gVPbEhsfw65Fdmx8zGy758h0Rve2/Ti7KCTFj0APz5tqEoa/cIPPOnyUVZ4oV87o7byuJdZ1GrYOytLVjwRCcpyixAcpMQojbs3r2bf/75h7NnzxrXSVEmakuVhzK+8sorDB48mHnz5hm/1S4rK+OZZ55h1KhRbNq0qcaDFEI0fE5OToAh4en1etRqw/dGW1K2MHHLRDKLMrGzsuONrm8wONQwMe+AwAH0bdaX+PR4Mgoy8LT3JNorGo3ahHb0Z3fDkicg+zRY2cKgDyH6MZPjXXXgPK8t3U9ecRlNHK35+MH2dG/e5MY7ilohuUkIURucnJxQq9UyhFjcFFUeymhnZ8eePXuIiIgotz4hIYGOHTtSUFBQowFakgwXEaJ2XVmAgeHf3OV/a6X6Uj7Z8wkLDi4AINwtnBl9ZhDsEmzeSRUFdsyDNa+DvhTcgg1DF33bmLR7SZme934/zIKtSQB0DnLnk4fb4+1sa15cooKqvAdLbhJC1JQrc5OiKOTl5Rm/PBSNW22//1b5ipmzszOnT5+ukPzOnDkjL1ohhMmSkpI4efIkPXv2xMbGBvh3rqmzuWcZt2kc+y8YhjU+GP4gYzuNxUZjY95Ji3NhxUtw6CfDcstYuCsObE27B+lcViEjv49nz+ksAJ7rE8Krt4ZjpanyqHBRwyQ3CSHMpdPpOHDgAMXFxXTu3BmVSoVKpZL3EHHTVLkwe+CBB3j66af58MMP6d69OwBbt27l1Vdf5aGHHqrxAC1BOl8JUbv0ej1JSUkUFBSQnJxMixYtjI/9kfQHb217i9zSXJysnZjafSr9A/ubf9K0BFg8DC4eB7UV3PI2dB0BJt4rsPFYBqN+2MOlglKcbK2YNbQdt0TKvFR1heQmIYS5CgoKSElJQVEULl26VK4jsBA3Q5WHMpaUlPDqq68yd+5cysrKAMOs588//zzTp083fvPdEMhwESFqT15eHunp6YSEhABQVFbEjJ0zWHxsMQBtPdvyQe8P8HP0M/9k+36AlaOgrBCc/eG+BRDQxaRddXqFj9Yd45P1J1AUaO3vzGcPdyDAw978uMR1VeU9WHKTEKImpKSkYGNjU27uTCEuq+3332q1ywfDtwonT54EIDQ0FHv7hvchRZKfEDUnJSUFtVqNr69vhcdOZZ1i7KaxHL90HBUqno56mhHtRqBVmzlHTGkR/P4axP/XsBzaD+6ZBw6mJdwLecW8/MMetp64CMAjXQJ4885IbLUmNBcRZqvOe7DkJiGEqfR6PUePHiUwMLBBvleImlfn7jG7zN7enqioqJqMRQjRQKWmphIfH4+VlRUuLi7GBKgoCstPLOe9He9RWFaIu6077/V6j+5+3U0/uF4HydsgLw0cvSGwO6g1kHnKMHQx9QCggpjx0PtVw2Mm2JmUyQvfx5OWU4ydVsN790Rxd3v/avz24maS3CSEMNWhQ4dISkriwoUL9OzZU9rgC4urcmFWVFTEJ598wvr160lPT0ev15d7XOaLEUJczdvbGw8PDzw8PLCzswMgvzSft/9+m1WJqwDo6tuV93q9RxO7KgwfSVgBq8dBzrl/1zn7QdRQ2LUAirPB3gPu/cpwtcwEiqLw1eZEpq8+gk6vEOrpwNxHOxDmLTd/12WSm4QQVdW8eXMyMjIICwuTokzUCVUuzJ5++mn++OMP7rvvPmPHGiGEuNqlS5dwc3MDDHOTdevWzfh+kXAxgVc3vsrp3NNoVBpeaP8CT7V+CrWqCt0NE1YYrohx1WjsnHOwdY7hv5t1MdxP5mLala7swlJeXbKPPxLSALirnR/ThkThYFPtwQXiJpHcJIS4EUVRyM7OxtXVFTBMs9G3b195vxB1RpU/bfz666+sWrWKHj161EY8dYJ0vhLCPEeOHOH48eO0atXK2NxDpVKhKAoLDy9k5u6ZlOnL8HXw5YPeH9DOq13VTqDXGa6UXV2UXcnaEYatAK1p84sdTMlmxMJ4TmcWYK1RMyk2kke6BEjCrickNwkhrqesrIydO3eSmZlJz549cXExTJMi7/GiLqny5Dv+/v4Nfj6HkSNHkpCQwM6dOy0dihD10uUOeEVFRcZ1WUVZvPTXS7y/833K9GX0a9aPJbFLql6UgeGesiuHL1amJA/O3vjfsKIofL/9NPd8vo3TmQU0dbNj6fPdeLRroCTsekRykxDiejQaDVZWVqhUKgoLCy0djhCVqvIVs5kzZzJu3Djmzp1LYGBgbcQkhKiHFEUxFjLBwcG4uroahzLuTtvNuE3jSCtIQ6vW8mqnV3kw/MHqFz55aTWyXUFJGW/8fJCf9qQA0D/Ci1lD2+Fib2Y3SHHTSW4SQlTmcm5SqVS0a9eO4uJiHB0dLR2WEJWqcmHWsWNHioqKCAkJwd7eHq22/AeYzMzMGgtOCFH3KYrCiRMnyMjIoGvXrqjVhgvxbm5u6PQ6vjrwFZ/t+wy9oifIOYgZfWYQ4R5h3kkdTZzY+TrbnUjPY8TC3RxLy0Otgldvi+C53iGo1XKVrD6S3CSEuFJpaSl79+7F2dmZ8PBwwDC34dXvDULUJVUuzB566CFSUlKYNm0a3t7eMtRHiEauqKiIEydOUFZWRmpqKn5+hgmhMwoymLB5AttTtwMwOHQwE7tMxF5r5lwxigKXkgAV177HTGXozhhYedv9FfvOMX7ZfgpKdHg62fDJQ+3pGuJhXlzCoiQ3CSGudOHCBVJTU0lPTycwMBBbW9PuNxbCkqpcmG3bto2///6btm3b1kY8Qoh6xs7Ojvbt21NSUmIsyrakbGHilolkFmViZ2XHG13fYHDoYPNPVpQNv74CB5ddsfLqAu3/P5APnF5hzrLiMh3v/naYb/9OBqBbiAcfPdQOLydJ2PWd5CYhxJV8fX0JDw/H29tbijJRb1S5MIuIiJCbJoVo5BITE2nSpImx2YKPjw8ApfpSPon/hAWHFgAQ7hbOjD4zCHYJNv+kZ3bCsqcg6zSoNND3dfBoDmsmVJzHbOB0iCxfCJ7JLOCF7+PZdzYbgJF9Q3llQAusNFXugSTqIMlNQjRuOp2O48ePExYWhkZj+FKuRYsWFo5KiKqpcmE2ffp0xowZw7vvvktUVFSFsbrOzs41FpylSEtiIa7txIkTHD58GEdHR3r37m1MgGdzzzJu0zj2X9gPwEMRDzGm4xhsNDbmnVCvgy2zYP17oOjANRDu/RqadTI83jLW0KUxL81wT1lg9wpXyv46ksYrP+4ju7AUFzstsx9oS78IE+9TE/WC5CYhGrcdO3Zw4cIFiouL5cq5qLdUiqJcZyKgii7f2H/1+P3LXW8aUsLIycnBxcWF7OzsBpHUhagJJSUlbN68mZCQEIKDDVfC/kj6g7e2vUVuaS5O1k5M7T6V/oH9zT9Zdgr8/BwkbTYst74P7pwFti4m7V6m0zNr7TE+23ASgLbNXIl7uD1N3cy8z03cFFV5D5bcJETjduHCBfbs2UN0dDQeHnLPsKgdtf3+W+UrZuvXr6/xIIQQdVtubq5x2KK1tTV9+/ZFrVZTVFbEjJ0zWHxsMQBtPdvyQe8P8HP0M/+kh3+FFS9A4SXDZNGDPoS2D4KJTR3Sc4t48fs9bE80dON7onsQrw9qibWVDF1siCQ3CdG46PV6CgsLcXBwAKBJkyb079/f+CWNEPVRlQuzPn361EYcQog6SFEU9u/fz5kzZ+jWrZvxW0i1Ws2prFOM3TSW45eOo0LF01FPM6LdCLRqM1sRlxTAHxNh13zDsl97w9BFj9BKN9fpFXYkZpKeW4SXky2dg93ZmZTJi4v2kJFbjIO1hun3tiG2bQ0Ui6LOktwkRONRVFTEzp07KSoqok+fPlhbWwNIUSbqvSoXZgCbN2/miy++4NSpUyxZsgR/f3/+97//ERwcTM+ePWs6RiGEhahUKhRFQVEUcnJy8PDwQFEUlp9Yzns73qOwrBB3W3fe6/Ue3f0qb01fJWmHYOlTkHHEsNzjZej7BlhZV7r56oPnmbIygfPZRcZ1TjZW5BWXoQAtvB35/NEOhHrKZKKNgeQmIRoHKysrSktL0el05OfnGwszIeq7Kn+1sGzZMm677Tbs7OyIj4+nuLgYgOzsbKZNm1bjAQohLCsqKooePXoQHBxMXkke4zePZ9K2SRSWFdLNtxvLBi8zvyhTFNj+JXzZ11CUOXrDYz/DLW9ftyh7/rv4ckUZQO7/F2Vdgt1ZPrKHFGWNhOQmIRoPKysrOnfuTJ8+fXBzc7N0OELUmCoXZu+88w5z585l3rx55bpe9ejRg/j4+BoNTghxc+n1eg4dOsTBgweN6zQaDe7u7hy6eIgHfn2AVYmr0Kg0vBz9MnNvmUsTuybmnTT/Iix6CH5/FXTFEHYbPL8NQvtdcxedXmHKyoRrTi8NcDqzABsrzXW2EA2J5CYhGq6ioiK2bdtGamqqcZ2joyN2dnYWjEqImlfloYxHjx6ld+/eFda7uLiQlZVVEzEJISzk0qVLnDp1CoCAgACcnZ1RFIXvDn/HrN2zKNOX4evgywe9P6CdVzvzT3hqA/z0HOSlgsYabpkKXZ67YYOPHYmZFa6UXe18dhE7EjPpFirduRoDyU1CNFzJyclcvHiRgoICvLy85F4y0WBVuTDz8fHhxIkTBAUFlVu/ZcsWQkJCaioui5K5YkRj5eHhQUREBE5OTjg7O5NVlMWbW99kw9kNAPQP6M+U7lNwsTGtXf016Uph/buwZQ6gQJNwuO9r8Ikyaff03OsXZVXdTtR/kpuEaLjCwsIoKioiNDRUijLRoFX51T18+HBefvlltm/fjkql4ty5cyxcuJCxY8fy/PPP10aMN93IkSNJSEhg586dlg5FiFqlKAqnTp2itLTUuC4sLAwfHx92p+3m3pX3suHsBrRqLa93eZ3ZMbPNL8oyT8HXt8KW2YACHZ6AZzeYXJQBHEvLNWk7LyfbaoUo6h/JTUI0HKWlpcbRG2Dotti2bVscHeWeYdGwVfmK2fjx49Hr9fTv35+CggJ69+6NjY0NY8eO5cUXX6yNGIUQtWT//v2cPn2aixcv0qlTJwB0eh3zDszj832fo1f0BDkHMaPPDCLcI8w/4b4f4LcxUJIHtq4w+BOIHGzy7tmFpUz65SC/7D133e1UgI+LoXW+aBwkNwnRMOj1ejZv3kx+fj5qtbrCVXAhGjKVoijXu3/+mkpKSjhx4gR5eXlERkY2yG8xant2byEsLSsri3/++YfWrVvTtGlT0gvSmbB5AjtSdwAwOHQwE7tMxF5rb96JinIMBdkBw0TUBPaAe74El6YmH2L7qYuMXryPlKxCNGoVt7f24bf95wHKNQG5fHfa549GM7C1r3lxC4uqznuw5CYh6r9Tp06RlJREx44d5TUu6pTafv+tdmHWGEjyEw1RQUEB9vb/FlplZWVYWVmx+exm3tj6BplFmdhZ2fFG1zcYHGr61axrOrsLlj0Nl5JApYGY8dBrDKhN65hYqtMzZ90xPttwEkWBAHd75jzYjugAt0rnMfN1sWVybKQUZQ2AvAdXTp4X0dCUlZWh1+vLzUd2OTcJUZfU9vuvya/4p556yqTt5s+fX+1ghBC1p6ysjD179pCZmUnv3r2NbYYVlcLMXTP55tA3AIS7hTOjzwyCXYLNO6FeD1vnGJp86MvAJQDu/QoCuph8iFMZeYz6cS/7z2YDcH+Hpkwe3ApHG8Nb18DWvtwS6cOOxEzSc4vwcjIMX9Sor9/VUTQckpuEqN/y8vLYuXMnNjY2dOvWDdX/d+WVokw0Ria/6r/55hsCAwNp3749cpFNiPpHrVZTWFhIWVkZWVlZ2NnZcSb3DOM2jePAhQMAPBTxEGM6jsFGY2PeyXLOw8/PQuImw3Kre+DO2WDnatLuiqLww84zvL0ygcJSHS52Wt67J4pBURWvgmnUKmmJ34hJbhKi/isqKqKsrIzCwsJyIzqEaGxMLsyef/55Fi1aRGJiIk8++SSPPvoo7u5yY70Q9YVaraZjx46UlJTg6urKmqQ1vLXtLfJK83CydmJq96n0D+xv/omOrIJfRkJhJmgdYNAH0O6RG85Ndllmfgnjlu1nbUIaAN1DPZg5tC2+LjKRqKhIcpMQ9ZujoyOdOnXC2dm53FBGIRojk9vlx8XFcf78eV577TVWrlxJs2bNGDp0KGvWrJFvKYWog3Q6HXv37uXMmTPGdfb29tg62vL2328zduNY8krzaOfZjqWxS80vykoL4bex8MNDhqLMty08twnaP2pyUbbpWAa3zdnE2oQ0tBoVrw+K4Lunu0hRJq5JcpMQ9Ut+fj7btm0jLy/PuK5JkyZSlAmBGc0/kpOT+eabb/j2228pKyvj0KFDDa77ldxgLeqzpKQkDhw4gJWVFQMGDECr1XIy6yRjN47lRNYJVKh4OuppRrQbgVatNe9k6Ydh6VOQnmBY7vYC9J8EVqYNiSwq1fH+6iMs2JoEQHMvRz56sB2t/MycM03Ua9V5D5bcJETdtnPnTlJTU/Hw8KB79+6WDkeIKqkzzT+uplarUalUKIqCTqeryZiEEDUgMDCQrKwsmjVrhpWVFT8f/5lp26dRpCvCw9aDab2m0d3PzKSoKLDra1gzEcqKwMELhnwOzQeYfIgjqTm8vGgvR/9/0uhh3QKZcHtL7KxN69ooxJUkNwlRt7Vp0waAqKgoC0ciRN1TpcKsuLiYn376ifnz57NlyxbuvPNOPv30UwYOHIhabfKoSCFELdDr9SQmJXLR7iIXCi/gae9JdJtoCssKGb95PKsSVwHQzbcb03pNo4ldE/NOWJAJK16EI78alpsPgLs/B0cvE+NV+GZbEtNXH6GkTE8TR2s+uK8N/SK8zYtLNDqSm4Sou4qKisjMzMTPzw8AGxsbOnXqZOGohKibTC7MRowYwQ8//ECzZs146qmnWLRoEU2amPnBro6Ki4sjLi5Ovm0V9conyz9h/vb5FLoXYuNjGELobuuOChUXiy6iUWl4of0LPNX6KdQqMz+sJm6Gn56F3HOgsYYBU6DLf8DED8HpOUWMWbKPzccvANAvwosP7mtDE0czu0GKRkdykxB1V1FRERs3bqS0tBRbW1tpzCPEDZh8j5larSYgIID27dsb55iozE8//VRjwVmajOMX9cW65HW8sOwFilKKsAu0w8ql/HcurjaufNLvE9p5tTPvRLpS2PAebJ4FKOARBvd9bWj0YaI1h1IZv2w/lwpKsbFS88adkTzaJeC67yuicTLlPVhyk+QmUbfFx8eTm5tLx44dcXBwsHQ4QpilztxjNmzYMPngJEQdoigKpaWlaKw0TN8xHa2HFo2LBrVVxatW1hpropqYOZ4/MxF+Gg5ndxqWo4fBwOlgbVqiLSgpY+qvCSzaYegS2crPmY8ebEdzLyfz4hKNmuQmIeqWkpISrKysjMOI27Y1fHGn0ch9w0LcSJUmmBZC1A3FxcXEx8dTWlqKTXMb0goMc35VVpQBpBekE58eTyefao7r378Efn0FSnLBxgUGfwSthpi8+74zWYz6cS+JF/JRqeDZ3iGMuSUc62vEK4SpJDcJUXdcunSJXbt24efnR6tWrQApyISoimp3ZRRCWI5erycnJwedTsf5tPMm7ZNRkFH1ExXnwqpXYd8iw3KzrnDvPHANMGl3nV5h7saTzF57jDK9go+zLbMeaEv30IZ5D5AQQjRmxcXFFBUVkZaWRnh4OFZW8jFTiKqQfzFC1EN2dnZ07NgRGxsbvjvxnUn7eNp7Vu0kKfGw7GnIPAUqNfQZB73Ggsa0t42zlwoY/eM+diRlAnBHlC/vDmmNq71MIiqEEA2Rj48P0dHReHt7S1EmRDXIvxoh6oHS0lL27dtH8+bNcXV1Nay0h8nbJ/NH8h/X3VeFCm97b6K9ok07mV4Pf38Cf74N+jJwaQb3zIPAbibH+8veFN5YfpDcojIcrDVMuas190b7y71AQgjRgOTk5HDkyBGio6ONhZi/v7+FoxKi/pLCTIh64MiRI5w/f57c3Fz69OnD70m/M33HdLKKs9CoNPRt1pd1p9ehQoXCv41WVRgKoXGdx6FRmzDOPzcVfv4PnFpvWI68C2I/Ajs3k+LMKSpl0vKDLN97DoD2Aa7MeaAdgR7SiUsIIRoSRVHYtWsX+fn5HDlyhNatW1s6JCHqPSnMhKgHIiIiyM/PxyPAg5fXv8yGsxsACHcLZ2qPqbT0aMm65HVM3zHd2AgEwNvem3GdxzEgcMCNT3JsDSx/Hgougtbe0HExehiYeJVrR2Imr/y4l5SsQjRqFS/2a84LfZtjpZEGH0II0dCoVCrat2/PiRMnaNGihaXDEaJBkMJMiDqorKyMjIwMfH19AbCysuK8x3lGbxhNbmkuVmor/tPmPzwV9RRatRaAAYED6NusL/Hp8WQUZOBp70m0V/SNr5SVFsHaSbDjC8OyTxTcOx88TUu0pTo9H607zmcbTqBXIMDdntkPtKNDoGlX2YQQQtQP+fn5FBcXGyeKdnNzo1Onanb7FUJUIIWZEHVMWVkZmzdvJi8vjy5dulBmX8aUv6ew7dw2AFp7tObtHm8T5hZWYV+NWlO1lvgZR2HpU5B20LDcdQQMeAusbEzaPfFCPqN+2MO+s9kA3NehKW8NboWjjby1CCFEQ5KVlcXff/+NRqOhd+/e2NraWjokIRoc+fQkRB1jZWVFkyZNKCktYeWplXx58ksKygqwVlvzQvsXeCzyMazUZv7TVRTY/Q2sngBlhWDfBO7+HFrcauLuCj/uPMOUlQkUlupwsdMybUgUd7TxNS8uIYQQdZKTkxP29vbSbVGIWiT/uoSoA/R6PYqiGCfidGrmxMLEhew5vweA9l7tmdJ9CsEuweafrCATVr4Eh1calkP7wd1zwcnbpN0v5Zcw/qf9rDlkuJetW4gHsx5oi6+LnfmxCSGEqDNKS0vRag3D5TUaDV27dsXa2lo67ApRS6QwE8LCCgoK2LVrF87OzkS1iWLh4YV8sucTinRF2FnZ8XL0yzwU8RBqVQ000UjaCj8Nh5wUUGthwGToOhLUph178/EMxizeR3puMVqNirG3hjO8VwhqtSRpIYRoSNLT09mzZw+tW7c2tsC3sTFtmLsQonqkMBPCwgoLC8nJyeFUximmJ03nUPYhALr4dGFy98k0c2pm/kl0ZbDxfdj8ISh6cA+F+74Gv/Ym7V5UquOD1UeZvzURgOZejsx5oB2t/V3Mj00IIUSdk5mZSUlJCcnJyTI3mRA3iRRmlYiLiyMuLg6dTmfpUEQj4OLmQoJNAt+nfY/OSoeD1oGxHcdyb9i9VR8uotdB8jbISwNHbwjsDtlnDVfJzmw3bNPuUbj9fbBxNOmQR1NzefmHPRxJzQXgsa6BvD6oJXbWJsyLJoSoMZKbxM0UHh6OtbU1QUFBlg5FiEZDpSiKcuPNGqecnBxcXFzIzs7G2dnZ0uGIBqKoqIhDhw4RFRVFYl4ib259k8OZhwHo6d+Tyd0m4+PgU/UDJ6yA1eMg59y/6+zcoLQYygrAxhnunA1R95l0OL1e4ZttSUxffYSSMj0eDtZ8cF8b+rc07V40Icwl78GVk+dF1IbMzEzOnj1LmzZtLB2KEHVWbb//yhUzIW6y+Ph40tLTWHxkMX/o/qBMKcPJ2onxnccTGxJbvZuqE1bA4mHAVd+zFF4y/L9Hc3j0J3ALNOlw6TlFjF26n03HMgDoG+7JB/e1xdNJ7i8QQoiGpqSkhH/++QedToeLiwuBgablCiFEzZLCTIibzMrPitmbZnPR/SJqGzX9mvXjja5v4GnvWb0D6nWGK2VXF2VXKi0El6YmHe6PQ6mM/+kAmfkl2FipmXhHSx7rGihduIQQooGytramVatWXLx4Ue4nE8KCpDATopaVlJSQl5eHg4sDn+39jG8OfYPeV4+HjQevd32d2wJvM6/oSd5WfvhiZXJSDNsF97rmJgUlZUz99TCLdpwGINLXmY8ebEeYt1P1YxNCCFEnZWdnY21tjZ2dYaqTwMBAuVImhIVJYSZELSooKGDbtm0cyTjCb/zG2ZKzANwefDvjO4/H3dbd/JPkppq2XV7aNR/afzaLUT/s5dSFfACe7R3CmFtbYGMlDT6EEKKhSU1NZffu3bi4uNC9e3fUJk6ZIoSoXVKYCVGL9Bo9yxKXsebEGmyDbfF29+bNrm/SL6BfzZzg4kn45zPTtnWs2LRDp1eYu/Eks9ceo0yv4ONsy6yhbenevEnNxCeEEKLOcXZ2RqPRYG1tjV6vl8JMiDpCCjMhaphOp0Oj0bDj/A4mb5vMadVp7MPtubvF3bza6VVcbGpg7q/SItgy2/CjK77Bxipw9jO0zr9CSlYhr/y4lx2JmQAMivJh2pAoXO2tzY9PCCFEnXI5NwHY29vTq1cv7O3t5f5hIeoQKcyEqEE5OTls/nszf+b9ydq8tQD4ufoxudtkevr3rJmTHF8Hq8bCJcNkz4T2gxa3w++v/f8GVzYB+f+EO3A6qP8dlvjL3hTeWH6Q3KIyHKw1vDW4Ffd1aCoJWgghGqCUlBQOHjxIt27djC2+HRwcLByVEOJqUpgJUYNWH1zNtPXTyFaycYhw4IGIB3ilwys4Wps2mfN1ZZ+F1RPg8ArDspMfDHwPIu8ClQqcfCrOY+bsZyjKIgcDkFNUyuRfDvHznhQA2ge4MueBdgR6SIIWQoiGKiUlhZKSEhITE2nbtq2lwxFCXIMUZkLUgOzibGbsnMEvJ3+h2L2YFgEtmNpnKp19O5t/cF0p/PM5bJgOpfmg0kDX5yFmPNhc0TExcjBE3GHovpiXZrinLLC78UrZzqRMRv2wl5SsQtQqeLFfGC/2a46VRu4tEEKIhqxdu3acPn2a0NBQS4cihLgOKcyEMEN+fj6LtixiYdZCLhRdQIWKp2Oe5sX2L2KvtTf/BElb4bcxkHHYsNysK9w5C7xbVbq5DjU79JGk60Lw0tvSGTV6nZ6P/zxO3PoT6BVo5m7HnAfa0SGwBjpCCiGEqHPS0tLIy8szFmLW1tY0b97cwlEJIW5ECjMhquliwUWen/s8289sx8bXhvAW4bzd423ae7U3/+B56bB2EuxbZFi294BbpkLbh+Aa3bNWHzzPlJUJnM8uMq7zdLTB3kZD8sUCAO6J9mfK4FY42WrNj1EIIUSdk52dzY4dOwBwc3PD3V2+hBOivpDCTIgqUhSFNclreG/7e6Rp0tA6anmm1zO81PklbK1szTu4Xge7F8Cfb0NRNqCCjk9CvzfB/trJdfXB8zz/XXy5th8AGXnFkAd2WjUz7m/LnW38zItPCCFEnebi4kJAQAAajQZXV1dLhyOEqAIpzISogrOXzvLe3++xKWMTAC2DW/L2I28T5Rll/sFTdhuGLZ7bY1j2bQt3zIamHa67m06vMGVlQoWi7EpOtlpub+1rfoxCCCHqnEuXLhnnJgNo06aNdNkVoh6SwkwIEyiKwqI9i3hn8TsUUohLhAvPtnuW4VHD0WrMHBZYeAn+nAq75gMK2LhA/zeh41PlWtxfy47EzHLDFyuTnlvMjsRMuoV6mBerEEKIOiUxMZFDhw7RrFkzY8dFKcqEqJ+kMBPiBlLzU3n777fZmLSRQl0hQe5BfHTrR7Txa2PegRUF9v0Af7wBBRcM69o8CLdOBUcvkw+Tnnv9oqyq2wkhhKg/HB0dURQFvV6PoihSlAlRj0lhJsQ1KIrCkqNLmB0/m7zSPGxsbHj+vucZ3mE4NlY25h08LcEwbPH0NsOyZwQM+hCCe1XpMKcy8vjvtmSTtvVyMvP+NyGEEHWCXq9H/f+NoDw9PenduzcuLi4WjkoIYS4pzISoxNncs0xYM4EtO7dgG2BLdHA0U7tPJcQ1xLwDF+fBxunw92eg6EBrD33GQdcRYGVt8mGyCkr46M/j/O/vZMr017u7DFSAj4stnYOlM5cQQtR3SUlJnDp1il69eqHVGobSS1EmRMMghZkQV9ArehYdWcRH8R+ReTITq1Ir7ne9n8kDJ6Mx4X6va1IUOLwCVk+AnBTDuog7YeB0cG1m8mFKyvT8759kPv7zONmFpQD0i/CiV1gT3l6ZYDjVFdtfHtAyOTYSjVqGtwghRH2m0+k4deoU+fn5JCcny9xkQjQwUpgJ8f+SspOYvG0y8enxAPTo0INhXsPo076PeUXZxZOw6lU4+adh2S0Ibp8BLW41+RCKorA2IY33fj9C4oV8ACJ8nJh4R0t6hXkC4OtiW2EeMx8XWybHRjJQOjIKIUS9p9Fo6NixIxcuXCAkxMwRHEKIOqdRFGZDhgxhw4YN9O/fn6VLl1o6HGFBOr2O+PR4Mgoy8LT3JNorGgWF/yX8j4///pj8S/m4+rsyusNohoYPRa2qfDJnk5QWwZbZhh9dMWisoecrhh+tncmHOZiSzbu/HebvUxcBaOJozZhbwxnasVm5q2ADW/tyS6QPOxIzSc8twsvJMHxRrpQJUfdIXhKmOnv2LNbW1nh5GZpCOTs74+zsbOGohBC1oVEUZi+//DJPPfUU//3vfy0dirCgdcnrmL5jOmkFacZ1HrYe2FvZk5yZTH5CPuFu4UzvOp32oe3NO9nxtYarZJcSDcuh/QzNPTxCTT5EWk4RH645ytL4sygKWFupGd4rmOdjmuNoU/k/XY1aJS3xhagHJC8JU5w7d449e/ag1WqJiYnB1laaOAnRkDWKwiwmJoYNGzZYOgxhQeuS1zF6w2iUq6Zhvlh0kYtcxN7Onv/c+h86u3emdUDr6p8o+6zhPrLDKwzLTn4w8D2IvAtMbGFcWKJj3uZTzN14koISHQCD2/rx2sBwmrrZVz82IUSdIXlJmMLHxwc3Nze8vLywsTGzG7AQos4zY5xWzdi0aROxsbH4+fmhUqlYvnx5hW3i4uIICgrC1taWLl26sGPHjpsfqKi3dHod03dMr1CU6Yv1/8fefcdHUed/HH/tbnovpENIaIHQQxMUCIIiKHZU9KSo6E9RT5ETFBWwIIoglthFT0UFLBw2FBQEAWkBpEkNnSRAIAnp2Z3fHzn2jARIQjab8n7eI49zZmfm+9mdZT/72fnO94tRXLLO182Xey+/l65du9pHuapYI0Ww/BV4vWtJUWayQPf74f7V0PrachVlNpvBV8kH6fPSEqYv3EFuoZWE6AC+uq8Hrw7pqKJMpJooL4kznTx50v7fZrOZHj160KJFC81PJlIPOP2KWU5ODu3bt+eOO+7g+uuvP+Px2bNnM3r0aN566y26devGjBkz6N+/P9u3b7f3t+7QoQPFxcVn7PvTTz8RGRnp8OcgNVtyenKp7osARSeLyN+fj4uvC56xnhzNO8r6o+vpEt6l4g3sXV4yJ9nRbSXL0d3hymkQ1rrch1idksGz323lj4OZAEQFeDJuQEuuahehZCxSzZSXxFm2bdvGrl27aNeuHY0bNwawz1cmInWf0wuzAQMGMGDAgLM+Pn36dEaOHMmIESMAeOutt/juu++YOXMm48aNA2DDhg1VEktBQQEFBQX25aysrCo5rjjX0dyjZ6wzu5rBBkaxgWE1MFlMZW53TqfSYeFTsPGzkmWvYLj8WWg/pNzdFvcdz2HKD3/yw+ZUAHzcXRjVpxkjLo7Bw/UCRoIUkUqrSXkJlJvqk9M9NnJzc50ciYg4g9MLs3MpLCxk3bp1PPbYY/Z1ZrOZfv36sXLlyipv7/nnn2fSpElVflxxrhCvkuHkDcOwX32yeFvwbOaJxdtiX3d6u/OyWWHtTPj5GSjIBEzQeQRc+iR4lW8S58y8IpIW7+LD5XsptNowm+CWrtE83K8FIb66j0CkpqruvATKTXXdX3NT06ZNCQoKIiiofLlEROqWGl2YHTt2DKvVSlhYWKn1YWFh/Pnnn+U+Tr9+/di4cSM5OTk0bNiQuXPn0r179zO2e+yxxxg9erR9OSsri0aNyj/5r9RMCaEJBBYFcnDXQTybemJ2K+kW4uJT8vY3YSLMK4yE0ITzH+zQOvh2NBzZULIc0R6ufBkadipXLMVWG5+u3s/LC3dwIrdkguiezRvwxJXxxIX7Vvi5iUj1qu68BMpNdZVhGOzcuZOMjAy6deuGyWTCZDKpKBOpx2p0YVZVFi1aVK7t3N3dNepRHWQ2mbnW71pezX+VorQi3Bv97xybKPmVcmzXseeeRDrvRMkVsrUzAQPc/aHvk9D5DijH5NOGYbBk+1Ge+34bu9JPAdAs1IfxV7YisUWI7iMTqWfKm5dAuamuysvLY9euXVitVtLS0ggPD3d2SCLiZDW6MGvQoAEWi4W0tNIDN+gDTCrCZDJxz5X34Bfox2cZn5Gen25/LMwrjLFdx9Kvcb+ydzaMknvIfnoSco+VrGt3C1z+DPiElqv9P1OzeO67bSzbWbJ/kLcbD/drzpCu0bhYdFO3SG2ivCRVxcvLi/bt22Oz2fTeERGghhdmbm5udOrUiZ9//plrr70WAJvNxs8//8z999/v3OCkRsvIyKCgoICIiAgAvL29ueuyuxhhG0FyejJHc48S4hVCQmjC2a+UpW0tGW1x/4qS5ZCWJZNEx/YsVwxHswuYvnAHs9fsx2aAm8XMiItjuK9PM/w9KzEkv4g4nfKSXIiUlBRCQ0Px9vYGICoqyskRiUhN4vTC7NSpU+zatcu+nJKSwoYNGwgKCiI6OprRo0czbNgwOnfuTNeuXZkxYwY5OTn20bAcISkpiaSkJKxWq8PaEMfJyMhgxYoVmM1mfH198fHxsT9mMVvOPyR+wSn4dQqsfAMMK7h6Qe+xcNF94OJ23vbzi6zMXJ7CG4t3c6qgZLjsgW3DGXdFK6KDNReZSE1XE/MSKDfVdjt37uTPP//Ez8+Pnj17ahh8ETmDyTAM4/ybOc6SJUvo06fPGeuHDRvGhx9+CMDrr7/O1KlTSU1NpUOHDrz66qt069bN4bFlZWXh7+9PZmYmfn5+Dm9PqoZhGKxatQp3d3fatWuHxVLOYecNA7b+BxY8BtmHS9a1GgT9n4eA899obxgG3/xxhBd++JNDJ/MAaNfQnyeviqdLjG7mFqkoZ30G1+S8BMpNtVV+fj7Lli2jWbNmxMbGOjscEakER3/+Or0wq8mU/GqPU6dO4e3tbR9Ew2q1ll2Q2aywbwWcSgOfMGjco2TwjuO74ft/we6fS7YLjIEBU6HF5eVqP3n/CZ75divr958EIMLfg0eviOOa9lGYzRrYQ6Qy9BlcNr0utcepU6dK9do4a24SkVrB0Z+/Tu/KKHKh9u/fz6ZNm4iLi6NZs2YAZSe+rfNhwVjIOvy/db4R0Ogi2P49WAvA4gaXPFzy5+p53rYPnsjlhQXb+WZjyTG93Czc27spd/Vsgqebkq+ISH1ks9nYtGkTBw8epEePHgQGBgJnyU0iIv+lwqwM6sdf+9hsNk6ePHn2DbbOhzlDgb9dIM4+Alu/LvnvppeWDO4R3PS87WXnF/Hmkt2891sKhcU2TCYY3Kkhj1weR5ifR6Wfh4jI2Sg31R5ms5ni4mIMwyAzM9NemImInIu6Mp6DuovUHunp6YSGnmX4epsVZrQpfaXs7zyDYMxOsJz7twqrzWD2mgNMX7idY6cKAejeJJgnrmpF60j/yoYvImXQZ3DZ9LrUDsXFxWRmZhIcHOzsUESkiqgro8jfHDp0iP3799OtWzf7qFZnLcqg5J6ycxVlAHkZsH/lOYfCX7bzKM99t40/U7MBiG3gzeMDW9GvVagmiBYRqcdsNhvbtm3DZDIRHx8PgIuLi4oyEakQFWZSqxQVFbFp0yaKiorYt29f+Ua2OpV2/m3Osd2u9Gye+24bi7cfBcDf05WH+jXntm6NcXPRcMciIvXd8ePH2bNnDwCNGjXC19fXyRGJSG2kwkxqFVdXVxISEsjIyCAmJqZ8O/mEVWq7jJxCZizawaxV+7HaDFzMJoZ2j+HBvs0I8Dr/fGYiIlI/hISE0KJFC/z9/VWUiUilqTArg26wrlnS0tLw8PDA37/kHq7Q0NBzd138u8Y9wC8Sso5wxuAfAJhKHm/cA4CCYisfrdjHq7/sJDu/ZILoy+LDeGxAS5qE+JSxv4iI4yk31RyGYZCSkkJ0dDQuLiVfpeLi4pwclYjUdhr84xx0g7XzHTx4kPXr1+Pl5UWvXr1wdXWt3IHsozJC6eLsv/eG3fQRRqtB/Lglled/+JN9x3MBiI/w44mrWtGjaYNKPwcRqRx9BpdNr4vzrV+/noMHDxIVFUVCQoKzwxGRaqLBP6ReCwsLw8vLi/Dw8Aub/yX+6pLia8FYTH8ZCMTwi8R0xRT+8OvFs2//zuq9GQCE+rozpn8cNyQ0xKIJokVE5C8aN25MWloaYWHl7CovIlIOKsykxsnLy8PTs2RyZ1dX1wu7UvYXC2xdeCb/FRoVbiSUk6QTwN7cdjRe5seqlOUAeLiaubtXU+7p1QRvd/3zEBGREn/NTUFBQfTt27dKcpOIyGn65ik1ys6dO9m+fTvdunUjJCQEoGqKss1HuPeTZAzgEPH/e+BUMamnSq6SXd8xijH944gM8Lzg9kREpG4oLi5m/fr1nDhxgt69e+Pu7g5UTW4SEfkrjfUtNUpeXh6GYZCenl5lx7TaDCZ9s7XMYT9Oa+DjxtTB7VWUiYhIKSaTiZycHIqKijhx4oSzwxGROkxXzMqgka+cp02bNoSEhBAREVFlx1ydksGRzPxzbnPsVCGrUzLo3lSTgYpIzaTc5BwWi4XOnTtTXFxMQECAs8MRkTpMV8zKMGrUKLZu3cqaNWucHUqdl5KSwqZNm+zLZrO5SosygPTscxdlFd1ORMQZlJuqh9VqZf369Rw+/L+Bonx8fFSUiYjD6YqZOE1WVhabN28GICIiggYNHDMkfaivR5VuJyIidde+ffs4ePAgaWlphIaG2ucpExFxNH3aiNP4+fnRsmVLLBaLw4oygK6xQUT4e5CamX+26aUJ9/ega2yQw2IQEZHaITY2lpMnT9K4cWMVZSJSrdSVUarVoUOHKCwstC83b96cJk2aOLRNi9nEhEElIzH+fUay08sTBsVrvjIRkXrIZrOxf/9++7LJZCIhIYHgYN1zLCLVS4WZVJsdO3aQnJzM+vXrMYxzjZFY9a5oE8Gb/0gg3L90d8Vwfw/e/EcCV7Sp2vvaRESk5jMMg5UrV7Jx40b27Nnj7HBEpJ7TNXqpNuHh4ezatYvAwECntH9Fmwguiw9ndUoG6dn5hPqWdF/UlTIRkfrJZDIRFRVFdnY23t7ezg5HROo5FWZl0JDEVaegoMA+Gaefnx99+/a1LzuDxWzSkPgiUispN1UNwzAoKirCzc0NgJiYGCIiIpyam0REAExGdfcpq0WysrLw9/cnMzMTPz8/Z4dTq9hsNrZt28aBAwfo1asXXl5ezg5JRGoZfQaXTa9L5RUUFLBu3TpsNhs9evTAbNYdHSJSfo7+/NUnkjjMiRMnKCoqIj093dmhiIiIUFxcTFZWFtnZ2WRnZzs7HBGRUtSVURzCbDbTqVMnMjMzCQ8Pd3Y4IiIieHt706lTJzw9PfHx8XF2OCIipeiKmVQJwzDYvn07+/bts6/z9PRUUSYiIk5TVFTEunXryMrKsq8LCQlRUSYiNZIKM6kSR44cYceOHWzevJm8vDxnhyMiIsLWrVs5fPiwU6ZpERGpKHVllCoRGRlJamoqoaGheHp6OjscERERWrVqRU5ODq1bt8Zk0tQoIlKz6YqZVNrhw4dL/QKZkJBAw4YNnRiRiIjUZ8XFxaSmptqX3dzc6NGjB/7+/k6MSkSkfFSYSaWsX7+edevWsX37dmeHIiIiQlFREcuWLWPt2rUcO3bM2eGIiFSYCrMyJCUlER8fT5cuXZwdSo0VGhqK2WzGw8PD2aGIiNQLyk3n5urqSmBgIO7u7pqfTERqJU0wfQ6axLO0oqIiXF1d7ct5eXm6n0xEHEafwWXT6/I/NpsNwF6IWa1WiouLcXd3d2ZYIlJHaYJpcTqr1cqGDRtYvnw5VqvVvl5FmYiIOEtubi6//fYbW7Zssa+zWCwqykSk1lJhJudVXFxMeno6p06dUr99ERGpEU6dOkVmZiaHDx+moKDA2eGIiFwwDZcv5+Xu7k6nTp0wDIMGDRo4OxwRERFCQ0Np3749ISEhukomInWCrpjJGWw2G1u2bCEjI8O+Ljg4WEWZiIg4TX5+PsnJyRQVFdnXRUdHq1u9iNQZKszkDDt37mTPnj0kJyeXuqdMRETEWdauXcuhQ4fYtGmTs0MREXEIFWZyhqZNmxIYGEjbtm2xWCzODkdERIS2bdsSEBBAXFycs0MREXEI3WMmGIbB0aNHCQ0NBcDFxYVLLrnEyVGJiEh9VlhYSE5ODoGBgQD4+/vTs2dPJ0clIuI4umJWz9lsNn7//XdWrVpFamqqs8MREREhJyeHpUuXsmrVKvLy8pwdjohItVBhVs+ZzWb8/PywWCz2iTpFREScydPTEzc3N9zc3HSvs4jUG+rKWIakpCSSkpLqbDIwDAPDMDCbS+ryVq1aERMTg7e3t5MjExGRs6nruclqtdrvazabzXTt2hUXFxdcXPRVRUTqB5NhGIazg6ipsrKy8Pf3JzMzEz8/P2eHUyWKiopYv349FouFTp06OTscEZGzqoufwVWhLr4uWVlZrF27lmbNmhEdHe3scEREyuToz191ZaxnTp06RXp6OqmpqWRnZzs7HBEREdLS0sjJyWHXrl3qVi8i9Zb6B9QzgYGBtG/fHj8/P3x9fZ0djoiICM2aNcMwDGJiYuzd7EVE6ht9+tVxxcXFbN68mfz8fPu6Ro0a4e/v78SoRESkPsvJyWHz5s2cvpvCZDLRokUL3NzcnByZiIjz6IpZHbdx40YOHz5MdnY23bt3d3Y4IiJSz1mtVpYvX05BQQEeHh40a9bM2SGJiNQIumJWx8XFxeHj40NcXJyzQxEREcFisdCqVSuCgoJo2LChs8MREakxdMWsjrHZbGRlZREQEACAj48PiYmJmEwm5wYmIiL1Vl5eHoZh4OXlBZR0qW/YsKFyk4jIX+iKWR1SWFjIb7/9xooVKzh16pR9vRKfiIg4S0ZGBkuXLmXt2rWlRlxUbhIRKU2FWR3i6uqKq6srFouFgoICZ4cjIiJiv0oGJT8giohI2dSVsZYzDMP+q6PJZCIhIQGbzYanp6eTIxMRkfrKZrPZh7338PCge/fu+Pj4aCh8EZFz0CdkLZafn8/KlSvZvXu3fZ27u7uKMhERcZqMjAwWL17MyZMn7ev8/PxUlImInIc+JWux9PR0jh8/zs6dOykqKnJ2OCIiIqSkpJCbm8v27dudHYqISK2iroy1WHR0NHl5eTRs2BBXV1dnhyMiIkK7du3w9PSkRYsWzg5FRKRW0RWzWqSwsJCtW7eWGtUqLi4Ob29vJ0YlIiL1WWZmJnv27LEvu7q6Eh8fj4uLfvsVEakIfWrWEoZhsHLlSrKysgCIj493ckQiIlLf5ebm8ttvv2Gz2fDx8SE0NNTZIYmI1Fq6YlaGpKQk4uPj6dKli7NDsTOZTParYw0bNnR2OCIiUs1qYm7y8vKicePGhIWFERgY6OxwRERqNZNhGIazg6ipsrKy8Pf3JzMzEz8/v2pvv7i4mIKCglJdFf86BLGISF3m7M/gmsrZr0tOTg4eHh5YLBagJC+ZTCZNGC0idZ6jP3/1Db+GysnJYdmyZaxatYri4mL7ehVlIiLiLKmpqSxdupQ//vjDvs5sNqsoExGpAvqWX0O5urpitVqxWq3k5eU5OxwRERF7bsrLy8NqtTo7HBGROkWDf9QghmHYf3V0c3Oja9eueHh44Obm5uTIRESkvvprbgoODqZ79+4EBQXpKpmISBXTFbMa4nTXxWPHjtnX+fn5qSgTERGnSU9PZ+nSpRQUFNjXBQcHqygTEXEAFWY1REpKCpmZmWzevBmNxyIiIs5mGAZbt24lKyuLXbt2OTscEZE6T10Za4hWrVphtVqJi4vTL5EiIuJ0JpOJTp06sX//flq1auXscERE6jxdMXOS/Px89uzZY1+2WCy0b98eDw8PJ0YlIiL12fHjx0lLS7Mv+/r60rp1a40ILCJSDXTFzAmKiorsffbd3d2JiopydkgiIlLPHT9+nJUrV2KxWOjVq1epOTRFRMTxVJg5gaurK40bNyYtLY2AgABnhyMiIkJgYCCBgYF4eXmp94aIiBOoMKsmhYWFmEwmXF1dAWjRogXNmzdX9xAREXGanJwc+5Uxs9nMRRddhMVicXJUIiL1k6qCanDixAl+/fVX1q9fbx9x0WQyqSgTERGn2bdvH0uWLCElJcW+TkWZiIjzqDKoBmazmcLCQnJycigsLHR2OCIiIthsNmw2GxkZGc4ORUREUFfGauHv70+3bt0ICAjAxUUvuYiIOF9sbCyenp6Eh4c7OxQREUFXzBwiKyuLZcuWkZeXZ1/XoEEDFWUiIuI0Bw8eZNWqVdhsNvs6FWUiIjWHCjMH2Lx5MydPnmTLli3ODkVERISCggI2bdpEeno6Bw4ccHY4IiJSBl3CcYCOHTuybds22rRp4+xQREREcHd3p0OHDmRlZREdHe3scEREpAy6YlYFcnJyOHLkiH3Z09OThIQE3NzcnBiViIjUZ6mpqWRnZ9uXIyIiiIuLw2QyOTEqERE5GxVmF+jUqVMsXbqU5ORkMjMznR2OiIgI+/fvZ82aNaxdu5bi4mJnhyMiIuWgrowXyNvbm+DgYIqLi3F3d3d2OCIiIoSFheHh4UFoaKjmzBQRqSXq/Kf1gQMHSExMJD4+nnbt2jF37twLPmZ+fn6piaITEhLo3r07Hh4eF3xsERGp2xyRl6AkN53m7u5OYmIirVu3VmEmIlJL1PkrZi4uLsyYMYMOHTqQmppKp06dGDhwIN7e3pU6Xnp6OsnJyTRp0oQWLVrY2xARESmPqs5LADt37mTHjh1cdNFFBAcHA+Dq6lpVIYuISDWo8z+jRURE0KFDB6BkvpYGDRqQkZFR6eMVFhZSVFREWlpaqblgREREyqOq8xKU3O9ss9lIT0+vgghFRMQZnF6YLV26lEGDBhEZGYnJZGLevHlnbJOUlERMTAweHh5069aN1atXV6qtdevWYbVaadSoUaXjbdiwIQkJCVx88cXqHiIiUgfVtrwE0K5dOzp16kSrVq0u6DgiIuI8Tq8scnJyaN++PUlJSWU+Pnv2bEaPHs2ECRNITk6mffv29O/fv9Svgh06dKBNmzZn/B0+fNi+TUZGBkOHDuWdd96pcIxr167FarXal6OiolSUiYjUUbUhLwH8+eef9v+2WCxERkZW6jgiIlIzmIzTo1jUACaTia+//pprr73Wvq5bt2506dKF119/HQCbzUajRo144IEHGDduXLmOW1BQwGWXXcbIkSO5/fbbz7ldQUGBfTkzM5Po6GhmzpxJu3btaN68eeWemIiIVFhWVhaNGjXi5MmT+Pv7OyUGZ+el09ueLTf16dOHoKCgij8xERGpMIfnJaMGAYyvv/7avlxQUGBYLJZS6wzDMIYOHWpcffXV5TqmzWYzbrnlFmPChAnn3XbChAkGoD/96U9/+qtBf7t3765AJqla4Ny8ZBjKTfrTn/70V9P+HJWXavRwgseOHcNqtRIWFlZqfVhYWKkuHOeyfPlyZs+eTbt27ez3CXz88ce0bdv2jG0fe+wxRo8ebV8+efIkjRs3Zv/+/U77tfbvunTpwpo1a2rE8Sq6b3m2P98253r8bI/9ff3pXzsOHDiAn59fOaN3nKo+pxd6zIrsq3N6drX132p5t63sea3I+tNXhmrSFaHqzkug3OTIfavi/V4Vn2FQ8z7HalJu0veNqlGTzmlF960p59TRealGF2ZV4ZJLLin36Inu7u5lThLt7+9fI/5BQcl9BFUZy4Ucr6L7lmf7821zrsfP9tjZ1vv5+dWI81rV5/RCj1mRfXVOz662/lst77aVPa8VXQ/UuXt6K5KXQLnJkftWxfu9Kj/DoOZ8jtWk3KTvG1WjJp3Tiu5b086po/JSjc52DRo0wGKxkJaWVmp9Wloa4eHhTorKuUaNGlVjjlfRfcuz/fm2OdfjZ3usql+zquaI+KrrvOqcnl1t/bda3m0re15r8zkF5aWzqc/vd32GOf6Y+r5RNWrSOa3ovvXlnNaKwT+6du3Ka6+9BpTcZB0dHc39999f7pusKysrKwt/f38yMzNrxC8dUjV0XusendO6qSac15qWl6BmvC5S9XRe6x6d07rH0efU6V0ZT506xa5du+zLKSkpbNiwgaCgIKKjoxk9ejTDhg2jc+fOdO3alRkzZpCTk8OIESMcHpu7uzsTJkwoswuJ1F46r3WPzmnd5KzzWpPzEuj9XlfpvNY9Oqd1j6PPqdOvmC1ZsoQ+ffqcsX7YsGF8+OGHALz++utMnTqV1NRUOnTowKuvvkq3bt2qOVIREakPlJdERMQZnF6YiYiIiIiI1Hc1evAPERERERGR+kCFmYiIiIiIiJOpMBMREREREXEyFWYiIiIiIiJOpsLsAsTExNCuXTs6dOhQ5gheUvukpKTQp08f4uPjadu2LTk5Oc4OSS7Q9u3b6dChg/3P09OTefPmOTssuUAvv/wyrVu3Jj4+ngcffBCNY/U/yk11j3JT3aK8VHddaG7SqIwXICYmhs2bN+Pj4+PsUKSK9O7dm2effZaePXuSkZGBn58fLi5On+5PqsipU6eIiYlh3759eHt7OzscqaSjR49y0UUXsWXLFlxdXenVqxcvvfQS3bt3d3ZoNYJyU92j3FR3KS/VHVWRm/SvWuS/Tv9D6tmzJwBBQUFOjkiq2vz58+nbt6+SXx1QXFxMfn4+AEVFRYSGhjo5IhHHUG6q25SX6pYLzU31tivj0qVLGTRoEJGRkZhMpjIvISclJRETE4OHhwfdunVj9erVpR43mUz07t2bLl26MGvWrGqKXM7mQs/pzp078fHxYdCgQSQkJDB58uRqjF7Opir+rZ42Z84cbr75ZgdHLOdzoec0JCSEMWPGEB0dTWRkJP369aNp06bV+AwcR7mp7lFuqnuUl+qmmpCb6m1hlpOTQ/v27UlKSirz8dmzZzN69GgmTJhAcnIy7du3p3///qSnp9u3+e2331i3bh3z589n8uTJ/PHHH9UVvpThQs9pcXExy5Yt44033mDlypUsXLiQhQsXVudTkDJUxb9VgKysLFasWMHAgQOrI2w5hws9pydOnODbb79l7969HDp0iBUrVrB06dLqfAoOo9xU9yg31T3KS3VTjchNhhiA8fXXX5da17VrV2PUqFH2ZavVakRGRhrPP/98mccYM2aM8cEHHzgwSqmIypzTFStWGJdffrn98RdffNF48cUXqyVeKZ8L+bf60UcfGbfddlt1hCkVUJlzOmfOHOO+++6zP/7iiy8aL7zwQrXEW52Um+oe5aa6R3mpbnJWbqq3V8zOpbCwkHXr1tGvXz/7OrPZTL9+/Vi5ciVQUlVnZ2cDJTdu/vLLL7Ru3dop8cr5leecdunShfT0dE6cOIHNZmPp0qW0atXKWSFLOZTnvJ6m7iK1Q3nOaaNGjVixYgX5+flYrVaWLFlCXFycs0KuNspNdY9yU92jvFQ3VVdu0uAfZTh27BhWq5WwsLBS68PCwvjzzz8BSEtL47rrrgPAarUycuRIunTpUu2xSvmU55y6uLgwefJkevXqhWEYXH755Vx11VXOCFfKqTznFSAzM5PVq1fz5ZdfVneIUkHlOacXXXQRAwcOpGPHjpjNZvr27cvVV1/tjHCrlXJT3aPcVPcoL9VN1ZWbVJhVUpMmTdi4caOzw5AqNmDAAAYMGODsMKSK+fv7k5aW5uwwpAo999xzPPfcc84Oo8ZRbqqblJvqHuWluulCc5O6MpahQYMGWCyWM/7BpKWlER4e7qSo5ELonNZNOq91j87p2em1qXt0TusendO6qbrOqwqzMri5udGpUyd+/vln+zqbzcbPP/+sCUxrKZ3Tuknnte7ROT07vTZ1j85p3aNzWjdV13mtt10ZT506xa5du+zLKSkpbNiwgaCgIKKjoxk9ejTDhg2jc+fOdO3alRkzZpCTk8OIESOcGLWci85p3aTzWvfonJ6dXpu6R+e07tE5rZtqxHmt7DCStd3ixYsN4Iy/YcOG2bd57bXXjOjoaMPNzc3o2rWr8fvvvzsvYDkvndO6See17tE5PTu9NnWPzmndo3NaN9WE82oyDMOoujJPREREREREKkr3mImIiIiIiDiZCjMREREREREnU2EmIiIiIiLiZCrMREREREREnEyFmYiIiIiIiJOpMBMREREREXEyFWYiIiIiIiJOpsJMRERERETEyVSYidQhH374IQEBAc4OQ0RExE65SaR8VJiJ1DDDhw/HZDJhMplwc3OjWbNmPP300xQXF59335tvvpkdO3ZUqL3ExEQeeuihSkYrIiL1gXKTiOO5ODsAETnTFVdcwQcffEBBQQHff/89o0aNwtXVlccee+yc+3l6euLp6VlNUYqISH2i3CTiWLpiJlIDubu7Ex4eTuPGjbn33nvp168f8+fP58SJEwwdOpTAwEC8vLwYMGAAO3futO/39+4iEydOpEOHDnz88cfExMTg7+/PLbfcQnZ2NlDyC+ivv/7KK6+8Yv8ldO/evZw4cYLbbruNkJAQPD09ad68OR988EF1vwwiIlKDKDeJOJYKM5FawNPTk8LCQoYPH87atWuZP38+K1euxDAMBg4cSFFR0Vn33b17N/PmzePbb7/l22+/5ddff2XKlCkAvPLKK3Tv3p2RI0dy5MgRjhw5QqNGjXjyySfZunUrP/zwA9u2bePNN9+kQYMG1fV0RUSkFlBuEqla6sooUoMZhsHPP//Mjz/+yIABA5g3bx7Lly+nR48eAMyaNYtGjRoxb948Bg8eXOYxbDYbH374Ib6+vgDcfvvt/Pzzzzz33HP4+/vj5uaGl5cX4eHh9n32799Px44d6dy5MwAxMTGOfaIiIlJrKDeJOIaumInUQN9++y0+Pj54eHgwYMAAbr75ZoYPH46LiwvdunWzbxccHExcXBzbtm0767FiYmLsiQ8gIiKC9PT0c7Z/77338vnnn9OhQwceffRRVqxYceFPSkREajXlJhHHUmEmUgP16dOHDRs2sHPnTvLy8vj3v/+NyWSq1LFcXV1LLZtMJmw22zn3GTBgAPv27ePhhx/m8OHD9O3blzFjxlSqfRERqRuUm0QcS4WZSA3k7e1Ns2bNiI6OxsWlpMdxq1atKC4uZtWqVfbtjh8/zvbt24mPj690W25ublit1jPWh4SEMGzYMD755BNmzJjBO++8U+k2RESk9lNuEnEs3WMmUks0b96ca665hpEjR/L222/j6+vLuHHjiIqK4pprrqn0cWNiYli1ahV79+7Fx8eHoKAgJk6cSKdOnWjdujUFBQV8++23tGrVqgqfjYiI1AXKTSJVR1fMRGqRDz74gE6dOnHVVVfRvXt3DMPg+++/P6NLSEWMGTMGi8VCfHw8ISEh7N+/Hzc3Nx577DHatWtHr169sFgsfP7551X4TEREpK5QbhKpGibDMAxnByEiIiIiIlKf6YqZiIiIiIiIk6kwExERERERcTIVZlLrxcTEMHz4cGeHUWF79+7FZDLx4YcfOjsUh0lMTCQxMdHZYYiIOJxyUc1V13LRxIkTKz1NgdRsKsxEKmjJkiWYTKYy/2655RZnh+cQhw8fZuLEiWzYsMHhbeXm5jJx4kSWLFlywcc617n6+5+ISG2iXORYVZmLThs+fPhZz9mCBQuqrB2pvTRcvkglPfjgg3Tp0qXUupiYGOcE42CHDx9m0qRJxMTE0KFDh3Lv99NPP1W4rdzcXCZNmgRwwb9wtmrVio8//rjUusceewwfHx/Gjx9/QccWEakJlIvOz9m56K/c3d157733zljfvn37KmtDai8VZiKV1LNnT2688UZnh1Ej5ebm4uXlhZubm1PjCAsL4x//+EepdVOmTKFBgwZnrP8rm81GYWEhHh4ejg5RROSCKBedXU3JRX/l4uJyzvwj9Zu6MopDHTp0iDvvvJPIyEjc3d2JjY3l3nvvpbCwEDh7P+kPP/wQk8nE3r177esMw+DZZ5+lYcOGeHl50adPH7Zs2XLGvhkZGYwZM4a2bdvi4+ODn58fAwYMYOPGjQ57nlXVfmpqKiNGjKBhw4a4u7sTERHBNddcU+p1APjhhx/o2bMn3t7e+Pr6cuWVV5b5WpTXwoULueSSSwgICMDHx4e4uDgef/xxoKS7zOlfY0eMGGHvdnH6foTExETatGnDunXr6NWrF15eXvZ9y+rXn5+fz8SJE2nRogUeHh5ERERw/fXXs3v3bvbu3UtISAgAkyZNsrc1ceLESj+38jCZTNx///3MmjWL1q1b4+7uzoIFC+xdhf7eleVs92T8+eef3HjjjQQFBeHh4UHnzp2ZP3++Q2MXkfNTLlIuqg25aNmyZQwePJjo6Gjc3d1p1KgRDz/8MHl5eefd91yv3WkFBQVMmDCBZs2a2Y//6KOPUlBQ4KinJBWkK2biMIcPH6Zr166cPHmSu+++m5YtW3Lo0CG++OILcnNzK/wL1lNPPcWzzz7LwIEDGThwIMnJyVx++eX2xHranj17mDdvHoMHDyY2Npa0tDTefvttevfuzdatW4mMjLRve+zYsXK17evri7u7e6l12dnZZ+wfFBRUofb/7oYbbmDLli088MADxMTEkJ6ezsKFC9m/f7+9a8rHH3/MsGHD6N+/Py+88AK5ubm8+eabXHLJJaxfv77CXVi2bNnCVVddRbt27Xj66adxd3dn165dLF++HCjpDvj000/z1FNPcffdd9OzZ08AevToYT/G8ePHGTBgALfccgv/+Mc/CAsLK7Mtq9XKVVddxc8//8wtt9zCP//5T7Kzs1m4cCGbN2+mX79+vPnmm9x7771cd911XH/99QC0a9cOKEkq2dnZ5XpeDRo0qNDr8MsvvzBnzhzuv/9+GjRoQExMDCdPniz3/lu2bOHiiy8mKiqKcePG4e3tzZw5c7j22mv58ssvue666yoUj4hUDeUi5aK/c3Yu+vv5cnV1xd/fn7lz55Kbm8u9995LcHAwq1ev5rXXXuPgwYPMnTu30q8dlPQEufrqq/ntt9+4++67adWqFZs2beLll19mx44dzJs3r1zPRxzMEHGQoUOHGmaz2VizZs0Zj9lsNsMwDGPChAlGWW/DDz74wACMlJQUwzAMIz093XBzczOuvPJK+76GYRiPP/64ARjDhg2zr8vPzzesVmup46WkpBju7u7G008/XWo9UK6/Dz74wL7P4sWLz7pdSkpKudtPSUkpdewTJ04YgDF16tSzvqbZ2dlGQECAMXLkyFLrU1NTDX9//zPWl8fLL79sAMbRo0fPus2aNWvOeB1O6927twEYb731VpmP9e7d2748c+ZMAzCmT59+xranz+vRo0cNwJgwYcIZ25x+X5Tn72xat25dKibDKHkfmM1mY8uWLaXWnz7XixcvLrX+7+fOMAyjb9++Rtu2bY38/PxSz6lHjx5G8+bNzxqPiDiWctG521cuKs2RuWjYsGFlbnM6ttzc3DPaev755w2TyWTs27fPvu7v79fyvHYff/yxYTabjWXLlpVa/9ZbbxmAsXz58rPuK9VHV8zEIWw2G/PmzWPQoEF07tz5jMcrOgreokWLKCws5IEHHii170MPPcTkyZNLbfvXXxOtVisnT560X9ZPTk4ute3ChQvL1X7r1q3PWPfUU0/Zf7E7LTw8vELt/5Wnpydubm4sWbKEO++8k8DAwDO2WbhwISdPnmTIkCGlfnGzWCx069aNxYsXl+v5/FVAQAAA//nPfxgxYgRmc8V7OLu7uzNixIjzbvfll1/SoEEDHnjggTMeK897on///uU+ZxXVu3dv4uPjK7VvRkYGv/zyC08//TTZ2dmlfknt378/EyZM4NChQ0RFRVVVuCJSDspF5Wv/r5SLHJuLPDw8+Oabb0qtO/0ae3p62tfl5OSQl5dHjx49MAyD9evXEx0dXeYxy/PazZ07l1atWtGyZctS5+zSSy8FYPHixaWuPopzqDAThzh69ChZWVm0adOmSo63b98+AJo3b15qfUhIyBlJw2az8corr/DGG2+QkpKC1Wq1PxYcHFxq2379+lU6prZt25a5f0Xa/yt3d3deeOEFHnnkEcLCwrjooou46qqrGDp0KOHh4QDs3LkT+N8H6d/5+flV+HncfPPNvPfee9x1112MGzeOvn37cv3113PjjTeWOzFGRUWVqzvQ7t27iYuLw8Wlch89ERERREREVGrf84mNja30vrt27cIwDJ588kmefPLJMrdJT09XYSZSzZSLlIvK4sxcZLFYznq+9+/fz1NPPcX8+fM5ceJEqccyMzPPeszyvHY7d+5k27Zt9nvn/i49Pb1Sz0eqlgozcaqz/TL11wRSUZMnT+bJJ5/kjjvu4JlnniEoKAiz2cxDDz2EzWYrtW1qamq5junv71/ql6yqav/vHnroIQYNGsS8efP48ccfefLJJ3n++ef55Zdf6Nixo33/jz/+2J4g/6oyScbT05OlS5eyePFivvvuOxYsWMDs2bO59NJL+emnn7BYLOU6RnXIy8s7Z3L6q7Jen3Mp6zmU9/15+ryMGTOG/v37l7lPs2bNKhSPiFQf5aLSlIvOzRG5yGq1ctlll5GRkcHYsWNp2bIl3t7eHDp0iOHDh5/znJXntbPZbLRt25bp06eXeYxGjRqVK05xLBVm4hAhISH4+fmxefPmc253+hfGkydP2i/Fw/9+lTytcePGQMkvPk2aNLGvP3r06Bm/Kn3xxRf06dOH999/v9T6kydPnnETbnl/8frggw8YPnx4ubatSPtladq0KY888giPPPIIO3fupEOHDkybNo1PPvmEpk2bAhAaGnpBv7D+ndlspm/fvvTt25fp06czefJkxo8fz+LFi+nXr1+VTcDctGlTVq1aRVFREa6urmVuc662Zs+eXa5uKlAyctqF+uv786/+/v48/Z50dXWt0vMiIhdGuUi5qCw1MRdt2rSJHTt28O9//5uhQ4fa15e3y+T5XrumTZuyceNG+vbtW2Wvo1Q9FWbiEGazmWuvvZZPPvmEtWvXntG33zAMTCaT/cN96dKlXH311UBJv+p///vfpbbv168frq6uvPbaa1x++eX2D5UZM2ac0bbFYjnjg3Du3LkcOnTojKsWF9Kv/2wq0v5f5ebmYjabS82d1bRpU3x9fe1D2fbv3x8/Pz8mT55Mnz59zkgoR48ePWs3hbPJyMggKCio1LrTE3eebtfb2xs4s0CpqBtuuIHvvvuO119/nYcffrjUY6ffE15eXmdty5H3mJWlcePGWCwWli5dyrXXXmtf/8Ybb5TaLjQ0lMTERN5++20eeOCBM75kVea8iMiFUy5SLipLTcxFp68I/vWcGYbBK6+8ct59y/Pa3XTTTXz//fe8++673H333aW2zcvLw2az2V9fcR4VZuIwkydP5qeffqJ37972oVmPHDnC3Llz+e233wgICODyyy8nOjqaO++8k3/9619YLBZmzpxJSEgI+/fvtx8rJCSEMWPG8Pzzz3PVVVcxcOBA1q9fzw8//HDGL39XXXUVTz/9NCNGjKBHjx5s2rSJWbNmlfp18zRHXN2oSPt/tWPHDvr27ctNN91EfHw8Li4ufP3116SlpXHLLbcAJf3233zzTW6//XYSEhK45ZZb7K/Vd999x8UXX8zrr78OlMy1FRsby7Bhw86Yb+uvnn76aZYuXcqVV15J48aNSU9P54033qBhw4ZccsklQElSDggI4K233sLX1xdvb2+6detW4fuyhg4dykcffcTo0aNZvXo1PXv2JCcnh0WLFnHfffdxzTXX4OnpSXx8PLNnz6ZFixYEBQXRpk0b2rRp49B7zMri7+/P4MGDee211+xf3r799tsy++InJSVxySWX0LZtW0aOHEmTJk1IS0tj5cqVHDx4sNrmLhKR0pSLlIv+ribmopYtW9K0aVPGjBnDoUOH8PPz48svvzzjSmxZyvPa3X777cyZM4f/+7//Y/HixVx88cVYrVb+/PNP5syZw48//ljmADlSzZwxFKTUH/v27TOGDh1qhISEGO7u7kaTJk2MUaNGGQUFBfZt1q1bZ3Tr1s1wc3MzoqOjjenTp58xRLFhGIbVajUmTZpkREREGJ6enkZiYqKxefNmo3HjxmcMUfzII4/Yt7v44ouNlStXnjFcbmWdHqJ47ty5ZT5e3vb/PkTxsWPHjFGjRhktW7Y0vL29DX9/f6Nbt27GnDlzyoyhf//+hr+/v+Hh4WE0bdrUGD58uLF27Vr7Nps2bTIAY9y4ced8Pj///LNxzTXXGJGRkYabm5sRGRlpDBkyxNixY0ep7f7zn/8Y8fHxhouLS6m4e/fubbRu3brMY5f1mufm5hrjx483YmNjDVdXVyM8PNy48cYbjd27d9u3WbFihdGpUyfDzc3trMMVV9bZhssfNWpUmdsfPXrUuOGGGwwvLy8jMDDQuOeee4zNmzeXOWTz7t27jaFDhxrh4eGGq6urERUVZVx11VXGF198UWXxi0jFKRcpF9WEXDRs2DDD29v7rI9v3brV6Nevn+Hj42M0aNDAGDlypLFx48Yz8s3fh8sv72tXWFhovPDCC0br1q0Nd3d3IzAw0OjUqZMxadIkIzMz84Kem1QNk2FUwY0YIlLjvPHGGzz66KPs3r37rJNsioiIOJJykUj5VXySCBGpFRYvXsyDDz6oRCgiIk6jXCRSfrpiJiIiIiIi4mS6YiYiIiIiIuJkKsxEREREREScTIWZiIiIiIiIk6kwExERERERcTJNMH0ONpuNw4cP4+vri8lkcnY4IiL1imEYZGdnExkZidms3xFPU24SEXEOR+clFWZlSEpKIikpicLCQnbv3u3scERE6rUDBw7QsGFDZ4fhdMpNIiI1g6PykobLP4fMzEwCAgI4cOAAfn5+zg5HRKReycrKolGjRpw8eRJ/f39nh1NjKDeJiDiHo/OSrpidw+kuIn5+fkp+IiJOou56pSk3iYg4l6Pykjrti4iIiIiIOJkKMxERERERESdTYVaGpKQk4uPj6dKli7NDERERAZSbRETqOg3+cQ5ZWVn4+/uTmZl5zn78VquVoqKiaoxMaitXV1csFouzwxCpFcr7GVzf6HURqTh9V5PyOtd3NUd//mrwjwtgGAapqamcPHnS2aFILRIQEEB4eLgGNBAREXEwfVeTynDWdzUVZhfg9D/00NBQvLy89EVbzskwDHJzc0lPTwcgIiLCyRGJiIjUbfquJhXh7O9qKswqyWq12v+hBwcHOzscqSU8PT0BSE9PJzQ0VN0aRUREHETf1aQynPldTYN/VNLpfspeXl5OjkRqm9PvGfV1FxERcRx9V5PKctZ3NRVmZajIyFe6JC4VpfeMiFSGRmUUqRzlXakoZ71nVJiVYdSoUWzdupU1a9Y4OxQRERFAuUlEpK5TYVYPJSYm8tBDDzk7DBERERH5m79/T4uJiWHGjBlOi8eZhg8fzrXXXmtfruvfYTX4Rw1gtRmsTskgPTufUF8PusYGYTHXrsvuhmEwcOBAFixYwNdff13qH5GIiIiIVM6aNWvw9vZ2dhg1wldffYWrq6uzw3AYFWZOtmDzESZ9s5Ujmfn2dRH+HkwYFM8VbWrPcOozZsxQH24RERGRKhYSEuLsEICSgTCcXRQFBQU5tX1HU1dGJ1qw+Qj3fpJcqigDSM3M595Pklmw+Ui1xPHdd9/h7+/PrFmzKrX/hg0bmDZtGjNnzqziyERERETqt793ZTSZTLz33ntcd911eHl50bx5c+bPn19qn82bNzNgwAB8fHwICwvj9ttv59ixY/bHFyxYwCWXXEJAQADBwcFcddVV7N692/743r17MZlMzJ49m969e+Ph4VHm90TDMJg4cSLR0dG4u7sTGRnJgw8+aH+8oKCAsWPH0qhRI9zd3WnWrBnvv/8+UDKdwZ133klsbCyenp7ExcXxyiuvnPO1KKub5+TJk7njjjvw9fUlOjqad955p9Q+K1asoEOHDnh4eNC5c2fmzZuHyWRiw4YN52zLGVSYVSHDMMgtLC7XX3Z+ERPmb8Eo6zj//f+J87eSnV9UruMZRllHOr9PP/2UIUOGMGvWLG677TZmzZqFj4/POf+WLVtm3z83N5dbb72VpKQkwsPDKxWDiIiISHWyWq1YrdZS62w2G1arFZvNVua2f/2uVZFtHWHSpEncdNNN/PHHHwwcOJDbbruNjIwMAE6ePMmll15Kx44dWbt2LQsWLCAtLY2bbrrJvn9OTg6jR49m7dq1/Pzzz5jNZq677rozns+4ceP45z//ybZt2+jfv/8ZcXz55Ze8/PLLvP322+zcuZN58+bRtm1b++NDhw7ls88+49VXX2Xbtm28/fbb+Pj4ACWvYcOGDZk7dy5bt27lqaee4vHHH2fOnDkVei2mTZtG586dWb9+Pffddx/33nsv27dvByArK4tBgwbRtm1bkpOTeeaZZxg7dmyFjl+d1JWxDElJSSQlJZ3xD/Z88oqsxD/1Y5XEYACpWfm0nfhTubbf+nR/vNwqdjqTkpIYP34833zzDb179wbg6quvplu3bufcLyoqyv7fDz/8MD169OCaa66pUNsiIlIxlc1NInKm77//HoD+/fvj5uYGwO7du/nzzz+Jjo6mffv29m1//PFHrFYrffv2tc9vtXfvXrZs2UJUVBQJCQn2bRctWkRhYSGJiYn4+vo6LP7hw4czZMgQACZPnsyrr77K6tWrueKKK3j99dfp2LEjkydPtm8/c+ZMGjVqxI4dO2jRogU33HBDqePNnDmTkJAQtm7dSps2bezrH3roIa6//vqzxrF//37Cw8Pp168frq6uREdH07VrVwB27NjBnDlzWLhwIf369QOgSZMm9n1dXV2ZNGmSfTk2NpaVK1cyZ86cUkXk+QwcOJD77rsPgLFjx/Lyyy+zePFi4uLi+PTTTzGZTLz77rt4eHgQHx/PoUOHGDlyZLmPX51UmJVh1KhRjBo1iqysLPz9/Z0djkN88cUXpKens3z58lJz4vj6+pb7g2T+/Pn88ssvrF+/3lFhiojIf9WH3CQi5dOuXTv7f3t7e+Pn50d6ejoAGzduZPHixfYrU3+1e/duWrRowc6dO3nqqadYtWoVx44ds18p279/f6nCrHPnzueMY/DgwcyYMYMmTZpwxRVXMHDgQAYNGoSLiwsbNmzAYrHYf/wvS1JSEjNnzmT//v3k5eVRWFhIhw4dKvJSlHotTCYT4eHh9tdi+/bttGvXDg8PD/s2pwvHmkiFWRXydLWw9ekzL/OWZXVKBsM/OP9cNB+O6ELX2PPf6OjpailXu6d17NiR5ORkZs6cSefOne0Dd8yaNYt77rnnnPv+8MMP9OzZk19++YXdu3cTEBBQ6vEbbriBnj17smTJkgrFJCIiIlIdBg4cCIDF8r/vT02bNqVJkyZnDGZ2uguf2fy/O4BiYmJo3LjxGduevjL0120d4e+DcJhMJntxderUKQYNGsQLL7xwxn4RESUDyw0aNIjGjRvz7rvvEhkZic1mo02bNhQWFpba/nyjQTZq1Ijt27ezaNEiFi5cyH333cfUqVP59ddf8fT0POe+n3/+OWPGjGHatGl0794dX19fpk6dyqpVq877/P/qXK9FbaPCrAqZTKZydyfs2TyECH8PUjPzy7zPzASE+3vQs3mIQ4bOb9q0KdOmTSMxMRGLxcLrr78OVKwr47hx47jrrrtKPda2bVtefvllBg0aVOUxi4iIiFSFvxZkp52tmLrQbatbQkICX375JTExMbi4nPm99Pjx42zfvp13332Xnj17AvDbb79Vuj1PT08GDRrEoEGDGDVqFC1btmTTpk20bdsWm83Gr7/+ai9Y/2r58uX06NHD3g0RKDUASVWIi4vjk08+oaCgAHd3d6Bk+oGaSoWZk1jMJiYMiufeT5IxQani7HQZNmFQvEPnM2vRogWLFy8mMTERFxcXZsyYUaGujOHh4WUO+BEdHU1sbGxVhysiIiIi5zFq1CjeffddhgwZwqOPPkpQUBC7du3i888/57333iMwMJDg4GDeeecdIiIi2L9/P+PGjatUWx9++CFWq5Vu3brh5eXFJ598gqenJ40bNyY4OJhhw4Zxxx138Oqrr9K+fXv27dtHeno6N910E82bN+ejjz7ixx9/JDY2lo8//pg1a9ZU6XfIW2+9lfHjx3P33Xczbtw49u/fz0svvQRQI6d50qiMTnRFmwje/EcC4f4epdaH+3vw5j8SqmUes7i4OH755Rc+++wzHnnkEYe3JyIiIiKOExkZyfLly7FarVx++eW0bduWhx56iICAAMxmM2azmc8//5x169bRpk0bHn74YaZOnVqptgICAnj33Xe5+OKLadeuHYsWLeKbb74hODgYgDfffJMbb7yR++67j5YtWzJy5EhycnIAuOeee7j++uu5+eab6datG8ePHy919awq+Pn58c0337BhwwY6dOjA+PHjeeqppwBK3XdWU5gMR4/nWYudvsE6MzMTPz+/Uo/l5+eTkpJCbGzsBZ9Yq81gdUoG6dn5hPp60DU2yKFXysS5qvK9I1KXneszuD7T6yJSPsq3UpZZs2YxYsQIMjMzz3of3NneO47+/FVXxhrAYjbRvWmws8MQEREREalTPvroI5o0aUJUVBQbN25k7Nix3HTTTecdnMQZVJiJiIiIiEidlJqaylNPPUVqaioREREMHjyY5557ztlhlUmFWRk0iaeIiNQ0yk0iIhX36KOP8uijjzo7jHLR4B9lGDVqFFu3bq3Rw2mKiEj9otwkIlK3qTATEZEax2qzsi5tnbPDEJE6QOPcSUU56z2jrowiIlKjLNq3iCmrp3D4+GFnhyIitZirqysAubm5NXKgB6m5cnNzgf+9h6qLCjMREakxFu1bxOglozHQL9wicmEsFgsBAQGkp6cD4OXlVSMnFZaawzAMcnNzSU9PJyAgAIvFUq3tqzATEZEawWqzMmX1FBVlIlJlwsPDAezFmUh5BAQE2N871UmFmYiI1AjJ6cmk5aY5OwwRqUNMJhMRERGEhoZSVFTk7HCkFnB1da32K2WnqTCrhxITE+nQoQMzZsxwdigiInZHc486OwQRqaMsFovTvmyLlJdGZawJbFZIWQabvij5f1vtmaMmNTWV22+/nfDwcLy9vUlISODLL790dlgiUgt5uXo5OwQRERGn0RUzZ9s6HxaMhay/jD7mFwlXvADxVzsvrnIaOnQoJ0+eZP78+TRo0IBPP/2Um266ibVr19KxY0dnhycitcTW41uZsmqKs8MQERFxGl0xc6at82HO0NJFGUDWkZL1W+dXSxjfffcd/v7+zJo1q8L7rlixggceeICuXbvSpEkTnnjiCQICAli3TvMPicj5GYbBnO1zuP372zmUc4ggjyAATGjkNBERqV9UmJUhKSmJ+Ph4unTpUrEdDQMKc8r3l58FPzwKZY4+9t91C8aWbFee41VyIrxPP/2UIUOGMGvWLG677TZmzZqFj4/POf+WLVtm379Hjx7Mnj2bjIwMbDYbn3/+Ofn5+SQmJlYqHhGpP3KLchm3bBzP/P4MhbZCEhslMv/a+byc+DKhXqHODq/GqXRuEhGRWsFkaDr0s8rKysLf35/MzEz8/PxKPZafn09KSgqxsbF4eHiUrCzMgcmRTogUePwwuHmXa9PTg380b96c8ePH85///IfevXsDkJ2dTVrauUdFi4qKsk/UePLkSW6++WZ++uknXFxc8PLyYu7cuVx++eUX9nzqsDLfOyL1zO6Tuxm9ZDR7MvdgMVn4Z8I/Gd56uH2OIavNytLdS7m0xaVlfgbXZ+fKTSIi4jiO/vzVPWb11BdffEF6ejrLly8v9eurr68vvr6+5T7Ok08+ycmTJ1m0aBENGjRg3rx53HTTTSxbtoy2bds6InQRqeW+2f0Nz/z+DHnFeYR6hjK191QSwhJKbWMxW+gU1slJEYqIiFQ/FWZVydWr5MpVeexbAbNuPP92t30BjXuUr+0K6NixI8nJycycOZPOnTvbf6WeNWsW99xzzzn3/eGHH+jZsye7d+/m9ddfZ/PmzbRu3RqA9u3bs2zZMpKSknjrrbcqFJOI1G0F1gKmrJ7CFzu+AOCiiIuY0nMKwZ7BTo5MRETE+VSYVSWTqdzdCWl6acnoi1lHKPs+M1PJ400vBXPVz7vRtGlTpk2bRmJiIhaLhddffx2Aq6++mm7dup1z36ioKAByc3MBMJtL36posViw2WxVHrOI1F4Hsg4w+tfR/JnxJyZM3Nv+Xu5udzcWB3y+iYiI1EYqzJzFbCkZEn/OUMBE6eLsv6ORXTHFIUXZaS1atGDx4sUkJibi4uLCjBkzKtSVsWXLljRr1ox77rmHl156ieDgYObNm8fChQv59ttvHRa3iNQui/Yt4snlT3Kq6BSB7oFM6TWFHpHl6AkgIiJSj2hURmeKvxpu+gj8Ikqv94ssWV8N85jFxcXxyy+/8Nlnn/HII49UaF9XV1e+//57QkJCGDRoEO3ateOjjz7i3//+NwMHDnRQxCJSWxRZi3hh9Qs8vORhThWdomNoR+YOmquiTEREpAy6YuZs8VdDyytL7jk7lQY+YSX3lDnwStmSJUtKLbdq1eq8IzGeTfPmzfnyyy+rICoRqUtSc1IZ8+sYNh7dCMDw1sN5MOFBXM2uTo5MRESkZlJhVhOYLRDb09lRiIhUid8O/cZjyx7jZMFJfN18efbiZ7k0+lJnhyUiIlKjqTATEZEqYbVZeWPjG7z7x7sYGMQHxzOt9zQa+jZ0dmgiIiI1ngozERG5YMfyjjF26VhWp64G4Oa4m/lXl3/hbnF3cmQiIiK1gwozERG5IGtS1/Do0kc5lncMTxdPJnafyMAmGgBIRESkIlSYiYhIpdgMGzM3z+S19a9hM2w0C2jGtMRpNPFv4uzQREREah0VZiIiUmEn808yfvl4lh5cCsDVTa9mfLfxeLl6OTkyERGR2kmFmYiIVMimo5t45NdHOJJzBHeLO493e5zrml2HyWRydmgiIiK1lgozEREpF8Mw+PTPT3lp7UsU24qJ9o1meuJ04oLinB2aiIhIrafCrAxJSUkkJSVhtVqdHYqISI1wqvAUE1ZM4Kd9PwFwWePLmNRjEr5uvk6OrP5QbhIRqdvMzg6gJho1ahRbt25lzZo1zg7FIRITE3nooYecHYaI1BLbM7Zzy3e38NO+n3AxuTCu6zim9Z7m2KLMZoW9Kxx3/FqorucmEZH6ToVZDWC1WVmTuobv93zPmtQ1WG2159fQd955h8TERPz8/DCZTJw8ebLM7b777ju6deuGp6cngYGBXHvttdUap4hUztc7v+a2729jX9Y+wr3D+XDAh9zW6jbH3k+2dT7MaAOf3eS4NkRERGoYdWV0skX7FjFl9RTSctPs68K8whjXdRz9GvdzYmTlk5ubyxVXXMEVV1zBY489VuY2X375JSNHjmTy5MlceumlFBcXs3nz5mqOVEQqIq84j+d+f47/7P4PAD2jejL5kskEeAQ4tuGt82HOUMBwbDsiIiI1jAozJ1q0bxGjl4zG+NsXkPTcdEYvGc30xOnVUpx999133HrrrbzxxhvcdtttFdr3dJfIJUuWlPl4cXEx//znP5k6dSp33nmnfX18fHxlwxURB0vJTGH0ktHsOrkLs8nMAx0f4I42d2A2ObiThc0KC8aiokxEROojdWWsQoZhkFuUW66/7IJsnl/9/BlFGYDx3/9NWT2F7ILsch3PMCr3RebTTz9lyJAhzJo1i9tuu41Zs2bh4+Nzzr9ly5aV+/jJyckcOnQIs9lMx44diYiIYMCAAbpiJlJDLUhZwC3f3sKuk7to4NmA9y5/j7va3uX4ogxg3wrIOuz4dkRERGogXTGrQnnFeXT7tFuVHS8tN40en/co17arbl1V4Yldk5KSGD9+PN988w29e/cG4Oqrr6Zbt3M/h6ioqHK3sWfPHgAmTpzI9OnTiYmJYdq0aSQmJrJjxw6CgoIqFLOIOEahtZAX17zI7O2zAegS3oUXe71IA88G1RfEqbTzbyMiIlJHqTCrp7744gvS09NZvnw5Xbp0sa/39fXF17fqRlqz2WwAjB8/nhtuuAGADz74gIYNGzJ37lzuueeeKmtLRCrnYPZBxvw6hi3HtwAwsu1I7utwHy7mak4Rbt7V256IiEgNosKsCnm6eLLq1lXl2nZd2jru+/m+8273Rt836BTWqVxtV0THjh1JTk5m5syZdO7c2T7C2qxZs85bLP3www/07NmzXO1EREQApe8pc3d3p0mTJuzfv79CMYtI1VtyYAmP//Y42YXZ+Lv78/wlz9OzYfn+fVepQ+vg+0erv10REZEaQoVZFTKZTOXuTtgjsgdhXmGk56aXeZ+ZCRNhXmH0iOyBxWyp6lBp2rSpvUuhxWLh9ddfB6q+K2OnTp1wd3dn+/btXHLJJQAUFRWxd+9eGjduXPknICIXpMhWxGvrX+ODzR8A0C6kHS/1eokIn4jqDcQw4Pc3YOEEsBWBVwjkHgVMaBAQERGpT1SYOYnFbGFc13GMXjIaE6ZSxZmJkqtXY7uOdUhRdlqLFi1YvHgxiYmJuLi4MGPGjAp3ZUxNTSU1NZVdu3YBsGnTJnx9fYmOjiYoKAg/Pz/+7//+jwkTJtCoUSMaN27M1KlTARg8eLBDnpeInFtaThqPLn2U5PRkAP7R6h+M7jQaV4tr9QaSmwHz7oMdP5Qst7oarn4NUpaWjM549FD1xiMiIuJEKsycqF/jfkxPnF7mPGZju46tlqHy4+Li+OWXX+xXzqZNm1ah/d966y0mTZpkX+7VqxdQch/Z8OHDAZg6dSouLi7cfvvt5OXl0a1bN3755RcCAwOr7HmISPmsPLySccvGkZGfgY+rD09f/DSXNb6s+gPZ/zt8cSdkHQSLG/SfDF3uApMJ4q+GllfC5oUwZUD1xyYiIuIEJqOy46zXA1lZWfj7+5OZmYmfn1+px/Lz80lJSSE2NhYPD48Lasdqs5KcnszR3KOEeIWQEJrg0Ctl4lxV+d4RKS+rzco7f7zDmxvfxMAgLjCO6YnTifaLrt5AbDZYPgN+eRYMKwQ1hcEfQkS7MzY912dwfabXRUTEORz9+asrZjWAxWyhS3iX828oIlIJGfkZPLbsMVYcXgHADc1vYFzXcXi4VPMPA6eOwtd3w+5fSpbbDoarXgb3qhsJVkREpLZSYSYiUoetT1/PmF/HkJ6bjqeLJ09e9CSDmg6q/kBSlsGXd8GpVHDxhIEvQsfbS7ouioiIiAozEZG6yDAMPtr6ES+vexmrYSXWP5bpvafTLLBZ9QZis8LSqfDrC2DYIKQl3PgBhMWff18REZF6RIWZiEgdk1WYxRO/PcHiA4sBGBg7kAndJ5R7Oo+qC+QIfDUS9i4rWe7wj5IrZZpIWkRE5AwqzERE6pAtx7fwyJJHOHTqEK5mV8Z1HcfgFoPtk8hXm10/w1d3Q+4xcPUuuZes/c3VG4OIiEgtosJMRKQOMAyDOdvn8MKaFyiyFRHlE8W0xGm0Dm5dvYFYi2Hxc/Db9JLlsDYloy42aF69cYiIiNQyKsxERGq53KJcJq2cxPcp3wPQp1Efnrn4Gfzd/as3kMyDJXOTHfi9ZLnzndD/OXD1rN44REREaiEVZiIitdiuE7sY/etoUjJTsJgsPNzpYYbGD63+rovbf4B590LeCXD3g0GvQJvrqzcGERGRWszs7ACqw3XXXUdgYCA33nijs0MREaky3+z+hlu/v5WUzBRCvUL54IoPGNZ6WPUWZcWF8ON4+OyWkqIsogPc86uKsvNQXhIRkb+rF4XZP//5Tz766CNnh1FjJCYm8tBDD9mXY2JimDFjhtPicabhw4dz7bXX2pf//tqIOJvVZmVN6hq+3/M9a1LXYLVZyS/OZ+KKiTz+2+PkFefRI7IHcwfNpWNox+oN7sRemNkfVr5esnzRfXDnTxDUpHrjqIWUl0RE5O/qRVfGxMRElixZ4uwwaqw1a9bg7a3hqwG++uorXF1dnR2GCACL9i1iyuoppOWm2dc18GiAm8WNwzmHMWHi3g73cnfbu7GYLdUb3Nb/wH8egIJM8AiAa9+AlldW2eGtNoPVezKq7Hg1jfKSiIj8XY2/YrZ06VIGDRpEZGQkJpOJefPmnbFNUlISMTExeHh40K1bN1avXl39gdZiISEheHlV8/xGZSgqKnJ2CAQFBeHr6+vsMERYtG8Ro5eMLlWUARzLP8bhnMP4uPrwzuXvcG/7e6u3KCvKh+/GwJyhJUVZw67wf8uqtChbsPkIl7zwC3f8e02VHbMqKS+JiIgj1PjCLCcnh/bt25OUlFTm47Nnz2b06NFMmDCB5ORk2rdvT//+/UlPT6/mSGuvv3dlNJlMvPfee1x33XV4eXnRvHlz5s+fX2qfzZs3M2DAAHx8fAgLC+P222/n2LFj9scXLFjAJZdcQkBAAMHBwVx11VXs3r3b/vjevXsxmUzMnj2b3r174+HhwaxZs86IzTAMJk6cSHR0NO7u7kRGRvLggw/aHy8oKGDs2LE0atQId3d3mjVrxvvvvw+A1WrlzjvvJDY2Fk9PT+Li4njllVfO+VqU1c1z8uTJ3HHHHfj6+hIdHc0777xTap8VK1bQoUMHPDw86Ny5M/PmzcNkMrFhw4ZztiVyNlablSmrp2BgnHUbTxdPuoR1qcaogOO74f1+sObdkuWLH4IR30NAdJU1sWDzEe79JJkjmflVdsyqprwkIiKOUOMLswEDBvDss89y3XXXlfn49OnTGTlyJCNGjCA+Pp633noLLy8vZs6cWeG2CgoKyMrKKvVXGVarFavVWmqdzWbDarVis9nK3NYwjEpv6wiTJk3ipptu4o8//mDgwIHcdtttZGSUdCs6efIkl156KR07dmTt2rUsWLCAtLQ0brrpJvv+OTk5jB49mrVr1/Lzzz9jNpu57rrrzoh33Lhx/POf/2Tbtm3079//jDi+/PJLXn75Zd5++2127tzJvHnzaNu2rf3xoUOH8tlnn/Hqq6+ybds23n77bXx8fICS16Zhw4bMnTuXrVu38tRTT/H4448zZ86cCr0W06ZNo3Pnzqxfv5777ruPe++9l+3btwOQlZXFoEGDaNu2LcnJyTzzzDOMHTu2QscX+bvk9OQzrpT93dG8oySnJ1dTRMAfc+HtXpC6CbyC4bYv4bJJYKm6rr9Wm8Gkb7ZiANbcTKx5mVV27KpUnXkJqi43iYhI5RmGQUpKikPbqNX3mBUWFrJu3Toee+wx+zqz2Uy/fv1YuXJlhY/3/PPPM2nSpAuO6/vvS+YS6t+/P25ubgDs3r2bP//8k+joaNq3b2/f9scff8RqtdK3b197d8K9e/eyZcsWoqKiSEhIsG+7aNEiCgsLSUxMtHe3O3jwINHRVfdr9WnDhw9nyJAhAEyePJlXX32V1atXc8UVV/D666/TsWNHJk+ebN9+5syZNGrUiB07dtCiRQtuuOGGUsebOXMmISEhbN26lTZt2tjXP/TQQ1x//dlHb9u/fz/h4eH069cPV1dXoqOj6dq1KwA7duxgzpw5LFy4kH79+gHQpMn/Bh1wdXUtdT5jY2NZuXIlc+bMKVVEns/AgQO57777ABg7diwvv/wyixcvJi4ujk8//RSTycS7776Lh4cH8fHxHDp0iJEjR5b7+CJ/dzT3aJVud0EKc+GHR2H9xyXLjS+GG94Dv8gqb2p1SgZHMvMxDBuF6SnYCnKqvA1Hq+q8BFWXm0REpPKys7PtP8w7So2/YnYux44dw2q1EhYWVmp9WFgYqamp9uV+/foxePBgvv/+exo2bHjW5PjYY4+RmZlp/ztw4IBD46/J2rVrZ/9vb29v/Pz87N1wNm7cyOLFi/Hx8bH/tWzZEsDeXXHnzp0MGTKEJk2a4OfnR0xMDFBSaP1V586dzxnH4MGDycvLo0mTJowcOZKvv/6a4uJiADZs2IDFYqF3795n3T8pKYlOnToREhKCj48P77zzzhkxVOS1MJlMhIeH21+L7du3065dOzw8POzbnC4cRSqrvBNDh3iFODaQ9D/h3Uv/W5SZoPdYGDrfIUUZQHp2SfdFk8mMW3gzLD5BDmnHkao6L4Fyk4hITeDn50dcXJxD26jVV8zKa9GiReXazt3dHXd39wtub+DAgQBYLP+7Ib9p06Y0adLkjPmFTnffM5v/VyPHxMTQuHHjM7Y9fVXor9s2bNjwguMty99HJjSZTPZuiKdOnWLQoEG88MILZ+wXEREBwKBBg2jcuDHvvvsukZGR2Gw22rRpQ2FhYantzzcaZKNGjdi+fTuLFi1i4cKF3HfffUydOpVff/0VT0/Pc+77+eefM2bMGKZNm0b37t3x9fVl6tSprFq16rzP/6/O9VqIVLV9WfuYsW7GObcxYSLMK4yE0IRzbldphgEbZpUM8lGcBz5hcP070CTRMe0BGRkZWPP+10XP4uGDqUFjh7XnbOXNS1B1uUlERCpm//79hIWF2T+DY2NjHdperS7MGjRogMViIS2t9L0YaWlphIeHOymq0gXZaX8tpqpjW0dKSEjgyy+/JCYmBheXM99Cx48fZ/v27bz77rv07NkTgN9++63S7Xl6ejJo0CAGDRrEqFGjaNmyJZs2baJt27bYbDZ+/fVXe9H6V8uXL6dHjx72bohAqQFIqkJcXByffPIJBQUF9n+0a9bUzJHkpOb7fs/3TFo5idziXLxdvMkpzsGEqdQgICZKfrAZ23WsY0ZjLDgF3z0Cf3xestwkEa5/F3xCq76t/zp69Cizv/uFN5elYATGYXJxc1hbjlZT85KIiFTMtm3b2LVrFw0aNOCiiy4644KJI9Tqroxubm506tSJn3/+2b7OZrPx888/071790ofNykpifj4eLp0qeYRz2qJUaNGkZGRwZAhQ1izZg27d+/mxx9/ZMSIEVitVgIDAwkODuadd95h165d/PLLL4wePbpSbX344Ye8//77bN68mT179vDJJ5/g6elJ48aNiYmJYdiwYdxxxx3MmzePlJQUlixZYh/co3nz5qxdu5Yff/yRHTt28OSTT1Z50XTrrbdis9m4++672bZtGz/++CMvvfQSQLX8A5a6Ia84j4krJjJ22Vhyi3PpHNaZ+dfN5+XElwn1Kl0QhXmFMT1xOv0an/ljxAVL3QTv9C4pykxmuPRJ+MfXDi3KDMPgu+1ZTFm0jwyrJ8E+JVfCa+u/HkflJVBuEhGpTg0bNsTV1ZWwsLBq+05X46+YnTp1il27dtmXU1JS2LBhA0FBQURHRzN69GiGDRtG586d6dq1KzNmzCAnJ4cRI0ZUus1Ro0YxatQosrKy8Pcv370e9UlkZCTLly9n7NixXH755RQUFNC4cWOuuOIKzGYzJpOJzz//nAcffJA2bdoQFxfHq6++SmJiYoXbCggIYMqUKYwePRqr1Urbtm355ptvCA4OBuDNN9/k8ccf57777uP48eNER0fz+OOPA3DPPfewfv16br75ZkwmE0OGDOG+++7jhx9+qLLXws/Pj2+++YZ7772XDh060LZtW5566iluvfXWUvediZzN7pO7GfPrGHad3IUJE/e0v4d72t2Di9mFfo370adRH5LTkzmae5QQrxASQhOq/kqZYcDambDgMbAWgG8k3Pg+NO5Rte38RV5eHsUmF8Z9tYnv/jiCJSKOAW2jeOnG9qzcc4xJ32zlUHquw9q/EM7IS6DcJCLiaHl5efZbZXx9fenbt+8Zt7Q4ksn469jrNdCSJUvo06fPGeuHDRvGhx9+CMDrr7/O1KlTSU1NpUOHDrz66qt069btgts+nfwyMzPx8/Mr9Vh+fj4pKSnExsbqC7iUMmvWLEaMGEFmZmaZ98HpvSNQcqVo3q55TF41mXxrPg08GzCl5xS6RVz4Z1eF5GfCN/+ELV+XLDfvD9e+Cd7BDmty//79fLdkFR/tgCPFXriYTYwb0JI7L4m1/ypptRks/mMfl3WMLfMz2JmcmZfg3LlJREQqzmazsWnTJg4fPkyvXr3OOgaCoz9/a3xh5kwqzKQ8PvroI5o0aUJUVBQbN27k/vvvJzExkU8++aTM7fXekdyiXJ79/Vm+2fMNAN0jujO552QaeDao3kAOJcMXI+DEXjC7QL+JcNEocOC9q4ZhMP2LJUyb+yuGVyCxcW147dYEOjUOPGNbFSBl0+siIlK1bDYbK1euJCMjg/bt2591KipHf/7W+K6MIjVdamoqTz31FKmpqURERDB48GCee+45Z4clNdT2jO2M+XUMe7P2YjFZuL/j/dzR5g7Mpmq85dcwYNVb8NOTYCsC/2gY/AE0PPf0FRcqp6CY8V9v4uv1OZhDYunXqSUv39yRQO/aO9iHiIjUfmazmU6dOpGdnU1IiIOnojkHFWZlSEpKIikpCavV6uxQpBZ49NFHefTRR50dhtRwhmEwd8dcXlj9AoW2QsK8wnix14skhDloyPuzyc2A/9wP278rWW55FVzzOnieecWqqhw+fJhVW3bz2sZi9hzLxcViZtzgS7inVxPM5to6zEf1U24SEakaNpuNP//8E09PT/sQ+B4eHk7vyaSujOegroziCHrv1D/ZhdlMXDGRn/b9BEDvhr159uJnCfAIqN5ADqyGL+6AzANgcYPLn4OuI8GBo03l5+cz6e3ZfLwiBYJjiWoYxWtDEugae/7Jo9Vlr2x6XURELsyhQ4dITk7GbDZz6aWXnndu3NPUlbGGU10rFaX3TP2y+dhm/vXrvzh46iAuJhce6vQQQ+OHVu90CjYbrHgVfn4aDCsExsLgDyGyg0ObzSu08tQ32/lsuw3DL5w+CXHMuKUjDXw0WbKIiDhPVFQUx44dIywsrNxFWXVQYVZJp4fOzM3NrVEnVGq+3NySIcCrc/hVqX6GYfDJtk+Yvm46xbZionyimNprKm1D2lZvIDnH4Ov/g10LS5bb3ABXzQAPx11pSU9PJy0Xxnz9J9vTsnHzD+Xhfi0Y1aeZui6KiEi1MwyDAwcO0LBhQ8z/HeCqffv2To7qTCrMKslisRAQEEB6ejoAXl5emlBYzskwDHJzc0lPTycgIACLpYrnopIaI7MgkyeWP8GSA0sA6Bfdj0kXT8LPrZq7ne39Db68C7KPgIsHDHgBEoY5tOvivn37eGfeYmatP4YRFkeIryevDulAj6bVPOKkiIjIfyUnJ3P48GFOnTpFfHy8s8M5KxVmZSjvDdbh4eEA9uJMpDwCAgLs7x2pezakb+BfS/9Fak4qrmZXHu3yKDfH3VzNXRetsGwaLHkeDBs0aFHSdTGstUObzS+y8tqKdD5evh+LbzC9YoN59bYEQn11L2VV0OAfIiKVExkZSVpaWo2/L1eDf5xDeW/ws1qtFBUVVWNkUlu5urrqSlkdZTNsfLD5A15b/xpWw0pjv8ZM7TWVVsGtqjeQ7DT4aiSk/Fqy3P5WuPIlcCt7ssyqUFhYyOGsIu6blczWI1lgLeLBy1rxz34tsFxA10UNclE2vS4iIudXWFiIm9v/pmMpKCjA3f3C7nHW4B+1gMVi0ZdtkXrseN5xxv82nuWHlwMwMHYgT3V/Cm9XxxVDZdq9uKQoyzkKrl5w5TTocKvDmjMMg927d/PJj78ze78XeSZ3grzdmHFzV3q1cN48MCIiUn8VFRWxceNGsrOz6dmzJy4uJeXOhRZl1UGFmYjIBViTuoaxS8dyNO8oHhYPHuv2GNc1u656uy5ai0u6LS6bBhgQ2rqk62JIC4c2W1BsZcrXa5i/ageugZH06NSO14YkEO6vrosiIuIcNpuNEydOUFhYyIkTJ5w6YXRFqTATEakEq83KO3+8w1t/vIXNsNHUvylTe0+leWDz6g0k81DJAB/7V5QsdxoBVzwPro4dLfZARi6jPk1mY7oXbqFNuX9QN8Zc3gIXi9mh7YqIiJyLu7s7nTt3xmQyERAQ4OxwKkSFmYhIBaXnpvPYssdYnboagOuaXce4ruPwcvWq3kB2/FgyFH5eBrj5wqAZ0PZGhza5d+9eftl6mJdXZ5OdX0ygryfT77yIS1uGObRdERGRslitVjZv3kzDhg0JDg4GIDAw0MlRVY4KszJo5CsROZvlh5bz+G+Pk5GfgaeLJ09e9CSDmg5yXIM2K+xbAafSwCcMGvcoGWnx50mw4rWSbSLaw40fQHBTx8UBHEk7yviZ37FwaxoejdrQqXkUr9+aQFSA5nKsDspNIiJn2rlzJ/v37yc9PZ2+ffva5ymrjTQq4zlo5CsROa3YVszr61/n/c3vAxAXGMfU3lOJ9Y91XKNb58OCsZB1+H/rfMLAzQcydpcsd70HLn8GXBx7U/Ohk3mMmpXM6uQNmFw9uPeq7jx6RUvcXByXAPUZXDa9LiIi/2O1Wlm9ejXNmzenQQPHzpmpURlFRJwsNSeVR5c+yvr09QDcHHcz/+ryL9wtDiyGts6HOUOBv/12dioNSCsZdfH6d6CVA6/WAampqWw6buNfX27mZG4RwY2a8dLg9vRvrbn4RESk+tlsNtLS0oiIiABKRkfv3r27k6OqGirMRETOYcmBJTyx/AkyCzLxcfVhYo+J9I/p79hGbdaSK2V/L8r+yt0P4gY6NIzNW7Yyde6vLNxfjFtoE9o19Cfp1gQaBVXzvXQiIiKUFGUrVqzgxIkTdOrUicjISGeHVKVUmImIlKHIWsTLyS/z8daPAWgd3JqpvafSyLeR4xvft6J098WynEot2S62p0NCSM3M5/HvU/h9cyqugZEM7xHDYwNb4u6iORtFRMQ5zGYzwcHBnDp1qk7OIazCTETkbw5kH+Bfv/6LLce3AHB7/O08nPAwrhbX6gngVFrVblcBxcXFrNhzgodmbyAjBxq0SGDqLV25sl1ElbclIiJyPoZhYLPZ7IVYy5YtiYmJwdOz7g08pcJMROQvftr7ExNWTOBU0Sn83Px49uJn6RPdp3qD8Aou33Y+VTdEvc1mY8vWbbz+7Wp+zAgEsyvxEX68cVsCMQ28q6wdERGR8iooKCA5ORkXFxe6dOkCgMlkqpNFGagwK5OGJBapfwqsBUxdM5XZ22cD0CGkAy/2epEIn2q+UpR5EH557jwbmcAvsmTo/CqSmpnLP2cuZvP+dNxCYehlnXnqqng8XOteV5HaSrlJROqbvLw8MjIyMJlMnDp1Ch8fH2eH5FAaLv8cNCSxSP2wN3MvY34dw/YT2wG4s82djOo4CldzNXVdPG3nQvjq7pIJo128oDgXMFF6EBBTyf/d9BHEX10lza7YdYwHP99A+vETuFPES8N6c02HqCo59oXQZ3DZ9LqISH1y6NAh/P39a0RRpuHyRUQc6Ns93/L0yqfJK84jyCOIyZdM5uKoi6s3CGsxLJkMy6aVLEd0gMEfQuqmM+cx84uEK6ZccFFmGAbbd+zki03HmbkuA5sBraLDSLotgWahzk9+IiJS/xQVFbFlyxZatmyJh4cHAFFRzv+hsLqoMBOReim3KJcpq6fw9a6vAegS3oUpPacQ6hVavYFkp8IXd8K+30qWu9wFlz8Hrh4QFAstrywZffFUWsk9ZY17gPnCuxdu2LaT0W/OZ2taLh6N23Fzt1gmXd0GTzd1XRQREefYuHEjR44cIS8vr87MTVYRKsxEpN7ZdWIXY34dw+7M3ZgwcW/7e7m73d1YqqDgqZA9v8KXd0LOUXDzgUGvQNsbS29jtlT5kPir9hznga/2cuAk+ITH8MItnbmxU8MqbUNERKSiWrVqRW5uLvHx8c4OxSlUmIlIvWEYBl/v+prnVz1PvjWfEM8QpvScQteIrtUbiM0KS1+CJc8DBoS2hpv+DQ2aO7TZ1NQ0vvozm2k/7cBqM2jdsQtv3JZAizBfh7YrIiJSluLiYjIzMwkOLhmN2Nvbm169ejk5KudRYSYi9UJOUQ5Pr3ya71O+B6BHZA8mXzKZYM9yDk1fZYEcg69Gwu5fSpY73g4DXgQ3L4c2u2T5Kp6d8xt/Fgbh4h/K9R2jeObaNni7Kw2IiEj1KygoYOXKleTm5nLJJZdoMCNUmIlIPbDt+Db+tfRf7Mvah8Vk4f6O93NHmzswm8zVG8i+lfDFHZB9GFw84arp0OFWhze7bl8GD3+9g0OHs/EJC2by9W25uUsjTCaTw9sWEREpi5ubGx4eHhQVFWkakP9SYSYidZZhGMzePpsX17xIka2IcO9wXuz1Ih1DO1ZvIDYbrHwNFk0CwwoNWsDgf0OYY/vQW61WZi7fxwsL/qTYJYi49sG8fcclxEfqV0kREal+NpsNk8lk/0tISMAwDNzd3Z0dWo2gwqwMmsRTpPaw2qwkpydzNPcoIV4hJIQmYDFbyCrMYuKKiSzctxCAxIaJPHPxMwR4BFRvgLkZMO8+2PFDyXLbwXDVDHB33JD0VquVlWvW88J3f/BHYSgmk4mr2kXw/PVt8fWo5rnZpMooN4lIbZabm8u6desIDw+nefOSe6rd3NycHFXNogmmz0GTeIrUbIv2LWLK6imk5abZ14V5hTGk5RDm7pjLoVOHcDG7MLrTaP7R6h/V33Xv4DqYOxwy94PFHQZMgU4jwMFx/L79EHdM+Yhj2Xn4Nopn4k0X8Y+LGte6rov6DC6bXhcRqY0OHDjAhg0bcHNz49JLL8XVtfb9UKgJpkVEyrBo3yJGLxmNQenfltJy05iRPAOAKJ8oXur9Em0atKne4AwDVr0NPz0BtiIIjC0ZdTGivYObNfj3ir089/028rwb0qSRD+/efSltG/o7tF0REZHzadSoEQUFBURFRdXKoqw6qDATkVrHarMyZfWUM4qyv3K3uPP5lZ9Xf9fF/EyY/wBs/U/Jcqur4ZrXwcNxxZHNZmPdH5t5Z10WC3dmAnBlt1a8eGN7/D2V/EREpPrl5+ezc+dOWrdujdlcMthWs2bNnBxVzabCTERqneT05FLdF8tSYC1g58mddAnvUk1RAUf+gLnDIGMPmF3h8meh2z0O77o4f8lqnvj4Z44VWPCJacvjA+MZcXFMreu6KCIidYNhGPz+++9kZ2djNptp3bq1s0OqFVSYiUitczT3aJVud8EMA5L/Dd8/CtYC8G8Egz+Ehp0d3KzBrFX7mfhTGqfyzTRq0ox3/+9iOjQKcGi7IiIi52IymYiPj2fbtm3ExMQ4O5xaQ4WZiNQ6IV4hVbrdBSk4Bd+Nhj9mlyw37w/XvQVeQQ5r0jAMDqYdY+rig8zfeBhw4cr+fZl2UwcCvDTClYiIVL+ioiIKCgrw8SkZdTg0NJSQkBD13qgAFWYiUqvkF+fzy/5fzrmNCRNhXmEkhCY4Npj0bTBnGBzbDiYL9H0KejwI5qqbuNpqM1idkkF6dj6hvh50ivbnq59+ZfKXqznh1wQ3L1/GXhHHyJ5NlPxERMQpsrOzWbVqFSaTiV69etkH91BeqhgVZiJSa2w8upEnfnuCvVl7z7qNiZIkMLbrWCxmi+OC2fBZyZWyolzwjYAbZ0LjHlXaxILNR5j0zVaOZObb1/l7upKxdxuFpwqICjXxzt0X0TnGcVfnREREzsfDw8M+aXRBQYFGXawkFWYiUuMVWAtI2pDEv7f8G5thI8QzhIk9JlJoLSxzHrOxXcfSr3E/xwRTlAff/wvWf1yy3CQRrn8PfKq22+SCzUe495Nk+7iThmFgMpnIzCvCHBJL+1Yt+XxUH4K81XVRRESq3+m8BODq6kq3bt1wd3dXUXYBVJiJSI226egmnlj+BHsy9wAwqMkgxnYdi797yfDzfRr1ITk9maO5RwnxCiEhNMFxV8qO7SoZdTFtM2CCxMeg1xio4vasNoNJ32zFAAxrMYXpezC5euDWIBoAk9lCttVFQ+GLiIhTZGdns3btWlq3bk1oaCiA/d4yqTwVZmVISkoiKSkJq9Xq7FBE6q1CayFvbnyTmZtnYjNsBHsEM6H7BPpE9ym1ncVsqZ4h8Td/BfMfhMJs8A6BG94ruVrmAKtTMuzdF2352VhzToDJjIt/GGZXdwCOZOazOiWD7k2DHRKD1DzKTSJSU+zbt49Tp06xbds2DfBRhUyGYZx9htZ6LisrC39/fzIzM/Hz83N2OCL1xpZjW3hi+RPsOrkLgIGxA3ms62PVP1k0QHEB/PQErH6nZLnxxXDD++AX4bAm/7PhEP/8fIN9uejEYSyefpg9Sv8a+cotHbimQ5TD4nA2fQaXTa+LiDibzWZj27ZtNG/eHDe3+tOl3tGfv+W6YpaVlVXhAytZiEhFFVmLeOuPt3h/0/tYDStBHkE8edGTjrtf7HxO7IW5w+Hw+pLlS0ZDn/FgcVxnA6vVyt7dOzBsVkz/7SLpGhhZ5rahvh4Oi6M2UG4SEakeOTk5HD58mObNmwNo0mgHKde3i4CAgApdojSZTOzYsYMmTZpUOjARqV+2Hd/G+OXj2XliJwD9Y/rzeLfHCfJw0oiDf34H8+6F/EzwDITr3oEWlzu82emffs8r367D6hmIe3izMrcxAeH+HnSNrd+jMSo3iYg4XlFREcuWLaOoqAgPDw8aNWrk7JDqrHL/7PvFF18QFHT+LwGGYTBw4MALCkpE6o8iaxHvbnqXd/94l2KjmED3QMZfNJ7+Mf2dE5C1CBZNhJWvlyw37AI3fgABjk1E+UVWnv52Kx+vzaHI5EqrZrHsPVVShP21v/npMmTCoHgsZvXpV24SEXEsV1dXmjZtSnp6OiEhVTsCsZRWrsKscePG9OrVi+Dg8t1k3qRJEw2VKSLntT1jO08sf4I/M/4E4LLGlzG+23iCPZ00oEXmQZg7Ag6uLlm+aBT0mwgujus/b7PZ2Lb/KP/6zw62HsnCxcuXfw6/nocvb8nCralnzGMW7u/BhEHxXNHGcfe41RbKTSIijpGfn4/ZbLbfP9asWTOaNm2K2Wx2cmR1mwb/OAfdYC3iGEW2It7f9D5vb3ybYqMYf3d/xncbzxUxVzhvZKedi+CrkZCXAe7+cG0StBrk0Cbz8/N55fMFvLloK0Z4K4L9fZhxcwd6tfjfL5JWm8HqlAzSs/MJ9S3pvlhfrpTpM7hsel1ExJGOHz/O2rVr8ff3p1u3bhpx8S9qxOAfIiJVZeeJnYz/bTzbMrYBcGmjS3my+5M08GzgnICsxbDkeVg2DTAgvB3c9G8Icux9SAXFVp79fjvv/bQNo7iY7hFevHVXT8L9Sw/oYTGbNCS+iIhUG1dXV6xWKwUFBRQVFdWrURedrUKFWXZ2Njt27CAuLg4fHx+Sk5OZMWMGeXl5XHvttdx2222OilNEarliWzEfbvmQpA1JFNuK8XPz4/FujzMwdqDzfo3LToUv74K9y0qWO98J/SeDq+NGOzQMgwMZedz36To2H8rCLbwF9/Ruytir2uFiUReRylBuEhG5MIZh2HOxn58fF110Ef7+/lgsFidHVr+UuzBbunQpV111FadOnSIwMJDPPvuMG2+8kaioKCwWC1999RW5ubmMHDnSkfGKSC20++RunvjtCTYf3wxAYsNEnur+FCFeTryJOGUpfHEn5KSDqzdc/Sq0vdGhTRYUFJA090feSc4m3y2AQC9Xpo/oQp+4UIe2W5cpN4mIXJgTJ06wceNGunbtipeXF0C5BlWSqlfun2efeOIJBg8ezIEDB3jooYe4+eabuf/++9m2bRubN29m0qRJJCUlOTJWEallim3FvL/pfQZ/M5jNxzfj6+bLc5c8x6uXvuq8osxmg1+nwkfXlBRlofFw9xKHF2WFxTb+9eHPTJm3lhOH9pDQyI/vHuypouwCKTeJiFyYbdu2kZ2dzbZt25wdSr1X7sE/AgIC+P3332nZsiWFhYV4enqSnJxM+/btAdi1axcdO3YkOzvboQFXJ91gLVJ5ezL38ORvT/LHsT8A6BnVkwndJxDmHea8oHKOwVd3w+6fS5Y7/AMGTgU3L4c2eyAjl/s/W8+G/ScoOrqXu6+8iPHXJuCqrovnVJ7PYOUm5SYRuTD5+fns2LGD+Ph4XFw0/MS51JjBP7KysuyXNd3c3PDy8sLX19f+uK+vL7m5uVUeoIjULlablU+2fcKrya9SaCvEx9WHR7s8yrXNrnXuyE77fy8ZCj/7MLh4wpUvQcd/OLTJoqIiZi1ax/RVmWTlFxPg5ca0MYPpF+/E4rSOUW4SEamYrKwssrOziYqKAsDDw4N27do5OSqBChRmJpOp1Jeqvy+LiOzN3MuTy59kw9ENAFwceTETe0wk3DvceUEZBqx4rWTSaMMKwc1LRl0Ma+3QZguKirnvpU/4Zl0KrsHRdG7XiqRbO9Iw0LFX5+ob5SYRkfLLzs5m2bKSAa+8vb0JCAhwbkBSSrkLM8Mw6Nu3r/0SZ25uLoMGDbIPoVlcXOyYCEWkxrMZNmZtm8Urya9QYC3A29Wbf3X+F9c3v965X5LzTsC8+2D79yXLbW6AQa+Au++597tAh07mcf+nyazZDyYXd4Zf2pYJN3TBzUVdF6uacpOISPn5+voSGhqKzWazD/QhNUe5C7MJEyaUWr7mmmvO2OaGG2648IhEpFbZn7WfJ5c/SXJ6MgAXRVzE0z2eJsInonoCsFlh3wo4lQY+YdC4B5gtcGgdzB0OJ/eDxQ2umAKd7wAHForFxcUs2nKIcf/ZzsncIgLDInnh3ssZ2C7KYW3Wd8pNIiLnlpubi6enp/2H0oSEBMxms3oX1EDlHvyjPklKSiIpKQmr1cqOHTt0g7VIGWyGjc/+/IwZ62aQb83H08WTMZ3HMLjF4Or7sN86HxaMhazD/1vnFwlN+8HGz8BWBIExMPjfENnBoaGcyMzi0Te/5pvNabhHtaJ9o0CSbk2gUZB+kawsDXJRmnKTiFTUkSNH2LBhA7GxsbRs2dLZ4dR6js5LKszOQV8KRMp2IPsATy1/irVpawHoGt6VST0m0dC3YfUFsXU+zBkKnOMjrOVVcE0SeAY4NJTUzHzu/fcKVvz2G5jM3HlDfyZcn4C7iybmvBD6DC6bXhcRKa/Dhw+zbt06goODueiiizCb1aX+Qjj687fcZ2f37t3ccccd9uXo6GiCgoLsfyEhIWzfvr3KAxSRmsNm2Pj8z8+5Yf4NrE1bi6eLJ+O7jefdy9+t3qLMZi25UnauoszDv+RKmYOLsl93HGXgq8tYfziPoJh43nn0H0y+qYuKsmqi3CQicnaRkZF06dKF7t27qyirBcp9j9lrr71GWNj/hng+ceIETz31FKGhJZOjzp49m5dffpm33nqr6qMUEac7dOoQE5ZPYFXqKgA6hXXimYufoZFvo+oPZt+K0t0Xy5KfCftXQmxPh4SQlX2Kx979hm8OuGB296J1pB9JtyYS08DbIe1J2ZSbRET+Jz09nV27dtGtWzcslpIfCMPDnTgyslRIuQuzn3/+mffff7/UuhtuuIEmTZoAEBMTw1133VW10YmI0xmGwdwdc5m2dhq5xbl4WDx4qNNDDGk5BLPJSb++nUqr2u0qKD0rn3+88AUbtu/B7OHDXTcO4Ikr4/Fw1VWy6qbcJCJSwmq1snHjRvLz89m1axdxcXHODkkqqNyF2d69e4mMjLQv33XXXfj7+9uXY2JiOHjwYNVGJyJOdeTUESasmMDKIysBSAhN4JmLnyHaL9q5gfmUc4Lm8m5XAb/tPMZDs9dztDAAn8AQXrhrIIO7Na3ydqR8lJtEREpYLBYSEhI4fPgwzZs3d3Y4UgnlLszMZjOHDx+mYcOS+0hefvnlUo+npaXh6upatdGJiFMYhsFXO79i6tqp5BTl4G5x558J/+TWlrdiMdeAq0LZRwATZ7/HzFQyOmPjHlXWZE5uHi/OW8NHm7IxDGgVFcQbj/ajSYhPlbUhFafcJCL1WUZGBiaTicDAQACCg4MJDg52clRSWeUuzFq3bs2iRYvo2rVrmY//+OOPtGnTpsoCExHnSM1JZeKKiSw/vByA9iHteebiZ4j1j3VyZEBxAfw4Hta8+5eVfy/Q/jtU/xVTSuYzqwIHjmUy9NkP2XIwA/fIOP6R2IYJg1qr62INoNwkIvVVWloaa9aswd3dnV69euHu7u7skOQClfsGkREjRvDcc8/x3XffnfHYN998w5QpUxgxYkSVBici1ccwDL7e+TXX/+d6lh9ejpvZjUc6PcK/r/h3zSjKTuyDmVf8ryjr+Qjc+CH4/W0ia79IuOkjiL+6SppdsfsY17+9hu1ZZjy9vHnxls48f307FWU1hHKTiNRXwcHBeHt7ExwcbB/oQ2q3Cs1jNmTIEGbPnk3Lli3tNxRu376d7du3c8MNNzBnzhyHBeoMmitG6ou0nDQmrZzEskPLAGjboC3PXvIsTfybODmy/9q+AL6+B/JPgkcAXP8OtOhf8pjNWjJK46m0knvKGveokitl+fkFvL1sL6/8sgubAc1DPHn91gTiIgIu+NhSPuX9DFZuEpH6Ij8/Hw8PD/tyUVGRumtXoxo3wfTnn3/O559/zo4dOwBo3rw5Q4YM4ZZbbqny4JxNyU/qOsMw+HbPtzy/+nmyC7NxNbsyqsMohrUehou53D2dHcdaDIufhd/+e99QVCcY/CEEOHbwkd0H07jn5TlsPWHCLTSWwZ0a8vQ1bfB00y+S1akin8HKTSJS1+3bt4/NmzeTkJBARETE+XeQKufoz98Kf/O65ZZb6mSiE6lvjuYe5emVT7Pk4BIAWge35tmLn6VZYDPnBnZadip8cSfs+61kues9cPmz4OLm0GZX7TnOve8v4+C+o7h7eDLlunhu6VYDunLKOSk3iUhdl5OTg81mIzU1VYVZHVWuwiwrK6tCVWF2dja+vr6VDkpEHMcwDL5L+Y7nVz1PVmEWLmYX7mt/HyPajKgZV8kAUpaWFGU56eDmA1e/Bm2ud2iTNpvBm7/uZvrCHVhtnsS16cDbI/sQHxXo0Hal8pSbRKQ+admyJX5+fvZRaKXuKde3sMDAQI4cOUJoaGi5DhoVFcWGDRvsE3yKSM1wLO8Yz6x8hl8O/AJAq6BWPHvJs7QIbOHkyP7LZoPfpsHiyWDYIDS+ZCCPBo6dj2XvkWOMSvoPmwsaYLK4cH3HKJ65tg3e7jWkUJUyKTeJSF126NAhjh49SocOHYCS6UFUlNVt5frWYRgG7733Hj4+5Zuvp6io6IKCEpGqZRgGP+79kedWPcfJgpO4mFy4p/093Nn2TlzNNeSm4dwM+Opu2LWwZLnDbTDwJXDzcmiza1KOM3zyRxw9cRKvwHxeuHsQN3VuhMlkcmi7cuGUm0SkrsrNzWXDhg3YbDZCQ0OJjIx0dkhSDcpVmEVHR/Puu++ef8P/Cg8P1wgxIk5gtVlJTk/maO5RQrxCSAhN4GTBSZ5b9RwL95UUPHGBcTx7ybO0DGrp5Gj/4uBamDscMg+Ai0dJQZZwu0ObNAyDd5ft4YUF2ynyaUi0lxfvj76R9o0bOLRdqTrKTSJSV3l5eREfH09BQYHuJ6tHylWY7d2718FhiMiFWrRvEVNWTyEtN82+zt/Nn2JbMTnFObiYXBjZbiQj247E1VJDvpwaBqx6G356AmxFENSkpOtieFuHNnvo6AnGzlnLbwcKAbi2a3MmX98WH3VdrFWUm0SkLklPT8fPz88+HH5srAaeqm/0LUSkDli0bxGjl4zGoPTsF5mFmQBEeEcwo88M4oPjnRFe2fKzYP4DsHVeyXKrq+Ga18HD36HN/rp5H/dO+5TjOUX4xrZj0vUdubVrtLouioiI0+zdu5dNmzYRFBREjx49lJPqKRVmIrWc1WZlyuopZxRlf2UzbMQFxlVjVOeRuhnmDIWM3WB2KRkGv9v/gQMTkWEYvP9bCs9/v5WcQjORIYG8d3d3OjUNc1ibIiIi5RESEoKLiwv+/v4YhqHCrJ5SYSZSyyWnJ5fqvliWtNw0ktOT6RLepZqiOof1n8B3j0BxPvg1LJkwupFj4zp6Mofx87fx09Y0wMS1l/XmhZs64u/l7tB2RUREzqawsBA3t5K5Ob29venTp4+9G6PUTyrMRGq5o7lHq3Q7hynMhe//BRs+KVlu1g+uew9Xy2QAAEgFSURBVAe8gx3a7JKNuxj16pdkuofiFRjOE1e14vaLGuvXSBERcQrDMNi1axe7du3ikksusc+vqKJMzM4OwNG+/fZb4uLiaN68Oe+9956zwxGpcsW24nJtF+IV4uBIzuHYLnivX0lRZjLDpU/ArXMdWpQZhsGHy1MY9tZijmbmEEw2c//vIoZ2j1FRJk6n3CRSvx0/fpzi4mIOHz7s7FCkBqnwFbOYmBjuuOMOhg8fTnR0tCNiqjLFxcWMHj2axYsX4+/vT6dOnbjuuusIDnbsL/Qi1WXpwaVMXjX5nNuYMBHmFUZCaEI1RfU3W76G/zwAhdngHQI3vA9NelfZ4a02g9UpGaRn5xPq60HX2CByCosZ9+UffL8pFfwi6Nc8jKR7+hPora6LdZVyk4jUFiaTiY4dO3L06FFNGC2lVPiK2UMPPcRXX31FkyZNuOyyy/j8888pKChwRGwXbPXq1bRu3ZqoqCh8fHwYMGAAP/30k7PDErlghmHw/qb3uf/n+8kpziHWr2RIXROlrwSdXh7bdSwWs6V6gywuhB/GlsxPVpgN0T3gnmVVWpQt2HyES174hSHv/s4/P9/AkHd/p9MTX9H9kff57o8juFpMTBjUmlkPD1JRVscpN4lITbZ371727NljX3Z3d1dRJmeoVGG2YcMGVq9eTatWrXjggQeIiIjg/vvvJzk5uUqDW7p0KYMGDSIyMhKTycS8efPO2CYpKYmYmBg8PDzo1q0bq1evtj92+PBhoqKi7MtRUVEcOnSoSmMUqW55xXmMXTqWGckzMDC4scWNfHn1l7yc+DKhXqGltg3zCmN64nT6Ne5XvUGePAAfDIBVb5UsX/wQDPsG/KpukswFm49w7yfJHMnMt68zrMUc2bWFo2mH8SnIYO7/9eCOS2LVdbEeUG4SkZrq6NGjbNq0ia1bt5KVleXscKQGq/Q9ZgkJCbz66qscPnyYCRMm8N5779GlSxc6dOjAzJkzMYyzD91dXjk5ObRv356kpKQyH589ezajR49mwoQJJCcn0759e/r37096evoFty1SEx05dYRhPwzjh70/4GJy4cmLnmRC9wm4Wlzp17gfP97wIzP7z+SFni8ws/9MFtywoPqLsp0L4e2ecGhtyZxkQz6HyyaBperGGrLaDCZ9s/WMCQJMFhdcGzTG4hOMd3AYbaMcOyea1DzKTSJS04SEhNCoUSPi4+Px8/NzdjhSg1X6m1JRURFff/01H3zwAQsXLuSiiy7izjvv5ODBgzz++OMsWrSITz/99IKCGzBgAAMGDDjr49OnT2fkyJGMGDECgLfeeovvvvuOmTNnMm7cOCIjI0v9Cnno0CG6du161uMVFBSU6vqiXzWkJlmXto7RS0aTkZ9BoHsg0xOn0zm8c6ltLGaL84bEt1lh8WRY9lLJckQHuOnfEBhT5U2tTsmwXymzFeSCyYzZrWQ0Kxe/Brj4NSA9p5jVKRl0b6r7duoT5SYRqQlSU1MJDQ3FbC65BtKhQwfnBiS1QoULs+TkZD744AM+++wzzGYzQ4cO5eWXX6Zly5b2ba677jq6dHHsl8PCwkLWrVvHY489Zl9nNpvp168fK1euBKBr165s3ryZQ4cO4e/vzw8//MCTTz551mM+//zzTJo0yaFxi1TG3B1zmbxqMsW2YuIC43j10leJ9Il0dlj/k50GX94Je5eVLHe5C/pPBhfH3NeVnl1SlFlzTlCQuguzqwfuDeMx/e0+utPbSd2n3CQiNcXWrVvZvXs3sbGxtGnTxtnhSC1S4cKsS5cuXHbZZbz55ptce+21uLq6nrFNbGwst9xyS5UEeDbHjh3DarUSFhZWan1YWBh//vknAC4uLkybNo0+ffpgs9l49NFHzznq1WOPPcbo0aPty1lZWTRq1MgxT0CkHIqsRbyw5gVmb58NQP+Y/jzd42m8XL2cHNlf7P0NvrgDTqWBqzdc/Sq0vdGhTQZ4lnzumN29MZnMmFzcoIwuaqG+mhOmvlBuEpGaIjg4mD3/396dh0dVnv8ff89MMpN9SMjGlkS2QIAkBAibbIJVrNDan1atVkRLW3elWrWtX7q421pEY622Sq1WsbVaRGtVlE2QLaCyb2EnCRCyDdlm5vz+mDo1spjATM5k8nld11xwzpyZc2eezLlzn+c5z9m1y3/zaJGWalVh5vF4eP7555k6dSqJiYmn3C42NpYXXnjhrIMLhKlTpzJ16tQWbetwOHA4NHObhIajdUf5yeKfsLZsLRYs3FpwK9cPvD50JrLweuHj2fDhb8DwQkp/+O6LkNI3qLvdeqiSB97eDIAlwo6jxwAsEY5mn4sFSHf6ps6X8KfcJCJmc7vdRET4/qxOS0tjwoQJxMbGmhyVtDetmvzDZrPxox/9iMrKyiCF03LJycnYbDbKysqarS8rKyM9Pd2kqEQCY/PRzVz59pWsLVtLbGQsT573JD8Y9IPQKcqOV8CrV8LCX/mKstwrYMbCoBdlc98v5hs/eYote0uJj/IlQFtk1AlFGcCsKTnYrCHyeUlQKTeJiFm8Xi+bNm1iyZIlNDU1+derKJMz0epZGQcOHNjsPgxmsdvtDBkyhIULF/rXeb1eFi5cyMiRI8/qvYuKisjJyQn6tQgiJ/Nuybtc8+9rOOQ6RGZCJn+76G+M6xG4e3+dtQNr4Y/jYNu7YHPAlCfgkmfAHrwk1OD28H//2sC9Ly2hrrGRfrF1LJw5jmeuLiDd2Xy4Yrozij9cXcCFAwM3Nb+EPuUmETGDx+Ph4MGDuFyuE07IiLSWxWjl3MHvvvsu9957L7/5zW8YMmTICWcEAjkNaG1tLTt27ABg8ODBPP7440yYMIGkpCQyMjKYN28e06ZN449//COFhYXMnj2b1157jS1btpwwvv9MVFdX43Q6qaqq0vSmEnQer4en1j/Fnz7/EwCju47mkbGP4HSEyJTvhgGr/wT/+Rl4GiHxHN+si13ygrrbfRXHuelvxXy2vwrD6+HK/lH85vsTiYzwTfTh8RqsKqmgvKae1Hjf8EX1lIWH1hyDlZtExCyVlZXU1dXRpYtOCIa7YB9/W12YfTHtJ9Bs+JBhGFgsFjweT8CCW7RoERMmTDhh/bRp05g7dy4ATz31FI899hilpaXk5+czZ84chg8fHpD9K/lJW6lprOGepfewZP8SAKYPmM5tBbdh+8osg6ZpqIG3boMNr/uW+10M337ad5+yIHpt6Qbue20VDbFpdIqJ5PeX5zMhO/XrXyhhoTXHYOUmEWkLhmGwfft2EhMTSUlJMTscaWMhV5gtXrz4tM+PGxdCQ67OkpKftIXdVbu59aNbKakqwWFz8MtRv+TinhebHdb/lG2C166Bo9vBGgGTfgUjb4IgXu/W5PHywBvFPP3qfACGFg7nuR+eR7dO0UHbp4Se1hyDlZtEpC2UlJSwYcMG7HY755133klngJXwFezjb6unyw+n5HYqRUVFFBUVBfQMq8jJLDuwjJ8u/ik1TTWkxqQyZ8IcBiQPMDus/1n/Ciy4A9x1EN8VLnsBMkYEdZelVfXc8koxq3cfI8KZxiWDu/O7H15AlL3VhyvpQJSbRKQtZGZmcvDgQTIzM1WUScC1uscMfGNp//znP7N5s2/K6gEDBnDdddfhdIbItTABorOSEiyGYTB341xmF8/Ga3jJT8nn9xN+T3J0stmh+TTVwb9/CsUv+pZ7nQffeQ5igxvf26u38Yu3d3Gs3kO8I4JHLx3E5EEhdCNtaVOtPQYrN4lIMBw+fLjZsMUvhkhLxxPs42+rZ2Vcs2YNvXr14ve//z0VFRVUVFTw+OOP06tXL4qLiwMeoEi4qXfXc8/Se3h87eN4DS/f6fMd/nzBn0OnKDu6E/58/n+LMguM/xlc9Y+gFmUer8F9L33EdY++TOnureR0SeCtW85VUSYtptwkIsGwdu1aPvnkE/bv3+9fp6JMgqXVY4PuuOMOpk6dynPPPee/kZ7b7eYHP/gBt99+O0uWLAl4kCLhotRVym0f3camo5uwWWzcXXg3V2RfEToH+U3z4V83QUM1xHSG//cnX29ZEB2pbeD2V9ez+PMyDAMuHNiFoh+PIMahISLScspNIhIM8fHxWK1WDSGWNtHqoYzR0dGsW7eOfv36NVu/adMmhg4dyvHjxwMaoJk0XEQCaV35Ou746A6O1h+lk6MTj49/nGHpIXI/Ik8TvD8LPinyLfcY4bueLCG4PVaf7DzCra+up7ymgehIG7/4RiZXjekf1H1K+9GaY7Byk4gEitfr9c/0ahgGtbW1xMfHmxyVhIKQm/wjISGBvXv3npD89u3bp19akVN4fdvr3L/yftxeN30T+zLnvDl0i+tmdlg+Vfvh79Nh/yrf8qhbYOIssAWvx8rrNXjotSUUzf+YyK459OmayB+uKqBPmo4hcmaUm0TkbHk8Hj7//HMaGhooLCzEYrFgsVh0DJE20+rC7PLLL+f666/nt7/9LaNGjQLg448/5q677uLKK68MeIBm0MxXEihN3iYeXfUor259FYDzM8/n/tH3ExMZY3Jk/7XjA3h9BtRVgMPpuzdZ/+BO1V95vJGfzFvH2+8vx9tYz/nd4OkbRxPr0KyLcuaUm0TkbB0/fpwDBw5gGAbHjh0jKSnJ7JCkg2n1UMbGxkbuuusunnnmGdxuNwCRkZHccMMNPPzwwzgcjqAEagYNF5GzUVFfwZ2L72R16WoAbs6/mR/m/jA0rifzemDxI7D4UcCA9Fz47ouQdE5Qd/vpvkpufLmYA5V1RHgbuHlEKrddMjo0PhMJOa05Bis3iUggHDhwAIfDQXJyiEzIJSEl5G4w/YXjx4+zc+dOAHr16kVMTIj0AASQkp+cqa0VW7n1w1s56DpITEQMD415iPMygjuJRovVHoZ//gB2LfItD5kOFz4MkVFB26VhGDwxfyVPfLgDIzqRzM4xFH2vgIHdwmsacwmsMzkGKzeJSEt5vV62bt1KZmZmWB4rJPBC7hqzL8TExDBo0KBAxiISFv6z+z/c9/F91Lnr6BHfgzkT5tA7sbfZYfnsWQH/mA41hyAyBi6eDXmXB3WXNfVN3Pr8R7z94TIsFhsXXzCJ319dSEKUZl2UwFNuEpGW2rhxI7t37+bIkSOce+65Gr0hpmt1YVZfX8+TTz7JRx99RHl5OV6vt9nzul+MdFRew0vR+iKe/exZAEZ2Gclj4x7D6QiBXiHDgOVPwge/BMMDydm+oYup/b72pWdj86Fqbny5mF2HG7HHJHDjhYO554qR/tmuRAJFuUlEWqt3794cPnyYPn36qCiTkNDqwuz666/nvffe49JLL/XPWCPS0dU21nLvsntZtG8RANNypnH7kNuJsLbxhBZeD+xZDrVlEJcGmaOgoQbevBG2vu3bZtBlvp4yR1xQQ3l+4ec88tF+GtxeunWK5skbr2NIpi6kluBQbhKRr2MYBlVVVXTq1Anw3WZjwoQJOl5IyGj1X40LFizgnXfeYfTo0cGIJyRo5itpjb3Ve7n1w1vZWbUTu9XOL0f9kim9prR9IJvmw7t3Q/XB/62LTQEDOH4YbHbftWRDr4MgJqG6Rg83Pv0Wby8rJjI5k/OHD+Lx7+aTFGsP2j5FlJtE5HTcbjerV6+moqKCc889F6fTN5pFRZmEklaPJ+rWrVvY38/hpptuYtOmTaxevdrsUCTELT+wnCvevoKdVTtJjU5l7oVzzSvKXrumeVEG4DrsK8piUuD692DY9UEtynYeruXbRR/z3pajWIHpw7vy/LRhKsok6JSbROR0bDYbERERWCwW6urqzA5H5KRaXZj97ne/4+6772bPnj3BiEekXTAMg79s/As3LLyBmsYaclNyefXiVxmUYsKkA16Pr6eM00ywaovwTYkfRPPXH2Dqk8vYWlZDl+6ZzP3ZNdw/fTJWq85GSvApN4nIyXwx+bjFYiE/P5+xY8eSnp5uclQiJ9fqoYxDhw6lvr6enj17EhMTQ2Rk85nVKioqAhacSCiqd9fz6xW/5q1dbwHw7d7f5r4R92G3mdQrtGf5iT1lX1VzyLfdOWMCvvv6Jjc/ee4/vL58M45u2YzslcycKweTGh+86fdFvkq5SUS+rKmpifXr15OQkEB2djbgu7fhV48NIqGk1YXZlVdeyYEDB3jwwQdJS0vT2FzpUMpcZdz+0e1sOLoBm8XGXcPu4nv9vmfu96C2LLDbtcK+iuP86IUVrP1kDYbh4Zo8J7MuH06ETbMuSttSbhKRLzty5AilpaWUl5eTmZlJVJROFkroa3Vhtnz5clasWEFeXl4w4hEJWevL13PHojs4UncEp8PJ78b9juFdhpsdFjhaeF1NXFpAd/v+pjJ+8tp6quvdpGRl84uL+nLFhIKA7kOkpZSbROTLunTpQnZ2NmlpaSrKpN1odWHWr18/XTQpHc4b29/gN5/8hiZvE30S+/DEhCfoEd/D7LCg9HN4996v2cgCCV19U+cHQJPHy71/Wchrn1didcQwOKMTRd87j66dogPy/iJnQrlJpGPzeDxs376dPn36YLPZAOjbt6/JUYm0TqvHGz388MP85Cc/YdGiRRw9epTq6upmj3BQVFRETk4Ow4YNMzsUMVmTt4mHVz3M/y3/P5q8TUzKmMRLk18yvygzDFj9Z3huIlTshOgv7g/21eFb/12+8GGw2s56t4eq6phy/z948Z2lNJbuYPrIDOb9cKSKMjGdcpNIx7Zq1Sq2b9/Ohg0bzA5F5IxZjC+mq2khq9VXy311/L5hGFgslrC6v0p1dTVOp5OqqioSEhLMDkfaWGV9JXcuvpOVpSsBuDH/Rn6U+yOsFpOvn6qvgrdug41v+Jb7Xgjf/gPsXnbifcwSuvmKspypZ73bJdsOc/u89RytdmEt3cKsqyZw7YUhMJRTwlZrjsHKTSId25EjR1i3bh0FBQV07tzZ7HAkTAX7+NvqoYwfffRRwIMQCTXbjm3j1g9v5UDtAWIiYnhwzINMzJhodlhwoBj+MR2O7QZrBEz6FYy8yXdvspyp0O+bvtkXa8t815RljjrrnjKP1+CRt9bx3CeHMAwY2KMzT/30Js5JCe97Rkn7otwk0rF4vV7q6uqIjY0FIDk5mYkTJ/pP0oi0R60uzMaNGxeMOERCxgd7PuBny35GnbuO7nHdmXPeHPok9jE3KMOAlX+E934B3iZwZsBlL0D3oc23s9oCOiX+4Zp6pv3276zZuANHt358f/xA/u/iHKIiz35YpEggKTeJdBz19fWsXr2a+vp6xo0bh93uu12NijJp787oN3jp0qVcffXVjBo1igMHDgDw17/+lWXLlgU0OJG25DW8PL3+ae5YdAd17jpGdBnBqxe/an5RVncM5l3tG6bobYJ+F8OPl5xYlAXYqpIKvjlnGev3VmK3Wfj5+Zk8eMkgFWUSspSbRDqGiIgImpqa8Hg8uFwus8MRCZhWF2avv/46F1xwAdHR0RQXF9PQ0ABAVVUVDz74YMADFGkLriYXd3x0B3/49A8AXN3/av4w6Q84HU5zA9u/Bp4ZC1sWgM0Okx+Fy1+C6MSg7dLrNXhm8U6ufO4TymsayBkwgDd+NZ0fXxyYWR1FgkG5SaTjiIiIoLCwkHHjxpGYGLx8KNLWWl2Y3X///TzzzDM899xzze6ePnr0aIqLiwManEigebweVpeu5p1d77C6dDUer4d91fu4+p2r+XDfh0RaI/nN6N9wd+HdRFhbPdI3cLxeWP4kPH8BVO2FxCy4/j0Y/iPf9WRBUlFbz6UPzePXL76Lx2twyeBuzL91LMP6ZQZtnyKBoNwkEr7q6+tZvnw5paWl/nVxcXFER2tGYAkvrf7Lc+vWrYwdO/aE9U6nk8rKykDEJBIUH+z5gIdXPUzZ8TL/ukRHIvWeeurcdaREpzB7wmxyU3JNjBI4XgFv/Bi2/8e3POASmPIERAW39279vkp++OxH7N68iQirlfuuGs91E3JOmOVOJBQpN4mErz179nD06FGOHz9OamqqriWTsNXqwiw9PZ0dO3aQlZXVbP2yZcvo2bNnoOIyVVFREUVFRWE1vXJH98GeD5i5aCYGze8OcazhGAAZ8Rm8cOELpMakmhHe/+xZAa9fD9UHwOaACx+CodcFtZfMMAz+snw3D7yzmSaPnayefXjse8MZl68bc0r7odwkEr769OlDfX09vXr1UlEmYa3Vv90zZszgtttuY+XKlVgsFg4ePMjLL7/MnXfeyQ033BCMGNvcTTfdxKZNm1i9erXZoUgAeLweHl718AlF2Zc1eBroHGXifU+8Xlj6O5j7TV9R1rk3zFgIw64PalFWXdfI92e/xaw3P6PJYzB5YDof/PoKFWXS7ig3iYSPpqYmdu3a5V+2Wq3k5eURFxdnYlQiwdfqHrN77rkHr9fLxIkTOX78OGPHjsXhcHDnnXdyyy23BCNGkbNSXF7cbPjiyZQdL6O4vJhh6cPaKKovqT0Mb/wQdn7oWx70Xbj4cXAE9z5hmw5WM+23r7Fn717scUn8+gffYvroLA1dlHZJuUkkPHi9XpYuXYrL5cJqtZ7QCy4SzlpdmFksFn7+859z1113sWPHDmpra8nJydFZDAlZh48fDuh2AVWyFF7/AdSWQkQ0XPQYDL466EMXX1uzj//710bqvPF0jo/m8R9PYvLwc4K2T5FgU24SCQ9fFGO7d+8mKSnJ7HBE2tQZTztnt9vJyckJZCwiQZESkxLQ7QLC64Elj8HiR8DwQko/uGwupPYP6m7rGj3cPW818zceBeC8vHN47DtTSHHGBHW/Im1FuUmk/XG73Xi9Xv+Nonv27ElGRgYRESbOjixighb/xl933XUt2u75558/42BEgqEgtYC0mDTKj5ef9DozCxbSYtIoSC1om4BqyuCfP4CSJb7l/KvhokfBHhvU3W45WMm1j82j5EAZ0RkDueubudwwrhdWq4YuSvul3CTSvtXW1rJ69WocDgcjR470D6dXUSYdUYt/6+fOnUtmZiaDBw/GME49iYJIqLFZbdxTeA8zF83EgqVZcWbBlwDuLrwbm9UW/GB2fgT/nAGuwxAZ67uWLO+KgL29x2uwqqSC8pp6UuOjKDwnCZvVwvxPD3LPP9ZTUV5JQpSNx/9fNlNG9g7YfkXMotwk0v7V19fjdrupq6sjJkYjOKTjanFhdsMNN/DKK69QUlLC9OnTufrqqzX2V9qNSZmTeHz84yfcxywtJo27C+9mUuak4AbgccOih3wzL2JA6gDf0MWUwM1++O6GQ/zqrU0cqqr3r0tPcNA3PZ4l244AMGbkcB78Vj/69EgP2H5FzKTcJNK+xcXFMWzYMBISEvxDGUU6KovRilOMDQ0N/POf/+T5559n+fLlfPOb3+T666/nG9/4RljO5FZdXY3T6aSqqoqEhASzw5EA8Hg9FJcXc/j4YVJiUihILQh+T1nVAd8EH3uX+5aHTPfdnywyOmC7eHfDIW54qbjZQE3D66Hp8B6s0fFEJKRwy3m9uX1SX2wauijtREuPwcpNIu2Hy+Xi008/JTc3V5PzSLsT7ONvqwqzL9uzZw9z587lxRdfxO12s3HjxrD7gin5yVnb9h688SOoqwB7PEyZDYMuDeguPF6Dcx/5sFlPGYC7qozGw7uxWGx0HVDImv+7UEWZtCtncgxWbhIJbatXr6a0tJTOnTszatQos8MRaZVgH3/P+MpKq9WKxWLBMAw8Hk8gYxJp/zxNsPDXsHyOb7lLHlz6AnTuFfBdrSqpOKEoA7AlpBJR78KWkMyxei+rSioY2cvEm2iLtAHlJpHQlpubC8CgQYNMjkQk9Fhbs3FDQwOvvPIK559/Pn379uXzzz/nqaeeYu/evWF3RlLkjFXugxcu+l9RVvhDuP79oBRlAOU1vqLMMLy4q8r8EyBYLBbsaT2xRSc0204k3Cg3iYSu+vp6Dh486F92OBwMGzaMqKgoE6MSCU0t7jG78cYbefXVV+nRowfXXXcdr7zyCsnJycGMzTRFRUUUFRXpbKu03pZ34M0boL4SHE741pOQ862g7jI13pfcGg5sxVtfTaTHTWRSt1NuJxJOlJtEQld9fT2LFy+mqamJqKgoTcwj8jVafI2Z1WolIyODwYMHn/Zi6n/+858BC85sGscvLeZuhA9mwSdP+5a7FsBlL0BiVnB36/Hy6H+28uySXbirD9N0ZK+vlyw20b+NBUh3RrHs7vN0jZm0Ky05Bis3KTdJaCsuLqampoahQ4cSGxvc+3WKBFvIXGN2zTXXhOXsViJnraIE/jEdDq7zLY+8GSbOgojgTvt7qLKOm19axdr9tQBEJKQQEdsJbJH+bb74xs6akqOiTMKScpNIaGlsbCQiIgKr1Xe1TF5eHgA2WxvcK1SknWvVDaZF5Cs2/Qv+dTM0VENUJ7jkGcieHPTdvr9hPzc/8TpVx+vp3CuXRy/Nx2blxPuYOaOYNSWHCwd2CXpMImZQbhIJHceOHWPNmjV07dqVAQMGACrIRFrjjGdlFOnQmurhvV/A6ud8yz2Gw//7M3TqEdTderwGsz/Yxpz3NlJfVUWPxCj+fM0g8nr7Cq/zc9JZVVJBeU09qfFRFJ6TpJ4yERFpEw0NDdTX11NWVkZ2djYREfozU6Q19I0Raa2jO+Hv10LpZ77l0bfDeb9oNoQwGMqr67n11XV8sqsCS4SD7108gZ9PySU50enfxma1aEp8ERExRXp6OgUFBaSlpakoEzkD+taItMbn/4C3boPGWojpDJc8C30mBX23izcf4sdz/onLkUx8gpMHvzOIb+WfOPOiiIhIW6murmbLli0UFBT4C7Fu3ZSbRM6UCjORlmiqg3/fDcV/8S1njob/9ydI6BrU3Xq8BnMWbue3r75PU1UZmWlNvHLzRfROjQ/qfkVERE7HMAzWrFmDy+Viy5YtDBw40OyQRNo9FWYiX+fwNvj7NCjfBFhg7F0w7m6wBffrc7imgdvnrePjHUeJSOrOeb2d/HbGRaQlqygTERFzWSwWBg8ezI4dO+jbt6/Z4YiEBRVmIqez/hV4eyY0HYfYVPjOs9BrQtB3u3RrGTe/sIgq4oiOtPHg5XlcMrh70PcrIiJyKi6Xi4aGBv+NohMTExk2bJjJUYmEDxVmIifT6IJ37oL1L/uWzxkL3/kTxKcFdbder8GcD7bwyNw38TTWkZNbwJ9+PFZDF0VExFSVlZWsWLECm83G2LFjiYqKMjskkbCjwkzkq8o2+WZdPLIVLFYYfy+M+QlYg3svlqO1Ddw+bz1Ltx/BEp3A2F6JzP7hKLqrKBMREZPFx8cTExOj2RZFgkjfLpEvGAYUvwj//im46yG+i2+Cj6xzg77rT3Ye4dZX1lJe6yYq0sojP7qYb+el43A4gr5vERGRk2lqaiIy0ncrGJvNxogRI7Db7Vgsuj+mSDCoMBMBaKiBBXfA53/3LfeeBJf8EWKTg7pbr9dgznsbePSlf0NkNP0HDuLpq4aQna5eMhERMU95eTnr1q1j4MCB/inwdbJQJLhUmEnH4vXAnuVQWwZxaZA5Cso2wj+mw9EdYLHBxPtg1G1gtQY1lGOuRma+tp4P1u/EXe9idEYcf/rBUDo744K6XxERka9TUVFBY2Mje/bs0b3JRNqICrOTKCoqoqioCI/HY3YoEkib5sO7d0P1wf+ti3L6JvrwuiGhG1z6PGSMCHooa/dUcPPf1nGoqp6Y+E7cM+0ipk8cRExMTND3LSLtk3KTtKXs7GzsdjtZWVlmhyLSYVgMwzDMDiJUVVdX43Q6qaqqIiEhwexw5Gxsmg+vXQOc4te9Sz58/w2ISQpqGIZh8PQHm3n4b+9jTc6kV1oniq4qoH8X/X6JfJWOwSenz0WCoaKigv3795Obm2t2KCIhK9jHX/WYSfjzenw9ZacqygBch329Z0FUebyRO//+KQveX4y3vprxvZN5/paLiXPoaygiIuZpbGzkk08+wePx4HQ6yczMNDskkQ5JfxFK+NuzvPnwxZOpPuDb7pwxQQlh3d5j3Py3dRyorCOuyzlc2dvg7qsuVFEmIiKms9vtDBgwgKNHj+p6MhET6a9CCX+1ZYHdrhUMw+DZRdt45K31eO1xZHaOoeh75zKwW3B750RERE6nqqoKu91OdHQ0AJmZmeopEzGZCjMJf3Fpgd2uharqmpj58koWfLAYPG6mXjiR3101nISoyIDuR0REpDVKS0tZu3YtTqeTUaNGYQ3yLMQi0jIqzCT8ZY6ChK5QfYiTX2dm8T2fOSpgu/xsfyU3/a2YvUdd2O0OvjfsHH5+Wa6KMhERMV1CQgI2mw273Y7X61VhJhIiVJhJ+LPa4MJH/jsro4XmxZnF98+FD/u2O0uGYTB32S4eencbjR4vGZ1j+f0Pv09+ZmciIvR1ExERc3g8Hmw2X56LiYlhzJgxxMTEYLFYTI5MRL6gUyTSMeRMhe++CAldmq9P6OpbnzP1rHdRXd/ED/+0lHuenofr6EEuGJDGglvGMLRXmooyERExzYEDB/jggw+orq72r4uNjVVRJhJi9NeidBw5U6HfN32zL9aW+a4pyxwVkJ6yDQequOlvxezYuQuru4Er+0fxyPcG+89OioiImOXAgQM0NjZSUlJCXl6e2eGIyCmoMJOOxWoL6JT4hmHw8sq9/HrBJhrdXrKyzuGn38tn8ohBKspERCQk5Ofns3fvXnr16mV2KCJyGirMRM5QbYObO/+2ivlLi4lMyeL8nDR+e1kenWLsZocmIiIdWFlZGbW1tf5CzG6307t3b5OjEpGvo8JM5AxsPlTNjX9dw6a1y7F4m5gxsT8//95QjdcXERFTVVVVsWrVKgASExNJSkoyOSIRaSkVZiKtYBgG81bvY9b8jTS4vXTv2YcbhyZw1TdHqygTERHTOZ1OMjIysNlsdOrUyexwRKQVVJiJtJCrwc09r63lX+v2Y7VHMT47hce/ez6JMZEqykRExDTHjh3z35sMIDc3V3lJpB1SYSbSAltLa5jx3CK2fr4OW6Sdn113CTdO6IvVqsQnIiLmKSkpYePGjfTo0cM/46KKMpH2SYWZyNf4+5p93PevDdTVeUiMc3DHBQOYNjpTRZmIiJguLi4OwzDwer0YhqGiTKQdU2Emcgp1jR5+8cZnvL7uIABj+3fh/m+OoUdqIlar7s0uIiLm8Hq9/jyUkpLC2LFjcTqdJkclImdLhZnISewor2HGs4vYtOEzotJ7cdfUIdw4vrd6yURExFS7d+9m165djBkzhsjISAAVZSJhQqf9Rb7ijXX7mfLkx2zduZuESC8/H92Jm8/ro6JMRERM5fF42LVrFy6Xiz179pgdjogEmHrMRP6rvsnDL+dv5NXV+wAYN2IwNw+JZ3j+AJMjExERAZvNxtChQzly5Ag9e/Y0OxwRCbAO0WN2ySWXkJiYyKWXXmp2KBKidh6u5eLfvcdf31uJxQK3T+rDSzNGM3poHhEROn8hIoGlvCQttX//fsrLy/3LCQkJKspEwlSHKMxuu+02XnzxRbPDkBDg8Rqs2HmUf60/wIqdR/F4Df61/gAX//5DPlu7kmjXIZ6YmsXtk/pi09BFEQkS5SVpiYMHD7Ju3TqKi4upr683OxwRCbIO0RUwfvx4Fi1aZHYYYrJ3NxziV29t4lDV/5JbjN3G8UYPYGPowGxuHdudiUP7mhekiHQIykvSEunp6SQmJpKamorD4TA7HBEJMtN7zJYsWcKUKVPo2rUrFouFN99884RtioqKyMrKIioqiuHDh7Nq1aq2D1TatXc3HOKGl4qbFWXexnpcdQ0ATB6Yzr9+/l0uGH+uf5YrEemYlJfETJWVlf7/W61WRo0aRd++fXV/MpEOwPTCzOVykZeXR1FR0UmfnzdvHjNnzmTWrFkUFxeTl5fHBRdc0Gy8dX5+PgMHDjzhcfDgwbb6MSSEebwGv3prE8aX19Ueo2HfBhrLSwBYv68Sq9WqxCciyktims2bN7N06dJmMy7qvpkiHYfpQxknT57M5MmTT/n8448/zowZM5g+fToAzzzzDG+//TbPP/8899xzDwDr168PSCwNDQ00NDT4l6urqwPyvmKuVSUVzXrKAIiIxMDA8LgxvB4OVdWzqqSCkb06mxOkiISMUMpLoNzUkXwxYuP48eMmRyIiZgjp0zCNjY2sXbuWSZMm+ddZrVYmTZrEihUrAr6/hx56CKfT6X/06NEj4PuQtlde4yvKDON/fWa2qDgcXfvh6NYPi9XWbDsRkVNp67wEyk3h7su5qVevXowePZr+/fubGJGImCWkC7MjR47g8XhIS0trtj4tLY3S0tIWv8+kSZO47LLLeOedd+jevfspk+e9995LVVWV/7Fv376zil9CQ2p8FB5XJQ17P8dwN/rX26Ljmw1dTI2PMiM8EWlH2jovgXJTuDIMg23btrFy5Up/cWaxWEhKSjI5MhExi+lDGdvCBx980KLtHA6HZj0KQ8OyEkloKOdIUx1Nxw5iT8lq9rwFSHdGUXiOkqGItI2W5iVQbgpXdXV17NixA4/HQ1lZGenp6WaHJCImC+kes+TkZGw2G2VlZc3W6wAmrRFhs/LAD6YS4UzHnpzR7Lkv+stmTcnRfctE5GspL0mgxMTEkJeXR35+vn53RAQI8cLMbrczZMgQFi5c6F/n9XpZuHAhI0eONDEyCXUVFRUcOnTIv/ztwl78+Y5L6NIpptl26c4o/nB1ARcO7NLWIYpIO6S8JGejpKQEl8vlX+7WrZuuGRQRP9OHMtbW1rJjxw7/cklJCevXrycpKYmMjAxmzpzJtGnTGDp0KIWFhcyePRuXy+WfDSsYioqKKCoqwuPxBG0fEjwVFRUsX74cq9VKfHw8cXFxAFw4sAvn56SzqqSC8pp6UuN9wxfVUyYiXxaKeQmUm9q77du3s2XLFhISEhgzZoymwReRE1iML08HZIJFixYxYcKEE9ZPmzaNuXPnAvDUU0/x2GOPUVpaSn5+PnPmzGH48OFBj626uhqn00lVVRUJCQlB358EhmEYrFy5EofDQW5uLjabzeyQROQMmHUMDuW8BMpN7VV9fT1Lly6ld+/enHPOOWaHIyJnINjHX9MLs1Cm5Nd+1NbWEhsb659l0ePxqCATaed0DD45fS7tR21trX/UBig3ibR3wT7+qh9d2r29e/eyePFidu7c6V+nxCciImbxer18+umnLF68mGPHjvnXKzeJyOmoMDuJoqIicnJyGDZsmNmhSAt5vV4qKyvNDkNEJGiUm9oPq9WK2+3GMAyqqqrMDkdE2gkNZTwNDRdpP8rLy0lNTTU7DBEJIB2DT06fS/vgdrupqqqic+fOZociIgGioYwiX3HgwAFWrFiB1+v1r1NRJiIiZvF6vWzcuJFNmzb510VERKgoE5FWUWEm7UpTUxOff/45R44cYc+ePWaHIyIiwtGjR9m1axc7d+6kpqbG7HBEpJ0y/T5mIq0RGRlJQUEBFRUVZGVlmR2OiIgIKSkp9O3bF6fTSXx8vNnhiEg7pR6zk9AF1qGlrKys2cXTqamp9OvXzz81vohIR6DcFDoMw2DXrl243W7/uuzsbNLT002MSkTaO03+cRq6wNp8+/fvZ926dcTExDB27FgiIyPNDklE2oiOwSenz8V869atY//+/XTr1o2CggKzwxGRNqLJP6RDS0tLIyYmhvT0dN3/RUREQkJmZiaRkZGkpaWZHYqIhBFdYyYhp66ujujoaMB3TZl6ykRExGxfzk1JSUlMnDhRuUlEAko9ZhJStm/fzsKFCzl8+LB/nRKfiIiYxe12s3r1apYuXUpDQ4N/vXKTiASaCjMJKXV1dRiGQXl5udmhiIiIYLFYcLlcNDU1cezYMbPDEZEwpqGMJ1FUVERRUREej8fsUDqcgQMHkpKSQpcuXcwORUQkpCg3mcNmszF06FDcbjedOnUyOxwRCWOalfE0NPNV8JWUlFBbW8ugQYPMDkVEQoyOwSenzyW4PB4Pn332GWlpaXTt2tXscEQkhAT7+KseMzFNdXU1GzZsAKBLly4kJyebHJGIiHR0e/bsYf/+/ZSVlZGamkpEhP5UEpG2oaONmCYhIYF+/fphs9lUlImISEg455xzqKysJDMzU0WZiLQpHXGkTR04cICUlBTsdjsAffr0MTkiERHpyLxeL/v37ycjIwPwTfahm0aLiBlUmEmb2bZtG1u3biU1NZXCwkIsFovZIYmISAdmGAYrVqygoqICt9tNz549zQ5JRDowTZcvbSY9PR2bzUZiYqLZoYiIiGCxWOjWrRuRkZHExsaaHY6IdHDqMTsJTUkcOA0NDTgcDsB3TdnEiRP9yyIi0nLKTYFhGAZNTU3+IfVZWVl06dJFuUlETKfp8k9DUxKfOa/Xy+bNm9m3bx9jx44lJibG7JBEpJ3RMfjk9LmcuYaGBtauXYvX62XUqFFYrRo4JCItF+zjr45IEjTHjh2jqamJ8vJys0MRERHB7XZTXV1NTU0NNTU1ZocjItKMhjJKUFitVoYMGUJVVRXp6elmhyMiIkJsbCxDhgwhOjqauLg4s8MREWlGPWYSEIZhsHXrVvbs2eNfFx0draJMRERM09TUxNq1a6murvavS0lJUVEmIiFJhZkExKFDh9i2bRsbNmygrq7O7HBERETYtGkTBw8eZN26deiSehEJdRrKKAHRtWtXSktLSU1NJTo62uxwRERE6N+/Py6XiwEDBujemSIS8tRjJmfs4MGDzc5AFhQU0L17dxMjEhGRjsztdlNaWupfttvtjBo1CqfTaWJUIiIto8JMzsi6detYu3YtW7duNTsUERERmpqaWLp0KWvWrOHIkSNmhyMi0moqzE6iqKiInJwchg0bZnYoISs1NRWr1UpUVJTZoYiIdAjKTacXGRlJYmIiDodD9ycTkXZJN5g+Dd3Es7mmpiYiIyP9y3V1dbqeTESCRsfgk9Pn8j9erxfAX4h5PB7cbjcOh8PMsEQkTOkG02I6j8fD+vXr+fjjj/F4PP71KspERMQsx48fZ9myZWzcuNG/zmazqSgTkXZLhZl8LbfbTXl5ObW1tRq3LyIiIaG2tpaqqioOHjxIQ0OD2eGIiJw1TZcvX8vhcDBkyBAMwyA5OdnscEREREhNTSUvL4+UlBT1kolIWFCPmZzA6/WyceNGKioq/Os6d+6sokxERExTX19PcXExTU1N/nUZGRkaVi8iYUOFmZxg+/bt7Nq1i+Li4mbXlImIiJhlzZo1HDhwgM8//9zsUEREgkKFmZygV69eJCYmMmjQIGw2m9nhiIiIMGjQIDp16kR2drbZoYiIBIWuMRMMw+Dw4cOkpqYCEBERwbnnnmtyVCIi0pE1NjbicrlITEwEwOl0MmbMGJOjEhEJHvWYdXBer5dPPvmElStXUlpaanY4IiIiuFwulixZwsqVK6mrqzM7HBGRNqHCrIOzWq0kJCRgs9n8N+oUERExU3R0NHa7HbvdrmudRaTD0FDGkygqKqKoqChsk4FhGBiGgdXqq8v79+9PVlYWsbGxJkcmIiKnEu65yePx+K9rtlqtFBYWEhERQUSE/lQRkY7BYhiGYXYQoaq6uhqn00lVVRUJCQlmhxMQTU1NrFu3DpvNxpAhQ8wOR0TklMLxGBwI4fi5VFdXs2bNGnr37k1GRobZ4YiInFSwj78aytjB1NbWUl5eTmlpKTU1NWaHIyIiQllZGS6Xix07dmhYvYh0WBof0MEkJiaSl5dHQkIC8fHxZocjIiJC7969MQyDrKws/zB7EZGORke/MOd2u9mwYQP19fX+dT169MDpdJoYlYiIdGQul4sNGzbwxdUUFouFvn37YrfbTY5MRMQ86jELc59++ikHDx6kpqaGkSNHmh2OiIh0cB6Ph48//piGhgaioqLo3bu32SGJiIQE9ZiFuezsbOLi4sjOzjY7FBEREWw2G/379ycpKYnu3bubHY6ISMhQj1mY8Xq9VFdX06lTJwDi4uIYP348FovF3MBERKTDqqurwzAMYmJiAN+Q+u7duys3iYh8iXrMwkhjYyPLli1j+fLl1NbW+tcr8YmIiFkqKipYsmQJa9asaTbjonKTiEhzKszCSGRkJJGRkdhsNhoaGswOR0RExN9LBr4TiCIicnIaytjOGYbhP+tosVgoKCjA6/USHR1tcmQiItJReb1e/7T3UVFRjBw5kri4OE2FLyJyGjpCtmP19fWsWLGCnTt3+tc5HA4VZSIiYpqKigo++ugjKisr/esSEhJUlImIfA0dJdux8vJyjh49yvbt22lqajI7HBEREUpKSjh+/Dhbt241OxQRkXZFQxnbsYyMDOrq6ujevTuRkZFmhyMiIkJubi7R0dH07dvX7FBERNoV9Zi1I42NjWzatKnZrFbZ2dnExsaaGJWIiHRkVVVV7Nq1y78cGRlJTk4OERE69ysi0ho6arYThmGwYsUKqqurAcjJyTE5IhER6eiOHz/OsmXL8Hq9xMXFkZqaanZIIiLtlnrMTqKoqIicnByGDRtmdih+FovF3zvWvXt3s8MREZE2Foq5KSYmhszMTNLS0khMTDQ7HBGRds1iGIZhdhChqrq6GqfTSVVVFQkJCW2+f7fbTUNDQ7Ohil+eglhEJJyZfQwOVWZ/Li6Xi6ioKGw2G+DLSxaLRTeMFpGwF+zjr/7CD1Eul4ulS5eycuVK3G63f72KMhERMUtpaSlLlizhs88+86+zWq0qykREAkB/5YeoyMhIPB4PHo+Huro6s8MRERHx56a6ujo8Ho/Z4YiIhBVN/hFCDMPwn3W02+0UFhYSFRWF3W43OTIREemovpybOnfuzMiRI0lKSlIvmYhIgKnHLER8MXTxyJEj/nUJCQkqykRExDTl5eUsWbKEhoYG/7rOnTurKBMRCQIVZiGipKSEqqoqNmzYgOZjERERsxmGwaZNm6iurmbHjh1mhyMiEvY0lDFE9O/fH4/HQ3Z2ts5EioiI6SwWC0OGDGHv3r3079/f7HBERMKeesxMUl9fz65du/zLNpuNvLw8oqKiTIxKREQ6sqNHj1JWVuZfjo+PZ8CAAZoRWESkDajHzARNTU3+MfsOh4Nu3bqZHZKIiHRwR48eZcWKFdhsNsaOHdvsHpoiIhJ8KsxMEBkZSWZmJmVlZXTq1MnscEREREhMTCQxMZGYmBiN3hARMYEKszbS2NiIxWIhMjISgL59+9KnTx8NDxEREdO4XC5/z5jVamXEiBHYbDaToxIR6ZhUFbSBY8eOsXjxYtatW+efcdFisagoExER0+zZs4dFixZRUlLiX6eiTETEPKoM2oDVaqWxsRGXy0VjY6PZ4YiIiOD1evF6vVRUVJgdioiIoKGMbcLpdDJ8+HA6depERIQ+chERMd8555xDdHQ06enpZociIiKoxywoqqurWbp0KXV1df51ycnJKspERMQ0+/fvZ+XKlXi9Xv86FWUiIqFDhVkQbNiwgcrKSjZu3Gh2KCIiIjQ0NPD5559TXl7Ovn37zA5HREROQl04QTB48GA2b97MwIEDzQ5FREQEh8NBfn4+1dXVZGRkmB2OiIichHrMAsDlcnHo0CH/cnR0NAUFBdjtdhOjEhGRjqy0tJSamhr/cpcuXcjOzsZisZgYlYiInIoKs7NUW1vLkiVLKC4upqqqyuxwRERE2Lt3L6tXr2bNmjW43W6zwxERkRbQUMazFBsbS+fOnXG73TgcDrPDERERIS0tjaioKFJTU3XPTBGRdiLsj9b79u1j/Pjx5OTkkJuby9///vezfs/6+vpmN4ouKChg5MiRREVFnfV7i4hIeAtGXgJfbvqCw+Fg/PjxDBgwQIWZiEg7EfY9ZhEREcyePZv8/HxKS0sZMmQIF110EbGxsWf0fuXl5RQXF9OzZ0/69u3r34eIiEhLBDovAWzfvp1t27YxYsQIOnfuDEBkZGSgQhYRkTYQ9qfRunTpQn5+PuC7X0tycjIVFRVn/H6NjY00NTVRVlbW7F4wIiIiLRHovAS+6529Xi/l5eUBiFBERMxgemG2ZMkSpkyZQteuXbFYLLz55psnbFNUVERWVhZRUVEMHz6cVatWndG+1q5di8fjoUePHmccb/fu3SkoKGD06NEaHiIiEobaW14CyM3NZciQIfTv3/+s3kdERMxjemXhcrnIy8ujqKjopM/PmzePmTNnMmvWLIqLi8nLy+OCCy5odlYwPz+fgQMHnvA4ePCgf5uKigquueYann322VbHuGbNGjwej3+5W7duKspERMJUe8hLAFu2bPH/32az0bVr1zN6HxERCQ0W44tZLEKAxWLhjTfe4Nvf/rZ/3fDhwxk2bBhPPfUUAF6vlx49enDLLbdwzz33tOh9GxoaOP/885kxYwbf//73T7tdQ0ODf7mqqoqMjAyef/55cnNz6dOnz5n9YCIi0mrV1dX06NGDyspKnE6nKTGYnZe+2PZUuWnChAkkJSW1/gcTEZFWC3peMkIIYLzxxhv+5YaGBsNmszVbZxiGcc011xhTp05t0Xt6vV7jiiuuMGbNmvW1286aNcsA9NBDDz30CKHHzp07W5FJAgvMzUuGodykhx566BFqj2DlpZCeTvDIkSN4PB7S0tKarU9LS2s2hON0Pv74Y+bNm0dubq7/OoG//vWvDBo06IRt7733XmbOnOlfrqysJDMzk71795p2tvarhg0bxurVq0Pi/Vr72pZs/3XbnO75Uz331fVfnO3Yt28fCQkJLYw+eALdpmf7nq15rdr01Nrrd7Wl255pu7Zm/Rc9Q6HUI9TWeQmUm4L52kD8vgfiGAahdxwLpdykvzcCI5TatLWvDZU2DXZeCunCLBDOPffcFs+e6HA4TnqTaKfTGRJfKPBdRxDIWM7m/Vr72pZs/3XbnO75Uz13qvUJCQkh0a6BbtOzfc/WvFZtemrt9bva0m3PtF1bux4Iu2t6W5OXQLkpmK8NxO97II9hEDrHsVDKTfp7IzBCqU1b+9pQa9Ng5aWQznbJycnYbDbKysqarS8rKyM9Pd2kqMx10003hcz7tfa1Ldn+67Y53fOnei7Qn1mgBSO+tmpXtemptdfvaku3PdN2bc9tCspLp9KRf991DAv+e+rvjcAIpTZt7Ws7Spu2i8k/CgsLefLJJwHfRdYZGRncfPPNLb7I+kxVV1fjdDqpqqoKiTMdEhhq1/CjNg1PodCuoZaXIDQ+Fwk8tWv4UZuGn2C3qelDGWtra9mxY4d/uaSkhPXr15OUlERGRgYzZ85k2rRpDB06lMLCQmbPno3L5WL69OlBj83hcDBr1qyTDiGR9kvtGn7UpuHJrHYN5bwE+n0PV2rX8KM2DT/BblPTe8wWLVrEhAkTTlg/bdo05s6dC8BTTz3FY489RmlpKfn5+cyZM4fhw4e3caQiItIRKC+JiIgZTC/MREREREREOrqQnvxDRERERESkI1BhJiIiIiIiYjIVZiIiIiIiIiZTYSYiIiIiImIyFWZnISsri9zcXPLz8086g5e0PyUlJUyYMIGcnBwGDRqEy+UyOyQ5S1u3biU/P9//iI6O5s033zQ7LDlLv//97xkwYAA5OTnceuutaB6r/1FuCj/KTeFFeSl8nW1u0qyMZyErK4sNGzYQFxdndigSIOPGjeP+++9nzJgxVFRUkJCQQESE6bf7kwCpra0lKyuLPXv2EBsba3Y4coYOHz7MiBEj2LhxI5GRkYwdO5bf/va3jBw50uzQQoJyU/hRbgpfykvhIxC5Sd9qkf/64os0ZswYAJKSkkyOSAJt/vz5TJw4UckvDLjdburr6wFoamoiNTXV5IhEgkO5KbwpL4WXs81NHXYo45IlS5gyZQpdu3bFYrGctAu5qKiIrKwsoqKiGD58OKtWrWr2vMViYdy4cQwbNoyXX365jSKXUznbNt2+fTtxcXFMmTKFgoICHnzwwTaMXk4lEN/VL7z22mtcfvnlQY5Yvs7ZtmlKSgp33nknGRkZdO3alUmTJtGrV682/AmCR7kp/Cg3hR/lpfAUCrmpwxZmLpeLvLw8ioqKTvr8vHnzmDlzJrNmzaK4uJi8vDwuuOACysvL/dssW7aMtWvXMn/+fB588EE+++yztgpfTuJs29TtdrN06VKefvppVqxYwfvvv8/777/flj+CnEQgvqsA1dXVLF++nIsuuqgtwpbTONs2PXbsGAsWLGD37t0cOHCA5cuXs2TJkrb8EYJGuSn8KDeFH+Wl8BQSuckQAzDeeOONZusKCwuNm266yb/s8XiMrl27Gg899NBJ3+POO+80XnjhhSBGKa1xJm26fPly4xvf+Ib/+UcffdR49NFH2yReaZmz+a6++OKLxlVXXdUWYUornEmbvvbaa8aNN97of/7RRx81HnnkkTaJty0pN4Uf5abwo7wUnszKTR22x+x0GhsbWbt2LZMmTfKvs1qtTJo0iRUrVgC+qrqmpgbwXbj54YcfMmDAAFPila/XkjYdNmwY5eXlHDt2DK/Xy5IlS+jfv79ZIUsLtKRdv6DhIu1DS9q0R48eLF++nPr6ejweD4sWLSI7O9uskNuMclP4UW4KP8pL4amtcpMm/ziJI0eO4PF4SEtLa7Y+LS2NLVu2AFBWVsYll1wCgMfjYcaMGQwbNqzNY5WWaUmbRkRE8OCDDzJ27FgMw+Ab3/gGF198sRnhSgu1pF0BqqqqWLVqFa+//npbhyit1JI2HTFiBBdddBGDBw/GarUyceJEpk6daka4bUq5KfwoN4Uf5aXw1Fa5SYXZGerZsyeffvqp2WFIgE2ePJnJkyebHYYEmNPppKyszOwwJIAeeOABHnjgAbPDCDnKTeFJuSn8KC+Fp7PNTRrKeBLJycnYbLYTvjBlZWWkp6ebFJWcDbVpeFK7hh+16anpswk/atPwozYNT23VrirMTsJutzNkyBAWLlzoX+f1elm4cKFuYNpOqU3Dk9o1/KhNT02fTfhRm4YftWl4aqt27bBDGWtra9mxY4d/uaSkhPXr15OUlERGRgYzZ85k2rRpDB06lMLCQmbPno3L5WL69OkmRi2nozYNT2rX8KM2PTV9NuFHbRp+1KbhKSTa9UynkWzvPvroIwM44TFt2jT/Nk8++aSRkZFh2O12o7Cw0Pjkk0/MC1i+lto0PKldw4/a9NT02YQftWn4UZuGp1BoV4thGEbgyjwRERERERFpLV1jJiIiIiIiYjIVZiIiIiIiIiZTYSYiIiIiImIyFWYiIiIiIiImU2EmIiIiIiJiMhVmIiIiIiIiJlNhJiIiIiIiYjIVZiIiIiIiIiZTYSYSRubOnUunTp3MDkNERMRPuUmkZVSYiYSYa6+9FovFgsViwW6307t3b37961/jdru/9rWXX34527Zta9X+xo8fz+23336G0YqISEeg3CQSfBFmByAiJ7rwwgt54YUXaGho4J133uGmm24iMjKSe++997Svi46OJjo6uo2iFBGRjkS5SSS41GMmEoIcDgfp6elkZmZyww03MGnSJObPn8+xY8e45pprSExMJCYmhsmTJ7N9+3b/6746XOSXv/wl+fn5/PWvfyUrKwun08kVV1xBTU0N4DsDunjxYp544gn/mdDdu3dz7NgxrrrqKlJSUoiOjqZPnz688MILbf0xiIhICFFuEgkuFWYi7UB0dDSNjY1ce+21rFmzhvnz57NixQoMw+Ciiy6iqanplK/duXMnb775JgsWLGDBggUsXryYhx9+GIAnnniCkSNHMmPGDA4dOsShQ4fo0aMH9913H5s2beLf//43mzdv5g9/+APJyclt9eOKiEg7oNwkElgayigSwgzDYOHChfznP/9h8uTJvPnmm3z88ceMGjUKgJdffpkePXrw5ptvctlll530PbxeL3PnziU+Ph6A73//+yxcuJAHHngAp9OJ3W4nJiaG9PR0/2v27t3L4MGDGTp0KABZWVnB/UFFRKTdUG4SCQ71mImEoAULFhAXF0dUVBSTJ0/m8ssv59prryUiIoLhw4f7t+vcuTPZ2dls3rz5lO+VlZXlT3wAXbp0oby8/LT7v+GGG3j11VfJz8/npz/9KcuXLz/7H0pERNo15SaR4FJhJhKCJkyYwPr169m+fTt1dXX85S9/wWKxnNF7RUZGNlu2WCx4vd7Tvmby5Mns2bOHO+64g4MHDzJx4kTuvPPOM9q/iIiEB+UmkeBSYSYSgmJjY+nduzcZGRlERPhGHPfv3x+3283KlSv92x09epStW7eSk5Nzxvuy2+14PJ4T1qekpDBt2jReeuklZs+ezbPPPnvG+xARkfZPuUkkuHSNmUg70adPH771rW8xY8YM/vjHPxIfH88999xDt27d+Na3vnXG75uVlcXKlSvZvXs3cXFxJCUl8ctf/pIhQ4YwYMAAGhoaWLBgAf379w/gTyMiIuFAuUkkcNRjJtKOvPDCCwwZMoSLL76YkSNHYhgG77zzzglDQlrjzjvvxGazkZOTQ0pKCnv37sVut3PvvfeSm5vL2LFjsdlsvPrqqwH8SUREJFwoN4kEhsUwDMPsIERERERERDoy9ZiJiIiIiIiYTIWZiIiIiIiIyVSYiYiIiIiImEyFmYiIiIiIiMlUmImIiIiIiJhMhZmIiIiIiIjJVJiJiIiIiIiYTIWZiIiIiIiIyVSYiYiIiIiImEyFmYiIiIiIiMlUmImIiIiIiJhMhZmIiIiIiIjJ/j8BYxD/PYMuowAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Memory scaling\n", - "fig, axes = plt.subplots(2, 2, figsize=(10, 10))\n", - "\n", - "for i, cuda in enumerate([True, False]):\n", - " for j, strict in enumerate([True, False]):\n", - " # Filter for cuda=True and strict=True\n", - " filtered_results = []\n", - " for result in data['results']:\n", - " params = result['parameters']\n", - " if params[\"cuda\"] == cuda and params[\"graph\"][\"strict\"] == strict:\n", - " filtered_results.append(result)\n", - "\n", - " # Group by k value\n", - " k_groups = {}\n", - " for result in filtered_results:\n", - " k = result['parameters']['k']\n", - " n = result['parameters']['n']\n", - " memory = result['compiled_memory_mb'] / 1024\n", - " \n", - " if k not in k_groups:\n", - " k_groups[k] = {'n': [], 'memory': []}\n", - "\n", - " k_groups[k]['n'].append(n)\n", - " k_groups[k]['memory'].append(memory)\n", - "\n", - " # Plot\n", - " for k in sorted(k_groups.keys()):\n", - " axes[i,j].plot(k_groups[k]['n'], k_groups[k]['memory'], 'o-', label=f'k={k}')\n", - "\n", - " axes[i,j].plot([10**5, 10**8], [10**-2, 10**1], ls=':', c='k', alpha=0.3, label='linear scaling')\n", - "\n", - " axes[i,j].set(xscale='log', yscale='log', ylabel='Memory [GB]', xlabel='Points', title=f'cuda={cuda}, strict={strict}', ylim=(0.01, 80), xlim=(1e5, 1e8))\n", - " axes[i,j].legend()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a310f2d3", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 54, - "id": "a8be5bfe", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABTcAAAHbCAYAAAAefa5JAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA2k9JREFUeJzs3Xd4FGXbxuHf7qZDEloSijSRIr0FEEW6gAoWFKVLEwVRxAKKilhRiggEBZVeBEFRRJAuCEiLKIhILyIhgUAqabvz/hHNa6QlYZPZTa7zOzhkZycz1+7HO3f23nmex2IYhoGIiIiIiIiIiIiIm7GaHUBEREREREREREQkJ9TcFBEREREREREREbek5qaIiIiIiIiIiIi4JTU3RURERERERERExC2puSkiIiIiIiIiIiJuSc1NERERERERERERcUtqboqIiIiIiIiIiIhbUnNTRERERERERERE3JKamyIiIiIiIiIiIuKW1NwUcSOvv/46FouFc+fOOeV4s2bNwmKxcPz48YxtLVq0oEWLFtf92Y0bN2KxWNi4caNTsoiIiIiIiLiTK32eKsg5RMyi5qaIiIiIiIiIiIi4JTU3RQqwnj17cunSJcqXL292FBERERERERGRbFNzU6QAs9ls+Pj4YLFYzI4iIiKSp5KSknA4HGbHEBEREZEbpOamiBs6d+4cXbp0ISAggOLFi/PMM8+QlJQEwPHjx7FYLMyaNeuyn7NYLLz++usZj7M6N8uff/7J/fffT6FChQgODubZZ58lOTnZia9IREQKih9//JHQ0FB8fHyoVKkS06ZNy5hTGrJXxwBOnz5N3759CQkJwdvbmxo1ajBjxoxM+/wzT/Tnn3/OK6+8QpkyZfDz82PPnj1YLBY++OCDy861detWLBYLCxcudNprFxGR/G/lypU0a9aMQoUK4e/vzz333MNvv/2W8fy4ceOwWCycOHHisp996aWX8PLy4sKFCxnbtm/fTvv27QkMDMTPz4/mzZuzZcuW6+bYtWsX7dq1o0SJEvj6+lKxYkX69u3rnBcp4mI8zA4gItnXpUsXKlSowLvvvstPP/3EpEmTuHDhAnPmzHH6uS5dukTr1q05efIkTz/9NKVLl2bu3LmsX7/e6ecSEZH8be/evdx1110EBQXx+uuvk5aWxqhRowgJCcnR8c6ePUuTJk2wWCw89dRTBAUFsXLlSvr160dsbCxDhw7NtP+bb76Jl5cXzz//PMnJyVSrVo3bb7+d+fPn8+yzz2bad/78+fj7+3Pffffl9OWKiEgBM3fuXHr37k27du147733SExM5KOPPuKOO+7g559/pkKFCnTp0oUXX3yRxYsX88ILL2T6+cWLF3PXXXdRtGhRANavX0+HDh1o0KABo0aNwmq1MnPmTFq1asXmzZtp1KjRFXNERkZm1NsRI0ZQpEgRjh8/zpdffpnr74GIGdTcFHFDFStW5OuvvwZg8ODBBAQEMHXqVJ5//nkCAgKceq7p06dz8OBBFi9ezMMPPwzAgAEDqFOnjlPPIyIi+d9rr72GYRhs3ryZcuXKAdC5c2dq1aqVo+ONHDkSu93O3r17KV68OABPPPEEXbt25fXXX2fgwIH4+vpm7J+UlMSuXbsybevVqxcDBw7kwIEDVKtWDYDU1FQWL17Mgw8+iJ+fX05froiIFCDx8fE8/fTT9O/fn+nTp2ds7927N1WrVuWdd95h+vTplCtXjiZNmrBo0aJMzc2dO3dy9OjRjBEKhmHwxBNP0LJlS1auXJkxwmHgwIHUqFGDV155hdWrV18xy9atW7lw4QKrV6+mYcOGGdvfeuutXHjlIubTsHQRNzR48OBMj4cMGQLAd9995/Rzfffdd5QqVYqHHnooY5ufnx+PP/64088lIiL5l91u5/vvv+f+++/PaGwC3HrrrbRr1y7bxzMMg6VLl9KxY0cMw+DcuXMZf9q1a0dMTAzh4eGZfqZ3796ZGpuQPhrCx8eH+fPnZ2z7/vvvOXfuHD169Mh2LhERKZjWrFnDxYsX6dq1a6aaZLPZaNy4MRs2bMjY95FHHmH37t0cOXIkY9uiRYvw9vbOGDGwZ88eDh06RLdu3Th//nzG8RISEmjdujWbNm266tzRRYoUAeDbb78lNTU19160iItQc1PEDVWuXDnT40qVKmG1Wq87d2ZOnDhxgltuueWyRYeqVq3q9HOJiEj+FRUVxaVLly6rYZCzmhIVFcXFixeZPn06QUFBmf706dMHSB+W928VK1a87DhFihShY8eOLFiwIGPb/PnzKVOmDK1atcp2LhERKZgOHToEQKtWrS6rS6tXr85Ukx5++GGsViuLFi0C0r+w++KLL+jQoUPGSLx/jte7d+/Ljvfpp5+SnJxMTEzMFbM0b96czp07M3r0aEqUKMF9993HzJkztW6C5Fsali6SD/y78Xi1lc/tdntexREREcmxrNaxf+5W6dGjB717977iz9SuXTvT4//etfmPXr168cUXX7B161Zq1arFN998w6BBg7BadR+AiIhkzT91ae7cuZQsWfKy5z08/t9+KV26NM2aNWPx4sW8/PLL/PTTT5w8eZL33nvvsuONHTuWunXrXvGchQsXvuJ2i8XCkiVL+Omnn1i+fDnff/89ffv2Zfz48fz0009X/TkRd6XmpogbOnToUKa7Tw4fPozD4aBChQoZk09fvHgx089caTW+rChfvjz79u3DMIxMHzj/+OOPHB1PREQKpqCgIHx9fTPuRPm3f9eUrNaxoKAg/P39sdvttGnT5oaytW/fnqCgIObPn0/jxo1JTEykZ8+eN3RMEREpWCpVqgRAcHBwlurSI488wqBBg/jjjz9YtGgRfn5+dOzY8bLjBQQE5LjONWnShCZNmvD222+zYMECunfvzueff07//v1zdDwRV6Wvo0XcUFhYWKbHkydPBsgYxlCiRAk2bdqUaZ+pU6fm6Fx33303f/31F0uWLMnYlpiYmGmSbBERkeux2Wy0a9eOZcuWcfLkyYztv//+O99//33G46zWMZvNRufOnVm6dCn79u277HxRUVFZzubh4UHXrl1ZvHgxs2bNolatWpfd9SkiInIt7dq1IyAggHfeeeeK81z+ty517twZm83GwoUL+eKLL7j33nspVKhQxvMNGjSgUqVKjBs3jvj4+Ose798uXLiAYRiZtv1z96eGpkt+pDs3RdzQsWPH6NSpE+3bt2fbtm3MmzePbt26Zaxg3r9/f8aMGUP//v1p2LAhmzZt4uDBgzk614ABA5gyZQq9evVi9+7dlCpVirlz52r1WBERybbRo0ezatUqmjVrxqBBg0hLS2Py5MnUqFGDX3/9NWO/rNaxMWPGsGHDBho3bsyAAQOoXr060dHRhIeHs3btWqKjo7OcrVevXkyaNIkNGzZkGhYoIiKSFQEBAXz00Uf07NmT+vXr8+ijjxIUFMTJkydZsWIFt99+O1OmTMnYPzg4mJYtWzJhwgTi4uJ45JFHMh3ParXy6aef0qFDB2rUqEGfPn0oU6YMp0+fZsOGDQQEBLB8+fIrZpk9ezZTp07lgQceoFKlSsTFxfHJJ58QEBDA3Xffnavvg4gZ1NwUcUOLFi3itddeY8SIEXh4ePDUU08xduzYjOdfe+01oqKiWLJkCYsXL6ZDhw6sXLmS4ODgbJ/Lz8+PdevWMWTIECZPnoyfnx/du3enQ4cOtG/f3pkvS0RE8rnatWvz/fffM2zYMF577TVuuukmRo8ezZkzZzI1N7Nax0JCQtixYwdvvPEGX375JVOnTqV48eLUqFEj2w3KBg0aUKNGDX7//Xe6d+/ulNcrIiIFS7du3ShdujRjxoxh7NixJCcnU6ZMGZo1a5ax2N2/PfLII6xduxZ/f/8rNh1btGjBtm3bePPNN5kyZQrx8fGULFmSxo0bM3DgwKvmaN68OTt27ODzzz/n7NmzBAYG0qhRI+bPn3/FxfVE3J3F+O+9yiIiIiIieej1119n9OjRlw2hy2v16tWjWLFirFu3ztQcIiIiIpJ1mnNTRERERAq8Xbt2sWfPHnr16mV2FBERERHJhnzf3Dx16hQtWrSgevXq1K5dmy+++MLsSCIiIjmimibifPv27WP27Nn07duXUqVKXTbnmYjkHtU1ERFxhnw/56aHhwcTJ06kbt26RERE0KBBA+6+++5Mq5CJiIi4A9U0EedbsmQJb7zxBlWrVmXhwoX4+PiYHUmkwFBdExERZyhwc27WqVOHb7/9lrJly5odRURE5IaopomISH6iuiYiIjnh8sPSN23aRMeOHSldujQWi4Vly5Zdtk9YWBgVKlTAx8eHxo0bs2PHjisea/fu3djtdhVLERExhWqaiIjkJ6prIiLiCly+uZmQkECdOnUICwu74vOLFi1i2LBhjBo1ivDwcOrUqUO7du2IjIzMtF90dDS9evVi+vTpeRFbRETkMqppIiKSn6iuiYiIK3CrYekWi4WvvvqK+++/P2Nb48aNCQ0NZcqUKQA4HA7Kli3LkCFDGDFiBADJycm0bduWAQMG0LNnz6sePzk5meTk5IzHDoeD6OhoihcvjsViyZ0XJSIiTmEYBnFxcZQuXRqr1eW/u8v1mvbPvqprIiLuSXXtcqprIiLuKbdrmlsvKJSSksLu3bt56aWXMrZZrVbatGnDtm3bgPQ38LHHHqNVq1bXLZbvvvsuo0ePztXMIiKSu06dOsVNN91kdoxsc3ZNA9U1EZH8QHXt/1TXRETcW27VNLdubp47dw673U5ISEim7SEhIRw4cACALVu2sGjRImrXrp0xB8zcuXOpVavWZcd76aWXGDZsWMbjmJgYypUrx6lTpwgICMi9FyIiIjcsNjaWsmXL4u/vb3aUHHF2TQPVNRERd6a6djnVNRER95TbNc2tm5tZcccdd+BwOLK0r7e3N97e3pdtDwgIULEUEXET+XlYWnZqGqiuiYjkB6pr/6e6JiLi3nKrprn+5C3XUKJECWw2G2fPns20/ezZs5QsWdKkVCIiItmnmiYiIvmJ6pqIiOQVt25uenl50aBBA9atW5exzeFwsG7dOm677TYTk4mIiGSPapqIiOQnqmsiIpJXXH5Yenx8PIcPH854fOzYMfbs2UOxYsUoV64cw4YNo3fv3jRs2JBGjRoxceJEEhIS6NOnT47PGRYWRlhYGHa73RkvQUREBDCnpoHqmoiI5A7VNRERcQUWwzAMs0Ncy8aNG2nZsuVl23v37s2sWbMAmDJlCmPHjiUiIoK6desyadIkGjdufMPnjo2NJTAwkJiYmGvO4WK320lNTb3h80k6T09PbDab2TFExM1k9ZptJjNrGqiumUV1TURyQnXt+rLyHjkcDlJSUpxyPlFNE5Gcye2a5vLNTTNd7803DIOIiAguXryY9+HyuSJFilCyZMl8PYG6iDiXO3wINJvqmnlU10Qku1TXru9671FKSgrHjh3L1qJFcn2qaSKSXbld01x+WLor++cDYHBwMH5+frq4O4FhGCQmJhIZGQlAqVKlTE4kIlJwqK45n+qaiIg5DMPgzJkz2Gw2ypYti9Xq1stNuATVNBFxVWpuXkFW5nCx2+0ZHwCLFy+eh+nyP19fXwAiIyMJDg7WsAcRkRukumYu1TUREefKSl1LS0sjMTGR0qVL4+fnl4fp8jfVNBFxRfr66goGDx7M/v372blz51X3+WcuMhXK3PHP+6o530REbpzqmvlU10REnCcrde2fxqeXl1dexSowVNNExNWouXmDNGQvd+h9FRExh66/uUPvq4iIOXT9dT69pyLiatTcFBEREREREREREbek5mYB1KJFC4YOHWp2DBEREadQXRMRkfxCNU1EJPvU3HQBdofBtiPn+XrPabYdOY/dYZgdKdsMw6BDhw5YLBaWLVtmdhwRETFJfqhpoLomIiLp8kNdU00TkfxOq6VfQVZW33OWVfvOMHr5fs7EJGVsKxXow6iO1Wlfs1Sun99ZJk6cqLlXRERcVF7VtfxS00B1TUTElamuZY9qmojkd7pz8wqysvqeM6zad4Yn54VnKpYAETFJPDkvnFX7zuTq+f+xYsUKAgMDmT9/fo5+fs+ePYwfP54ZM2Y4OZmIiDhDXtQ1V6lpoLomIpLfFaS6ppomInJ9unPTiQzD4FJq1r49tDsMRn3zG1ca1GAAFuD1b/Zz+y0lsFmv/y2br6ctR9/GLViwgCeeeIIFCxZw7733Mn/+fAYOHHjNn1m5ciXNmjUDIDExkW7duhEWFkbJkiWzfX4REXFdWa1rrlLTQHVNRESuTJ/VVNNEJP9Sc9OJLqXaqf7a9045lgFExCZR6/XVWdp//xvt8PPK3v87w8LCGDlyJMuXL6d58+YAdOrUicaNG1/z58qUKZPx92effZamTZty3333ZevcIiLi+pxV1/KipoHqmoiIXJ0+q4mI5F9qbhZQS5YsITIyki1bthAaGpqx3d/fH39//ywd45tvvmH9+vX8/PPPuRVTREQkS1TXREQkv1BNExHJHjU3ncjX08b+N9plad8dx6J5bOb154iZ1SeURhWLZenc2VGvXj3Cw8OZMWMGDRs2zBgmkZ2hDuvXr+fIkSMUKVIk0/OdO3emWbNmbNy4MVuZRETEtWS1rpld00B1TURErk2f1dKppolIfqTm5hXkdPU9i8WS5eEGzSoHUSrQh4iYpCvO5WIBSgb60KxyUJbmccmuSpUqMX78eFq0aIHNZmPKlClA9oY6jBgxgv79+2d6rlatWnzwwQd07NjR6ZlFRCRncruumV3TQHVNRKQgyUld02c11TQRyb/U3LyCwYMHM3jwYGJjYwkMDMyVc9isFkZ1rM6T88KxQKai+U95HNWxeq59CASoUqUKGzZsoEWLFnh4eDBx4sRsDXUoWbLkFSemLleuHBUrVnR2XBERyaHcrmuuUNNAdU1EpKAoCHVNNU1EJOusZgcoyNrXLMVHPepTMtAn0/aSgT581KM+7WuWyvUMVatWZf369SxcuJDnnnsu188nIiL5kyvUNFBdExER53CFuqaaJiKSNbpz02Tta5aibfWS7DgWTWRcEsH+PjSqWCxXvwX87/wqt956K2fPnnXKsQ3jSgM3RESkIDCjpoHqmoiI5A59VhMRcQ9qbroAm9XCbZWKmx1DRETkhqmmiYhIfqK6JiLi+jQsXURERERERERERNyS7twUEckn7A4jz4cDi4iIiIiIiJhJzU0RkXxg1b4zjF6+nzMxSRnbSgX6MKpj9TxbyEVEREREREQkr2lY+hWEhYVRvXp1QkNDzY4iInJdq/ad4cl54ZkamwARMUk8OS+cVfvOmJRMXIXqmoiI5CeqayIi8m9qbl7B4MGD2b9/Pzt37jQ7iojINdkdBqOX7+dKa1/+s2308v3YHVodsyBTXRMRkfxEdU1ERP5NzU0RETe241j0ZXds/psBnIlJYsex6LwLJSIiIiIiIpJH1NwUEXFjkXFXb2zmZD8RERERERERd6LmpoiIGwv293HqfiIiIiIiIiLuRM3NAqhFixYMHTrU7Bgi4gS7T157uLmF9FXTG1UsljeBREyguiYiIvmFapqISPapuekKHHY4thn2Lkn/r8NudqIsi4iIoGfPnpQsWZJChQpRv359li5danYskXzPMAw+WHOQcd8fzNhm+c8+/zwe1bE6Nut/nxXJJW5c00B1TURE/sON65pqmogUFB5mByjw9n8Dq4ZD7F//3xZQGtq/B9U7mZcri3r16sXFixf55ptvKFGiBAsWLKBLly7s2rWLevXqmR1PJF8yDIMxqw4w7YejALzQriqVggoxevn+TIsLlQz0YVTH6rSvWcqsqFLQuHlNA9U1ERH5Fzeva6ppIlJQ6M5NM+3/Bhb3ylwsAWLPpG/f/02exFixYgWBgYHMnz8/2z+7detWhgwZQqNGjbj55pt55ZVXKFKkCLt3786FpCJiGAajl+/PaGy+em91Bre8hfY1S/Hj8FYsHNCEDx+ty8IBTfhxeCs1NiXvuEhNA9U1ERFxAhepa6ppIiLXp+bmFYSFhVG9enVCQ0Oz94OGASkJWfuTFAsrXwSMKx0o/T+rhqfvl5XjGVc6zvUtWLCArl27Mn/+fLp37878+fMpXLjwNf9s3rw54+ebNm3KokWLiI6OxuFw8Pnnn5OUlESLFi1ylEdErs7hMHj5q33M2nocgDfvr0m/OypmPG+zWritUnHuq1uG2yoV11B0yZDrdc1FahqoromIFAQ5qmv6rKaaJiL5lsUwbuATRD4XGxtLYGAgMTExBAQEZHouKSmJY8eOUbFiRXx8/l6FOCUB3iltQlLg5b/Aq1CWdm3RogV169alcuXKjBw5kq+//prmzZsDEBcXx9mzZ6/582XKlMHX1xeAixcv8sgjj7B69Wo8PDzw8/Pjiy++4K677rqhl3PF91ekAEuzO3hx6a98GX4aiwXe61ybLg3Lmh3LpVzrmi3p3KauZaOmgeqaiORPqmvXl626ps9qqmkiYprcrmmac7OAWrJkCZGRkWzZsiXTN57+/v74+/tn+TivvvoqFy9eZO3atZQoUYJly5bRpUsXNm/eTK1atXIjukiBk2p3MHTRHlb8egab1cKELnW4r24Zs2OJuBTVNRERyS9U00REskfNTWfy9Ev/Vi4rTmyF+Q9df7/uS6B806ydOxvq1atHeHg4M2bMoGHDhlgs6cNX58+fz8CBA6/5sytXrqRZs2YcOXKEKVOmsG/fPmrUqAFAnTp12Lx5M2FhYXz88cfZyiQil0tOs/PUgp9Zs/8snjYLk7vW0zyakneyWtdMrmmguiYiItehz2qqaSKSb6m56UwWS9aH0VVqlb7SXuwZrjyXiyX9+UqtwGpzZsr001eqxPjx42nRogU2m40pU6YA0KlTJxo3bnzNny1TJv2OscTERACs1sxTt9psNhwOh9MzixQ0Sal2Bs7dzQ8Ho/DysPJxj/q0qhZidiwpSLJa10yuaaC6JiIi16HPaoBqmojkT2pumsVqg/bvpa+0h4XMRfPvRUDaj8m1D4EAVapUYcOGDbRo0QIPDw8mTpyYraEO1apV45ZbbmHgwIGMGzeO4sWLs2zZMtasWcO3336ba7lFCoLElDT6z97F1iPn8fG08mmvUO6oXMLsWCJX5gI1DVTXRETESVygrqmmiYhknVZLN1P1TtBlDgT8Z4hpQOn07dU75XqEqlWrsn79ehYuXMhzzz2XrZ/19PTku+++IygoiI4dO1K7dm3mzJnD7Nmzufvuu3MpsUj+F5eUSq/PdrD1yHkKedmY3aeRGpvi+lygpoHqmoiIOIkL1DXVNBGRrNFq6deQ7VVlc8phT5/XJf4sFA5Jn7cll+9ucXVagU8KqpjEVHrN3MEvpy7i7+PB7L6NqF+uqNmx3IJWlb2+PKlrqmlXpLomItmlunZ9qmvmUE0TkezSaukFgdUGFZuZnUJETHY+Ppmen+1g/5lYivp5MrdfY2qWCTQ7lkj2qKaJiEh+oromIuLy1NwUEXEBkXFJdP9kO4ci4ylR2Iv5/ZtQtWTW5lQSERERERERKajU3BQRMdmZmEt0/2Q7R88lEBLgzfz+TbgluLDZsURERERERERcnpqbIiImOhWdSLdPf+JU9CXKFPFlwYDGlC9eyOxYIiIiIiIiIm5Bq6VfQVhYGNWrVyc0NNTsKCKSjx07l0CXads4FX2J8sX9WPzEbWpsSq5QXRMRkfxEdU1ERP5Nzc0rGDx4MPv372fnzp1mRxGRfOrQ2Ti6TNvGmZgkKgUVYvHA2yhTxNfsWJJPqa6JiEh+oromIiL/pmHpIiJ5bP9fsfT4bDvRCSlUK+nPvP6NKVHY2+xYIiIiIiIiIm5HzU0RkTz0y6mL9Jqxg5hLqdQqE8icvo0oWsjL7FgiIiIiIiIibknNTRGRPLLreDR9Zu4kLjmN+uWKMLNPIwJ9Pc2OJSIiIiIiIuK2NOdmAdSiRQuGDh1qdgyRAmXbkfP0mrGDuOQ0GlUsxpx+jdXYFHES1TUREckvVNNERLJPzU0XYHfY2Rmxk++OfsfOiJ3YHXazI2XZ9OnTadGiBQEBAVgsFi5evHjF/VasWEHjxo3x9fWlaNGi3H///XmaU8RMPxyM4rGZO0hMsdOscglm92lEYW/dOC/5kzvXNFBdExGRzNy5rqmmiUhBoU/XJlt7Yi1jdozhbOLZjG0hfiGMaDSCNuXbmJgsaxITE2nfvj3t27fnpZdeuuI+S5cuZcCAAbzzzju0atWKtLQ09u3bl8dJRcyxZv9ZBs8PJ8XuoHW1YMK618fH02Z2LJFc4e41DVTXRETk/9y9rqmmiUhBoTs3TbT2xFqGbRyWqVgCRCZGMmzjMNaeWJsnOVasWEFgYCDz58/P9s8OHTqUESNG0KRJkys+n5aWxjPPPMPYsWN54oknqFKlCtWrV6dLly43GlvE5a349QxPzttNit1Bh5ol+ahHAzU2Jd9ylZoGqmsiInLjXKWuqaaJiFyfmptOZBgGiamJWfoTlxzHuzvexcC4/Dh//9+YHWOIS47L0vEM4/LjZMWCBQvo2rUr8+fPp3v37syfP5/ChQtf88/mzZuzfPzw8HBOnz6N1WqlXr16lCpVig4dOujbQMn3vvr5T4YsDCfNYXBf3dJM7loPLw9dcsW9ZLWuuUpNA9U1ERG5Mn1Wu5xqmojkFxqW7kSX0i7ReEFjpx3vbOJZmn7eNEv7bu+2HT9Pv2wdPywsjJEjR7J8+XKaN28OQKdOnWjc+NqvoUyZMlk+x9GjRwF4/fXXmTBhAhUqVGD8+PG0aNGCgwcPUqxYsWxlFnEHn+84yUtf7cUwoEvDm3j3wdrYrBazY4lkmzPrWm7XNFBdExGRq9NntcuppolIfqHmZgG1ZMkSIiMj2bJlC6GhoRnb/f398ff3d9p5HA4HACNHjqRz584AzJw5k5tuuokvvviCgQMHOu1cIq5gzrbjvPb1bwD0aFKONzrVxKrGpkiuU10TEZH8QjVNRCR71Nx0Il8PX7Z3256lfXef3c2gdYOuu9/U1lNpENIgS+fOjnr16hEeHs6MGTNo2LAhFkt682X+/PnXLWIrV66kWbNmWTpPqVKlAKhevXrGNm9vb26++WZOnjyZrcwirm76piO8890BAPrfUZGR99ya8b8tEXeU1bpmdk0D1TUREbk2fVa7nGqaiOQXam46kcViyfJwg6almxLiF0JkYuQV53KxYCHEL4SmpZtiszp/AZJKlSplDDmw2WxMmTIFcP5QhwYNGuDt7c0ff/zBHXfcAUBqairHjx+nfPnyOX8BIi5m8rpDjF9zEICnWt7Cc3dVUWNT3F5W65rZNQ1U10RE5Nr0We1yqmkikl+ouWkSm9XGiEYjGLZxGBYsmYqmhfSGyPBGw3PtQyBAlSpV2LBhAy1atMDDw4OJEydme6hDREQEERERHD58GIC9e/fi7+9PuXLlKFasGAEBATzxxBOMGjWKsmXLUr58ecaOHQvAww8/nCuvSyQvGYbBuNV/ELbhCADPta3CkNaVTU4lkrdcoaaB6pqIiDiHK9Q11TQRkazT0r0malO+DRNaTCDYLzjT9hC/ECa0mECb8m1yPUPVqlVZv349Cxcu5Lnnnsv2z3/88cfUq1ePAQMGAHDnnXdSr149vvnmm4x9xo4dy6OPPkrPnj0JDQ3lxIkTrF+/nqJFizrtdYiYwTAM3lrxe0Zjc+Tdt6qxKQWWK9Q0UF0TERHncIW6ppomIpI1FsMwLr/PXgCIjY0lMDCQmJgYAgICMj2XlJTEsWPHqFixIj4+Pjd0HrvDTnhkOFGJUQT5BVE/uH6u393i6pz5/orkBofD4LVv9jHvp/T5iN64rwa9bqtgbqgC7lrXbEmXF3VNNe3KVNdEJLtU165Pdc0cqmkikl25XdM0LP0KwsLCCAsLw26358n5bFYboSVDr7+jiLgEu8NgxNJf+WL3n1gsMObBWjwSWs7sWCJXlZd1TTVNRERym+qaiIj8m4alX8HgwYPZv38/O3fuNDuKiLiYNLuDYYv38MXuP7FaYEKXOmpsistTXRMRkfxEdU1ERP5Nd26KiGRRSpqDpxf+zKrfIvCwWpjUtR531ypldiwRERERERGRAkvNTRGRLEhKtTNofjjrD0TiZbMytXt92lQPMTuWiIiIiIiISIGm5uYN0npMuUPvq7iSSyl2Hp+7i82HzuHjaWV6z4bcWSXI7FgiuULX39yh91VExBy6/jqf3lMRcTWaczOHPD09AUhMTDQ5Sf70z/v6z/ssYpb45DR6z9zB5kPn8POyMatPIzU2JV9SXctdqmsiInnLZktf0TwlJcXkJPmPapqIuBrduZlDNpuNIkWKEBkZCYCfnx8Wi8XkVO7PMAwSExOJjIykSJEiGb+UiJgh5lIqj83cwc8nL+Lv7cGsvqE0KF/M7FgiuUJ1LXeoromImMPDwwM/Pz+ioqLw9PTEatV9PTdKNU1EXJWamzegZMmSABkfBMV5ihQpkvH+ipjhQkIKPWdsZ9/pWAJ9PZnbrxG1bypidiyRXKW6lntU10RE8pbFYqFUqVIcO3aMEydOmB0nX1FNExFXo+bmDfinYAYHB5Oammp2nHzD09NT3wKKqaLikun52XYORMRRvJAX8/o35tZSAWbHEsl1qmu5Q3VNRMQcXl5eVK5cWUPTnUg1TURckZqbTmCz2XSBF8knImKS6PbpTxyNSiDY35sFAxpzS7C/2bFE8pTqmoiI5BdWqxUfHx+zY4iISC5Sc1NE5G9/Xkik2yfbORmdSOlAHxYMaEKFEoXMjiUiIiIiIiIiV6HmpogIcPxcAt0/3c7pi5coV8yP+f0bU7aYn9mxREREREREROQa1NwUkQLvcGQ83T75ici4ZG4uUYgFA5pQMlDDl0RERERERERcnZqbIlKgHYiIpcen2zkXn0KVkMLM69+YYH81NkVERERERETcgZqbIlJg7f0zhp4ztnMxMZUapQOY268xxQp5mR1LRERERERERLJIzU0RKZB2n7jAYzN3EJeURt2yRZjdpxGBfp5mxxIRERERERGRbFBzU0TyvZSUZJb9MI3I2JMEB5SjTLmHeHz+rySk2AmtUJQZj4Xi76PGpoiIiIiIiIi7UXNTRPK16V+PZOG5ZZzzsKZviIcSJ6dxq89teJfrzye9GuLnpUuhiIiIiIiIiDuymh1ARCS3TP96JFMufM05myXT9vM2CwdL/0Sz4svV2BQRERERERFxY2puiki+lJKSzMJzyzAALJmbm8bfjxdHLyMlJTnvw4mIiIiIiIiIU6i5KSL50rIfpqUPRf9PY/MfhsVClIeVZT9My+NkIiIiIiIiIuIsam6KSL4UGXvSqfuJiIiIiIiIiOtRc1NE8qXggHJO3U9EREREREREXE+BaG4+8MADFC1alIceesjsKCKSR/b/te2az1sMg6A0B/c3H5hHiUScQzVNRETyE9U1ERG5UQWiufnMM88wZ84cs2OISB5wOByMnPkgS9mXvsEwsBhGpn3+efxoifvx8vLO64giN0Q1TURE8hPVNRERuVEFornZokUL/P39zY4hIrnMYbczYmYnvrEeAuB+RxWGFL2P4vbMzc0SdoOnit7H4/e9bUZMkRuimiYiIvmJ6pqIiNwol29ubtq0iY4dO1K6dGksFgvLli27bJ+wsDAqVKiAj48PjRs3ZseOHXkfVERM5bDbGTazPSs9TgDQxVKLN/ss5fH73ub7nuG8WnoAAwu349XSA1jVM1yNTTGFapqIiOQnqmsiIuIKXL65mZCQQJ06dQgLC7vi84sWLWLYsGGMGjWK8PBw6tSpQ7t27YiMjMzjpCJilrS0VIZ81pp1nhEAdPdsxKu9FmQ87+XlTZe2T/NU53F0afu0hqKLaVTTREQkP1FdExERV+BhdoDr6dChAx06dLjq8xMmTGDAgAH06dMHgI8//pgVK1YwY8YMRowYka1zJScnk5ycnPE4NjY2Z6FFJM8kJSfyzOy72Oodg9UweMy3Bc8+MsXsWCJXlJc1DVTXREQkd6muiYiIK3D5OzevJSUlhd27d9OmTZuMbVarlTZt2rBt27VXSr6Sd999l8DAwIw/ZcuWdWZcEXGyxKQEBs9qxVbvGGyGweP+HdTYFLfl7JoGqmsiImIe1TUREckrbt3cPHfuHHa7nZCQkEzbQ0JCiIiIyHjcpk0bHn74Yb777jtuuummqxbTl156iZiYmIw/p06dytX8IpJzsfEXeWJ2C3b4JOBhGAwu9gCDO481O5ZIjjm7poHqmoiImEd1TURE8orLD0t3hrVr12ZpP29vb7y9NRefiKu7EBPF4EXt2euTgrfD4OmQbvS6+2WzY4nkiazWNFBdExER16e6JiIiN8qtm5slSpTAZrNx9uzZTNvPnj1LyZIlTUolIrnpbPRfPL3kHvZ7p+HjMHiuTD8evetZs2OJ3DDVNBERyU9U10REJK+49bB0Ly8vGjRowLp16zK2ORwO1q1bx2233WZiMhHJDX9GHWfQkg7s907Dz+FgZIWn1NiUfEM1TURE8hPVNRERySsuf+dmfHw8hw8fznh87Ngx9uzZQ7FixShXrhzDhg2jd+/eNGzYkEaNGjFx4kQSEhIyVuTLibCwMMLCwrDb7c54CSLiBMf/OsgzKx7iqLeBv93BK1WHc/ftvcyOJZItZtQ0UF0TEZHcobomIiKuwGIYhmF2iGvZuHEjLVu2vGx77969mTVrFgBTpkxh7NixREREULduXSZNmkTjxo1v+NyxsbEEBgYSExNDQEDADR9PRHLmjxO/8NzqHpzwgiJ2B6/XfJ3WjR42O5a4GHe4ZptZ08A93iMREUnnDtds1TUREcmK3L5eu3xz00wqliLm++3ITp7f0Ic/PS0UT3PwVv33uKPevWbHEheka/b16T0SEXEfumZfn94jERH3kNvXa5cfli4iBVf4gc2M+PFJznhaCE5zMKbxh4TWbGN2LBERERERERFxEWpuiohL2vbrakbufJYoTyulUg3G3jmNOlXuMDuWiIiIiIiIiLgQt14tPbeEhYVRvXp1QkNDzY4iUiD9sPsbRux8ligPKzelGkxsOUuNTZEboLomIiL5ieqaiIj8m+bcvAbN4SKS99b8tIjR+98gxmalQgp80G4ht5SraXYscQO6Zl+f3iMREfeha/b16T0SEXEPmnNTRAqM5Ztn8e6hscTZrNySYmHSvUspW6qy2bFERERERERExEWpuSkiLmHJuqmMPRlGos1K1WQrkx/4hlJB5c2OJSIiIiIiIiIuTM1NETHdwtUTmHB6BklWKzWSPZjSZQUlipQ2O5aIiIiIiIiIuDgtKHQFmqBaJO/M+vZtxp2eQZLVQu0kLz7uukaNTREnU10TEZH8RHVNRET+TQsKXYMmqBbJXdO+GsnHMV+TZrFQP8mXsB5rKFwo0OxY4qZ0zb4+vUciIu5D1+zr03skIuIetKCQiORLk5cM47P41dgtFhonF2Zy77X4+hQyO5aIiIiIiIiIuBE1N0Ukz43/fBCzkzZhWCzcnlyESY+txcvL2+xYIiIiIiIikofsDjvhkeFEJUYR5BdE/eD62Kw2s2OJm1FzU0Ty1Dvz+7AwbRdYLLRICeKDvt/j4eFpdiwRERERERHJQ2tPrGXMjjGcTTybsS3EL4QRjUbQpnwbE5OJu9GCQiKSZ16f0y29sQm0TS3Fh33XqLEpIiIiIiJSwKw9sZZhG4dlamwCRCZGMmzjMNaeWGtSMnFHam6KSK5z2O28PPMBlhp7AbjbXoFxfVZitWm4gYiIiIiISEFid9gZs2MMBpevb/3Ptvd2vIfdYc/raOKm1Ny8grCwMKpXr05oaKjZUUTcnsNuZ/isTiy3HgbgfqryXt/lamyK5CHVNRERyU9U10TcW3hk+GV3bP6bgUFEYgThkeF5mErcmZqbVzB48GD279/Pzp07zY4i4tbsaXaGzWjPKo+TAHSx1uHN3ktMTiVS8KiuiYhIfqK6JuLeohKjnLqfiBYUEpFckZqWytAZbdnkfR6AHp6NGd7tU5NTiYiIiIiIiJmC/IKcup+I7twUEadLSk5k8IwWbPI+j9Uw6OfbXI1NERERERERoV5QPfw8/K76vAULJf1KUj+4fh6mEnemOzdFxKkSLiUwZE5rdvokYDMMHg/owKAHx5odS0RERERERFzA9L3TSUxLvOJzFiwADG80HJtV6zRI1ujOTRFxmpj4Czw5pwU7fRLwMAyeKvagGpsiIiIiIiICwMx9M/nol48AeOCWBwjxC8n0fIhfCBNaTKBN+TZmxBM3pTs3RcQpomMieerz9uz1ScXbYTC0ZA96dBhhdiwRERERERFxAZ8f+JwJuycA8Ez9Z+hfqz92h53wyHCiEqMI8guifnB93bEp2abm5hWEhYURFhaG3W43O4qIW4g49ydPf3kvv/vY8XU4eP6mAXRpO9TsWCLyN9U1ERHJT1TXRNzP14e/5u3tbwMwoNYA+tfqD4DNaiO0ZKiZ0SQfsBiGYZgdwlXFxsYSGBhITEwMAQEBZscRcUl/nj3O01/fxyFvB34OBy9VfIb7WzxudiwpgHTNvj69RyIi7kPX7OvTeyTiHlYfX80Lm17AYTjocWsPXgx9EYvFYnYsyUO5fb3WnZsikmPHTv/B0O8e4qg3+NsdvFptBB2a9jQ7loiIiIiIiLiATX9uYvim4TgMB50rd1ZjU3KFmpsikiN/HP+F59b04IQXFLE7eKPWaFqGPmR2LBEREREREXEB289s59kNz5JmpNGhYgdebfKqGpuSK9TcFJFs+/XQdl78oR+nvSwUT3PwVoP3uKPuvWbHEhERERERERewJ3IPQ9YPIcWRQsuyLXn7jre1UJDkGjU3RSRbdv++mRFbniTC00JwmoMxjScRWrO12bFERERERETEBew/v59BawdxKe0STUs3ZVzzcXhaPc2OJfmYmpsikmVbf1nNK7ueJcrTSqlUg3F3TqN2lTvMjiUiIiIiIiIu4PCFwwxcM5C41DjqB9dnYsuJeNm8zI4l+ZyamyKSJRt3f82oPS8T7WHlplSDD1rPplrFBmbHEhERERERERdwMvYkj695nIvJF6lRvAZhrcPw9fA1O5YUAGpuish1rd62iDd+f4MYDysVUuDD9ou4uWwNs2OJiIiIiIiICzgTf4b+q/sTdSmKykUrM63tNAp7FTY7lhQQam6KyDUt3zSTdw+PI85mpVKKhSn3fslNpW4xO5aIiIiIiIi4gHOXzjFgzQDOJJyhQkAFpredTqB3oNmxpACxmh3AFYWFhVG9enVCQ0PNjiJiqiXrpvLWkfTGZtVkKx8/8K0amyJuSHVNRETyE9U1EddxMekiA1YP4ETsCUoXKs0nd31CCd8SZseSAsZiGIZhdghXFRsbS2BgIDExMQQEBJgdRyRPzf9+PBP/mkmS1UKNZA/CunxH8SKlzI4lclW6Zl+f3iMREfeha/b16T0SMVdcShz9V/dn//n9BPsGM6v9LMoGlDU7lrig3L5ea1i6iFxmxrdvEha1iBSrhdrJXoR1/Z4i/vr2TURERERERCAxNZHB6waz//x+inoX5ZO7PlFjU0yj5qaIZPLxVy8zLeYb0qwWGiT7MqX7GgoX0nwpIiIiIiIiAsn2ZJ7Z8Aw/R/6Mv5c/0++azs1FbjY7lhRgam6KSIYPv3iWmQlrsFssNE4uzORea/H1KWR2LBEREREREXEBqY5Unt/4PD+d+QlfD18+avMR1YpVMzuWFHBqbooIAGMXPsnc5M0YFgt3JBdh0mNr8fTyNjuWiIiIiIiIuAC7w87Lm19m458b8bZ5E9Y6jDpBdcyOJaLmpojA2/P68Ll9F1gstEwJ4oN+32OzeZodS0RERERERFyAw3Dw+rbXWXV8FR5WDya0mEBoyVCzY4kAam6KFHijZnflS/YB0DatNOP6fofVZjM5lYiIiIiIiLgCwzB4b8d7LDu8DKvFyvt3vs+dN91pdiyRDFazA4iIORx2Oy/PeCCjsXmPoyLjHlNjU0RERERERP5v0s+TWHBgAQBv3f4Wbcu3NTmRSGa6c1OkAEhJSWbZD9OIjD1JcEA5Ot3Rn1fmP8T3nqcAeICqvNFnickpRURERERExJV88usnfLr3UwBebfIqHSt1NDmRyOXU3BTJ56Z/PZKF55ZxzuPvG7XjYdzn07jkmf74EVtdXukx18SEIiIiIiIi4mrm7Z/HpJ8nAfB8w+fpUrWLyYlErkzNTZF8bPrXI5ly4WsMmyXT9kvW9MZm8+TivPK4GpsiIiIiIiLyf0sPLuW9ne8BMKjuIHrX6G1yIpGr05ybVxAWFkb16tUJDdXKX+K+UlKSWXhuGQaAxXL5DobBflsUKSnJeR1NRPKY6pqIiOQnqmsiueu7o98xettoAPrU6MMTtZ8wOZHItVkMwzDMDuGqYmNjCQwMJCYmhoCAALPjiGTL4jWTePOvT66736ulB9Cl7dN5kEgkd+mafX16j0RE3Ieu2den90jE+dadXMdzG5/Dbth5pOojjGw8EsuVbpYRyYbcvl7rzk2RfCoy9qRT9xMREREREZH8a8vpLbzwwwvYDTudKnXi5cYvq7EpbkHNTZF8KjignFP3ExERERERkfxpV8Quhm4YSqojlbbl2zK66WisFrWMxD3oX6pIPlXItyjWa8w6YTEMgtIc3N98YB6mEhEREREREVeyN2ovT61/iiR7Es3KNOO9Zu/hYdX60+I+9K9VJB+au3IsUyJm4bBa4Z8G57+GE1j+3vZoifvx8vI2I6KIiIjkgN1hJzwynKjEKIL8gqgfXB+b1WZ2LBERcVN/RP/BE2ufICE1gUYlGzGhxQQ8bZ5mxxLJFjU3RfKZDxY9zZxL60mzWqme7MHtRe7kq7i1nPP4f3OzhN3g0RL38/h9b5uYVERERLJj7Ym1jNkxhrOJZzO2hfiFMKLRCNqUb2NiMhERcUfHYo7x+JrHiU2JpU5QHSa3moyPh4/ZsUSyTc1NkXzCYbfz6pwufGM9CBYLTZL9+aD7SgoXCuSJlGSW/TCNyNiTBAeU4/7mA3XHpoiIiBtZe2ItwzYOwyDzlDORiZEM2ziMCS0mqMEpIiJZ9mfcn/Rf3Z/opGhuLXYrU9tMxc/Tz+xYIjmi5qZIPnApOZHnZ3dgk3c0AO3t5RjTbxm2v4cTeHl506Xt02ZGFBERkRyyO+yM2THmssYmgIGBBQvv7XiPlmVbaoi6iIhc19mEswxYPYDIxEgqBVZiWttpBHgFmB1LJMe0oJCIm4u6EMHjs+5kk3c0FsOgu2cjxvZdkdHYFBEREfcWHhmeaSj6fxkYRCRGEB4ZnoepcpfdYbDtyHm+3nOabUfOY3dcfZFEERHJuuikaAasGcCf8X9S1r8s0++aTlGfombHErkhunNTxI39cfwXhq/uyREfA2+HwZMlOtOv42izY4mIiIgTRSVGOXU/V7dq3xlGL9/PmZikjG2lAn0Y1bE67WuWMjGZiIh7i0mOYeCagRyLOUbJQiX59K5PCfYLNjuWyA3TnZsibmrrL6sYsrY7R7wNAu0ORt3yrBqbIiIi+VCQX5BT93Nlq/ad4cl54ZkamwARMUk8OS+cVfvOmJRMRMS9JaQmMGjdIA5EH6C4T3E+afsJpQuXNjuWiFOouSnihpb98Ckv7n6OM54WSqYajG/0AR2b9TM7loiIiOSCP6L/uObzFiyU9CtJ/eD6eZQod9gdBqOX77/CzKJkbBu9fL+GqIuIZFNSWhJD1g/h16hfCfQOZPpd06kQWMHsWCJOo2HpIm7mk2WvMe3ClyTbrFRKsTCu3QJuKVfL7FgiIiLiZHaHnbG7xjL/9/kZ2yxYMi0sZMECwPBGw91+MaEdx6Ivu2Pz3wzgTEwSO45Fc1ul4nkXTETEjaXYUxi6cSg7I3ZSyLMQ09pMo0rRKmbHEnEqNTdF3Mg78/qwKG0nDquFusnefNhlBcWKhJgdS0RERJwsMTWRFze9yA9//gDAM/Wfobx/ed7b+V6mxYVC/EIY3mg4bcq3MSuq00TGXb2xmZP9REQKujRHGsM3DWfL6S342HyY2noqNUrUMDtWgWR3GOw4Fk1kXBLB/j40qlgMm9Vidqx8Q81NETeQlpbKiFn38b3nKbBYuDOlOBMeW4m3l6/Z0URERMTJIhIiGLJ+CAeiD+Bt8+btO96mXYV2ALQq14rwyHCiEqMI8guifnB9t79j8x/B/j5O3U9EpCBzGA5e3fIqa0+uxdPqyYetPqR+iHtPX+KutFBe7lNzU8TFxcZf5Ln5HfjJJx6A+6nK6L6LsNryxwcZERER+b/fz//OU+ueIvJSJMV8ijGp1STqBNXJeN5mtRFaMtTEhLnHbndggSvOuQlgAUoGpt/tIiIiV2cYBm/99BbfHv0Wm8XG+ObjaVq6qdmxCqR/Fsr7b237Z6G8j3rUV4PTCbSg0BWEhYVRvXp1QkPz5y+O4j7+PHucAQta8pNPPB6GQX+/lrzZe4kamyKSLaprIu5h46mN9F7Vm8hLkVQKrMSCexZkamzmZ0t2/8ljs3ZmfPj770C9fx6P6lhdw/hEdU3kGgzDYNyucXxx8AssWHi32bu0LNfS7FgFkhbKyzsWwzD0Ll5FbGwsgYGBxMTEEBAQYHYcKWB+ObiNkT88zgkv8HM4eKZ0H7q1e97sWCIuS9fs69N7JOKaDMNg/u/zGbtrLA7DQZNSTRjfYjwBXvn/f6eGYfDBmoNMWn8YgI51StP21mDeXXmgwA/f0zX7+vQeiVxu6p6pfPTLRwC80fQNHqj8gMmJCq5tR87T9ZOfrrvfwgFN8v1Cebl9vc7SsPRvvvkm2wdu27Ytvr6aD1AkJ9ZuX8Lb+0ZxzstK8TQHr9QaRZtGXcyOJZJvqK6JiKtIc6Tx3o73+PyPzwHoXLkzI5uMxNPqaXKy3JecZmfE0r189fNpAAa3rMRzbatitVq4p3ZpLbyQRappIvKPmftmZjQ2RzQaocamybRQXt7JUnPz/vvvz9ZBLRYLhw4d4uabb85JJpECbeH3E/jwr89I8LBSNsVgTPPp1K5yu9mxRPIV1TURcQUJqQk8/8Pz/Hj6RyxYeLbBszxW4zEslvzfxLuYmMLjc3ez41g0NquFdx6oySOh5TKet1kt+f4uFmdRTRMRgM8PfM6E3RMAeKb+M3S/tbvJiUQL5eWdLC8oFBERQXBwcJb29ff3z3EgkYJs0hfPMjNhDWlWK7cm2xh/35eUDdEvniK5QXVNRMwUkRDB4HWDOXjhID42H95t9i5tyrcxO1aeOHk+kcdm7eBoVAL+3h5M7VGfZpWDzI7l1lTTRAq2rw9/zdvb3wZgQK0B9K/V3+REAunzRWuhvLyRpeZm7969szVsoUePHprzRCQbHHY7r899lK8sB8BioVFyIT7ovpKAQkXNjiaSL6muiYiZfjv/G0PWDSHqUhTFfYozpfUUapaoaXasPPHzyQv0n72L8wkplA70YUafUKqV1PX1RqimiRRsq4+v5rWtrwHQ49YeDKk3xOREArBm/1meWhCeaaG8fzc5tVCec2lBoWvQBNWSF5KTL/H87LvZ6H0OgLvSyvBe7+V4eOT/ubZEnEnX7OvTeyRivvUn1zNi8wgupV3iliK3ENY6jNKFS5sdK0+s3HuGoYv2kJzmoGaZAD7rHUpIgIbiXY2u2den90gKuk1/buKZ9c+QZqTRuXJnRt02qkBMbeLqFu88xYgvf8VhQJtbg+lUp3SBXyjPJRYUupbY2FjWr19P1apVufXWW52RSaTAiL54lqGL7uVnnyQshsEjHvUZ2XuO2bFECjTVNRHJDYZhMGf/HMbvGo+BQdPSTRnXfBz+Xvl/iLBhGHy6+RjvrPwdw4BW1YKZ3LUehbxv+KOIXIdqmkj+tf3Mdp7d8CxpRhodKnbg1SavqrFpMsMw+PiHo7y36gAADze4iXcfrIWHzaqF8nJZtn+j6NKlC3feeSdPPfUUly5domHDhhw/fhzDMPj888/p3LlzbuQUyXeOnNrHCyu7ccjHwMthMLDYfTx+39tmxxIpcFTXRCS3pTnSeHf7uyw+uBiALlW68FLjl/Cw5v/mXprdwevLf2PeTycB6HVbeV67tzoeNqvJyfIn1TSRgmFP5B6GrB9CiiOFlmVb8vYdb2Oz2syOVaA5HAZvf/c7n/14DIAnmldiePuqGQ1nLZSXu7L9W8WmTZto1qwZAF999RWGYXDx4kUmTZrEW2+95fSAIvnR9r1rGfT9oxzyNvC3O3il4hA1NkVMoromIrkpPiWep9Y9xeKDi7Fg4fmGz/NKk1cKRGMzITmNAXN2Me+nk1gs8Mo9tzK6Uw01NnORappI/rf//H4GrR3EpbRLGaMAPK1uPKWZww7HNsPeJen/ddjNTpRtqXYHz33xS0Zj85V7bmVEh2q6kzYPZfs3i5iYGIoVS1/JadWqVXTu3Bk/Pz/uueceDh065PSAIvnN8k0zeG7nM/zlaSEkzWBcg7E80GKg2bFECizVNRHJLX/F/0XPlT3Z8tcWfD18+aDlB/Su0btAfNiJiEni4Y+3seGPKHw8rXzUvQH9m91cIF67mVTTRPK3wxcOM3DNQOJS46gfXJ+JLSfiZfMyO1bO7f8GJtaE2ffC0n7p/51YM327m0hMSf8i76ufT+NhtTChSx36N7vZ7FgFTrabm2XLlmXbtm0kJCSwatUq7rrrLgAuXLiAj48mBBe5lhnLX2f0kQnE2KzcnGJhapt5NK1zt9mxRAo01TURyQ37zu2j24puHL54mBK+JZjZfiaty7U2O1ae+P1MLA9M3cL+M7GUKOzF54/fRvuaJc2OVSCoponkXydjT/L4mse5mHyRmsVrEtY6DF8PX7Nj5dz+b2BxL4j9K/P22DPp292gwXkhIYXun25n499f5H3SuyEP1r/J7FgFUrbHwwwdOpTu3btTuHBhypcvT4sWLYD0IRC1atVydj6RfOP9+f2Zn/oTDquF2sleTHx4OUFFC8bqqCKuTHVNRJxt7Ym1vLT5JZLsSVQuWpmwVmGUKlwwVkPddDCKQfPDiU9Oo1JQIWb1aUTZYn5mxyowVNNE8qcz8Wfov7o/UZeiqFy0Mh+3/ZjCXoXNjpVzDjusGg4YV3jSACywagRUuwdcdC7Rvy5eoteMHRyOjCfQ15MZj4XSoHxRs2MVWNlubg4aNIjGjRtz8uRJ2rZti9WafvPnzTffrHlcRK7AnpbGS7PvY6XHSbBYuCO5KBN6r8TXu5DZ0UQE1TURcR7DMJj12yw+2P0BBgZ3lLmDsXeOde8PoNmwcMdJXlm2D7vDoMnNxZjWoyGBfm48D5wbUk0TyX/OXTrHgDUDOJNwhgoBFZjedjqB3oFmx7oxJ7ZefsdmJgbEnk7fr2KzPIuVVYcj4+j52Q7OxCRRKtCHOX0bUTnE3+xYBVqOZjJv0KABDRo0yLTtnnvucUogkfwkPjGW5+a1Z6t3HAAdHbfwVr8lWG2u+e2TSEGluiYiNyrVkcrbP73N0kNLAXi06qMMbzS8QCwc5HAYjF39Bx9tPALAg/XKMKZzbbw8tHCQGVTTRPKPi0kXGbB6ACdiT1CmcBk+uesTSviWMDvWjYs/69z98tDPJy/QZ9ZOLiamUimoEHP6NaZMETeeHiCfyNJvHMOGDSMhISHLB33ppZeIjo7OcSiR/OB01An6z23OVu84bIZBH587eafPV2psirgA1TURcaa4lDgGrx3M0kNLsWBheOhwXm78coFobCal2nn6858zGpvPtK7M+C511NjMQ6ppIvlTXEocA9cO5PDFwwT7BvNJ208oWSifzF9cOMS5++WRjX9E0u2T7VxMTKVu2SJ88URTNTZdRJZ+6/jwww9JTEzM8kHDwsK4ePFiTjOJuL3fDu/giWX38ptPGr4OB8+F9GDYI2FmxxKRv6muiYiznI4/Tc/verLtzDZ8PXz5sOWH9Kjeo0CsCh6dkEKPT7fz7a9n8LRZGPdwHZ5tW6VAvHZXopomkv8kpiYyeN1g9p/fT1Hvonxy1yeUDShrdiwnu1atsEBAGSjfNM/SXM+yn0/Tf/YuLqXaubNKEPP7N6ZYITdeqT6fydLXyYZhUKVK1n9Ryc43hyL5zYZdX/LmL68S5WWlaJqDkTVepl2T7mbHEpF/UV0TEWf4NepXhqwfQnRSNMG+wUxuPZnqxaubHStPHDuXQJ+ZOzh+PhF/Hw+m9WxA00r5YKikG1JNE3Fvdoed8MhwohKjCPILokbxGjyz4Rl+jvwZfy9/pt81nZuL3Gx2TOc5sgEWduX/iwlZyLyw0N/XsvZjXGYxoRk/HuONb/cD0KlOacY9rBEKriZLzc2ZM2dm+8AhIa51+7BIXli85kM+ODWdeA8rN6UavH3HR9SvdqfZsUTkP1TXRORGrT6+mpd/fJlkezLVilVjcqvJ+We44HXsOh7NgDm7uJCYyk1FfZnVJ5RbgrWQgllU00Tc19oTaxmzYwxnE/8/t6S3zZtkezK+Hr581OYjqhWrZmJCJ/tjFSzuBfZkuKUN1OkKa17NvLhQQOn0xmb1Tubl/JthGIz9/g+m/j31Sp/bK/DqPdWxWjVCwdVkqbnZu3fv3M4h4vbCljzHZ/Hfk2qzUjXZxoSOiylXqorZsUTkClTXRCSnDMPgs32f8WH4hwDcedOdjL1zLH6efnkTwGFPXz02/mz6XGTlm+bpnS3Lf/mL5774hZQ0B3VuCuTT3qEE+Xvn2fnlcqppIu5p7Ym1DNs4DCPTXYuQbE8GoG/NvtQJqmNGtNzx21ewtD840qDavfDQDPDwhhoPmFrXribN7mDkV/tYtOsUAC+0q8qgFpU09YqLyv+znIvkMofdzpvzurOE38BioWGyHx90/Y4i/sXNjiYiIiJOlOpI5a2f3uLLQ18C0P3W7rzQ8AVsefUhbP83sGr4Fe5weS/X73AxDIOPfjjC+6v+AOCu6iF8+Gg9fL3M/wAqIuJu7A47Y3aMuayx+W9LDy5lQK0BeVdjctOehfD1IDAcUPMheOBjsHmmP2e1QcVm5ub7j6RUO0MW/sya/WexWuCdB2rxaKNyZseSa1BzU+QGpKQk88Lsu1nvFQlA69RSjO3zLZ6emlhYREQkP4lNiWXYhmFsj9iO1WLlxdAX6X5rHs6pvf+b9KF8//0gHHsmfXuXObnW4Ey1O3h12T4+35l+90rf2ysy8p5bsWlYnohIjoRHhmcain4lEYkRhEeGE1oyNI9S5ZJdM+DbZ9P/Xq8ndPzQJe7MvJqYS6kMmL2LHcej8fKwMrlrPdrVKBjTzrgzNTdFcuhC7DmeXdiB3T5JADxsrcNr/eeZnEpERESc7VTcKQavG8yxmGP4efgxtvlY7rwpD+fUdtjT79i84h0+BmCBVSOg2j1O/8AYl5TKoPnhbD50DqsFRnWsQe+mFZx6DhGRgiYqMcqp+7msbWHw/cvpf2808O9Fglx3IZ7I2CR6zdjBgYg4/L09+KR3Q5rcrBGZ7sB1/1U5ybfffkvVqlWpXLkyn376qdlxJJ84dvoA/T9vzW6fJDwNgyf97+G1nmpsikjuU10TyVt7IvfQ47seHIs5RrBfMHM6zMnbxiakz0X276HolzEg9nT6fk7018VLPPzxNjYfOoevp43pPRuqsSlOp7omBVGQX5BT93NJm8b+v7F5+1Do8J5LNzaPnUug88dbORARR4nC3iwaeJsam24kx3duHj58mCNHjnDnnXfi6+uLYRguN7FqWloaw4YNY8OGDQQGBtKgQQMeeOABihfXP1DJuV2/reeVbU9z2ttCYbuD5yoM5qFWg8yOJSI3SHVNRP5r1bFVjPxxJCmOFG4tdiuTW00mpJAJq0zHX3voYrb3y4J9p2PoO2snkXHJBPl7M6N3KLVuCnTa8SV3uUNNA9U1KbjqB9enmE8xopOir/i8BQshfiHUD66fx8mcwDBg3Rvw44T0xy1Hwp0vgAteg/6x73QMj83cwbn4FMoX92Nu38aUK55HCwWKU2S7bX7+/HnatGlDlSpVuPvuuzlz5gwA/fr147nnnnN6wBuxY8cOatSoQZkyZShcuDAdOnRg9erVZscSN/bdj3MYtn0Ipz0tBKc5eL/uGDU2Rdyc6pqI/JdhGHzy6ye8sOkFUhwptLipBbPazzKnsQnpq8c6c7/rWH/gLF2mbSMyLpkqIYVZNvh2NTbdhDvVNFBdk4LrdPxpktOSr/ichfQm4PBGw91vMSHDSJ8m5Z/G5l1vQfMXXbqxufXwOR6d/hPn4lOoUTqAJU80VWPTDWW7ufnss8/i4eHByZMn8fP7///DH3nkEVatWuXUcJs2baJjx46ULl0ai8XCsmXLLtsnLCyMChUq4OPjQ+PGjdmxY0fGc3/99RdlypTJeFymTBlOnz7t1IxScMz+9i1GHXqfCzYrFVIgrOVcmtXvaHYsEblBqmsi8m+p9lRe3fIqk36eBECPW3swseVE/DxN/KATUgNs11qs0AIBZaB80xs+1dxtx+k/exeJKXbuuKUES55sSpkivjd8XMkbeVnTQHVNJCcuJF1g0LpBJKQlcFPhmwj2C870fIhfCBNaTKBN+TYmJcwhhx2WPwPbP05/fPc4aDrE3EzX8d3eMzw2cyfxyWncdnNxPn+8CUH+3mbHkhzI9rD01atX8/3333PTTTdl2l65cmVOnDjhtGAACQkJ1KlTh759+/Lggw9e9vyiRYsYNmwYH3/8MY0bN2bixIm0a9eOP/74g+Dg4CscUSRnxi4cyPzkLditFmomezKx8zeEFL/p+j8oIi5PdU1E/hGTHMOzG59lZ8ROrBYrLzV6iUerPWpuqLgImPcQ2FOussPfd8O0H3NDiwk5HAbvrvydTzYfA6BLw5t4+4FaeNpcd340uVxe1jRQXRPJrqS0JJ5e/zQnYk9QulBp5t49l6LeRQmPDCcqMYogvyDqB9d3vzs27Wmw7EnYuxgsVug0Bep1NzvVNc376QSvfr0Pw4D2NUoy8dG6+Hi62fsuGbLd3ExISMj0LeA/oqOj8fZ2boe7Q4cOdOjQ4arPT5gwgQEDBtCnTx8APv74Y1asWMGMGTMYMWIEpUuXzvTN3+nTp2nUqNFVj5ecnExy8v9vDY+NjXXCqxB35rDbeXn2A6ywHQOLhabJRfig1yr8fAqZHU1EnER1TUQATsWeYtC6QRyPPY6fhx/jmo+j2U3NzA11/gjMvR8unoRCwel3wGz/KPPiQgGl0xub1Tvl+DSXUuw8u2gPq36LAOD5u6owuOUtLjlHo1xbXtY0UF0TyQ6H4eDlH19mT9Qe/L38+ajNR5TwLQFAaMlQk9PdgLQUWNoPfv8GrB7w4HSo2dnsVFdlGAaT1h3mg7UHAejWuBxv3lcTm1U1z51l+6vYZs2aMWfOnIzHFosFh8PB+++/T8uWLZ0a7lpSUlLYvXs3bdr8/1Ztq9VKmzZt2LZtGwCNGjVi3759nD59mvj4eFauXEm7du2uesx3332XwMDAjD9ly5bN9dchrisxKZ5BnzVPb2wC9zhu5qN+G9XYFMlnVNdE5OfIn+n2XTeOxx6nZKGSzOkwx/zG5und8Fnb9MZm0YrQbzXc/jQM3Qe9v4XOn6X/d+jeG2psnotPpusnP7Hqtwi8bFY+fLQuT7WqrMamm3KVmgaqayL/NWHXBNacWIOn1ZMPW37IzUVuNjvSjUu9BIu6pzc2bV7QZa5LNzbtDoNR3/yW0dh8unVl3r5fjc38INt3br7//vu0bt2aXbt2kZKSwosvvshvv/1GdHQ0W7ZsyY2MV3Tu3DnsdjshIZknTg8JCeHAgQMAeHh4MH78eFq2bInD4eDFF1+85sp7L730EsOGDct4HBsbq4JZQEWc+5NhSzux1ycVq2HQw+cOXnj0Y7NjiUguUF0TKdhWHF3Bq1teJdWRSvXi1ZnSagpBfkHmhjq8Fhb1gtQEKFUXui+Bwn9nstqgonMar4cj4+kzawenoi9RxM+T6T0b0qhiMaccW8zhKjUNVNdE/m3B7wuYvX82AG/e/qZ736n5j+R4+LwrHNsEHr7w6Hy4pbXZqa4qOc3OsMW/sOLXM1gs8HrHGvRuWsHsWOIk2W5u1qxZk4MHDzJlyhT8/f2Jj4/nwQcfZPDgwZQqVSo3Mt6QTp060alT1r7N9vb2zpXhGuK6UlKSWfbDNCJjTxIcUI77mw/k6OnfeHFtb475gI/DYHDwozx2zytmRxWRXKK6JlIwGYbBx79+zNQ9UwFoVbYV7zZ719yFgwB+XZw+b5kjDW5uCY/MBW9/p5/mp6PneXzOLmKT0ihf3I+Zj4Vyc1Bhp59H8pa71TRQXZP8b/3J9by38z0Anqn/DPfcfI/JiZwgKQbmPwyntoNXYei2GCrcbnaqq4pPTuOJubv58fA5PG0WJnSpS8c6pc2OJU6U7eYmQGBgICNHjnR2lmwpUaIENpuNs2fPZtp+9uxZSpYsaVIqcSfTvx7JwnPLOOfx9+wM8TBl7jQcFoMYLxtF7A5eqjqCu2/vaW5QEcl1qmsiBUuKPYXXt77O8qPLAXisxmM82+BZrBaTF8/ZOgVW/30tqvkQ3P8ReFxrlfSc+ernP3lxya+k2g3qlyvCJ70aUrywGkb5hSvUNFBdEwHYG7WX4ZuG4zAcPFTlIfrV7Gd2pBuXGA1zH4Aze8AnEHp8CTc1NDvVVZ2PT6bPrJ38+mcMfl42pvVsQLPKJo/QEKfLUXMzKSmJX3/9lcjISBwOR6bnsvqt243y8vKiQYMGrFu3jvvvvx8Ah8PBunXreOqpp27o2GFhYYSFhWG3252QVFzR9K9HMuXC1xi2zHNrXLBZwGKlWJqDcU2mEFojb+cmEhFzqK6JFBwXky4ydONQdp/djc1i4+XGL9OlahdzQzkcsPY12Do5/XGTQXDX22B1brPVMAwmrz/MhDXpc43dU6sU47vU0eqw+Ywr1DRQXRM5FXeKp9Y/RZI9iTvK3MHIxiPdfz7j+EiYcx9E7ge/4tBzGZSqbXaqqzoVnUivGTs4di6BYoW8mPlYKHXKFjE7luSCbDc3V61aRa9evTh37txlz1ksFqcWmPj4eA4fPpzx+NixY+zZs4dixYpRrlw5hg0bRu/evWnYsCGNGjVi4sSJJCQkZKzGl1ODBw9m8ODBxMbGEhgYeKMvQ1xMSkoyC88tS29s/re4WCxgGFiAOpWbmpJPRPKW6ppIwXEi9gSD1w3mROwJCnkWYnzz8dxexuRhdPZU+How/Loo/XHbN6Dp05f/jnKDUtIcvPzVXpbs/hOAgc1vZni7ali1iEK+kpc1DVTXRK7mYtJFBq0dRHRSNLcWu5VxzcfhYc3RvWWuI+Y0zOkE5w9D4ZLQ62sIrmZ2qqs6EBFLr892EBmXTJkivszp14hKmn4l38r2/7qGDBnCww8/zGuvvXbZ5NDOtmvXrkyr+v0zeXTv3r2ZNWsWjzzyCFFRUbz22mtERERQt25dVq1aleu5xL0t+2Ha/4eiX4nFwnkPC8t+mEaXtk/nXTARMYXqmkjBsPvsbp7Z8AwxyTGUKlSKsNZhVC5a2dxQyfGwuBccWQcWG9wXBnW7Ov00MZdSeXLebrYeOY/NauGN+2rQvXF5p59HzJeXNQ1U10SuJNmezDMbnuF47HFKFirJlNZTKORZyOxYN+bCcZjdCS6egMCy6Y3N4pXMTnVVO49H02/WTmKT0qga4s/svo0oGehjdizJRRbDMIzs/EBAQAA///wzlSq57j9kZ/nnm8CYmBgCAgLMjiNOMmXp80yL//66+w0s3I6nOo/Lg0Qi4gw5vWarronkf8uPLOe1ra+R5kijZvGaTG49mRK+JcwNlXAufTGGv8LB0w+6zIHKbZ1+mlPRifSdtZNDkfEU8rIxpXt9WlYNdvp5xPlycs0uSDUNVNfE9TgMB8M3DWfV8VX4e/ozp8Mcbil6i9mxbsy5Q+mNzbi/oGhF6P0NFClndqqrWrv/LIMXhJOc5qBh+aJ81juUQD9Ps2MVeLl9vc72RD4PPfQQGzdudHoQkbwSHJC1C3FW9xMR96a6JpJ/GYbB1D1TefnHl0lzpNG2fFtmtJ9hfmPzwgn47K70xqZvMei9PFcam7+cusgDU7dyKDKekgE+fPFEUzU28znVNBFzTQyfyKrjq/CwevBByw/cv7F59jeY2SG9sVmiKvRZ6dKNzcW7TjFw3m6S0xy0rhbM3H6N1dgsILJ952ZiYiIPP/wwQUFB1KpVC0/PzP9Qnn7a/Yfx/nuC6oMHD+qbwHwmJSWZlvPqE2u9wpybgMUwKGE3WNUzHC8vrRwq4i5y+m2g6ppI/pRiT+G1ra+x4ugKAPrU7MPQ+kPNXxE9Yi/M6wzxZ9OH9vX8Cko4f3j86t8iePrzn0lKdXBrqQBmPNaQUoG+Tj+P5J6c1LWCUNNAdU1c06IDi3hr+1sAvHPHO3Ss1NHkRDfodDjMexAuXYCStdIXDypk8peDV2EYBtM2HWXMygMAdK5/E2M618LTZnLNlwy5fedmtpubn332GU888QQ+Pj4UL14802pfFouFo0ePOj2kWTTMIX9avOYD3v3zM9Ks6YsH/bvBafn7fw5PFb2Px+9726yIIpIDOb1mq66J5D8Xki4wdMNQwiPDsVlsvNLkFR6q8pDZseDYZvi8GyTHQnAN6LEUAko5/TQzfjzGmyv2YxjQvEoQYd3rU9jbzReyKIBycs0uSDUNVNfEdfxw6gee3vA0DsPBU3WfYmCdgWZHujEnf0qfOiU5Fso0hB5LwLeo2amuyOEweHfl73yy+RiQvmDeiPbV3H9l+nwmt6/X2f4tZ+TIkYwePZoRI0ZgtaoLLu5lxeZZjP/zU9KsVm5JtnDR5uCcx/8veiXsBo+WuF+NTZECRHVNJH85FnOMwesGcyruFIU9CzOhxQRuK32b2bFg/9ewtD/YU6D87fDoAvAt4tRT2B0Gb367n1lbjwPQvXE5RneqgYfuXCkwVNNE8t5v537jhU0v4DAcPFj5QR6v/bjZkW7M0R9g4aOQmpher7otAm9/s1NdUardwfAlv/Llz6cBePnuajx+Z8GYc1gyy3ZzMyUlhUceeUTFUtzOxl1f8s6hsSTarNRI9mR693X4ePqx7IdpRMaeJDigHPc3H6ih6CIFjOqaSP6xM2InQzcMJTYlljKFyxDWOoxKRVzgQ87OT2HF84AB1e6Fzp+Bp3NXbU1MSePphXtY+/tZAF7qUI3H77xZd64UMKppInnrdPxpBq8bzKW0SzQt3ZRXmrzi3tfdg6thUQ+wJ0OlVvDIfPDyMzvVFSWmpDF4fjgb/ojCZrXwfufadG5wk9mxxCTZrnq9e/dm0aJFuZFFJNfs/m0Dr//yKrE2K5WTrUx++FsCChXFy8ubLm2f5qnO4+jS9mk1NkUKINU1Efdjd9jZGbGT745+x86Indgddr458g2Pr3mc2JRYapeozby755nf2DQMWP82rHgOMKBBn/RV0W+gsWl3GGw7cp6v95xm25Hz2B0GkXFJPDLtJ9b+fhYvDyth3eozsHkl9/6ALTmimiaSd2KSYxi0dhDnk85TtWhVxjcfj6fVjRev2f91+tQp9mSoeg90/dxlG5sXE1Po8el2NvwRhY+nlU96NVBjs4DL9p2bdrud999/n++//57atWtfNkn1hAkTnBZOxBl+P7qLEdue4rynlfIp8GGnpQQVLW12LBFxEaprIu5l7Ym1jNkxhrOJZzO2FfIsREJqAgB3lb+Lt+94Gx8P594ZmW32NFgxDMJnpz9u8TI0f/GKixlm1ap9Zxi9fD9nYpIytpUo7IXDAdGJKRQr5MUnvRrQoHyxG00vbko1TSRvpNhTGLphKEdjjhLiF0JY6zAKexU2O1bO/boYvnoCDDvU7AwPTAObazZqz8RcotdnOzgUGU+Ajwcz+4Sq7kn2m5t79+6lXr16AOzbty/Tc/nl2+F/r74n7u3E6T94bt1jRHhZKZVqMP6ueZQteYvZsUTEhaiuibiPtSfWMmzjMAwyr4f5T2OzdbnWjG0+1vwV0VMvwZJ+8McKsFjhnvHQsO8NHXLVvjM8OS+c/64Eei4+BYAQf28WP3Eb5YsXuqHziHsrCDUNVNfEXA7DwStbXmHX2V0U9izM1DZTCSkUYnasnNs9C5YPBQyo2wM6TQKrzeRQV3Y4Mp5en23nr5gkQgK8mdO3MVVLuuZ8oJK3sr1aekGi1ffc29nzf/LE0rs57G1QPM3BhNs/pn61ZmbHEpFcomv29ek9Endmd9hpt7Rdpjs2/6ukX0lWdV6FzcwPZZcuwMKucHIb2Lzhoc/g1o43dEi7w+CO99ZnumPzv0ICvNk6ojU2a/5pYBV0umZfn94jMcOH4R/y6d5P8bB4MLXNVNdYtC6nfvoIVo1I/3voAOjwPrjonL0/n7xA31k7uZCYys1BhZjTtxE3FXXNYfNyudy+Xrvmv1qRG3Qx7hxPL72Xw94GgXYHb9Ybo8amiIiIGwuPDL9mYxMgIjGC8MjwPEp0BTGnYUaH9MamdyD0/OqGG5sAO45FX7OxCXA2Npkdx6Jv+FwiInJ1Xxz8gk/3fgrAqKaj3LuxuXn8/xubTZ+Gu8e6bGPzh4NRdPtkOxcSU6lzUyBLnmiqxqZkkqVh6Q8++CCzZs0iICCABx988Jr7fvnll04JJpJTiUkJPL2gPft97Pg5HIys9hLN6t/4BwsRyT9U10TcT1RilFP3c7qoP2DugxD7J/iXgh5LIaSGUw4dGXftxmZ295P8RTVNJG9s/nMzb//0NgBP1nmS+2+539xAOWUYsP4t2Dwu/XGLl6D58BuaEzo3fb3nNM8t/oU0h0GzyiX4uEcDCnlne4ZFyeey9C8iMDAwY46WwMDAXA0kciPS0lJ5Zk5bfvZJxtth8EK5J+nQtIfZsUTExaiuibifIL8gp+7nVKd2wIIu6UPSi1eGnl9CkXJOO3ywf9YWR8rqfpK/qKaJ5L795/fz3A/PYTfsdKrUiSfrPGl2pJwxDPj+Zfhpavrjtm/A7c+Ym+kaZm45xujl+wHoWKc04x+ug5eHa95dKubKUnNz5syZvPHGGzz//PPMnDkztzOJ5IjDbmfYzHb85B2Hh2HwVPCjPNT6KbNjiYgLUl0TcT9Rl659R6YFCyF+IdQPrp9Hif72xyr44jFIuwRlGkK3xVCouFNPUadsIN4eVpLTHFd83gKUDPShUUWtFlsQqaaJ5K4z8WcYvG4wl9Iu0aRUE16/7XX3XKDL4YAVw2D339eJu8dBowHmZroKwzAYv/ogUzYcBuCxphV47d7qWDWvtFxFllveo0ePJj4+PjezuIywsDCqV69OaGio2VEkG16afR8bvKKwGAb9Atrz2D2vmB1JRFyY6pqI+/j8wOeM2DTiqs9bSP+wM7zR8LxdTOjnefB5t/TGZuW7oPc3Tm9sJqakMXDu7ms2NgFGdayuxYQKsIJU00B1TfJObEosg9YN4tylc1QuWpkJLSbgafM0O1b22dNg2ZN/NzYt0GmKyzQ27Q6DbUfO8/We02w7cp7kVDsvf7U3o7H5/F1VGNVRjU25tiyvlm61WomIiCA4ODi3M7kMrb7nPkbPfpQl/AZAD88mDO/2icmJRCSvZfearbqmuiauzzAMPvrlIz765SMAulTpQuNSjXl/5/uZFhcq6VeS4Y2G06Z8m7wKBj9OgHVvpD+u0w06TQInf+CNuZRK31k72X3iAn5eNh5vdjOLdp3KtLhQqUAfRnWsTvuapZx6bjFfdq7ZBbGmgeqa5K5UeypPrH2CHRE7CPYNZv498ylZqKTZsbIvLQW+7A/7vwaLDR6cDrUeMjsVAKv2nWH08v2Z6to/IxWsFnjr/lp0a+y8aV7EPLl9vc7WLKxueeu15HtjFw7MaGw+SHU1NkUky1TXRFyX3WHn3R3vsuiPRUD64g1P1nkSi8VC63KtCY8MJyoxiiC/IOoH18+7OzYdDvj+Jdj+cfrjO56F1qOcvhDDufhken62g9/PxBLg48Gsvo2oX64oQ1pXZsexaCLjkgj2Tx+Krjs2BVTTRJzJMAxGbR3Fjogd+Hn4EdYmzD0bm6lJsLgXHPoebF7w0Ey49V6zUwHpjc0n54Xz37vt/hmpMKBZRTU2Jcuy1dysUqXKdYtmdHT0DQUSyY6pX77A3OQtYLHQPq0co/stMjuSiLgR1TUR15RiT2HE5hGsObEGCxZeavwSXat1zXjeZrURWtKE4ahpyfDVQPjtq/TH7d6F2wY5/TSnL16i56fbOXougRKFvZnbrxG3lkq/y8FmtXBbJecOfZf8QTVNxHnC9oSx/OhybBYbE1pMoFqxamZHyr6UhPSpU45uBA8feHQ+3JJHIxyuw+4wGL18/2WNzX/75pczvNj+Vn2BJ1mSrebm6NGjtQKfuIzZK97mk9iVGBYLzVNK8F7fb8yOJCJuRnVNxPUkpCbwzPpn2B6xHQ+rB+82e5f2FdqbHQuSYmFRdzi2Caye8MDHuTKs72hUPD0+3c5fMUmUKeLLvP6NqViikNPPI/mPapqIc3x16Cum/ToNgNdue43by9xucqIcSIqFBV3g5DbwLATdFkHFZmanyrDjWHSmoehXciYmiR3HovWFnmRJtpqbjz76aIGbx0Vc09J1U5kcuZA0q4XGyf580Od7rLY8XEBARPIF1TUR13L+0nmeXPskv0f/jp+HHxNbTuS20reZHQvizsL8hyDiV/AqDI/Mg0otnX6a/X/F0mvGds7Fp3BzUCHm9WtM6SK+Tj+P5E+qaSI3bsvpLYzeNhqAx2s/zoOVHzQ5UQ4kRsO8B+Gvn8E7EHoshbKutfhWZNy1G5vZ3U8ky81NzeEirmLV1vmMPRlGstVK3SRvJvVeg6enl9mxRMTNqK6JuJY/4/5k4JqBnIw7SVHvonzU5iNqlKhhdiw4fyT9Q+KF41AoCLp/AaXrOf00u09E02fmTmKT0qheKoA5/RpRorC3088j+ZNqmsiNOxB9gGEbh2E37HS8uSNP1X3K7EjZFx8Fc++Hs/vAtxj0/ApK1zU71WWC/X2cup9IlpubWVxUXSRX/fjzCt468A4JNiu3JtuY3G0Vfj4aqiUi2ae6JuI6/oj+gyfXPknUpShKFyrNtLbTqBBYwexY6Xe9zHsIEs9B0QrQ40soXsnpp/nx0DkGzNnFpVQ7DcsX5bPHQgn0de7K65K/qaaJ3JiIhAgGrx1MYloijUo2YnTT0e73pUHsXzC7E5w/BIVDoNfXEHyr2amuKO5S6jWftwAlA9MXzRPJiiw3Nx0OR27mcClhYWGEhYVht9vNjiL/8vOBH3kt/EViPKxUSrEw6cHlFPEvYXYsEXFTqmsirmH32d0MWTeEuNQ4bilyC9PaTiPYzwWG1h5ZD4t6Qko8lKydPqyvsPNzrdoXwdMLfybF7qBZ5RJM69kAP69szRwlUqBqGqiuiXPFpcQxaN0gIi9FUimwEh+0/ABPm5t9wXThBMzplD7KIOAm6P1NrnwZ5wxLd//Ji0t/zXhsgUwLC/3TUh7VsboWE5Issxj6mu+qYmNjCQwMJCYmhoCAALPjFGgHT/zCkDXd+cvTQtkUg7C7l1CxjBuuWCciuUbX7OvTeySuZsPJDbyw6QWS7cnUC67H5FaTCfR2gQVR9i6Br54ARypUbJ4+x6aP8/83888HPLvDoEPNkkx8tC7eHppDXNLpmn19eo/kRqU6Uhm0dhA/nfmJEr4lmH/3fEoXLm12rOw5dzi9sRl7On2UQe/lUKSc2amu6NPNR3lrxe8APFi/DK2qBfP2it8zLS5UKtCHUR2r075mKbNiSi7I7eu1vhYWl3cq4ijPre7BX14WQlIdjG01W41NERERN/fVoa8YvW00dsNO85uaM7b5WHw9XGDxnG1T4fuX0v9e48H0VdE9nD/35eytxxn1zW8APNzgJt59sBYeNqvTzyMiIldmGAajt47mpzM/4evhS1jrMPdrbJ7dD3Pug4RIKFElfSh6gOu9BsMwGPv9H0zdeASA/ndU5OW7b8VqtdChZil2HIsmMi6JYP/0oei6Y1OyS81NcWnnLpxh6DcPcNwbiqU5ePe2SdSo1NDsWCIiIpJDhmEw87eZfLD7AwA6VerE601fx9Nq8hBAw4C1r8OWiemPGz8B7d4Fq3MbjoZhELbhMONWHwSgz+0VePWe6lj1QU5EJE99/MvHfH3ka2wWG+Oaj6N68epmR8qev/bA3AfgUjSE1EpfPKhwkNmpLmN3GLyybC8Ld5wC4MX2VXmyeaWMOU1tVgu3VSpuZkTJB9TcFJcVl3CRpxffw0EfB/52B6/XfpPQGq3NjiUiIiI55DAcjN81njn75wDQp0Yfnm3wrPmLNthT4Zun4ZcF6Y9bj4I7ngUn5zIMg3dXHmD6pqMAPNO6MkPbVDb/9YuIFDDLDi9j6i9TARjZZCR33nSnyYmy6dSO9AXvkmOgdP30eaH9XG/xnaRUO0M/38Oq3yKwWuDtB2rRtZFrDpkX96bmprikpOREnp53F3t9UvF1OHjpludoGfqg2bFEREQkh1IdqYzaMorlR5cD8FyD53is5mPmhgJISYAvHoNDq8Fig06ToV53p5/mv3euvHLPrfRvdrPTzyMiIte27a9tjN46GoD+tfrzcJWHTU6UTcc2wYJHITUByjWFbotyZV7oGxWfnMbjc3ax9ch5vGxWJnWtq3k0JdeouSkuJy0tlaGz27HL5xKehsGwMv3oeGdfs2OJiIhIDiWmJvL8D8+z+fRmbBYbb9z+Bp0qdTI7FiSchwVd4PQu8PCFLrOhSjunnyYlzcGwxXv49tczWC0w5sHadAkt6/TziIjItR28cJBhG4eRZqTRoWIHhtQbYnak7Dm0FhZ1h7QkuLklPDofvAqZneoy5+OTeWzmTvaejqGQl41PejWk6S0lzI4l+Ziam+JSHHY7z8+8my3eF7EZBoOKPcijdw0zO5aIiIjkUExyDIPXDeaXqF/wsfkwvsV41xj+d/EkzH0Qzh8C36LQbTGUbeT00ySl2nly3m42/BGFp83CxEfqcU9t3bkiIpLXziacZdDaQcSnxtMwpCFv3f4WVosbLeT2+3L4og84UqFKB3h4Fnj6mJ3qMn9eSKTXZzs4ei6BYoW8mNUnlNo3FTE7luRzam6KS3ll9kOs84oAoE+hVvTv9IbJiURERCSnIhIieGLNExyJOYK/lz9TW0+lbnBds2PB2d9gXmeIOwMBN0HPLyGoqtNPE5eUSr/Zu9hxLBofTysf92hAi6rBTj+PiIhcW3xKPIPXDeZs4lkqBlZkYsuJeNm8zI6Vdb9+AV8NBMMO1e+Hzp+CzeSF+K7g0Nk4en62g4jYJMoU8WVOv0ZUCipsdiwpANzoa4q8ExYWRvXq1QkNDTU7SoHy1tyeLLcdBqCrRwOeeXiSyYlERPIH1TUxw9GYo/Rc2ZMjMUcI9g1mdvvZrtHYPL4FZnRIb2wG3Qr9VudKYzM6IYXun25nx7Fo/L09mNO3sRqbIk6iuibZkepI5bkfnuOPC39Q3Kc4U1tPJdA70OxYWRc+B74ckN7YrNMVOn/mko3N8JMXeHjaNiJik6gcXJglT96mxqbkGYthGIbZIVxVbGwsgYGBxMTEEBDgehP05icTFj3FzKQfAOjkqMzbfb40OZGIuBtds69P75Hklb1Rexm0bhAXky9SIaAC09pOo3Th0mbHSh/St6Qf2JOh3G3QdWH6kHQni4hJoudn2zkUGU+xQl7M6duImmXc6IO0uARds69P75Fcj2EYvL7tdb489CW+Hr7MbDeTGiVqmB0r67ZPg5Uvpv+9YV+4ezxYXe8etR8ORvHE3N1cSrVTt2wRZj4WStFCbnRnrOS63L5ea1i6mG76spHMvrQRLBbappbmzT5fmB1JREREcmjr6a0M3TiUS2mXqFG8BlPbTKWYTzGzY8GuGbDiOTAcUPUeeOgz8PR1+mlOnk+k+2c/cSr6EiUDfJjXvzG3BOvOFRERM0z/dTpfHvoSq8XK+3e+716NzR8/gLWvp//9tqfgrrfAYjE10pUs/+Uvhi3eQ6rdoFnlEnzcowGFvNVqkrylf3FiqvmrxvLxxa9xWCzckVyUcf2+w2qzmR1LREREcuC7o98xcstI0hxpNCnVhIktJ1LI0+RVXA0DfngPNr6b/rjBY+l3vtic/2vwwbNx9Ph0O5FxyZQv7se8fo0pW8zP6ecREZHrW35kOVP2TAHgpUYv0aJsC3MDXY3DDie2QvxZKBySPrJg0/vptQvgzheh5csu2dicu+04r33zG4YB99YuxYQudfHycL07SyX/U3NTTPP1D58y8cxsUq0WQpP9+PCxNWpsioiIuKn5v89nzI4xALSv0J6373jb/MUaHPb0uzV3z0x/3Hw4tHgpVz4g/nLqIr1n7uBiYipVQ/yZ268RwQGut4qtiEhBsP3Mdl7b+hoAfWr04dFqj5qc6Cr2fwOrhkPsX//f5lUYUuLT/956FDQbZk62azAMgw/XHWLi2kMA9GxSntc71cBmdb0GrBQMam6KKdZtX8J7Rz4gyWaldpIXk3qsxsvL2+xYIiIikk2GYTBlzxSm/zodgK7VujKi0QisFpPv3EhNgqX94MC3gAXuGQeh/XPlVNuOnKf/7J0kpNipU7YIs/uEUsRPc42JiJjh8IXDPLvhWdIcabSr0I6hDYaaHenK9n8Di3sB/1kG5Z/GZt2eLtnYdDgMRi//jdnbTgDwTOvKDG1TGYsL3lkqBYeam5Lnftq7mtH7RhHnYaVqspXJj3xH4UKaZF9ERMTd2B123tr+FksOLgFgcN3BDKw90PwPOJcuwsKucHIr2Lyg86dQ/b5cOdX6A2d5cl44yWkOmlYqzvReDSmsucZEREwRmRjJk+ueJC41jvrB9Xn7jrfN/7LtShz29Ds2/9vY/Lej69P3s7rO6MaUNAfPf/EL3/zyFxYLvN6xBr2bVjA7loiam5K3fj30EyN3PMsFDysVU2Di/V9TrEiI2bFEREQkm5LtyYzYNIK1J9diwcIrTV6hS9UuZseC2DMwrzNE/gbeAekrole4I1dO9fWe0zy3+BfSHAZtbg1hSrd6+Hi6zodQEZGCJDE1kafWPUVEQgQVAirwYcsP8ba56OjAE1szD0W/ktjT6ftVbJY3ma4jMSWNJ+eF88PBKDysFsZ3qcN9dcuYHUsEUHNT8tCRU78x/If+RHpaKZNqMKHd59wUXMHsWCIiIpJNcSlxPLPhGXZG7MTT6sl7d75H2/JtzY4FUQdh3oMQcyp9UYYeS6FkrVw51YLtJxm5bC+GAffXLc3Yh+vgaXPBu4NERAqANEcaz/3wHL9H/04xn2JMbTOVIj5FzI51dfFnnbtfLruYmELfWTsJP3kRX08bH/WoT4uqwWbHEsmg5qbkib+iTjBs1aP86WUhKM3B+3d+wi3lapodS0RERLLp3KVzPLn2SQ5EH6CQZyEmtZxEo1KNzI4Ff+6C+Q/DpWgofgv0+BKKls+VU0374QjvrjwAQI8m5XijU02sWkRBRMQUhmHw9va3+fH0j/jYfJjcajJl/cuaHevaCmdx9GJW98tFETFJ9JqxnYNn4wn09WTGY6E0KF/U7Fgimai5KbnuQkwUz3x1H0e9oYjdwduh46hdpanZsURERCSbTsWdYuCagZyKO0Uxn2J81OYjqhevnvdBHPb0oXrxZ9M/+KUkwJI+kJoIZRpAt8VQqITTT2sYBuNW/0HYhiMAPNmiEi+2q2r+HKMiIgXYZ/s+Y8nBJViw8N6d71E7qLbZka6vfNP0qVOSY6+ygwUCSqfvZ6KjUfH0/GwHpy9eIiTAm7n9GlMlxN/UTCJXouam5KqExDiGfN6eAz52CtsdvFb9FW6r3cHsWCIiIpJNB6IP8MSaJzifdJ4yhcswve10ygWUy/sg+79JX4ThSnOVVWoNXeaAd2Gnn9bhMHh9+W/M+Xt12BfbV2VQi1ucfh4REcm6FUdX8GH4hwAMbzScVuVamZwoi8LnXLuxCdB+jKmLCe07HUPvGTs4n5BCxRKFmNO3EWWL+ZmWR+RaNDHQFYSFhVG9enVCQ0PNjuLWUlKSeXreXfzik4K3w2B4xadp26Sr2bFERAoc1TW5UTsjdtJnVR/OJ52nStEqzO0w17zG5uJeV1+EoV7PXGlsptkdPPfFL8zZdgKLBd68v6YamyImUl0TSK9Nr255FYBe1XvR/dbuJifKor1L4Ntn0/9+a6f0OzT/LaB0+hd11Tvlfba/bT1yjken/8T5hBRqlgngiyduU2NTXJrFMAzD7BCuKjY2lsDAQGJiYggICDA7jltx2O0M+awVm7yj8TAMhoX0oGeHEWbHEpF8TNfs69N7JDmx7sQ6Xtz0IimOFOoH12dy68kEeJnw78dhh4k1r7G67N9D+IbudeqdLkmpdoYs/Jk1+89is1oY/3Ad7q+n1WEl9+mafX16jwquoxeP0mNlD+JS4mhbvi3jmo/DanGDe7cOfg+fdwNHGoT2h7vHgeHIPNVK+aam3rG5al8ETy/8mRS7gyY3F+OTXg3x9/E0LY/kD7l9vdawdHE6h93OCzPvZZN3NFbDYGBgRzU2RURE3NDSg0t546c3cBgOWpZtyft3vo+Ph485YU5svUZjE8CA2NPp+1Vs5pRTJiSn8fjcXWw5fB4vDytTu9WnTXXzF3cQESnI/lnYLi4ljjpBdXjnjnfco7F5/Mf00QeONKj9CHQYCxYLWGxOq1s3atHOk7z05V4cBrSrEcKHj9bDx9O8RqtIVqm5KU73+rxHWe35JwC9fJrxxAPvmpxIREREssMwDD7d+ymTfp4EwAO3PMBrt72Gh9XEXx3jzzp3v+u4mJhCn1k7+fnkRQp52fikd0OaVnL+IkUiIpJ1iamJDF43mL8S/qKcfzkmt5ps3pdu2XE6HBY8CmlJUPVuuC8MrK7VkP34hyOMWXkAgEcaluXtB2riYXOtjCJXo+amONWY+f34ivQL4sPW2jz36EcmJxIREZHscBgOxu4cy7zf5wHQv1Z/nq73tPkrghcOzuJ+N35nZWRcEr0+28GBiDgCfT2Z1SeUeuWK3vBxRUQk6+wOO+GR4UQlRhHkF0TtErV5cdOL7D+/n6LeRfmozUcU9XGDa3PkAZjXGVLioEIzeGgm2FxnmLdhGLy78gDTNx0F4InmlRjevqr5dV8kG9TcFKeZ9MWzLEjdDhYL99gr8lrv+WZHEhERkWxItafyypZX+O7YdwC8GPoiPav3NDkVYBiw78vr7PT3nJvlm97Qqf68kEiPT7dz/HwiQf7ezOvXmKol/W/omCIikj1rT6xlzI4xnE38/934vh6+XEq7hLfNm0mtJpmzsF12XTgOc++HS9FQpgF0XQiernOnaZrdwYgv97Jkd/rIy5F338qAO282OZVI9qm5KU4xY/kbzEhYg2Gx0ColmHf6fmV2JBEREcmGxNREhm0cxpa/tuBh8eDNO97k3pvvNTtWemPzuxdg98x/bbQAxn8eA+3H3NAiDEei4unx6XbOxCRRpogv8/s3pkKJQjk+noiIZN/aE2sZtnEYBpnXPr6UdgmAbtW6UTe4rgnJsikuAubcB3FnILg6dF8C3q7zZVlSqp2nFvzM2t/TF8wb82AtHm5Y1uxYIjmiCRTkhi1a8yFh5xZjt1homhzI+D6rsNo06bCIiIi7uJh0kQGrB7Dlry34evgyqdUk12lsrhwOOz8BLHD/R9BlLgSUyrxfQGnoMgeqd8rxqfadjqHLx9s4E5NEpaBCLHnyNjU2RUTymN1hZ8yOMZc1Nv9t5bGV2B32PEyVA4nRMOf+9Ds3i1aAnl+BXzGTQ/1fbFIqvWbsYO3vZ/HysPJxjwZqbIpb052bckNW/DiHCX9OJ8VqpX6SDx8+thoPD9eZP0RERESu7Uz8GQauHcixmGMEegcS1jqMOkF1zI6V3thcNQJ2TAMscN8UqNst/blq96Svih5/Nn2OzfJNb+iOzV3Ho+kzaydxSWnULBPA7D6NKF7Y2zmvQ0REsiw8MjzTUPQriUiMIDwynNCSoXmUKpuS42D+QxD1O/iXgl5fg39Js1NliIpLpveMHew/E4u/twef9m5I45uLmx1L5IaouSk59sPur3nn4Hsk2qzUSPZgco/v8fH2MzuWiIiIZNGRi0cYuGYgZxPPEuIXwrS206hUpJLZsf5ubL4E2z9Of9xpMtTr8f/nrTao2Mwpp/rhYBQD5+4iKdVBowrF+PSxhgT46ItaEREzRCVGOXW/PJeaBAu7wund4FsMei5Lv3PTRZyKTqTHZ9s5cT6REoW9mN23ETVKB5odS+SGqbkpObLrtw2M2vMysR5WKidbmNT5WwIKuc5t9iIiInJteyL38NT6p4hJjqFiYEWmtZlGqcKlrv+Duc0w4PuRsP2j9McdJ0H93FnUaOXeMzz9+c+k2g2aVwni4x4N8PXS1DoiImYJ8gty6n55yp4KS/rA8c3g5Q89lkJwNbNTZTgQEUuvz3YQGZdM2WK+zO2reaUl/1BzU7Lt96PhvLxtCOc9rZRPgQ87LiW4eBmzY4mIiEgWbf5zM8/98ByX0i5Ru0RtprSeQlGfombHSm9srn4FfgpLf3zvRGjQO1dO9cWuUwxf+isOA+6pVYoPHqmLl4emoxcRMVO1otXwtnmTbE++4vMWLIT4hVA/uH4eJ7sOhwOWDYI/vgMPH+j2OZRxnYy7jkfTd9ZOYpPSqFbSnzl9GxEc4DqrtovcKP0GJ9ly4q+DPL+uN2c8LZRKNRjfdg5lS1U2O5aIiIhk0bdHv+Xp9U9zKe0St5e+nU/u+sR1GptrXoVtU9If3/sBNOyTK6ea8eMxXliS3th8pGFZJnWtp8amiIjJ/or/i8e+f+yajU2A4Y2GY7uBeZadzjBg5QuwdzFYPdIXuKtwh9mpMmw4EEmPz7YTm5RGw/JFWfT4bWpsSr6j3+IkyyLO/cnQbx/ipBcUT3MwpmkYVSvUMzuWiIiIZNHc/XN5afNLpBlp3F3xbia3moyfpwvMl20YsHYUbJ2c/vieCdCwby6cxuDDtYd449v9APS/oyJjOtfCZrU4/VwiIpJ1eyL30HVFVw5eOEgxn2I8Xe9pQvxCMu0T4hfChBYTaFO+jUkpr2L9m7DzU8ACD0yDKu3MTpRh2c+nGTAnfV7pllWDmNuvMYF+mlda8h8NS5csiYmP5pkvO3LY2yDQ7uDNeu9Sv3pzs2OJiIhIFhiGwYfhH/LZvs8A6HFrD14IfQGrxQW+5zYMWDcatnyY/vjucRDaLxdOY/DWit/57MdjAAxrW4UhrW7BYlFjU0TETMuPLGfU1lGkOlKpWrQqk1tNplThUvSt2ZfwyHCiEqMI8guifnB917pjE+DHibB5fPrf7/0Aaj1kapx/m7nlGKOXp3+Z90C9Mrz/UG08bS5Q90VygZqbcl2JSQkMmd+O/T5p+DkcvFJ1BM3qdzI7loiIiGRBmiONN7a9wVeHvwLgmfrP0K9mP9do6hkGrHsDfvwg/fHd46DRAKefxu4wePnLvSzadQqA1+6tTt87Kjr9PCIiknUOw8GH4R8yY98MAFqVbcW7zd7NGFFgs9oILRlqZsRr2zUzfdQBQNs3cm0qlewyDIMJaw4yef1hAPrcXoFX76mOVaMUJB9Tc1OuKS0tlaFz7uJnnyS8HQYvlH2C9rfnzoqlIiIicmPsDnumu1yqF6vOSz++xIZTG7BarLzW5DU6V+lsdsx0hgHr34IfJ6Q/7vB+rjQ2U9IcPLtoDyv2nsFqgfc61+bhhmWdfh4REcm6hNQERmwewcZTGwEYUGsAT9V7yjVGFGTF3iXw7bPpf2/2HNz+jLl5/mZ3GLz69T4WbD8JwPN3VWFwS41SkPxPzc0rCAsLIywsDLvdbnYUUznsdp6d2Z5t3rF4GAZPBT3CQ22GmB1LRESySXWtYFh7Yi1jdozhbOLZjG2eVk9SHal4Wb14v/n7tC7X2sSE/2IYsOEd2Dwu/XH7MdB4oNNPcynFzhPzdvPDwSg8bRYmd61H+5qlnH4eEclb/2vvzsNsrP8/jj/P7DPMDGPG2JdQyL7M0KLIWon6liL7kKTVt823X0n7IommkjWkKFGpUMoSMRhElsjYmcHs+5xz7t8fJyLbMGfmPmfO63Fd53KW+9z3e87nOvfbed+fRXnNvR3JPMLDPz/M7pTd+Hn5Meb6Mdx+1e1mh1V4fy6BBcMAA1oPgQ7Pmx0RAHlWGyPnbuG7rUexWOCVno24P7qm2WGJlAiLYRiG2UG4qvT0dEJDQ0lLSyMkJMTscErcM9O68733PiyGwbDgroz4z1izQxIRuSBPP2cXhj6j0uun/T8xcvlIDM7/37oRzUbwYNMHSziqi/jldVjxhuN+l9eh7UNOP0R6bgExM9azfl8KAb5efNyvFe2ujnD6cUSKi87Zl6bPyP1sStrE4788TnJuMhUCKvBeh/doGtHU7LAKb9+vMPs/YM2FJvdCz4/Ay/zepll5VobN2sive07g621h/L3Nua2JLuaJ6yju87X530JxSS/O7MP33vsA6OvXRoVNERERF2Wz23gj7o0LFjYB5v85H5vdRXo4LX/jjMLma8VS2DyZmUefyWtZvy+F4AAfZsdEq7ApImKyr/d8TcySGJJzk6kfVp/PbvvMvQqbh+Nhzn2OwuY1t0KPWJcobCZn5dNn8lp+3XOCID9vpg+MUmFTPI6GpXu4/Pw8Fq6YRFL6ASqG1KDnTcN4b/5jzDe2AnAXDXi6zxSToxQREZELiU+KP2so+vkcyz5GfFK8+QszrHgLlr/uuN/5FWg7wumHOJqWQ98p6/jreBYVyvjxyeAoGlUNdfpxRESkcGx2G+9teo/p26YDcEuNW3jthtdOLxzkFpJ2Onps5mdArRvh7ung7Wt2VBxJzaHfVEfOKx/ky4xBUTStXs7ssERKnIqbHuzjr5/jsxMLOeHz99WmTHhv9iTSvSxgsdDVWp0xMfPMDVJEREQu6nj2caduV2xWvA2/vOq43+kluM7583jvO5HF/VPWcTg1h8qhAcweEk2diLJOP46IiBROVkEWz658luWHlgNuuHAQQMo+mNUTcpKhSgvo/Rn4BpgdFXuSMuk/dR1H0nKpHBrArJho6lZUzhPPpOKmh/r46+d4P+VrDO+zV007VdhsnOvLm0O+NSk6ERERKayIoMINty7sdsVi5Vj45RXH/Y5jimVV2Z3H0uk3NY7jGXnUDi/DrJgoqpV3o15BIiKlzOHMwzzy8yOnFw566fqXuO2q28wO6/JkHIOZPSDjKEQ0gL7zwT/Y7KjYcjCVgdPjSMkuoE5EGWbFRFOlXKDZYYmYRsVND5Sfn8dnJxY6CpuWs4ubWCxgGBzzycNqs+Ln7W1OkCIiIlIowX7BWLBccM5NCxYigyJpUbFFCUf2t1XvwM8vO+7fMhpueLzIu7TZDeISkknKyKVicAC+3hZiPtlAWk4B9SsFMysmmohg/yIfR0RErkx8YjxPLH+C5NxkwgPDea/9ezSJaGJ2WJcnOxlm9nT03CxfC/otgKAwk4OCX3ef4IFZG8jOt9G0WijTB0URVsbP7LBETKXipgdauGLSP0PRz8di4biPhYUrJtGr06MlF5iIiIhclt0puxn247CLFjYBnol6Bm8vEy5Y/vouLHvJcb/D83DjyCLvcvG2o4z5djtH03JPP2cBDKB5jXLMGBhFaJD586CJiHiqhXsWMua3MVjtVuqH1Wdih4lUKlPJ7LAuT14GfHo3HN8BwZWh/9cQYv4iPd9vPcpjn2+iwGZwQ91wPurXkrL+KuuIuNFEF+IsSekHnLqdiIiIlLw9KXsYsnQIybnJNAhrwKvXv0pkUORZ20QGRTLu5nF0rNmx5ANc/R789KLjfof/g3ZPFnmXi7cdZfjs+LMKm8Dp0u6AtrVU2BQRMYnNbmPchnE8v/p5rHYrHWt05JOun7hfYbMgFz7rDYc3QmAY9Fvo6Llpsk/X7WfEnHgKbAa3Na7M1IGtVNgU+Zu+CR6oYkgNyCzkdiIiIuJy/kr9i5ilMacLm5M7TybUP5TbrrqN+KR4jmcfJyIoghYVW5jTY3P1BPjxBcf99s9Bu6eKvEub3WDMt9sv0EfV0XvzzcU76d60Ct5elgtsJSIixSGrIItnVj7DikMrAHigyQOMaDbCvRYOArAVwJeDYN8q8At2zLFZsb6pIRmGQewvexi79E8A7o+uwUs9GinXiZxBxU0P1POmYUyYPYk0r/PMuQlYDINwm0HPm4aZEJ2IiIhczF+pfzF4yeBzCpsA3l7etK7U2twA17wPPz7vuH/zKLjpaafsNi4h+Zwem2cygKNpucQlJNO2TgWnHFNERC7tcOZhHl72MHtS9+Dn5cfL17/MrVfdanZYl89uh4UPwa7vwScA+nwOVU2ar/p0SAYvf7ed6av3AfBoh7o80elqLOf5HS/iyVTc9EBzl40ny2I5vXjQmQVOi+HoD3FfeE/8/DQRv4iIiCvZm7qXmCWOHpv1w+qfVdh0Cb/FwtLnHPdvehZuftZpu07KuHBh80q2ExGRootPjOfxXx4nJS+F8MBwJrSfQOOIxmaHdfkMA354CrbOAy8f6DUTat1gakgFNjtPf/k7CzYdBmB094YMur62qTGJuCoVNz3MtG/H8P7JL7B6WaiTB2neBid8/iluhtsM7gvvyQM9XjUxShEREfm3val7GbxkMCdzTzoKm51crLC59kNY8j/H/XZPO7WwCVAxOMCp24mISNGcuXBQg7AGTOgwwf3m1zzl55dh/RTAAndOgqu7mBpOTr6NEXPi+XlnEj5eFsbe05SezauaGpOIK1Nx04N8tOB/TEr7BqvFQuu8IN7v9xM+3n4sXDGJpPQDVAypQc+bhqnHpoiIiIvZm/ZPYfOa8tcwudNkygWUMzusf6ybBIv/Lmbe+CS0/995p74pirTs/Iu+bgEqhQYQVTvMqccVEZGz2ew2xsePZ8YfMwDoVLMTr1z/CkG+QeYGdqV+HQ+r3nHcv30cNL67RA9vsxvEJSSTlJFLxeAArokM5oFZG9iwP4UAXy8+vL8l7etXLNGYRNyNipseYuKXI5mauRSbxUKbvGAmDviJAH9H8unV6VGToxMREZEL2ZvmGIp+MvckV5e/msmdXa2w+TH88Pe8mjf+17EyupMLm7/sSuKRzzedfmyBsxYWOnW00d0baoEFEZFilJmfybOrnj29cNCwJsN4qNlD7rdw0CkbpsNPox33O46BVoNL9PCLtx1lzLfbz5pT2sfLgtVuEBLgw7SBrWlVSxftRC5FxU0PMG7uCGbkrMCwWLghrxzvDfxJvTNFRETcQEJaAjFLYjiRc4Kry1/NlM5TKB9Q3uyw/hE32TFHGcANT0CH551e2Fy95wTDZm2kwGZwa+NK3Na4Mq98t+OsH4KVQgMY3b0hXRtVduqxRUTkH4cyDvHIz4+wJ3UP/t7+vHz9y3Sr3c3ssK7c1i9h0ROO+zeMhBseL9HDL952lOGz48+6WAdgtTueebRjPRU2RQpJxc1S7s05Q5ldsBYsFm7Kr8D4wT/i4+NrdlgiIiJyCWcWNuuVr+d6hc31U+D7Jx33r38Mbhnt9MLmur0niflkPflWOx0bRPLefc3x9faia6PKZw3hi6odph6bIiLFaGPiRp745QlS8lKICIzgvfbvuefCQaf8uQQWDAMMaBUDt7xQooe32Q3GfLv9nMLmmaauSmDQdbWV30QKQcXNUuyVWf2Za3cM4epYUIl3Bi/Gy9vb5KhERETkUval7SNmSQzHc467ZmFzwzT47r+O+9c96hjK5+TC5sb9KQyesZ7cAjs3XR1B7P2OwiaAt5eFtnUqOPV4IiJyfgt2L+CltS+dXjhoYoeJRJaJNDusK7fvV5jXH+xWaHwP3DrW6TnsUuISks8agXA+R9NyiUtIVr4TKQQVN0up0Z/cx1f8AUBXa3XeHPStCpsiIiJuYH/6/tOFzbrl6jKl8xTCAlxoWNqG6f8M42v7MHR6yek/Cn8/lMrAaXFk5du4vm4FJvVrib+P/h8jIlKSbHYb4zaOY+b2mQB0rtmZV254hUCfQJMjK4LD8TDnPrDmwtXdoOeH4FXy84UmZVy8sHm524l4OhU3Sxm7zcb/fXI333rvAaC7vQ6vDJyvwqaIiIgb2J++n8GLB5OUk+Sahc2Nn8Cixx3324yAzq84vbD5x5E0+k2NIyPPSlStMCb3b0WAr/4fIyJSkjLzM3l65dOsOrwKgOFNh/Ng0wfdd+EggKSdMPs/kJ8BtW6Ee2aAtzlTtlUMDnDqdiKeTsXNUsRus/HsjB784LMfgDupz0uDvjA5KhERESmMA+kHGLzk7MJmhUAXGooWPxO+fdRxv81D0OVVpxc2dx3LoN/UONJyCmhRoxzTBrUmyE//XRURKUkHMw7y6M+Pnl446JXrX6Fr7a5mh1U0KftgVk/ISYYqLaD3Z+BrXuHwYEr2RV+34FgsL6q2C13gFHFh+t9iKWG32Xhy+q386HsEgF5eTXm+32yToxIREZHCOJB+gEFLBpGUnUSd0DouWNicBd/8XdiMfhC6vOb0wuZfxzO5f8o6krPyaVItlBmDoyjrr/+qioiUpA3HNvDE8idIzUslIjCCCR0m0Ci8kdlhFU3GMZjZEzKOQkQD6Dsf/INNC2fG6gRe/Hb76ccWOGthoVPZdXT3hlpMSKSQ3LhPuZxitRbw2LROpwub9/u2VmFTRETETRxMP+josXmqsNnFxQqbmz6Fbx4BDIgaBl3fcHphc//JLPpMXsuJzDwaVA5h5uAoQgLMGSooIuKpvtr9FUN/HEpqXioNKzTks9s+c//CZnYyzLoTUhKgfC3otwCCzOkNaRgGE5ftPl3YjLmhNh/e34JKoWf3IK0UGsCHfVvQtVFlM8IUcUsecTn8zjvvZPny5dxyyy18+eWXZofjVPn5eTw+ozOr/JOxGAYDAm7kv/d9aHZYIiJSTEpzTvNEB9MPMmjJIBKzE7kq9CqmdJlCeGC42WH9Y/Mc+HoEYEDrodDtTacXNg+lZNNn8joS0/O4OrIss2OiKBfk59RjiIjrUl4zn81u452N7zBr+ywAutTqwsvXv+zeCwcB5GXAp3dD0nYIrgz9v4YQcwqGhmHw+g87+XjlXgAe71iPx26ph8ViofO1lYhLSCYpI5eKwY6h6OqxKXJ5PKLn5mOPPcbMmTPNDsPpcvOyeXhGB1b5J+NlGAwp21GFTRGRUq605jRPdDDjIIOXDiYxO5HaobWZ2mWqaxU2t3wOCx8CDGgVA7e+7fTC5tG0HHpPXsvh1ByuCi/D7CHRVCjr79RjiIhrU14zV0Z+Bg///PDpwuZDTR/i7XZvu39hsyAXPu8DhzdCYBj0W+jouWkCm93gfwu2nS5sPn97Qx7veDWWv3Oqt5eFtnUq0KNZVdrWqaDCpsgV8Iji5s0330xwsHlzahSH7NwsRszowG/+6XgbBg+G3s6jd483OywRESlmpTGneaKDGY6h6MeyjlE7tDbTukxzscLmXFjwII7C5mC4dazTC5tJ6bn0mbyOg8k51AgLYs7QNloVVsQDKa+Z52D6Qfp+35dfD/9KgHcAY28ay/Bmw08X3dyWrQC+HAwJK8Ev2DHHZsX6poRSYLPz+NzNfBZ3AC8LvPWfJsTcUNuUWERKM9OLmytXrqR79+5UqVIFi8XCwoULz9kmNjaWWrVqERAQQHR0NHFxcSUfqAvJyEpl+Cc3ExeQhY9h8EjYfxh+5xtmhyUi4vGU06QwDmUcImZJDMeyjlErpBZTO7tYj83fv4CFfxc2Ww6CW98BL+f+l/FkZh73T1lHwoksqpYLZM7Q6HPmHBMR8ymvlV7rj62nz/d92Ju2l4qBFZnRdQZdanUxO6yis9sd06ns+g58AqDP51C1hSmh5BbYGDZrI99uOYKvt4WJvVvQq3V1U2IRKe1ML25mZWXRtGlTYmNjz/v63LlzGTlyJKNHjyY+Pp6mTZvSpUsXkpKSTm/TrFkzGjVqdM7tyJEjJfVnlJjUjBMMn30L8QG5+NkNnqjYh5g7xpgdloiIoJwml3Yo4xCDlwzmaNZRaoXUYlqXaUQERZgd1j+2fgkLHgDDDi0GwG3jnF7YTMnK5/4p69idlEmlkAA+G9qGauWDnHoMEXEO5bXSaf6f83lg6QOk5qVybYVr+ez2z7g2/Fqzwyo6w4Afnobf54KXD/SaCbVuMCWUjNwCBkyL4+edSQT4ejG5fytua6IFgkSKi+kLCnXr1o1u3bpd8PVx48YxdOhQBg0aBMBHH33Ed999x7Rp03j22WcB2Lx5s1NiycvLIy8v7/Tj9PR0p+zXWU6mHuPhed3YFmDF327wZJVB3Nflv2aHJSIif3OlnAaun9c8zeHMw8QsiXHdwua2+fDV0L8Lm/3h9vFOL2ym5RTQb9o6dh7LILysP3OGRlOjggqbIq5Kea10sdltjN0wltk7ZgOlaOGgU35+BdZPBixw5yS42pyeqClZ+QycHseWQ2kE+/swdWBromqbs0K7iKcwvefmxeTn57Nx40Y6dux4+jkvLy86duzIb7/95vTjvf7664SGhp6+Va/uOl3Gj504xPB5XdnmbyXIbmdUzeEqbIqIuJGSzmng2nnN0xzOPMzgxYM5knXEMRS9y1QXK2x+BfP/Lmw27wu3v+f0wmZmnpUB0+LYdjidsDJ+zBkazVURZZ16DBEpOcpr7iUjP4MRP484Xdh8qFkpWTjolNXvwaqxjvu3j4PGd5sSRmJ6Lr0m/caWQ2mElfHjswfaqLApUgJcurh54sQJbDYbkZGRZz0fGRnJsWPHCr2fjh07cs899/D9999TrVq1CybbUaNGkZaWdvp28ODBIsXvLIeT9jHiq9vY4W+jjN3Oc3We4D8dRpgdloiIXIaSzmngunnN0xzJPELMkhiOZB2hZkhNpnaZSsWgimaH9Y8/FsD8IWDYoNn90H2i0wub2flWBk2PY/PBVEIDfZkdE83VkVpARMSdKa+5j1MLB60+vPqfhYOaloKFg07ZOAN+fMFxv+MYx0J4JjiYnM09H/3G7qRMIkP8mTesDY2qhpoSi4inMX1Yekn46aefCrWdv78//v7+xRzN5Tlw5E8eW3Q3e/wNgm12Xqg/iq7X9TU7LBERMUlhcxq4Zl7zNEcyjzB4yWAOZx52FDY7u1hhc/vX8GWMo7DZtA/c4fzCZm6BjSGfbGD9vhSCA3yYHRNNwyohTj2GiLgv5bXitf7Yep5Y/gRpeWlUDKzIhFsmcG2FUjC/5inb5sO3jzvu3zASbnjclDB2J2bQd+o6EtPzqBEWxKdDoqkepmlXREqKSxc3w8PD8fb2JjEx8aznExMTqVSpkklRlZy/Dm7jicW9SfCHUJudlxq9SIeoe8wOS0REroCn5zRPdDTz6OnCZo3gGkztPJXIMpGXfmNJ2f4NfDn478Jmb+jxPnh5O/UQuQU2Hpi1kTV/naSMnzefDI6icTX1YhEpDZTXXN+Xf37Jq2tfxWpYaVShEe91eM+1LrAV1Z9L4asHAANaxcAtL5gSxtZDafSfto6U7AKujizL7JhoKoYEmBKLiKdy6WHpfn5+tGzZkmXLlp1+zm63s2zZMtq2bVtsx42NjaVhw4a0bt262I5xKbsSNvPo4vtI8IMwq53Xm72uwqaIiBszK6eBa+Q1T3M08yiDlgzicOZhqgdXZ2oXFyts7vgWvhwEdis0uRd6xDq9sJlvtfPwnHhW/nmcQF9vpg+KokWN8k49hoiYR3nNdVntVt6Me5Mxv43BaljpVqsb07tOL12FzX2rYV4/Rx5rfA/cOhZMGGa/bu9Jek9eS0p2AU2rhTL3gbYqbIqYwPSem5mZmezZs+f044SEBDZv3kxYWBg1atRg5MiRDBgwgFatWhEVFcX48ePJyso6vSJfcRgxYgQjRowgPT2d0NCS712wdfdanloxhMN+FsKtdl6Pepc2jTuXeBwiInJ5XDGngfl5zdMcyzp2usdm9eDqTOsyjUplXKgX087v4IuBf/8g7AU9P3R6YdNqs/PY55v4aUcS/j5eTB3QSgsqiLgh5TX3k5GfwVMrnmL1kdUAjGg2gmFNhpWe+TUBjmyCOfeCNReu7vZ3Hiv5flu/7EriwVkbybPaia4dxtSBrSnrb3qJRcQjmf7N27BhA+3btz/9eOTIkQAMGDCAGTNmcO+993L8+HFeeOEFjh07RrNmzVi8ePE5E1eXFvE7VvLM6uEc8/Ui0mrwZtsPaNnwJrPDEhGRQlBOk2NZxxi0eBCHMg9RrWw1Fyxsfg/zBvzT0+XOj5xe2LTZDZ6Yt4Ufth3Dz9uLj/u34rq64U49hoiUDOU193Ig/QAP//wwCWkJBHgH8OoNr9K5VinrJJO0E2bdBfkZUOtGuGcGePuWeBjf/X6Ux+duosBmcEv9isTe34IAX+fmUxEpPIthGIbZQbiqU1cC09LSCAkp/onv1239kf/FPU6SjxeVCwzG3jSZJvWKd0iHiEhpUdLnbHekz6h4neqxeTDjINXKVmN61+muVdjc9QPM7Qf2Amj0H7jzY/B27nVuu93gqS9/Z378IXy8LHzUtyUdG6rIIXIldM6+NH1G/4g7GsfIFSMdCwcFVWRih4k0rNDQ7LCKxm6D/WsgMxHKRkJIFZhxG2QchSotYMA34B9c4mHNXX+AUV9txW5A96ZVGNerKb7eLj3jn4jpivt8bXrPTXH4Nf5b/m/Ts5z08aJagcG7HWZS/6oWZoclIiIihXBmYbNq2aqu12Nz1+J/CpvX3lUshU3DMHhu4Vbmxx/C28vCxN7NVdgUESkBX/z5Ba+tfe30wkETOkwgIijC7LCKZvs3sPgZSD/yz3MWb8cieBENoO98UwqbU1bt5ZXvdgDQO6oGr/RshLdXKRryL+KmVNw8j9jYWGJjY7HZbCVyvF/Wf8Xorc+T4uNFzXx4t8tn1KvRuESOLSIipV9J5zVPk5iVSMySmNOFzeldplO5bGWzw/rHn0v/XnShABr2hLsmF0th88Vv/uCzuIN4WWBcr6Z0a+xCn4GIlCrKaw5Wu5WxG8by6Y5PAehWqxsvXf8SAT5uvqDN9m9gXn/gX4NMjb/bu81wCCrZeZwNw2D8T7t5b9luAIa1u4pnu9UvXXOZirgxDUu/iJIY5rBkzRxe3vkqad5e1M6HCbd9Sa0q1xTLsURESjMNTbs0fUbOl5iVyOAlgzmQceB0j80qZauYF9C/h/DlZzkKm7Z8aNgD/jPV6XOTGYbBa9/vYPKqBADG3tOUu1tWc+oxRDyRztmX5smfUXp+Ok+vePr0wkEPN3uYB5o84P7FNrsNxjc6u8fmWSyO4emPb3X6nNEXDMlu8Mp3O5i22pHnnupyDQ/dXMf9P2uREqRh6aXYtyun8fqed8jw9qJunoUJPb6memRts8MSERGRQkjMSiRmaYzrFDbPN4TvlAZ3FEthE+CdpX+eLmy+dmdjFTZFRJzIZrcRnxTP8ezjRARF0KJiCw5nHj69cFCgTyCv3vAqnWp2MjtU59i/5iKFTQAD0g87tqt9Y7GHY7MbPDv/d77YeAiAMXdcy4DrahX7cUXk8qi4aZKvfv6QN/e/T7a3F9fkeRP7n0VEVtCPAREREXeQlJ1EzNIY9qfvp0qZKkztMtX8wub5hvCdcu1dxVLYnLBsN+//sgdw/ODrE13D6ccQEfFUP+3/iTfi3iAxO/H0c+X9y5NryyXHmkNkUCQTO0ykQYUGJkbpZJmJl97mcrYrgnyrncfnbuL7rcfwssDbdzflP7qAJ+KSVNw0wdyl7/LO4SnkeHnRMM+H2F7fE15O81KJiIi4g6TsJGKW/FPYnNZ1GlXLVjUvILvN0WPzQoVNLLD0OWh4h1OH8H204i/G/fgnAM/d2kA9WUREnOin/T8xcvlIjH+d21PyUgCoGVyT6V2nu//CQf9WpmLhtitbvAvW5eTbeHD2Rlb8eRw/by8m9G5O10YutFCgiJzFy+wAPM2s71/n7cNTyfHyonGeH5Pu+1GFTRERETdxPPs4MUti2Je+j8plKptf2ITLG8LnJFN/TeCNH3YCjrnHhra7ymn7FhHxdDa7jTfi3jinsHmmXFsuYQElu6hOsctJgTUTL7GRBUKqQs3rii2M9NwC+k9bx4o/jxPo683Uga1U2BRxcSpunkdsbCwNGzakdevWTt3vtG9e5N2kT8nzstAsL4CP7v+JciHhTj2GiIjIvxVXXvM0x7OPM3jJ4H8Km11coLAJJT6Eb9ba/by8aDsAj3aoy4j2dZ2yXxGRwirteS0+Kf6soejnk5idSHxSfAlFVAKOboFJN8GepeB1aoDpvxfs+ftx1zeKbTGhk5l59Jm8lvX7UggO8GH2kChurFfKeseKlEIqbp7HiBEj2L59O+vXr3faPj9aMIqJyV9SYLHQKi+ISf1+IaRMeaftX0RE5EKKI695mhM5J4hZ6uixWalMJaZ2mUq1YBeZd6uwQ/OcMIRv3vqDPL9wGwDDbrqKJzpdXeR9iohcrtKe145nH3fqdi5v02yY2hlS90O5GjBkGfSaBSH/GuEYUgV6zXRMs1IMjqXl0mvSb2w7nE6FMn58/kAbWtYsZb1jRUopzblZAt7/ciRTMpdis1iIzgvm/QE/EeAfZHZYIiIiUggnck4weMlgEtISqFSmEtO6TKN6cHWzw/pHSFWweIFhv8AGFscPwiIO4Vuw6RDPfPU7AIOur8WzXetjsfy7V42IiBRVYc+tbj/fZkGuY87ojTMcj+t1hjsnQVAYVGkG9W9zTKmSmei4QFfzumLrsbnvRBZ9p67jUEoOlUMDmD0kmjoRZYvlWCLifCpuFrN3545ges4KDIuF6/PKM2Hgj/j5+ZsdloiIiBTCiZwTxCyJISEtgcigSKZ1drHCZkYifPqfMwqbFs5eWMg5Q/gW/X6E/87bgmFA3zY1eOH2hipsiog4md2wM3fXXN7d8O5Ft7NgITIokhYVW5RQZMUg9QDM6w9HNgEWuHkUtHsKvM4YXOrlDbVvLPZQdh3LoO/UdRzPyKN2eBlmxURRrbw6I4m4ExU3i9Fbc4Ywq2AdWCy0yw/nvcFL8fHxNTssERERKYRThc29aXuJDIpkepfpVA9xocJmTgrMvguS9zqG8d34X1jx5tmLC4VUcRQ2izCEb8kfx3js883YDejVqhov3dFIhU0RESdLSEvgxTUvnp5Hs3ZIbRLSE7BgOWthIcvfF62eiXoG72LqxVjs9iyD+TGOPBZYHu6aAvU6mhLK5oOpDJweR2p2AfUrBTMrJpqIYHVGEnE3Km4Wk1dn9eNz+2YAbimozLjBP+Dl7abJR0RExMOcyDnBkCVD2Ju2l4pBFR1D0V2psJmfBXPuhcRtjqF6/b+GsKugeT+nDuH7ZWcSD8+Jx2Y3uLN5VV6/qwleXipsiog4i9VuZcYfM/hw84fk2/MJ9AnkiZZPcO819/LzgZ95I+6NsxYXigyK5JmoZ+hY05xiYJHY7bBqLPzyGmBA5WaOOTTL1zQlnN/+OsmQT9aTlW+jeY1yzBgYRWiQOiOJuCMVN88jNjaW2NhYbDbbFb1/zCe9+JIdAHS2VuftQd+qsCkiIqYpal7zNCdzTjJkyRD+SvuLikEVmd5lOjVCapgd1j+s+TC3HxxcBwGh0G+Bo7AJTh3Ct2r3cYbN3kiBzeC2xpV5++4meKuwKSIuoLTktZ3JO3lh9QvsSHb8dry+yvW80PYFqpStAkDHmh1pX7098UnxHM8+TkRQBC0qtnDPHps5KfDVMNi9xPG4xQDo9hb4BpgSzrIdiQz/NJ58q53r61bg436tKOOv8oiIu7IYhmFcejPPlJ6eTmhoKGlpaYSEhFxye8Nu5/kZd/G1918A3Gavw2v956uwKSJSAi73nO2J9Bld2smckwxZOoQ9qXuoGFiRaV2nUTPEnB4l52W3wZeDYftC8A1y9NisHuX0w6zde5KB0+PILbDTqWEkH9zfAl9vr0u/UUScRufsS3PXzyjPlsekLZOYvm06VsNKiF8IT7d+mjvq3FE6p/04+jvM6wcp+8DbH24fB837mhbO15sP8995W7DaDTo1jGRi7+YE+Oo3u0hxKu7ztS5NOIndZmPUjDv43ucAAD1owCuD5pkclYiIiBRWcm6yaxc2DQMWPe4obHr5wn2fFkthc+P+ZAbPWE9ugZ3210Twfp/mKmyKiDjJ5qTNvLDmBRLSEgDoVLMT/4v+H+GB4SZHVkw2fQrfjQRrrmN+6F6zHCuhm2TOugM8t3ArhgF3Nq/KW3c3UY4TKQVU3HQCu83GU9O7sdT3KAD3eDXlhX6zTY5KRERECis5N5mYJTHsSd1DRGAEU7tMda3CJsBPoyF+Jli84O6pUKeD0w+x5WAqA6etJzvfxg11w/mwb0v8fdSbRUSkqLILspmwaQJzdszBwKBCQAWea/McnWp2Mju04lGQC4ufgY0zHI/rdYY7J0FQmGkhTVrxF6//sBOAvm1q8NIdjTSPtEgpoeJmEVmtBYyc3oVf/I4D0Mc3ilF9ppoclYiIiBTWmT02IwIjmNZlGrVCa5kd1tlWjYPV7znud58ADXs4/RDbDqfRb+o6MvKsRNUOY3L/VhqmJyLiBGuOrOGl317icOZhAHrU6cFTrZ8i1D/U5MiKSeoBmNcfjmwCLHDzKGj3FHiZ00PSMAzeWfon7/+yB4CHbq7DU12uKZ1TAIh4KBU3i6CgIJ/Hp3dkpX8KFsOgX2A7nrr3A7PDEhERkUJKyU1hyNIh7E7ZfbrHpssVNtdPhWVjHPc7vwIt+jn9ELuOZdBv6jrSc620qFGOaQNbE+inwqaISFGk5aXxzoZ3WLBnAQCVy1RmdNvRXF/1epMjK0Z7lsH8GMcCQoHl4a4pUM+8ld3tdoMx3/7BJ7/tB+CZrvUZfnMd0+IRkeKh4uYVys3L5rFPOrLGPwMvw2Bw2U48dve7ZoclIiIihXRmYTM8MJypXaZSO7S22WGdbeuX8N1/HfdvfBKue8Tph9iTlMn9U9aSkl1A02qhzBgcRVmtGCsiUiTLDizjlbWvcCLnBBYs3Ff/Ph5r8RhlfMuYHVrxsNth1Vj45TXAgMrNoNdMKG/eFC9Wm52n5//OV/GHsVjgpR6N6NfGxaacERGn0P9cr0B2biaPfnIL6wKy8TYMhoXezvA73zA7LBERESmk1NxUhi4dyp8pf7puYfPPpbBgGGBA6yHQ4f+cfoh9J7LoM3ktJzLzaVg5hJmDowkJ8HX6cUREPMWJnBO8vu51lu5fCkCtkFqMuW4MLSJbmBxZMcpJga+Gwe4ljsctBkC3t8A3wLSQ8qw2HpmziaXbE/H2svDOPU3p2byqafGISPFScfM8YmNjiY2NxWaznfNaRlYqj8zuxMaAXHwMgxEV7mZI9xdLPkgREZFCulhe80SpuakMWTqEXSm7qBBQgaldpnJV6FVmh3W2/WtgXj+wW6HxPdDtbXDy3GAHk7PpM3ktSRl5XB1ZltlDogkNUmFTRFyfK+Y1wzBYtHcRb65/k7S8NLwt3gxqNIgHmz6Iv7e/2eEVn6O/O/JVyj7w9ofbx0HzvqaGlJ1v5YGZG/l1zwn8fLyI7dOCTg0jTY1JRIqXxTAMw+wgXFV6ejqhoaGkpaUREhJCWsZJHp7Tmc0B+fjZDR6N7MOAW/9ndpgiIsK552w5lz6jv3ts/jiUnck7qRBQgWldpnFVORcrbB7dAjNuh7x0qNcF7vsUvJ1bdDySmsO9H//GweQcrooow9wH2hIRXIp/fIu4IZ2zL81VPqOjmUd5ae1L/Hr4VwDqh9VnzHVjaFihoWkxlYhNn8J3I8GaC+VqQK9ZUKWZqSGl5RQwaHoc8QdSCfLzZkr/VlxXN9zUmESk+M/X6rlZCF/9/BFdr7+PkV/1YGuAFX+7wciqg+nTeaTZoYmIiEghpeWl8cCPD7AzeSdhAWGOHpuuVtg8sQdm3eUobNa8Hnp94vTCZlJ6LvdPWcfB5BxqVghizpA2KmyKiFwBu2Hni11fMG7jOLKt2fh6+TK86XAGNhqIr1cp7glvzYMfnoaNMxyP63WGOydBUJipYZ3IzKPf1Dh2HE0nNNCXGYNa07xGeVNjEpGSoeJmIbx1bAYTFs2kIMBCoN3gmVoP8Z/2D5kdloiIiBRSWl4aQ5cOZUfyDsICwpjWZRp1yrnYaqlph2BmD8g+AZWbQu/PwDfQqYc4kZlHnynrSDiRRdVygcwZ2oZKoebNiSYi4q72p+9n9JrRbEzcCECziGaMuX6M601z4mypB2BefziyCbDAzaOg3VPg5WVqWIdTc+g3ZR17T2QRXtafWTFRNKisHs8inkLFzUIq8LKAYdDFq4EKmyIiIm7k34XNqZ2nul5hM+sEzOwJ6YegQj3o+xUEhDr1EClZ+fSdso49SZlUDg3gs6FtqFrOucVTEZHSzmq3MnP7TD7Y/AF5tjwCfQJ5rMVj9K7fGy+LuQW+YrdnGcyPcSwgFFge7poC9TqaHRV7j2fSd8o6jqTlUrVcILOHRFM7vJSuSi8i56Xi5mVabd1Ofn4efn4aviUiIuJqbHYb8UnxHM8+TkRQBHVC6/DgTw+eVdisW76u2WGeLTcNZt8FJ3dDSDXotwDKOHd+sLScAvpOXcfOYxlEBPszZ2gbalQIcuoxRERKu13Ju3hhzQtsP7kdgLaV2zL6utFULVvKV+G222HVWPjlNcCAys2g10woX9PsyNhxNJ1+U9dxIjOfqyLKMDsmmiq6cCficVTcvBwWC8d9LCxcMYlenR41OxoRERE5w0/7f+KNuDdIzE48/ZyPlw9Wu5WwgDCmdJ7ieoXNghz4rLdjEaGgcOi/EMpVd+ohMnIL6D8tjj+OpFOhjB9z1KNFROSy5NvymfT7JKZtnYbVsBLsF8zTrZ+mR50eWCwWs8MrXjkp8NUw2L3E8bjFAOj2FviaP6XJxv0pDJoeR3qulYaVQ5gZE0V4WXVCEvFEKm5egaT0A2aHICIiImf4af9PjFw+EgPjrOetdisAQxoNoV75emaEdmG2Apg3APavBv8Q6PcVhDs3xqw8K4Omr2fLwVTKBfkye0g09SKDnXoMEZHSbMvxLYxePZq/0v4C4JYat/Bc9HNEBEWYHFkJOPo7zOsHKfvA2x9uHwfN+5odFQC/7j7BA7M2kJ1vo2XN8kwb2JrQwFK8iJOIXJSKm1egYkgNs0MQERGRv9nsNt6Ie+OcwuaZZm6fSZ8GffD28i7ByC7CboeFwx09YXwCoM9cxyJCRWSzG8QlJJOUkUu5QF8+WL6HDftTCA7wYXZMtBZXEBEppOyCbCZumsinOz7FwCAsIIznop+jU81Opb+3JsCmT+G7kWDNhXI1oNcsqNLM7KgAWPrHMR6es4l8m50b64UzqV9LgvxU2hDxZDoDnEdsbCyxsbHYbLaznrcYBuE2g543DTMpMhERkct3obxWWsQnxZ81FP18jmUfIz4pntaVWpdQVBdhGPDDU7D1C/DycfxgrHldkXe7eNtRxny7naNpuWc9H+DjxczBUTSq6twFikREzFLceW3t0bW8uOZFDmceBuCOOnfwVKunKBdQrliO51KsefDD07BxhuNxvc5w5yQICivxUM68YFcxOICo2mF8s+UwT37xOza7QddrK/Fe72b4+7jIhUsRMY2Km+cxYsQIRowYQXp6OqGhjh8CFsPRG+S+8J5aTEhERNzK+fJaaXI8+7hTtyt2v7wK66cAFscPxqs7F3mXi7cdZfjs+PP2Xc212klMzz3PKyIi7qm48lp6fjrjNoxj/u75AFQqU4kX2rzAjdVudNoxXFrqQZjXH47EAxa4eRS0ewq8Sn4V+PNdsAsJ8CE91zHdzH9aVOPN/zTGx7uUr1AvIoWi4mYhhdsM7gvvyQM9XjU7FBERETlDYec9c4n50da8Dyvfdty/7R1ofHeRd2mzG4z5dvsFB+VbgDHfbqdTw0p4e3nAUEoRkSvwy4FfeGXtKyTlJAFw3zX38XjLxynj6yELsO1ZBvOHQE4yBJaHu6ZAvY6mhHKhC3anCpvtr4ng7bub4KWcJiJ/U3GzEJ6uNJA+tz6mHpsiIiIuqEFYA3y9fCmwF5z3dQsWIoMiaVGxRQlH9i/xs2Dpc477t7wArWOcstu4hORzhqKfyQCOpuUSl5BM2zoVnHJMEZHS4mTOSd6Ie4PF+xYDUDOkJmOuG0PLyJYmR1ZC7HZYNRZ+eQ0woHIz6DUTytc0JZxLXbAD2Hks46Kvi4jnUXGzEO7q8KAKmyIiIi4o15rLE8ufuGhhE+CZqGfMXUxo+9fw7aOO+9c9CjeMdNqukzIKN+S8sNuJiHgCwzD4LuE73ox7k9S8VLwt3gy4dgDDmw4nwCfA7PBKRk4KfDXMsbgdQIv+0O1t8DXv77/UBTvQBTsROZeKmyIiIuKW8mx5PL78cdYeXUugTyBDGw9l7q65Zy0uFBkUyTNRz9CxpjlD6wD462fHUD/D7vjh2OklcOJKuxWDC3cBtmKwh/xYFxG5hGNZx3h57cusPLQSgGvKX8OY68dwbYVrTY6sBB39Heb1g5R94O3vmCqlRT+zo9IFOxG5IipuioiIiNspsBUwcvlIVh9eTaBPIB/c8gGtKrVicKPBxCfFczz7OBFBEbSo2MLcHpsH4+Dz+8GWDw17wu3jnVrYBFi7N/mir1uASqGOVWZFRDyZ3bDz5Z9fMm7jOLIKsvD18uXBpg8yqNEgfL18zQ6v5Gz6FL4bCdZcKFcDes2CKs3MjgrQBTsRuTIqboqIiIhbKbAX8OSKJ1l5aCX+3v5M7DCRVpVaAeDt5U3rSq1NjvBviX/Ap3dDQTbU6QB3fQxOLrROWbWX95btPv3YAmfNQ3aqjDq6e0MtJiQiHu1A+gFGrxnNhsQNADSJaMJL171EnXJ1TI6sBFnz4IenYeMMx+N6neHOSRDkGhe/0nMLmLV2/0W30QU7ETkfFTdFRETEbVjtVp5d+Sw/H/wZPy8/JnSYQHTlaLPDOlfyXph1J+SmQbUouHc2+Dh3/u7P4w7wync7ABjZ6WqujizLmG+3nzVXWaXQAEZ3b0jXRpWdemwREXdhtVuZvX02729+nzxbHoE+gTza/FF61+9tbs/+kpZ6EOb1hyPxgAVuHgXtngIvL7MjA+D3Q6k8PGcTB5Kz8bKA3dAFOxEpPBU3RURExC3Y7Db+9+v/WLp/Kb5evoxvP57rqlxndljnSj8KM3tCZiJENoL754FfGace4pstRxi1YCsAD7S7ikc61MVisdCpYSXiEpJJysilYrCjZ4t+AIqIp/oz5U9Grx7NtpPbAIiuHM2LbV+kWnA1kyMrYXuWOeZ+zkmGwPJw1xSoZ+Jc1GcwDIOpvybw5uKdFNgMqpUPZGLv5iSm5+qCnYgUmoqbIiIi4vJsdhvPr36eHxJ+wMfiw7ibx3FjtRvNDutc2ckwqyek7ofytaHvV44fkk700/ZERs7djGFAn+gajOpWH8vf83h6e1m0eqyIeLwCWwEfb/2YKb9PwWpYCfYN5qnWT9Gzbs/T50uPYLfDqnfgl1cBAyo3g14zoXxNsyMDICUrn6e+3MJPO5IA6HptJd68uwmhgY75T3XBTkQKS8VNERERcWl2w86Lv73It3u/xdvizds3vc3N1W82O6xz5WU45tg8vhOCK0P/ryE40qmHWLPnBA/NicdqN+jZrAqv9GjkWT/URUTOY2PiRtqVbYe3lzdbj2/lhTUvsCd1DwDtq7fn/9r8HxWDKpocZQnLSYEFD8Kfix2PW/SHbm+Dr2ssxLN+XzKPfraJo2m5+Hl78fztDejbpuZZOU0X7ESksFTcPI/Y2FhiY2Ox2WxmhyIiIlJk7pzXDMPg5bUvs3DPQrwsXrzR7g061nSNoXRnKciFz/vA4Y2Onpr9Fjq9Z8zG/SkMmbmBfKudTg0jefuepnipB4uIeKB/57URy0ZQeXNlGoQ1YNXhVdgNO2EBYYyKHkWXml087yLQ0d9hXj9I2Qfe/nDbO9Cin9lRAWC3G3y44i/G/fgnNrvBVeFlmNinOddWCTU7NBFxYxbDMIxLb+aZ0tPTCQ0NJS0tjZCQELPDERGRi9A5+9Lc7TMyDIPX1r3G57s+x8vixWs3vMZtV91mdljnslnhiwGwcxH4lYUB30DVlk49xB9H0uj98VrSc63cWC+cKQNa4e/jQQthiHggdztnm+HUZ9TgwwZ4B/5zTrz9qtt5pvUzlAsoZ15wZtn0KXw3Eqy5UK4G9JoFVZqZHRUAxzPyGDlvM6t2nwBwjEC4szFl/dXnSqS0K+6cprOIiIiIuBzDMHhr/Vt8vutzLFh4+fqXXbOwabfDt486Cpve/tD7M6cXNvckZdJ/ahzpuVZa1izPpH4tVdgUEbmA8v7leeX6VzxrJXQAax788DRsnOF4XK8z3DkJgsJMDeuUX3ef4PG5mzmRmUegrzdjelzLPS2reV6vWhEpFipuioiIiEsxDIN3N77L7B2zARhz3RjuqHOHyVGdh2HA0udg86dg8YZ7pkPtdk49xMHkbPpOWcfJrHyurRLCtIGtCfLTf99ERC4kJS+F+KR4WldqbXYoJSf1IMzrD0fiAQvcPAraPQVeXmZHhtVm571lu3n/lz0YBlwTGcz7fZpTLzLY7NBEpBTR/45FRETEZRiGwcRNE5n+x3QAnm/zPHfWu9PkqC5gxVuw9gPH/R6xUN+5PUsT03O5f8o6jqXnUrdiWWYOjjq9gqyIiFzY8ezjZodQcvYsg/lDICfZMefzXVOgnmvMTX00LYfHPttM3L5kAHpH1WB094YE+HpYr1oRKXYqboqIiIjL+GjLR0zeOhmAUVGj6HVNL5MjuoB1k2D5a477Xd+EZr2duvvkrHz6TlnHgeRsqocFMjsmmgpl/Z16DBGR0ioiKMLsEIqf3Q6r3oFfXgUMqNwMes10+mJ2V2rZjkSe/GILKdkFlPX34bW7GnNH0ypmhyUipZSKmyIiIuISJv8+mQ+2OHpCPtXqKfo06GNyRBew5XPHvGbgGPrX5kGn7j49t4AB0+LYnZRJZIg/c4a0oVJogFOPISJSGlmwEBkUSYuKLcwOxXnsNti/BjIToWwk1LwO8tJhwYPw52LHNi36Q7e3wdf8XJFvtfPW4p1M+TUBgMZVQ5nYuzm1wsuYHJmIlGYqboqIiIjppm+bzoRNEwB4ouUT9L+2v8kRXcDO72HhQ4770Q/CTc84dfc5+TZiZqxn6+E0wsr48emQaKqHBTn1GCIipZEFx8I0z0Q9U3oWE9r+DSx+BtKP/PNcmb97pWYddyxkd9s70KKfOfH9y4GT2TzyWTxbDqUBMOj6Wjzbrb4WwRORYqfipoiIiJhq5h8zGbdxHACPNH+EwY0GmxzRBSSshC8GgmGDpr2hy+vgxFVe86w2Hpi1gfX7UggO8GHm4CjqVtSCCyIihREZFMkzUc/QsaZrzDdZZNu/cSwShHH281l/zycaFA5950OVZiUd2Xl99/tRnp3/Oxl5VkIDfXn77iZ0vraS2WGJiIdQcVNERERMM2fHHN7e8DYAw5sO54EmD5gc0QUcjofPeoMtD665De5436mr0Fptdh79bBOrdp8g0NebGYNa06hqqNP2LyJSmsXeEku7Ou1KT49Nu83RY/Pfhc0zeftCpcYlFtKF5BbYeOW77cxeewCAljXLM6F3c6qWCzQ5MhHxJCpuioiIiCnm7ZrH63GvAzCk8RCGNx1uckQXkLQTZv8H8jOh1o1w9zTwdt5/oex2g6e//J0lfyTi5+3F5P6taFkzzGn7FxEp7VpGtiw9hU1wzLF55lD088k46tiu9o0lE9N57EnK5OE58ew8lgHAQzfX4YlOV+Pr7byLfyIihaHipoiIiJS4BbsX8PLalwEYeO1AHm3+KBYnDvF2mpT9MOtOyEmGKi2g92dOXbDBMAxe+GYbX206jLeXhff7NOeGeuFO27+IiLihzETnblcM5m88xPNfbyM730Z4WT/G9WpGu6s9YJV6EXFJKm6KiIhIifrmr28YvWY0AH0b9GVky5GuWdjMSIRZPSHjCETUd8xt5u+8OTANw+CNxTuZvfYAFguM69VU85OJiHi6rJOw/evCbVs2snhjOY+sPCsvfP0H8+MPAXBdnQqMv7cZFUPMX6ldRDyXipsiIiJSYr7b+x3Pr34eA4P7rrmPp1s/7ZqFzZxUmH0XJO+FcjWg3wIIcu5Q8dhf9jBpxV4AXu3ZmB7Nqjp1/yIi4kYKcmDth/Dru5CXfomNLRBSBWpeVyKhnbLjaDoPz4nnr+NZeFng8Y5XM6J9Xby9XDCPi4hHUXFTRERESsSSfUv436//w27YufvquxkVPco1C5v5WTCnFyRugzIVod9Cx49IJ5q+OoGxS/8E4LlbG9AnuoZT9y8iIm7CboMtn8HPrzpGCoBjoaBrusGKt//e6MyFhf7Om13fgBKaZ9QwDD5dd4CXFm0n32onMsSfCfc1J/qqCiVyfBGRS1FxU0RERIrdsv3LeGblM9gNOz3r9uT5Ns/jZXHBBQes+TC3HxxcBwGhjh6bFeo49RDzNhxkzLfbAXjslnoMbXeVU/cvIiJuwDBg94/w02hIcuQEQmvALc9Do7vBywsiGztWTT9zcaGQKo7CZsM7SiTM9NwCRs3fyndbjwLQ/poIxt7TlApl/Uvk+CIihaHipoiIiBSrFQdX8OTKJ7EZNrpf1Z0X277omoVNuw2+Ggp/LQPfILj/S6jUyKmH+O73ozw7/3cAYm6ozeMd6zl1/yIi4gYOx8OPL8C+VY7HAeWg3ZPQeujZi9Y1vAPq3+ZYFT0z0THHZs3rSqzH5paDqTzy2SYOJGfj42Xhma71ibmhNl4ahi4iLkbFzfOIjY0lNjYWm81mdigiIiJFZmZe+/Xwrzyx/AmsdivdanXj5etfxruEfpRdFsOARU/A9oXg5Qv3zobqUU49xC87k3js803YDbivdXX+77YGrjksX0TExbnt77XkBPj5Zdg23/HY2x+ih8GNIyGw/Pnf4+UNtW8suRhxDEOf+msCby7eSYHNoFr5QCb2bk7zGheIUUTEZBbDMIxLb+aZ0tPTCQ0NJS0tjZCQELPDERGRi9A5+9JK+jNac2QNjyx7hHx7Pp1qduKtdm/h4+Wi11V/fAFWvwcWL7h7Olzb06m7/+2vkwycHkee1U73plUYf28zLcAgIhelvHZpbvMZZZ2ElW/D+ilgLwAs0PQ+aP8clKtudnRnScnK58kvtrBsZxIA3RpV4o3/NCE00NfkyETEnRX3+dpFf2GIiIiIO4s7GsejPz9Kvj2f9tXb82a7N123sLlqnKOwCdD9PacXNjcdSGHIJ+vJs9rp2KAi43o1VWFTRMQTnG8F9DodoOMYqNzE3NjOY/2+ZB79bBNH03Lx8/Hi+dsa0LdNTY0yEBGX56K/MkRERMRdbUzcyMM/P0yeLY921dox9qax+Hq5aI+PDdNg2RjH/U4vQ4v+Tt39jqPpDJy+nqx8G9fVqcD7fVrg6+2C842KiIjzXGgF9E4vOYqbLsZuN/hwxV+M+/FPbHaDq8LLMLFPc66tEmp2aCIihaLipoiIiDjN5qTNPPTTQ+RYc7i+yvWMu3kcft5+Zod1flu/hEUjHfdv/C9c/6hTd7/3eCb9pq4jLaeA5jXKMbl/KwJ8XXC+URERcY7CrIDuYpIychk5dwu/7jkBwJ3Nq/Jyz0aU9VepQETch85YIiIi4hRbj2/lwZ8eJNuaTZvKbRjffjz+3v5mh3V+fy6FBcMAA1rFQIfnnbr7QynZ9J2yjhOZ+TSsHMKMgVGU0Q9FEZHSq7AroLuQX3ef4PG5mzmRmUegrzcv9biWu1tW0zB0EXE7+l+2iIiIFNkfJ/9g2I/DyCrIonWl1kzoMIEAH9f8Mcf+NTCvP9itjp40t44FJ/6QS8rIpe+UdRxJy+WqiDLMjIkiNMhFh+WLiEjRXMkK6Caz2uyM/2k3scv3YBhwTWQwsfc3p27FYLNDExG5IipuioiISJHsTN7JA0sfIKMggxYVW/B+h/cJ9Ak0O6zzO7oF5twL1hyo1xnu/MipwwRTsvLpNyWOfSezqVY+kE+HRBNe1kV7r4qIyJVzoxXQz3Q0LYdHP9vE+n0pAPSOqsHo7g01bYqIuDUVN0VEROSK7U7ZzdClQ0nPT6dpRFM+6PgBQb5BZod1fif2wKy7HCvW1rgO7vkEvJ3XozIjt4CB0+PYlZhBxWB/Ph0STeVQFy3yiojIlXGzFdDP9NP2RJ78cgup2QWU9ffh9bsa071pFbPDEhEpMhU3RURE5IrsTd3LkKVDSM1LpVGFRnzY8UPK+JYxO6zzSzsEs3pC9gmo1AT6fA5+zivC5uTbiPlkA1sOpVE+yJfZQ6KpWcFFPwsREbl8brYC+pnyrXbeXLyTqb8mANC4aigTezenVrjylIiUDipuioiIyGVLSEsgZmkMybnJNAhrwEedPiLYz0Xn6so6ATN7QtpBqFAX+n4FAaFO232+1c7wTzcSl5BMsL8PMwdHc3Wki34WIiJyedxwBfQzHTiZzSOfxbPlUBoAg6+vzTPdrsHfR8PQRaT0UHFTRERELsuB9AMMWTKEEzknuKb8NXzc6WNC/Z1XLCwSu82xYFBmIpSNhMhGMPsuOLkbQqpBv4VQNsJph7Pa7Dz2+SaW7zpOgK8X0wa1pnE1F/ksRESkaNxwBfQzLfr9CKPmbyUjz0pooC9j72lKp4aRZoclIuJ0Km6KiIhIoR3KOETM0hiScpKoW64uH3f+mHIB5cwOy2H7N7D4GUg/8s9z3n5gy4egCtB/oVMXebDbDZ6Zv5Ufth3Dz9uLj/u1onWtMKftX0RETOKGK6CfKbfAxsuLtvPpugMAtKxZngm9m1O1nOaBFpHSScVNERERKZSjmUeJWRLDsaxj1A6tzeTOkwkLcJFi3vZvYF5/wDj7eVu+49/rH4fwek47nGEYjPn2D+bHH8Lby8KE3s1pd7XzeoSKiIgJ3HQF9DPtScrk4Tnx7DyWgcUCw2+qwxOdrsbX27WHz4uIFIWKmyIiInJJx7KOMXjJYI5kHaFmSE2mdp5KeGC42WE52G2OHpv/Lmyead1H0HYEeDlnjrGxS3fxyW/7HffvaULXRpWcsl8RETGBG6+AfqYvNx7i+YXbyCmwEV7Wj3G9munCm4h4BBU3RURE5KKSspMYsnQIhzIPUa1sNaZ0nkJEkAv9WNq/5uyh6OeTftixXe0bi3y4D5bvIfaXvwB4uWcj7mxercj7FBERE7jxCuhnysqz8vzX2/gq/jAA19WpwPh7m1ExxPXnBRURcQYVN0VEROSCTuScYMjSIexP30/VslWZ1mUalcq4WC/FzETnbncRM3/bx1uLdwEwqlt9+rWpWeR9iohICXPzFdDPtONoOiPmxLP3eBZeFnii49U81L4u3l4Ws0MTESkxKm6KiIjIeSXnJjNkyRAS0hKoVKYSU7tMpXLZymaHda6yhVz5tbDbXcCXGw/xwtd/APBIh7oMu6lOkfYnIiImcPMV0E8xDINP1x3gpUXbybfaiQzxZ8J9zYm+qoLZoYmIlDgVN0VEROQcqbmpDF06lL/S/qJiYEWmdZ5G1bJVzQ7r/MrVAC8fsFsvsIEFQqpAzeuu+BA/bD3K019uAWDgdbUY2enqK96XiIiYwE1XQLfZDeISkknKyKVicABRtcPIyrcyav5Wvtt6FIAO9Ssy9p6mhJXxMzlaERFzqLgpIiIiZ0nLS+OBHx/gz5Q/CQ8MZ2qXqVQPcdFVYhP/gNl3X7ywCdD1jSteTGj5riQe/XwTdgN6tarGC7c3xGLRcD8REbfgxiugL952lDHfbudoWu7p5yqU8QMLnMzMx8fLwjNd6xNzQ228NAxdRDyYipsiIiJyWkZ+Bg/++CA7kncQFhDG1M5TqRVay+ywzi9hFXx+P+SlQfg10OZBxw/YMxcXCqniKGw2vOOKDrFu70mGzdpIgc3gtsaVef2uJvoBKSLiDtx8BfTF244yfHY8xr+eP5mVDziKnFMGtKJ5DdftdSoiUlJU3BQREREAMvMzefCnB9l2chvl/cszpfMUrip3ldlhnd+2+bDgQbDlQ422cN8cCAqDFgMcq6JnJjrm2Kx53RX32NxyMJWYTzaQZ7XToX5F3r23mRZoEBFxRfvWQKNOjvN9KVgB3WY3GPPt9nMKm2fy8bbQpFq5kgpJRMSlqbgpIiIiZBdk89Cyh/j9+O+E+ocyufNk6pWvZ3ZY5/fbB7BklON+g+5w15R/FoHw8obaNxb5ELuOZTBgehyZeVbaXBXGB/e3wM/HfVbPFRHxKJ/1goiq0LQP7Pre7VdAj0tIPmso+vkkpucRl5BM2zpaQEhExH3O8Ffo4MGD3HzzzTRs2JAmTZrwxRdfmB2SiIjIFSmunJZjzWHEshFsStpEsF8wH3f6mGvCrnHKvp3Kboclz/1T2Ix6AO75xOmr2yacyKLv1HWkZhfQrHo5pgxoTYDvlfX+FBGRC3NqXks/AqvGOgqbAeWg8yvw8Hpo0sutCpsA+5OzCrVdUsbFC6AiIp6i1Pfc9PHxYfz48TRr1oxjx47RsmVLbr31VsqUKWN2aCIiIpelOHJarjWXR35+hA2JGyjrW5ZJHSfRsEJDJ0btJNY8WDj8n1VuO46B6x8DJy/scyQ1h75T1nE8I4/6lYKZMag1Zf1L/X+XRERMUSy/1fzKwiMboUy48wItIScy85j2awLTVycUavuKwc69uCci4q5K/f/WK1euTOXKlQGoVKkS4eHhJCcnq7gpIiJux9k5Lc+Wx+O/PM66o+sI8gniw44f0jiisTNDdo7cNMfCQftWgZcP9Ih1rHTrZMcz8ug7ZR2HU3OoHV6GWTHRlAvyc/pxRETEoVh+q+VnQtIOp0xRUlIOpWTz8cq9zF1/kDyrHQBvLws2+/ln3bQAlUIDiKodVoJRioi4LtP7569cuZLu3btTpUoVLBYLCxcuPGeb2NhYatWqRUBAANHR0cTFxV3RsTZu3IjNZqN69epFjFpERORc7pLTNiZuJKcgh5HLR7L6yGoCfQL5oOMHNKvY7IpiKVbpR2D6rY7Cpl9ZuP+LYilspmbn02/qOvaeyKJquUBmD4kmItjf6ccREXEn7pLXzpGZWPR9lIDdiRmMnLeZm99ezszf9pNntdO0ejkm9WvJxPuaY8FRyDzTqcejuzfUInciIn8zvedmVlYWTZs2ZfDgwdx1113nvD537lxGjhzJRx99RHR0NOPHj6dLly7s2rWLihUrAtCsWTOsVus57126dClVqlQBIDk5mf79+zN58uTi/YNERMRjuUtOG7FsBEFlg8iz5RHgHUDsLbG0jGx5RfsqVkk7YfZ/IP2QY+Xz+7+Ayk2dfpjMPCsDp69n57EMIoL9+XRINFXLBTr9OCIi7sZd8to5ykY6Zz/FZPPBVD74ZQ9Lt/9ThL2hbjgP3VyHtnUqYPl7ypUPvVow5tvtZy0uVCk0gNHdG9K1UeUSj1tExFVZDMM4f193E1gsFhYsWEDPnj1PPxcdHU3r1q15//33AbDb7VSvXp1HHnmEZ599tlD7zcvLo1OnTgwdOpR+/fpddLu8vLzTj9PS0qhRowYHDx4kJCTkyv4oEREpEenp6VSvXp3U1FRCQ0PNDsf0nHZq2/PltavHXY13oGOBnMHXDuaBpg9c5l9XAg7EwZcDIS8dyl8F986C8jWdfpjcAhsPzY4nbl8yoYE+zBgURb3IYKcfR0TkcimvnX/b8/5ee6IsIf5/93MMrgQPrQUv11oIzjAM1u5NZsqqvaxLSD79/C0NIhhyw1U0rlbuvO+z2Q027kvheGYuEWUDaFmrvHpsiojbKfacZrgQwFiwYMHpx3l5eYa3t/dZzxmGYfTv39+44447CrVPu91u3Hfffcbo0aMvue3o0aMNQDfddNNNNze+/fXXX5eReYoPmJvTDEN5TTfddNOtNNyU1/6hvKabbrrp5t634spppg9Lv5gTJ05gs9mIjDx7WEFkZCQ7d+4s1D5Wr17N3LlzadKkyek5YmbNmkXjxucumDBq1ChGjhx5+nFqaio1a9bkwIEDLnG19JTWrVuzfv16l9rn5by/sNtearuLvX6h1873/KkrCK7WQ9fV2vly36t2vrTiaOOi7rc42rk42vh8r53qvREW5pqT65d0TgPlNVf6HhRmO53vSna/7ny+c8U2Bn2XC/P65XyXldfO5Q55Tee7or2u851+k7tKO+u7XLhtCtvOxZ3TXLq46Qw33HADdru9UNv6+/vj73/u4gGhoaEu8wUD8Pb2dno8Rd3n5by/sNtearuLvX6h1y72npCQELWzE9+rdr604mjjou63ONq5ONr4Yq95eZm+Vl6xuZycBsprrvQ9KMx2Ot+V7H5Lw/nOldoY9F0uzOtX8l1WXvuHO+Q1ne+K9rrOd/pN7irtrO9y4ba53HYurpzm0pkyPDwcb29vEhPPXu0uMTGRSpUqmRSV+UaMGOFy+7yc9xd220ttd7HXL/RacXx2xcXV2vly36t2vrTiitPV2rk42riwx3YlymkXpvPdpV/X+c75+9X5zvn0Xb706+7+XT6T8tr56XxXtNfd5bvgaue7y32/zneXpu9y4bZxlXZ2iwWFoqKimDhxIuCYpLpGjRo8/PDDhZ6k+kqlp6cTGhpKWlqay1w9EOdTO3sGtXPp52pt7Go5DVzvM5LioXYu/dTGnsHV2ll5TcygNvYMaufSr7jb2PRh6ZmZmezZs+f044SEBDZv3kxYWBg1atRg5MiRDBgwgFatWhEVFcX48ePJyspi0KBBxR6bv78/o0ePPu/QByk91M6eQe1c+rlCG7tyTgPX+Iyk+KmdSz+1sWdwhXZWXhOzqY09g9q59CvuNja95+by5ctp3779Oc8PGDCAGTNmAPD+++/z9ttvc+zYMZo1a8aECROIjo4u4UhFREQuTjlNRERKE+U1ERFxB6YXN0VERERERERERESuhEsvKCQiIiIiIiIiIiJyISpuioiIiIiIiIiIiFtScVNERERERERERETckoqbIiIiIiIiIiIi4pZU3CyChIQE2rdvT8OGDWncuDFZWVlmhyROtGvXLpo1a3b6FhgYyMKFC80OS4rBu+++y7XXXkvDhg159NFH0TprpdPYsWO59tpradSoEbNnzzY7HJejnFb6Ka95DuW10k857dKU10o/5TXPoJzmGYqa17RaehHcdNNNvPLKK9x4440kJycTEhKCj4+P2WFJMcjMzKRWrVrs37+fMmXKmB2OONHx48dp06YNf/zxB76+vrRr146xY8fStm1bs0MTJ9q6dSsDBgxgzZo1GIZB+/btWbx4MeXKlTM7NJehnOZZlNdKL+W10k85rXCU1zyL8lrppJzmGZyR19Rz8wqd+nLdeOONAISFhSlZlmLffPMNt9xyixJlKWW1WsnNzaWgoICCggIqVqxodkjiZDt27KBt27YEBAQQGBhI06ZNWbx4sdlhuQzlNM+jvFa6Ka+Vbsppl6a85nmU10ov5bTSzxl5zWOLmytXrqR79+5UqVIFi8Vy3u7rsbGx1KpVi4CAAKKjo4mLizv92u7duylbtizdu3enRYsWvPbaayUYvRRGUdv4TPPmzePee+8t5ojlShS1nSMiInjyySepUaMGVapUoWPHjtSpU6cE/wIpjKK2c6NGjVi+fDmpqamkpKSwfPlyDh8+XIJ/QfFSTvMMymueQXmt9FNOuzTlNc+gvFb6Kad5BlfIax5b3MzKyqJp06bExsae9/W5c+cycuRIRo8eTXx8PE2bNqVLly4kJSUBjqsHq1at4oMPPuC3337jxx9/5McffyzJP0EuoahtfEp6ejpr1qzh1ltvLYmw5TIVtZ1TUlJYtGgR+/bt4/Dhw6xZs4aVK1eW5J8ghVDUdj41R0+HDh246667aNOmDd7e3iX5JxQr5TTPoLzmGZTXSj/ltEtTXvMMymuln3KaZ3CJvGaIARgLFiw467moqChjxIgRpx/bbDajSpUqxuuvv24YhmGsWbPG6Ny58+nX33rrLeOtt94qkXjl8l1JG58yc+ZM4/777y+JMKWIrqSd582bZzz00EOnX3/rrbeMN998s0TilStTlO/zKTExMcaiRYuKM0zTKKd5BuU1z6C8Vvopp12a8ppnUF4r/ZTTPINZec1je25eTH5+Phs3bqRjx46nn/Py8qJjx4789ttvALRu3ZqkpCRSUlKw2+2sXLmSBg0amBWyXKbCtPEpGuLgvgrTztWrV2fNmjXk5uZis9lYvnw511xzjVkhyxUo7Pf51JXBXbt2ERcXR5cuXUo8VjMop3kG5TXPoLxW+imnXZrymmdQXiv9lNM8Q0nlNc2qfB4nTpzAZrMRGRl51vORkZHs3LkTAB8fH1577TXatWuHYRh07tyZ22+/3Yxw5QoUpo0B0tLSiIuLY/78+SUdojhBYdq5TZs23HrrrTRv3hwvLy9uueUW7rjjDjPClStU2O9zjx49SEtLo0yZMkyfPt1jFhZQTvMMymueQXmt9FNOuzTlNc+gvFb6Kad5hpLKa56TBYtBt27d6Natm9lhSDEKDQ0lMTHR7DCkmL366qu8+uqrZochxezfV/nlbMppnkF5zTMor5V+ymmXprzmGZTXSj/lNM9Q1LymYennER4ejre39zknycTERCpVqmRSVOJMamPPoHb2DGrni9Pn4xnUzp5B7Vz6qY0vTZ+RZ1A7l35qY89QUu2s4uZ5+Pn50bJlS5YtW3b6ObvdzrJly2jbtq2JkYmzqI09g9rZM6idL06fj2dQO3sGtXPppza+NH1GnkHtXPqpjT1DSbWzxw5Lz8zMZM+ePacfJyQksHnzZsLCwqhRowYjR45kwIABtGrViqioKMaPH09WVhaDBg0yMWq5HGpjz6B29gxq54vT5+MZ1M6eQe1c+qmNL02fkWdQO5d+amPP4BLtfHmLupcev/zyiwGccxswYMDpbSZOnGjUqFHD8PPzM6Kiooy1a9eaF7BcNrWxZ1A7ewa188Xp8/EMamfPoHYu/dTGl6bPyDOonUs/tbFncIV2thiGYTinTCoiIiIiIiIiIiJScjTnpoiIiIiIiIiIiLglFTdFRERERERERETELam4KSIiIiIiIiIiIm5JxU0RERERERERERFxSypuioiIiIiIiIiIiFtScVNERERERERERETckoqbIiIiIiIiIiIi4pZU3BQRERERERERERG3pOKmiAeYMWMG5cqVMzsMERERp1BeExGR0kR5TaRoVNwUcRMDBw7EYrFgsVjw8/Ojbt26vPTSS1it1ku+99577+XPP/+8rOPdfPPNPP7441cYrYiIyMUpr4mISGmivCZiHh+zAxCRwuvatSvTp08nLy+P77//nhEjRuDr68uoUaMu+r7AwEACAwNLKEoREZHCUV4TEZHSRHlNxBzquSniRvz9/alUqRI1a9Zk+PDhdOzYkW+++YaUlBT69+9P+fLlCQoKolu3buzevfv0+/49zOHFF1+kWbNmzJo1i1q1ahEaGsp9991HRkYG4LjquGLFCt57773TVx/37dtHSkoK999/PxEREQQGBlKvXj2mT59e0h+DiIiUEsprIiJSmiiviZhDxU0RNxYYGEh+fj4DBw5kw4YNfPPNN/z2228YhsGtt95KQUHBBd/7119/sXDhQhYtWsSiRYtYsWIFb7zxBgDvvfcebdu2ZejQoRw9epSjR49SvXp1nn/+ebZv384PP/zAjh07+PDDDwkPDy+pP1dEREo55TURESlNlNdESoaGpYu4IcMwWLZsGUuWLKFbt24sXLiQ1atXc9111wHw6aefUr16dRYuXMg999xz3n3Y7XZmzJhBcHAwAP369WPZsmW8+uqrhIaG4ufnR1BQEJUqVTr9ngMHDtC8eXNatWoFQK1atYr3DxUREY+gvCYiIqWJ8ppIyVLPTRE3smjRIsqWLUtAQADdunXj3nvvZeDAgfj4+BAdHX16uwoVKnDNNdewY8eOC+6rVq1apxMlQOXKlUlKSrro8YcPH87nn39Os2bNePrpp1mzZk3R/ygREfFYymsiIlKaKK+JmEPFTRE30r59ezZv3szu3bvJycnhk08+wWKxXNG+fH19z3pssViw2+0XfU+3bt3Yv38/TzzxBEeOHOGWW27hySefvKLji4iIKK+JiEhporwmYg4VN0XcSJkyZahbty41atTAx8cxq0SDBg2wWq2sW7fu9HYnT55k165dNGzY8IqP5efnh81mO+f5iIgIBgwYwOzZsxk/fjwff/zxFR9DREQ8m/KaiIiUJsprIubQnJsibq5evXr06NGDoUOHMmnSJIKDg3n22WepWrUqPXr0uOL91qpVi3Xr1rFv3z7Kli1LWFgYL774Ii1btuTaa68lLy+PRYsW0aBBAyf+NSIi4umU10REpDRRXhMpfuq5KVIKTJ8+nZYtW3L77bfTtm1bDMPg+++/P2cow+V48skn8fb2pmHDhkRERHDgwAH8/PwYNWoUTZo0oV27dnh7e/P555878S8RERFRXhMRkdJFeU2keFkMwzDMDkJERERERERERETkcqnnpoiIiIiIiIiIiLglFTdFRERERERERETELam4KSIiIiIiIiIiIm5JxU0RERERERERERFxSypuioiIiIiIiIiIiFtScVNERERERERERETckoqbIiIiIiIiIiIi4pZU3BQRERERERERERG3pOKmiIiIiIiIiIiIuCUVN0VERERERERERMQtqbgpIiIiIiIiIiIibknFTREREREREREREXFL/w+3/MOC5dPvsQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, axes = plt.subplots(ncols=3, figsize=(16, 5))\n", - "\n", - "# Group by k value\n", - "k_groups = {'build': {}, 'query': {}, 'levels': {}}\n", - "for result in data['results']:\n", - " k = result['parameters']['k']\n", - " n = result['parameters']['n']\n", - " graph_timings = result['graph_timings']\n", - " \n", - " if k not in k_groups['build']:\n", - " k_groups['build'][k] = {'n': [], 'times': []}\n", - " k_groups['query'][k] = {'n': [], 'times': []}\n", - " k_groups['levels'][k] = {'n': [], 'times': []}\n", - "\n", - " k_groups['build'][k]['n'].append(n)\n", - " k_groups['build'][k]['times'].append(graph_timings['build_tree'] )\n", - " k_groups['query'][k]['n'].append(n)\n", - " k_groups['query'][k]['times'].append(graph_timings['query_neighbors'] )\n", - " k_groups['levels'][k]['n'].append(n)\n", - " k_groups['levels'][k]['times'].append((graph_timings['compute_depths_parallel'] + graph_timings['order_by_depth']) )\n", - "\n", - "# Plot\n", - "for k in [4, 8, 16]:\n", - " axes[0].plot(k_groups['build'][k]['n'], k_groups['build'][k]['times'], 'o-', label=f'k={k}')\n", - " axes[1].plot(k_groups['query'][k]['n'], k_groups['query'][k]['times'], 'o-', label=f'k={k}')\n", - " axes[2].plot(k_groups['levels'][k]['n'], k_groups['levels'][k]['times'], 'o-', label=f'k={k}')\n", - "\n", - "for i, ax in enumerate(axes):\n", - " ax.set(xscale='log', yscale='log', ylabel='Time [s]', xlabel='Points', title=['build', 'query', 'levels'][i], ylim=(0.01, 100), xlim=(1e6, 1e9))\n", - " ax.legend(loc='upper left')\n", - "\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "graphgp (3.13.3)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.13.3" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/benchmarks/single.json b/benchmarks/single.json deleted file mode 100644 index e9ba6a6..0000000 --- a/benchmarks/single.json +++ /dev/null @@ -1,54 +0,0 @@ -{ - "defaults": { - "covariance": { - "matern_p": 0, - "r_min": 1e-05, - "r_max": 10.0, - "n_bins": 1000 - }, - "graph": { - "strict": true, - "serial_depth": false, - "fuse": true - }, - "distribution": { - "type": "gaussian" - }, - "d": 3, - "timing_runs": 5, - "cuda": true, - "seed": 137 - }, - "runs": [ - { - "n": 10000000, - "n0": 100, - "k": 4, - "function": "forward" - }, - { - "n": 10000000, - "n0": 100, - "k": 4, - "function": "jvp" - }, - { - "n": 10000000, - "n0": 100, - "k": 4, - "function": "vjp" - }, - { - "n": 10000000, - "n0": 100, - "k": 4, - "function": "grad" - }, - { - "n": 10000000, - "n0": 100, - "k": 4, - "function": "fft" - } - ] -} \ No newline at end of file diff --git a/benchmarks/test_large.py b/benchmarks/test_large.py deleted file mode 100644 index 8e5523a..0000000 --- a/benchmarks/test_large.py +++ /dev/null @@ -1,91 +0,0 @@ -import jax -import jax.numpy as jnp -import jax.random as jr - -import time - -import graphgp as gp -import graphgp_cuda as gp_cuda - -rng = jr.key(1234) - - -n_points = 300_000_000 -print(f"Generating {n_points} points...", flush=True) -rng, k1, k2, k3 = jr.split(rng, 4) -points = jr.normal(k1, (n_points, 3)) -xi = jr.normal(k2, (n_points,)) -fake_neighbors = jr.permutation(k3, xi.shape[0]) -print() - - -print('Timing FFT...', flush=True) -for i in range(5): - start = time.perf_counter() - ffted = jnp.fft.fft(xi) - ffted.block_until_ready() - end = time.perf_counter() - print(f"{1000*(end - start):.1f} ms", flush=True) -print() - - -print('Timing fake refine...', flush=True) -for i in range(5): - start = time.perf_counter() - values = gp_cuda.fake_refine(points, fake_neighbors, xi) - values.block_until_ready() - end = time.perf_counter() - print(f"{1000*(end - start):.1f} ms", flush=True) -print() - - -print("Building graph...", flush=True) -start = time.perf_counter() -graph = gp.build_graph(points, n0=1000, k=1, cuda=True) -graph.points.block_until_ready() -end = time.perf_counter() -print(f"{1000*(end - start):.1f} ms", flush=True) -print() - -print("Forward pass...", flush=True) -covariance = gp.prepare_matern_covariance_discrete(p=0, r_min=1e-3, r_max=10, n_bins=1000) -graph.indices = None -xi = jr.normal(rng, (n_points,)) -for i in range(3): - start = time.perf_counter() - values = gp.generate(graph, covariance, xi, cuda=True) - values.block_until_ready() - end = time.perf_counter() - print(f"{1000*(end - start):.1f} ms", flush=True) -print() - - -# print("Building tree...", end=" ", flush=True) -# start = time.perf_counter() -# points_reordered, split_dims, indices = gp.build_tree(points, cuda=True) -# indices.block_until_ready() -# end = time.perf_counter() -# print(f"{1000*(end - start):.1f} ms", flush=True) - -# print("Querying neighbors...", end=" ", flush=True) -# start = time.perf_counter() -# neighbors = gp.query_preceding_neighbors(points_reordered, split_dims, n0=1000, k=4, cuda=True) -# neighbors.block_until_ready() -# end = time.perf_counter() -# print(f"{1000*(end - start):.1f} ms", flush=True) - -# print("Computing depths...", end=" ", flush=True) -# start = time.perf_counter() -# depths = gp.compute_depths_parallel(neighbors, n0=1000, cuda=True) -# depths.block_until_ready() -# end = time.perf_counter() -# print(f"{1000*(end - start):.1f} ms", flush=True) - -# print("Ordering by depth...", end=" ", flush=True) -# start = time.perf_counter() -# points_ordered, indices_ordered, neighbors_ordered, depths_ordered = gp.order_by_depth( -# points_reordered, indices, neighbors, depths, cuda=True -# ) -# points_ordered.block_until_ready() -# end = time.perf_counter() -# print(f"{1000*(end - start):.1f} ms", flush=True) \ No newline at end of file diff --git a/demo.ipynb b/demo.ipynb new file mode 100644 index 0000000..9f1455e --- /dev/null +++ b/demo.ipynb @@ -0,0 +1,114 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "77838a79", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "77978f9d", + "metadata": {}, + "outputs": [], + "source": [ + "import jax\n", + "import jax.numpy as jnp\n", + "import jax.random as jr\n", + "from jax.tree_util import Partial\n", + "\n", + "import graphgp as gp\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "rng = jr.key(137)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "de0e5eb9", + "metadata": {}, + "outputs": [], + "source": [ + "n_points = 100_000\n", + "rng, k1 = jr.split(rng, 2)\n", + "points = jr.normal(k1, (n_points, 2))\n", + "\n", + "graph = gp.build_graph(points, n0=1000, k=10)\n", + "covariance = gp.matern_kernel(p=1, variance=1.0, cutoff=1.0, r_min=1e-5, r_max=10.0, n_bins=1000, jitter=1e-6)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "fbba6d89", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.3153486 1.7181605 1.159833 ... 1.4940151 0.17240867 0.83757323]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAGsCAYAAAC1sVKwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXeYXFd9//+6d3qfne29a1faVe9dlmTLvWCbYnpJIDjUJOQXSAIk3ySQEEICCRAIzRhsY9yNLUtW712r1fbe2/Q+c8vvjxGS1yqWjCzJ5r6eR8+jvXPuOWdm7tz3PZ/zKYKqqioaGhoaGhpvc8TrPQENDQ0NDY2rgSZoGhoaGhrvCDRB09DQ0NB4R6AJmoaGhobGOwJN0DQ0NDQ03hFogqahoaGh8Y5AEzQNDQ0NjXcE+us9gUuhKAojIyM4HA4EQbje09HQ0NDQuMaoqko4HKaoqAhRvPQa7IYWtJGREUpLS6/3NDQ0NDQ0rjODg4OUlJRcss0NLWgOhwPIvBGn03mdZ6OhoaGhca0JhUKUlpae1YNLcUML2u/NjE6nUxM0DQ0NjT9iLmfbSXMK0dDQ0NB4R6AJmoaGhobGOwJN0DQ0NDQ03hFogqahoaGh8Y5AEzQNDQ0NjXcEmqBpaGhoaLwj0ARNQ0NDQ+MdgSZoGhoaGhrvCDRB09DQ0NB4R6AJmoaGhobGOwJN0DQ0NDQ03hFogqahoaGh8Y5AEzQNDQ0NjXcEmqBpaGicRyAaR1aU6z0NDY0rQhM0DQ2NaUwEI/zHi3t4ZOex6z0VDY0rQhM0DQ2NabhtZoo9TmaV5l/vqWhoXBE3dIFPDY23M7uGesm12pjpybveU7kijHo9f7px6fWehobGFaMJmobGW4Ciqmzu78RhNL3tBE1D4+2KJmgaGm8BoiBwe2UduRbb9Z6KhsYfDZqgaWi8RawsKr+u4+8d7mcsGub+GY3XdR4aGtcKzSlEQ+Mdyu7hPg6PDaOo6vWeiobGNUFboWlovEP5xOxFhJJJREG43lPR0LgmXLMV2je+8Q0EQeDzn//8tRpSQ+OPmhyLjSq353pPQ0PjmnFNBO3w4cP88Ic/ZM6cOddiOA0NDQ2NP0LeckGLRCK8//3v50c/+hFZWVlv9XAaGhdE1faRNDTe8bzlgvbwww9zxx13sHHjxjdsm0wmCYVC0/5paPyhjIwH+Ob3X+GlHaev91Q0NDTeQt5Sp5DHHnuMY8eOcfjw4ctq/y//8i98/etffyunpPFHiMVsxOkw43FZr/dUNDQ03kIE9S2yxQwODrJo0SK2bNlydu9s3bp1zJs3j+985zsXPCeZTJJMJs/+HQqFKC0tJRgM4nQ634ppamhoaGjcwIRCIVwu12XpwFsmaM888wz33XcfOp3u7DFZlhEEAVEUSSaT0167EFfyRjQ0rgWT4SgmvQ6nxXy9p6Kh8UfBlejAW2Zy3LBhA6dOnZp27KMf/Sj19fX89V//9RuKmYbGjch3tu3FZTHzpVvWXO+paGhovI63TNAcDgeNjdNT7thsNrKzs887rqHxdmFBaRFuq+V6T0NDQ+MCaJlCNDSugPsXvLmHMX8izuOtp3hXXQN5Vi1hsYbGW8E1FbQdO3Zcy+E0NG4YDo4MIqsKuwZ7eaBOs1BoaLwVaCs0DY1rwC2VtZycGGN27rWrAt0ZHiQqJZiXVXvNxtTQuJ5ogqahcQ0QBYH5+YXXdMztE8dIySlN0DT+aNAETUPjCnlk9zFaxyb5sw1LKfW4r/d0LsqG/EXEpMT1noaGxjVDq4em8bZDVVUONvcTjaeu+diyorCno4+BqQB7Ovqv+fhXQrW9mNnu6us9DQ2Na4a2QtN423Gqe5SW3jE6Byf5wG2LrunYOlHka+/ayGgwzJzSa2tC1NDQuDSaoGm87ZhZkU973wRr5l+f1UdhlpPCLC1zjYbGjYYmaBrXDFVVUVQVnfiHWboNeh0Pbpx3dSaloaHxjkHbQ9O4ZvznS3v5x6devd7TeNvxRN9h/u7E04TTN6aDR1qRCKbC13saGhqaoGlcO4o9TkpuYK/AGxWX0YLbYMEg3pj5T58c3Mr/9T6reVRqXHc0k6PGNePBZXOu9xTelmwqamRT0fXNLjKZ8LLPe5RbCtZg0U2vNDDDUY5RNGDWGa/T7DQ0MmgrNA2NtwHPDB7iqK/nDdttG3+CV8cev+rjH/E3kVYkuiPnhyos9Mzk/tINiIJ2O9G4vmhXoIbGDcTusW7+4djLtAbGzx5LymlagoMc8Xa94fmyKqMgX/V5bcxfzVz3LBqcM6563xoaVwvN5KihcQOhF3XoBBHda1Y7Jp2BD1SuxW184yz9Nxe87y2Zl0HUU+uoeEv6vlK+9fJuLAY9D29Yfr2nonGDoQmaxtsWRVF55tUm5tQVUVOWe72nc1VYnlfB8ryK846X2XLe8rEPeo8RSIfYVLDuom0CqQDt4VYWe5ZeNxOj2aDHoL8xHWQ0ri+aoGm8bZnyRxgc8xMMx28YQUukJcyG6/ezUlWVlBLDpLvymmtdkX6C6SCqqiIIwgXb7PPuRlEVhuNDlFrL/tDpvin+XFuZaVwETdA03rbkZTvYuLyOkgL3Jds9/dwxxiaCfOrj6y56o74SntvTzNBkgE/dsxJRPNff/s5+Xj3dzYractY3XJ8sJk2B55hMdLMo+z24jcVXdO6DJXeQUtOX/IxW5aylI9xGsaVk2vHNY79CURVuK/zAm5q3hsbVQHMK0Xhb01BTiMtuuWSbZEoimZRQ1aszpjcUYyoYRXldh8UeFw6zibJs12X1k5QlHuk6zFg8RE94il92H0JSlD9objmmSgyimY7gDtLKlcWFGXVG7PpLr+ycBieLPEvOMzcaBRNG0XyRszQ0rg2Cql6tn/nVJxQK4XK5CAaDOJ1a7jyNa8/weIAdBzp416Z5WMxXN87q8OQAx6YG0Ys6JCTG4yEUZB6sWEiDu+iy+pBViZbgIWY45mPSZYT9uO+3pJUExdbZFFsvHvvXHDxCgbmUHNNbV3S0NXSc1tAxlnrWU2ytfMvG0XjnciU6oK3QNK4ao4Ew//TCdra2ZNzLVVUllrz2JV6uJnsOd5NMSXT0Tlz1vhfllNLgKeS91Qt4f9Vi6l35iIJAf8Q7rZ03GeJiz51d4SaC6UmO+befPTbbfRcl1nkUWWZfdOyoFKYzfJrDvl1X581cBKNoQi8YMYimt3QcDQ3Q9tA03gJ+f/P9xc5jdI5N8cU7V+OxW6/zrN4c922aS3f/JPXVBVd0Xt+Un1yHDZvp4qs6QRBYlV919u93Vy4kKacx6Qxnj+2bauGkv4d6Zwk35c+bdr6iKhSYKwlLfmY5l5w9rheNFFkbLjk/m95BraOBAnPpFb2vtJKgJ3KCGscidMLFbx+7Jx7HonOyKPs2qu2zrmgMDY03i7ZC07gsIqkUI6HQJdsUuh185c6buLmhFoDqgmyKs5zYr7Kp7mowPOrn/x7ZzdCI/5LtjAY9M2sKr8iZxBeN8fO9x3hk3/ErntdrxQygxl6EThDwp0PI6rmA6bHEKC+OPMGLo49T71yMVe+4/PmlpmgLNdHoWnTF5samwDb8qVG6w0cv0WYLA7FThCTvRdtoaLwVaIKmcVn86NBh/nPffpKSdNnnrKqv4M82LceovzEMAbHXVLjuH/ASjSbpH7z6N123xUJVrodl1Ve2+gmm4rQGRmnyD509lmd2k22yIisSpwLnUl+9Ov4yY4lxck0FWK7QRf+AdzstoRNEpSvPkD/LuRqjaKbSPveibYZjreSby7gp7/3nvaaqCqkrdFbR0Lhcbow7jcZV58VjbRztGeLTtywnx3nlMUmvZ3FJCX1+P0bdWxfQGokn2XOyhw2LZlxx4Gz30BQv7m3hoU0LyHHbz3t9x4EOjjUPsGZJLYvmlLNiaQ1zGksJhmK0dowyc8YbV58OBGO4nJY3XK2JosAHV8y/ovn3Rbz8pHMfA1EvM5x5zMnKuMUn5TQJWcaqN9LoOmeerHPMwqq3Mst58X2yi7EwayUj8X5sV7Cq+z0WvYMFntsu2WZN3ofQCfoLfk4HvE8xmRjglsJPYn4TsXIDYT8/bDnI8vwy7qzQTJka09EE7R2KUa/DqNf/wcU0f8+qinJWVZRflb4uxu/2tZKWZA6e7mfV3Ko3PuE1/M+Te5gKRKkpyeH2leff6MqLPXT2TlCUf86l3m4z8eiTB4hEktTVFEyLKXs9vQNTPPO745SVZHP/nQuuaG6XQ67JTr7FySxXAVXOc1lBWkP9CAjIaiYt1u9Z5Fn6psfKNxeRb748L0qAluBuQulJlmbfN02keiKH6Y8eZ7HnfuyG7LPHbXr3RfvKNpUiKdKbdvE36fRY9QZshhvPjK1x/dHc9jVuGCKxJLtOdLNx8QyMl5FtI5GSMOp1iKLA7hPddA5M8uE7l7yhiDe1DbP3cDf3bppL34CXZCLN2pUzeGlrM7Pqiqgoyz7vnGgsyZPPHWXx/Apm1V2+GPyhKKrCcX8XDa6KNyzP0ho8SW+sg1vy70UvGi7Z9nIIpb0oqswJ/2ZC6UnuLP4conBOVFuD2xmKnWJx9oO4jW+8wtXQeDNobvsab0vsVhO3r5h1Vsy6h6f4zmM7aOoaOa9tPJnmn365lZ9vPgzA6nnVfOzuZehEkW3HuzjWOTSt/bgvTEvPGAA+f5RINMHoRJAdBzroH/Pj9UXo7Z9ix562C87NZjXx4feuuGwxe/VUFz3jvst+7xdjMhFiNB7CIL6xwL889ls6Qs0MxnuveBxFVQilA9OO7Zt6hj1TT7E6733cWvTps2KWkmNsH/svVDXFzYWffcvE7Ied2/hFz+63pG+NdyaayVHjhiWRTJOSZKKJ82PZjAYd5XlZlBd4APCGo/zkd4e4a3kD+1v6sFlMLKg9l57pt9tOEookqCnNYd3yGaxdVouqQlvXGDOq8snJdrBiSfUFV2dXSiyZ4mDnAK1DE/z5bSumvaaoKo+3nGJxYTE1njce6+XRE0iKTE94nFpnIbsnjzEUm+Q9ZTefl61jbe6tBNN+Kqy1VzznHRO/YzI5zsb8u8k2ZfJiVtgakVUJnaCf7qL/e7Pjm0wjpqoqTYHdlNrq8Bgv7mUZSSeQ/8DMKdeSpw+dJttuYc2sKzOXa1w9NJOjxjuCf3tiB8c7h1jRUMHGBTNwWE0U55zbLzvdPcrQRJBNy+vfsK90WiaeSOF0TE+p1Ts4Rbbbdt7xeDLNtx/dTn1FPvevz3j/7WvvpzTHRWm2e1rb4XCIn588jsNk4jOLl73hXIKpKKcCA6zMrUcQBH7dv5mR+AQb8hfyy/7fMj+rgfeXv+ts+65IF4FUgEWeRSiqwrPDL1BoKWBZ9pJLjAI9kXa6Iq3clHc7BvGt3Z/ypyY45N2MQTSxPv/db+lY1wpVVfn7x7eQZbfwxTtXX+/pvKO4Eh3QVmgab3ua+8fYtKgOu8XIRzctxmw8f/+oobqQhuqMaUySFYbG/FQUX3iF9MhvDzA6HuQvP3UzJlOmr1g8xW9eOEaOx8bH3rNyWntZVjjZPUIslT4raCvqLuxAU+xwsrGqmtqsy1sJuow2VuXNPPv3e8puRlZleiIDiIKA/jV7WrIqs2dyD4IgsCBrAZIqM5GcZCg2wWQyxO0FN6ETL+w9WmWvo8ped1lz+kNxG3Ipt82kyPLOWckIgsDDty7HcoFrT+PaoQmaxtuarpEpdjR1YzMbmT+jmP94djd3LpnF7PKLZ/b47Ssn8AWjrFlUQ0PN9P2fkYkgtZX5WC1GjMZzPw9/KMaIN0RVxfllaixmA2vmV2M2GWgfmqSu5NKlbJYUlVzy9UshCiKiIFLnrOZf5/7ttNe2jG1DUQXqHXWIgohREPl45Yf5zeDvOOg9SX9kjDxzNgs9DVTbM6VfLlUqBsCbaMVhKMGou3IX/9cjKSl2T/6GYssM6p2L/+D+bjQK3H/4Z6Txh6E5hWi8rege9fLI9mOk5UzWjPK8LFw2C+tmV2MxGtDrxDesR7Z0TjlWi5HKkumrpNOdozy1+QQTgTDvvWcxW/e28a//u4WxyRDxRJqifBe52efHuOlEkT9/YDXeeJzn9p++em/2Iqiqyn93PsETA6/gTQaISDEAGlwzceidzHefC3rWi3oeLL2D+4o3kVJS7Jk6ytbx/QAc8zfxk95H6Qh3n23fGznBtrGfEk77iEkT9IY30xb8Db5EM6e83yWaPt9B53JJKnGC6Un8qdE33YeGxqXQVmgaVxVZUXh6exML6kupuohJ7w9hZ3MP4XiSwckAVQXZGPQ6Prj+XFzY3MoiRv0huse8VBdcePyK4uwLmhvLiz3YbSbmz8pk+LCYjZiNeowGHTXluXzpT26+5NzWz625KvXWLgeb3oJVZ+axwedx6O18qOI+ppIBorLE8UALK3IWnm2rF3Us9DSCICCN72OeO7OP6DI4MevMOPTnRDoqBYjLEVJKDI+xCIehhFzLXGLpAVJKmKTsw2Z4c2ELNr2LO4sevmgOyKP+0wzFxri7aP1V+xxfaGvn+MgIn1uxHKdZK2/zTkdzCtG4qgxPBHhqexM2i4mP3f3mg38vRiyZpm/cx6yyi3vHffu5XUQTKf7u3Rvf1BjxRBqDXkR/kWwlO492caRlkA/esYg8z9UzM20f6WD3eA8frFlMpePyHga2je/HabCzyDObqaSP7RP7WJWzhEJLHgBbxw7gMNhYmp3JKPJ7E+NYYpJXxvawxDOHememGKk3OYbLkH3RLB+KKiG+RoxikhezzjXt2B/CYwMvMJn08adV78X0BjF3r8ebiLG5v4P7axox6c7N57fNpzk+MsJfrF5FluXSdfM0bkw0pxCN60Zxnpu1C2uoLPRc9b53NHdzpGuIj25YdMl2K+srCMYy+QKHvUEeefUoi2eUsmHedHf2XSe6OdQywPtvWUhhTuaHoqoq3/rpVkRB4PMfXo/Ncv6NVVYUZFlBUS7vWbBjcoptPT18eMF89KJIp9/LzOzc80RDEAQEIJJOXla/AOvzl5/9f47Jw4Old057vSXUjV1/TtAEQUBVVV4a3cVQbBSH3kJ3tIslWbPZ630JlyGbm/LuPfNZyJyY+lfshhJq3R+cJlxRycuRqZ/gMhQzL/uhy57vpbi/ZBMxOXGemCmqwrbRVuZklZJnufAN7ZnuFiRF5vD4EKuKKs712djA/Y2Xrjyg8c5BEzSNq86cmquXSeN03xhl+Vk4LCbiyTTxM7Fpl2LpjLKz/xcFAUEULpg9RFFUVFWdVnlaEAQKc100d43wxMtH+eh95wRj3BfG7bCwfvEMblpUy89ePkxJrpueSR8GncjHbrmwa/ye/n580RibOzsJyUm88RjBZJLlxRnT5qOdxzjpHeHL8zcwEPXzm77jOAwmKi6xSsvMW7mo1yLARCJAjb2a1bnT8z1KqsRgbAybzopeVJhIeFHR4zbkUG1/7c1fQCeYEIXzRd2sc2HRZTOaGMQTPUGZbd55bUbjbSTkCJX2Sz+A/B6DaMB1gQwnpwLD/FvzFuJSmidu+lMKLOdXBH/PjNnsGxlgeUHZea9p/PGgOYVo3BCMToUYmQpOOzbiDfLK0Q4e33ECgNsW1vN379lIYdbFzQ5He4Z4cn/T2b8LPU7++oGbWDen+ry26xbU8FfvX09x7vQb5EfftQxJVekcnjp7LBRN8L/P7eeRl48AkJZkekd99I56iSXTxJLpi87pg/PnIepEen1+iqxOzHoDLpORpslM5pIsk4UskwWTTk9jViEFFidOo5lXhlsZiQYYiQXO6/PR/q18q+1x0sr06gdj8QCpM8deGjnEcNxHWEogKzJPDe2iOdhLSpEpMOdg1Zu5teBm7iy6jTxzHuvy7qHUWnO2L0EQmZPzRapd7yGY6ufI5PeYTGScXnSCnlrXJgTBwHiimwvRHtpNd/jAtGP+VABJufyKDQBZBitxWUJBxWG48D6Y3WDilvLaq5a7VOPtibZC07gheHTzEVTgr96/nmAkziObjzC/toRCj4MCjxNZUS55s/rhlgO0D0+S47AhyQqxBWmspnNP+12jUzx38DTr59Qyr+rSK8hEUiKNCq8Zz24xUVnoYTwYoWt4ipriHL78gY0Y9OIF55WSZX5z8hRLSkupzc3mPbNn82pPN6vLy9mor+YbB3cSSiWZnZPP7WUzub0sE2u2ILuUBdml/OupLQgIPD1wnHyLg6/Nu2ta/wVmD7Iqo3tNtpDJRIif92ynwJLFh6vWcXPBQraOnSTf5OaJwd00B7rZOnaURlcldxevJSEnMYgGck05vBEpJUJaiZOQAmePZRmLyTbV0x9rZzzxY24t/PC0HJKN7ptJylEkRUJFJSxF+e3Q8+Sbc7m76NY3HPP3lNiyeLh+LQuyy7HpL175+oWuNo6OjfD5xStwmTLCd3B4iJQssbqs4rLH03j7oj3OaFxVgpE4/lDsis9bPKucxTMz5qJoIoUvFGMqFKWmOIeW/nGe2n3qkucn0zKj/hAWo54Prl2A1WRAUVRiyTRN/aN0j3o50jnE91/ef9HVlKqq7DzRzZg3RFlhFsvnVJx9TRQFbllajyAKbDvRBYDZqGdPax+P7TnBkHf66rJpZIy9fQN85eUtnB6foNKTxScWLcJ0pjbczRU1rC2tvKDzhaQoBFJx2oLjLM0uJ9tkIyZNT/+1sWAhH668dVr6qyyjjWJrNvOyMvM+5O1BVkX2TXUyHPchoifXmEuW0U2JtYAqeykvjW5nMPbGrvi55gZc5gWIonva8VLbLPqj7QzGevC+zh0/x1RBsbWBJwaf4NcDv8apt5NnymGG/fzV8qUQBZH3VC6m1pl3yXZJWSYpy9PSZb3S08nW3guvIDXeeWgrtHcY+7sHKHQ5qMjJui7j/98zB0hLMn/9kSvzMFw7/9xNrijHxVc+fDM6USQcS3Cye5SlM8tJpCQOtvWzoqECg05HJJ7kxcNt3L64ns/evpI55QXUFGRTcibd1M93HOX0wBhum4Ucp41P3rqMvskAFuOFL/upYJT9p/s50NZPXUkuNy2smfZ6ntvOhgW1VORnHF6SaYkXj7bSPealfXSKrz547j0vKCmieWycqWiU4gt4Zi3ML77oZ6EXRW4tnkVXaJyeqJdwOs4XDj1BtsmOXtTxJzNWUWrLfL8/69qHIAh8uHo5elHHByrXoKoqkiKzMreOl0ZOMC+rnDnuUrypMM8PHyF+Zg9yMunFm/Lx5ODzVNiKMIkyja455JozQekWnfXsnGQ1zVCsGa9ukGLruX22AnMFNY6lyEqKfPO5YO1Xxl8k31yAx1jAyUAHBeYcJpIB4rKRcmsZfZEJDkx18EDZ8mllcf4Q7q9r4P666Q4g7541+2zMosY7H03Q3kGkJJlXTnfiNJv4wi2rrssc5s4oJpW+sj2SC/F7M57Daubjt2WcLZ7c3UQ8mUZR+7hpbjW/O9JGPJViV3MPgiAwozjnrJgBDE0F6Bia5L4Vjaysr2BGUS5rLzFmjsuGXi9SVZhNWlYwnQnQlmSFn716hPqSXFbNqjzb/jf7myjyOCn0OKktnG62EwWBjyx+83XT1hTUUOfM5b/adlBq83DaP8Jx3yC5JgeDET+/7T3Be6sWMh4PnXfu99q2MxYP8Y/z7+ZDVWsAGIkF+E7rVsyiwJdn3wRAvjmXZdkLOeI9Qm+0h7Q8SVv4JBW2EkDgXSUfO9unTjAw07kBl2H6KklVVTzGCsptlXiTPvqifbSE2ohKXiQlTZG5HBU9gmDmoLeFvsgEOyeamEhEiUlJBmJTVNnPD8Fo8g3zndPbsRmM/Nvi+zDrLp5SajIapdvvY1nJ+RXC67Knfy9/++pWcqxWPr98xXltNd7+aIL2DsKo17GurpIi9/WL2duwZMZb1vfG+bU8uaeJcV8IXzhKU+8oKnDnkln8+JVD9E34qDkjLF2jU+w73Y+syCybUc6Moouno4olUvxy2zGW1JXxkdsW09o/zvJZFeh1GVGNJVP0TfgRBeGsoL10vB1RFMiyW9k4p5aRwPnCAtA+OcXe/j7eP28eJr3+DfcCf89QNMDfH30JbzLCHE8R/7b4QZ7oPcLq/Bp6wz5C6QSDUT9fatx03rkl1ixERFCBMxbNX/cewpuI4DZZcRrOxWPV2CuospUhKzIvjz1NvrmIuBLEprNzyLuTscQwdxS9B1mVeGLoR7j0Hj5R/dWz50flCMPxQYJpP3EZTgWaEQWRIksRtxbejU7Q8eGKd+M0OCgw53LE+yu6IxN8tGojvZGJC4rZYNTPD9r3MBwLUOHInuaFeiF+1XyScDJFtcdDrvXSVbBzrTY8VykeLSlL02LeNK4/2rfxDmNt3Y2X8LVtYILdTT2856Z5OG3TvdSGvEFO9o5w+8L6N8wO4bZb0Asi0XiKockg1YXZ1JXkkeO0sXFuLaW57rNtsx02FlUXY9DrmFmSWVXsa+kjkZJYP2+6KXEyGGUyEKV1YJyXDrUhigKrZ2c+R0VRGfaF+OLdq9nb3k/b8AS+SIzD3YPoRJGvvGs9f/azp2kaHOOu+TNpLC/g1lkzEAQ4OjzC323ZSrHLyaz8fAocdn5w+DCLiop5oOHSsVGRdBJfMspILMQMZy7fPLGNUrubhqwiGrKKGAgHebyricasIiz6c6uXzuAEp3xjjERDfPnoC1h0Rj46YynRdJpaRwlfnXsHL40eoycyxqdqbkUv6hAFkWPBE1TZZ2MUBQaDg+jMNtJylIgURlUV9IIBu96Nyzh9xWPXOzAIDgrM5WQZ3eSbchmMj+BLJnhqaCsPlm6iwZV5yGkPjVBgzuXmgjlY9SYa3OevqADcRgv1rnw+WL2E5XmVF2yzrb8bs87AipIy7qit4+T4GDkW6wXbvpbPLV/+hm0uh+FokP9q3s0cTxHvr736Fcw13hyaoGlcFWRFYVdTD0vqy7CZp8ctNfeMEggnGJ4KnidoLxxuJZmWGPGFKM4+P77o9dy/ejYnu0eZXVnInNd4Ky6qnZ7wN8tuId/lIBxLkExLmAx69rX0kZZk1s+rwR+JoxPAabNQnp/Fw3evwGUzs/lIOwLnhPWVEx0MTAZIyhIHOgYYC4Yp8jhx2y184fZV/O5EpiCoThQ4NTqGx2Xjl4dP0Ov3MxmPYjUYWFpawpKSEgKJBNlWK5Iq86Njh/nQnPlnnURey9ahTvaM9rIqt5Zql4eYnGQ4GqLVP8GXD/6O/2/+ekpsbsLpJN86uYMqp4f312ZSXXmTMZKyjM1gJMdsJ5pOYdTpWJpbyVFvPyf8g0TTccLpOLKq4EsE+O3QK4wmepGUFHcV3YpZZ6HGPoMCcxETiXFeGHmWJdnLWZh1Cz2RTsLpEA5DxgogKRK+dAg52s8dzpk0BXq5NX8TL47tnPY5AuwYb6U7PMX/BPfw9Xl34zJeeKXkMJj57Kx1l7wOdgz0YhB1rCgpo8aTfba23Ivt7RwbGeGzy5fjukiqK1VViabT2I1vvkyO02gmz2ynzH599qo1LowmaBpXhSPtgwxOBhjxhnj/hulPrPevnYMvHCPbeb456P7ljbQMTlDkuTwzqcNqZtXsCz+1v56NC2oZnAic3Qt76Kb5pCSZcCzB3/30JULRJA9tmM+ti+tx2zM3102L6pBe4yW3uLaEnad7EESBbIeVpCQzHoxQW5hDvzfAU8cycVnL68sRdSL5Tjv1hTlMNkdZUFbEeCSCLxbjkRMneN+cOZS73RweHsJpNvKj40f4yNwF591Y2/yT7B3tZ1VhOVPxGH8yaylbhzo5PTWOWdDx684T3FPZwB1lM3l471O0BSbZUDyDAquDZXkVLMktR3zdajfhyuPgVA8tgVHeX3Vuf9Ug6zGLRhqdjYTSPpKKhKpayTFmVrVTyUlicoyBWB+HvHsRUaatpPWinruKbsOut9Ec7KIjPMi+qWY+VfMA1fbpji/3ly3hrw4/SVJJ8vLwadwGO0VWF7M9V17x+qFZczHqpjuTjEcinBobJylJyK8xU/b4fDzT1sqDDY2Uulx8bdc2ugN+/nndRspc7iseG8BhMPEXc9e9qXM13jo0t/0bgLQs88Mdh9jX2f+m+/j+5v38aOuhqzgrGJgM8MOXDjARiLxh2/k1xdjNJm5fcn4BTUEQLihmALkuO2sbq96SpL71pXncvPDcnl5RtouKfA9jvjDJlESBx0FV4fRsHP+7+SB/8/OX+PdndnKoc5Bsh417ljZgNRm4dUE9syvy0etFOie9bD3dhc1oIM9p4865M1k3o5J75s6kLi+Xe2fP5PDAMB2TUxwaGmYyEuXYyAhHhocJxBNMxeKY9Xp+19V+3ryNoo6leWUsyC3hAzMyDweRdIqkpLAsvxJZVXmhrxWdKHJ76UziaYkv7XuRhJQmKUs81XeSUCoxrc8Kew6fnbmehyqnZzPJMrr4QMU9PFh6F5+o/gihdAR/KsBk0gvALFcj95e8h0bXXAyiHYMuB6tu+ndZYM7Drrex2NPALGcVgmrmkZ5dxF8XapBjcvBvix7krpI53FUyhz1jvbw81HbR7y+UTPJI83HCqfNTgdVn51Llnp5e7bGmJhRV5fMrVkzbJ+v0eQknk/T6/QBMxWOEUgk8rzFRfmX7Fv7j4N6LzkXj7YG2QrsBCMeTDHgD6EWBFbUXLgz5RiTTEpJ8dcvVn+obJZZI0TkyRZ77/LIpr8Vo0POu1bMv2eZI1xACsLDm0vXAfp+O6mpnfRjzhth2rAtZVWgsL2BFYyUlOS4mAxFyz7y/4mwn+9v7CScS5LrtWE0Gls0o43jfCK1D49QU5DAWiLBqZgWSotLl9eIwm/j2jr0YdCKbZmUE1Gk24zKbuLOqjvIsN1u6ujg9McHnly/nB4cPkZRl8m12NlRW82jLSTb3dFCZlcXfLr+J5fll9AR8rC2qPrs/JisqG0pr+VHzYQDuqZrFgbEB7iqfxTPdLYzFwvyw5SC5VisJOcULA6d5qCZjhoxJKRJyGo/pnBBtGTtOS7CfD1Ss50fdL1BhK+C95eu5KW8VP+h+nFPBLgotGYcNk86ECRNFlgpC6RDelO+CwdiiIHJX8Rr0gp1j3j4e6z3CeysXYdGfW4HmmO28ryojqvdWzCbXfHEnji19XSQkiW39PdxTO/Oi7X7P3fUzaRofI9s6fS9tU00tK0rLcJgyQdlfWr6ahCRNWxnn2WxkX8YenMaNjSZoNwAeu5Uv3b4GuynzAzvVN0Zz/yjvWT0PUby8lcvn34Ky77cvqmdRbSn5byBmF+M3+5o43jvM0toyNs2vY+vJTkRBeENB++GWgwx7g3z13Tef9TS8Gmw90kkyLTG3pohjHUNsOdzOK0faicSTfO3DmzAZ9cwszUevbyEpy2w52cnJvlH+/SN3smnuDE70jXDfkgbev2o+PZM+eiZ9bJpTi8mgp/eFAObXZOcPJhKkVQWDTiTXbqNtaopYOo3DaGQsHCGQSjArL4//t287SUli3+gAe0f7+eDM+Xz7+B4CyQQ7h7q5q2oWADWubJqnpIxTTDrF/tEBmryjnJgaJctkISFLbBnqwGU081DdPNYWZOL6Hus5yqM9h6myZ/NvS97FyyNNlFizkFSZ9JlMI4UWD0WWbMLpGL8d3IOI7mzA9s6JY3iTfu4rWc+K7CX8pO83HPe3ckvBuett+9hpym05VDkyAnhb0QKm4ilSssRx3yAr8i4cSL0wp4SULNPum6TOc74X6p01dewZ7Gd1acVlfb+VniyKnA7+8+B+5hcUsrbinGn692IGUH4BM+Pnlqzg2OgIHd4pZmS/ceYUjRsTTdBuEFyWcxvYB9r6mQpF8UcuvO90uTQPjFGRl4XdfPF0Qa+nb8zH83tOc8uSOurK8t60mD13uIX2kUlC8SRT4SgvH2/nniWz4IxpcSwQ5gebD7Cgqpi7F8+adm5hlgNVVdFdppi/lud3NhOJJ3nfrQvPe+2BdXM43TfGghkl6HUih1r6sVpNbD/ZxdN7T/Hem+ZTle/hjkX19E8G6J/0nRXUqnwPVWcCqmOpNC+cbCOYSLC8ugwE+O8H75q2b5WUJNKyTCwt8XJHJwV2Oy+2t9M0PkpckUCAYDKBw2ji7tqZ7BjuIZBM8P/t3szqsnKGI0Fuq8iYb4cjIZ7tbuG0dwKTaMBkMiAiYNUZmYyFKXdm8enZy/nPU3uw6PR0BqY4NjnEe6vnk2O2k1YkhuMBUBVO+Prpj0zxmfqbsYhm/v7kY+Rb3GzKL+P7nS+SVlI0umewNncxT/Tv5PmRbehFkduLVmEQjRSZC3AZzpXMiUspDnu7eXX0NFX2Ej5SsxxREHigfAHHfYMsy52+33l0YpgZ7hwcxsw1+fOWY3gTMW6TZzA3d/pemkmnZ0NFRgwPDQ5xZGiYjy1ayNaebg4ODfHpJUsodEwv3xNKJjk8MsTh0SEWFBWdHedyeLq9BYvewJdXXSpaUeNGRhO0G5CH1s1nzB/+g8RsyBtk88kOnBYzf7LxwlngL4Q3GCUSTzIZiFBXdulUQ5eieWAMFfjXD97OS8fb2TinZpqwmg16jHodRr1IIBbney/vp7E0n3sXN3DP4vNd2g91DrK3rY8PrJlPruviIvubLceRZOWsoCmKenaVazYZWFiXcRW3mo3odDpuWTiDRFpixB/i20/t5PP3ruG+pY1n30Ox55znZcfYFD/fc5T2iSmWVZdyU10VaUXhL59+iY7JKT62bCEfWZrZ85pdWMDswkzGjbFwmH/euROdKCCrCvkOOx+bv4C768+Z0f5z/Z186/Bu7EYjz3e2YTMY0Z8xuRZY7ZTYXdRn5eFNxAgk48zPLaLc6cZuMLJlqIvRaJgHqubwRPcJXh3qpM6dy8tDbdQ4s3AbLKzKr8aoM/BQ5XKyjDZkVeHHXdsYiU/RFR1DL4qIgp4Ci4tbChbywtBBnhnaTziVZGZWCY8PbGMs4eMv6t57NrNHWpHYPXmapdnVHJwaZOdoFw2uIpbmVWDRG89bmXUFpnik9RiFNid/vWgt+0cG2DPUjzcR5VOzz6+dt79/AEEQWFZWSvPYBMPBEN5YDKNOh1GnO/v5vJZcm41N1bU0TYyRSEskJInxWITGnIvXz/s9GytrcF3Bw5/GjYcmaDcgNrOR6sI/rNpzYZaDwiwni6svbd57PQvrSplXW/wH7199/s5VqCpYTUbuX3b+3prNZCSSTvHjHUc41j+CAOd55r2WyVCUIW8QfzRxSUH7wB2LCZ+pheYNRPmfx3Yze0YR966fM63d8Y4hQtEEvnCMT9y+lEdePcrQ67L9N5ZlBOmpw820Dk0wp7yQHe09JGSJfJedz2xYwYA3gCBk0lWFE0mSkoReFPnViSYa8/M4ODRETEpjMehJyRKCTsBi0DMcCXF4ZJjFRRlPwFUlFczLK8Kq1/N3e7dSbD/n9akTRT7WkCnB0u6b5LG2Jmx6I7Kq8pX9m8m3Odgy0IHNYGRxfjFZJjMn/SNIqsIJ3yBpRUYF+iNenhs4yZ/PXE97cBRV0eHQOWlwFyEoBu4pW0R3eJy/OPYIiprGn4pTaCnkszPeQ3dkCLPOOC0Z8hFfF95kGL2o493li/jU0BM80nWYpXkVjERD7Bnt5f6q2WevpWyzje6AD9OZBMY7B/tIpWVuKqnCaTpfSLZ0dSMCy8pK+cii+fz04FGODY5wV2M9N1dX0+X1kW21nnfdfGju/LOFTP/9yB788RizcvM4OTnG5+avoMh+YY/ateUVF72uNN4eaIL2DkUnijy0at4FX0vLMqf7x5lTUXjBPbqr4YxhNV04xieRluj3BajJ8eBxWGkQ86gvyuNdSxov2V+xx0l5tpsjXYOcaB9CEAQeXDf3vHa3LD/nZWk26lFVlXgiRVqSMZzZ41IUlbL8LLKz7PzuUBuCKPDBDZkVnS8c4+XDbdyzohGjXsfPdhwlGE+gArNLC1hUUcxENMpnN6zkY7/4LQlJ5qt33EShy8njx5u496ePsqG2GkEU+Fb7HvIcdqKpFMVOJ4qiEEglKHE6ebajjSdamvnispXcWVuHIAi0Tk1QaHfyT6tvoW1qkn/dv5vlxaXU5+SezYAxFA5xZGyEmdm5TCQiTMaj5Fhs1HvyiEtpZmUVUGx34TSYcZvN3F85h6cHTnJbSQP/1PQCk4kIbuMBPlqzkpuLZrMkp5p9k51sHjlFSEqSkBMMRn08ULaEqZEwo7Ewx30D3FVyzoQbSEWx6U0s8tQQSsdYkTOThCxT5chhSU4ZsqLwdG8zkiLT5B3l4NgQd1TU4zFbsOlNGM6I4kca5xOqncUMTw6nJjLu9ouKitnd18dAIMgDjQ0IgsBTJ09zamSc48MjjIUi9Pr8zMjPoX1yiupsD3fOrDvvOvi91+ySghJ+2XqCtKzgNJqnBaFrvPPQBO2PiKcPNjPmD5PvtBOIxvFH4tx0gTphl0KSFV441Mqqhgpy3sAk+tKpdg72DPLRVYsoP5Nj8ZcHjzMeihCKJyh2uVhaWs7tczI3JFVV+ednt1PgcvDxmxZP66umMJuj3UOsqCvn6z97hXAsybp51We9E19LLJHixe3NzK4rJh5Lsu1AO4qi8v47M30ebOmnY3CSiUAEGZWJQISSXDc2s5HtJ7tIywqH2gdprMxnaCqAKsBHb1pEnsvO1++7GbPBgNmgZ35ZEd2TPqpysumcnKJ5dJxIMkWWxUJDQR6TkQitkxMsLC6m0+fFajTyofnzWV9dzft++zhDoSC/PHWCbIuVufkF/Pp0E/2BALdW17Kjv4+UInF6aoL67Bz+ZkVmX0cUBOblFhJNpzk5OoZdb6J5ahwVFaNex+fnrqLA6mBudhFuoxmH0czHZ2TyFsYliaGYn40FmawsH6nO5HmssufhMlix6k30hscZjgdYkVdPU2CAk/4+Dkx1kmW0syqvjqiU5L/af0exxcPHazawqTBjYnUY4H9WvpsftRzgrw++yBfnrKHNP0kiLWVK6XQ0sbmnC7Nezz01mT3TApuDAltmD+zZ9hYkRWVRUTGHh4YZj0R4oLEBk15Py8gEKnBLXS3bunow6nQsLC6ix+djccnFkzwD2I1GSpxOdKLAV5auA+C0d5xXB3r4aMMCFFVlz3A/t1ZotdTeCWiC9kfEeCDCWCDMu5Y28tLRdhbWXPpmcCFO94/hDUV54VArH9l46UrEdpMJm9GIxXDuMltdW8l/7zhATa6HQW+Q9y2dbgq0GAxnA6Gn9WU2cf/y2bisZu5d2cjQZACH9cKZII6cGuB05yhb9rShqCqiQWTJ7Ew4xAu7T3O0dZCifCdLZ5Wzr7mXp3c2c6hlkC88uIaVMyvom/SzeEYpOlHkzzYt50c7DvG9Lftx2swM+PzMKS2kNNuNqAi8Z8Fseqd8OM1moqk0X9mwlltnZlz3R8NhdvcN8FRzC+urq4jJaV7p7OTA4BD5Vjt5Njt2kxGbwcATrc0E4gksegPRdBqTTset1bXYTcaz8VKKonB0bIR7a2ZycmqMHr+XxYUlPNvbQkRKUmR34kvEcBvN/E/LXnLNdqpdHjqCk3yhcR0uoxVUHd88vYVP1K5kfnYmO34gFWdFzgx+2LkdfyLKypw62oPj/OPc9/Dd1i2cCPSze6KdeVllnPAPUmHLpdYx3YEjJcs8uOXnWHQGFueVkWdxUGRzoaoqZr2BXIuNrX3d1HlyWVxwvhn8rhkzSUiZpNZ/sngRg4EAPzl0jHfNnsX98xq4d85MdKLIp1ef22v79PLz991ej1Gn44Mz51PmcJ89dnhsmEAyTn8owL6RARQUDo8Ps6zwwqm4NN4+aIL2R8Qnb8ncAARBuKgYRWJJtu1v5+aVM7GYzzfPzK4oxBuOnZdq6kKsnlHB6hkVQGb19YtDxylwOvjne27m1fZuPrl6yTTxEgSBL95x4fCDHae6OdQ5iEnUISjQUFGA+UwZmJPtw7T3jbN+yQyOnR5k3dIZ7D3SjSLJ1FUXcPtNjdSW5/Hc9lNsP9KF0aTn3Rvms/14N0fbh7CbjaybV8UXv/cMoXiS/++h9Tyx8yTr5lZT6HGypq4SRPjJziMkFYnG4nyahscY8gfxx+M4LWY2zqqmLi+XSPJcMHHH5BQqKoKacXCYmZdHVyRCUpok22rhb2+6iZ8eP8pHn36alWVlLCgs4iNzF3BoaIjnWts4rB/iv26/E1lRUFWVLX3dvNzdweaezH7ZQDBINJHmAzXzqM/NJSqlmZmVhyAIzPYUUuHwsG+8h5FIkPbABGvzZ9AemKDFP8oz/SfPCtqPO/YQTac46O1CVUFWBV4Z7mA8FiHH7KLeWcza/JlsH2/Dl4ySZ/awPHe6mS8tS8SlNKKqw4yRR04fJ5hI8JHZC5ifl0lR9rv7PzLtnNFwGKfJhFmv55X2Tqo8HpYWl+AwmXjkyEn29PSRSKXYVDeDx442sayylNsbpo+blKQLpg87MTFKNJ1i73A/brOZP51zzjHqQ7PmMx6LUGhzUGhzsG2wh4X5ly76qvH2QBO0PyJen41DVVV+/coxcrPs3Lwkc6PYcbCDWDzF/uM9rF9+/t6EKAqsn1tz3vE3QlFVmkbG2N3dT3WOB0SBnx46yidXLJk2r52tPfRN+PnQmgVMhaP0TwRYVFOC5UzBzjVzKjnUNsisiozXmiQrfOvnr6IXRfz+GAa9jr5hL6UFbgaHfEx6Q3T2jTMw4uPXLx7BF4pxx7oG/umnW6go9PCJO5diMRloH5igqXsUVVXZ09zH47tOsutUDzqrnqM9Q+S4bQTTSYx6HatqK3jmeAuDvgB3z5/F2rpKUrLMiD9Egd3G4YEhFpeVEEulWVxYxEQsRpfXy3gkwvqaKp5vbcdo05NrtWHWG4imUpwYGeW7d9zJrr4+Hm9qwhuN0Tnl5ecnj/OLk8exGPVsqKpBEMBpNGE3msiz2BiPR4mmJG4pn8GXdr/MQDDIFxauZF1BDZ/a9VvSqkSV08OWoXaK7C5W581gPBGmwpHL/ole5nqKUVWB8XiYCls+LqOZeVklHGvfw296T/DuqgV8de69AIRScZ4fPsGqvBlMJiLYdEashsxeqc1o4vnbPs73mw6wub+TXKOdZFpiQUERa0rPT1WWlCS+s3cfWWYLX1i1gqlYjCyLhXg6zS8OH0dRFBJpiaQkk2W14LKY8Vgt/N++I6yrraQ6N5tnm1s5MjTMe+fNpqHgnBejPxHnmc4W7AYTbrOZ9WXTzeqiIFB4xtSZbbHy4IzGs7+Hdv8UM7JyLumgpHHjognaHzGKqtI+MEkwEj8raBtX1LP/RC8rF1zdrP06UaQmJ5utHd18b9cBKnOyGAmGMxlBXnPzOD04zpAvSFKSeXL/KUKxJNUF2Ww90Unr4ASLa0r45J3LX9OvQJ7bhsGgpyDXgSJDTVkuvf1TmE16+of9tPbsY3Z9CasXVmMy6blt9Sy+8O1n8IdifOpdK/nWo9sIx5MsnVVGLJFizBdCVhRSkoTHaEZRVcLxBEa9jo+uWoDJoGdJZSmCAEsrS6nOzebLz7/CeCTCy22dBBNJFpeVkG+xsb+rn3W1VSwoKiStyDTm5bGnq5+ZOblk26x8ccVKnm46TSKZpnNqihqPh5l5eTRPTpCSZXIsFnzxGEpcZTwcJstgpX1qks8sWc7ewX7WV9Tw/oY5CIBNb+TQ6BDRVJJ/PradNv8kRp3I5+as5tjkEMtyyym2OZnhyuNLB59j/1g/KwsqyDM7SMgS7yqfS5UjB70g8qP2g3gTcart54KMnUYLSUnhB2272DXai1Gn49frPoJRl/HazLXYWJ5fji8ap8jmpGViggODQ6wpraTL66XX7+fmmszDkFGnQ0Sg1+fn6PAI37w1Uwbnu3v289MDxxAFgWKnE4Ooo9Dl4C82rKJtfJJAPMH2zl6qc7Mpy3LT4/WRY5u+l+s2mZmZnUdjTj4NOZcferK5v5NW/wRt/gnurb50NQSNGxNN0P5IGPGFeOV4Bw+unHM2G75OFPnrD67H+JoMF2aTgZuWXnlNs4OdA0xFYvR7A3xw5XwclvPdsO+dM4uxcJhNM2tZVlGGdIHaYH+yfgnNA2M0949xy9wZbDnRwZN7TjIVjGIx6BnxTa87JggCCAI9g1N4XDbyPA5EUeB05whpWeG+W+ex91gP5cUebl/bwP8+uZdv/2I7779tIQdPD/Dl/3mB2TWFWC1GGqsKeWTzYdxWMw+sncNUMMZn71mJcsZZZSwQxqDT8Wc/fZpEWuI/PnAXbquZ/919iFQyzbtmz6Qix0OBw84Pdx/kUP8QKUlmR1sPBQ47g6EgfRN+Eqk0z55oYVlpKQvLiil0OBkNhfnsMy/wowfu4/MrVuAymQgmE4yGI2RbbBQ47Kwpq0QvigyGgrSMTzA/r4jFRcV4zFb+budWmn3jOIxGftp8jBKLG5toYn1JDcvzK9gx1MvTvaf53JxVqKpKfzhAOJ2kwz+FyaDjuVs+wf+27eMrh3/HopxS5riLGYwGWJRTNu3zHor6OeEbJianmO0p5/8dfZVyRxY9AT+lDjd20YSswqqScvIsDgpsGaedZ9vaCCeTrCwvx2owIAgCH1u0kBda2yl3u8/2f/vMOn59pAlREKjO9rB+RtXZWML6/FxUNeP88o0tO1lTXcEX1q4E4OT4GP54nHUVlQiCwHvqL52GDeAXp4+Rb3OwqaIWyFQR7w75WFYw/T2HUgkcBtNbkm9U4+qiCdofCTube0ilZZoHxlg649wP1mq+eAmNIyf68Pqi5OU6eHV3GzetrGPh3PNzTcqKwitNnQx6A5TkuhkPRc4K2pNHmynzuFhSWUqhy8HXb98IQPekF280zpKK6XtxBr2OHad7iCSSfPb2lWw+0kE8lWJpXRn//KHbzu6bqarKlkPtzKkpYtm8SqLJNIlUmjvXZp6sbVYT8xtKWbu0lu4RL3m5DtxOC75gFG8wRu+gl5HxACX5WYxMhphVmc+3Ht1OrsdGlsPKnStm0T/h59FdxxkOhFhQXog/L4t4SiKSSCEKApIsAzAVjrK7o59oUqJ3MkBSSjMUDJFOy9w+s46dHb10T/mIpFKMGcKY9XpEs0CO3YbFoKfWk00yLTERifLNHbv47r138dGFGTf5L299halIFJvewKHhQW6vqWNNWSWSolDidDLDk83DL73AnqF+VpeVU+R2cFNpJb9qb6LE5uaW0lq2D3Yzw53DLE/GLLd5sINcoxMDcSYTYQr0DjYPtrNtqIvuoB9UgffXLGCBIvNsf/PZnJAAX5l7Oy8OnCYmp7mztIFvHtuBTW+k1OFmcV4xC3KLeba9lR8fOUqpw8V9dZng8QcaGugPBDC9JkN+bU42X1h9rnJ0Ii1R4nKy7/OfRFVVAvEEm0938MThU/zlzavJtluZWZBH16SXaCqNNxo7e+7vOtuJpdOsLiu/LG9FWVE4MTFGgS1yVtByLTYenrNsWrvO0CSPdB6m3p3PQ9XnZ5/RuLHQBO2PhAdWzKZteJLGsjfOmPB7jp7sJxiKc9/t87FZjDgd53sVxpNpdp3uYXVdBYUeJ/luB+4z3ocpSeLk0ChD/iBLKqd7kH1v1wE6J7z8450bmV86fUPeqBPJd9n51lO7EASVjfNm8Bf3rUEQBNKSzIHTfew+2UM6LTMwHiAQjBFJpgjGEvzwqb3MqS3mkw9lnEsisSRuuxmr2Ygoity2uoH/e2o/u450IQgCEVsCp9XEKwfaGZkM0j40zvHuEcoLPTQNjfCT7UcBldahcTxOG1EpRb7TQW1BNt96aTd3zqvHF4qRY7cSiMQ40TtMdV42KVnmjnn13Dm7jlKnE0En8NSx08TTaWbn57Gkooz6/BxaxybQiyJzCgrp8floHpvgG9t3IasKf7NuDbPzC3ips5NwMolOFHEajbzS1cVUPEaNJ4uPP/808XQagyCQbbbwD6s28tVdryKoAv+38X5+cvpIpqp3ZT1bBrrYNdjLiqJyVuRX8EzPabINDr694h5+3n6YsWgEs2ig1J7FfZVzeKbvFLKq8r5XH6ErNMnc7GJ+vOY9nJwaY/9YP0PBCP+4dBPeWIzBcJBadzaCIJBlsnBieBQpX+Eftm5nZXk5G2dU89jhJra1dPO12zcgKwrf332QPIediXCET6xYzDc278SgF/nKrTfx6METnBoeY35ZETl2K+bXOA/V5GZT4LCzubWTjqkpHlo4jwdnNfJfh/bx9V3b+Yd1G97w2taJIn+3/CYsZxxKElKafziwnYbsPN4/c97ZdvlmB7kWOzPdl/+7uRp0hyd4fvAkt5fMYYbz2o79dkYTtLcZL247RTotc++meRdtMxmMYLeYsBjPeSka9Dpmlxdc0VjvvmcR0ViKkqIsaqsv/KN6+WgmuW+Bx0Fd0fQEs0a9no+tXITbaiYty3ztxVepyvHw8RWLWFNdQUqSsBime1LKisJ4MEq23UpDeT5rGivpHfHx0Dce5VN3rGDLoXb0OpFJX5hoNMWSmWXUleURiScxGw1M+CP88sUjTPgirF1Yzd4TvUwFYxzdcpyeER/zaotYOruczoFJFswqZe2iGg6fHiSZlkhIabwRPWOhKJ//n2eZX1dMjs1CUbYLt92CTifS0+/FZTZjNxkJRhM8c7SZnkk/H162gFMDY/SM+ghG44RiSX53qJXjncPUl+QSTaRREgoNRXkUOV3s7uzl10dP0BMI4DSb+PkH7udHB49m9jUnpjg1Ns7RoRE+t2o5P7zzbvYNDLC5q4sXW9tZU1GBLxbnuclxUrKEisrq0gr+3003A7CyNLOKfrz1FN1eP7dVz2A4EqIr4KU/7CeaTvM3i9dxcGSA7pCfz+x4jg2lNSzLq6RpcpTRUJT/ad5HmT2LQ5P9nPKOklIlOgNeVFVFklX6Q0F2Cb0s8BTz93tfJRxPsqyglAdnzaZ70kuZ08VoMIyUUhiPZMoPlWW5zrrmP3Oyhb1d/UTTKRoKCwgmEswszD2bVmsyEuVg7yB6UeSTa5byy/0neO/SOWdzntbmZvO7lnZ6/H5m5udx+6w6FheVkpKly76+s8znSswIgnAmndb0GmtOo5nPzFpz2X1eLaYSEcLpBJOJsCZoV4AmaG8zuvomSaUv/qNNpiW+9+xe8rPsfPqulRdtp6oqP/jNXnLcdh68Zd4F22S5bWS5Lx08ffP8Wrae6GJVwzlPttfmT6zMyVT0lRUFj9WK+0ydqvvmNXDfvIazc3l093GKPS5uaqzm07cux2oy4Dyz0vtW1w4kSWHb8U5sFiMWo4H3rZ/PU9ub0Ot0rJ5XRXVxNlsPdzCzIp/N+9oYHPOz82g3U/4IVouRLIeVkQk/NSXZjE4EybJZsBmNeH1RDDqRSCyJDoEP3LyQn796FH80zqgvRF1xHutmVzPoDzDqDzO/opiBST8do1NEYkmyLGa+ctdNbD/dw9BUEJtoIBBIkJZlusNe8l0OdrX0koinUUQodrpYUlVC16SXeFoimkjhNJv42xe28o933IxOFLj7J48SiifolWW+tWs3sXSatKoQTiVJKjKnJyawGAw4DRlvR7NBz+215wKDb6ms4d8P7uGXp08gqQpFNgdfW7WBPcP9BOMJLKKBX5w+xng4jgGRSDrFYCjAVDyOLxlHl07QE/KRVmRSssLCnDL0ooAePT9rPYpdZyTHZCcRk/jW4T344jFsOiO9Pj97B/r54rKVnBgeRVHgm7ffgsti4fEjTZwaGuOvbl5D2+gkK6vKOT44ykOL51CencXAVICVleWUnMmdaTUYqc3LYWZhHvu7B0hJEq0jEyyrzpjLb5lZy2gkzAvNbXT6vBwcHOSDc85dx79PfXW5mHR6vrb8jVd214qluVUsyqmYlmpM443RBO1txp99cA2vKcZ7Hka9jpll+ZTmut+wr0gsicVsoH/IyxPPH2XB7DI2rDq/QOfFiMZT2C0m7l1+ziPsmaOnOdY7zCduWkJZ9rk56ESRv9i46gK9gKQotA5N0DPm48UDrRnPvHtXnxW0v3xwHcm0RCSe5MkdTYhAQbYDm8mA05bZqyvKdfGh2xeTTEk4bCZWzK0klZb56+88j9EgEggn8AYiuO1WivPcnGobwe0IMOENY7eaqCjKZvuRTrYc6uCuZbOIJdMYzHoOdgzw5N4mHlo7j/uXNvLZnzxH/1SAUDSJIIJJp+Nbz+zCZNDhcVghx00yJTHpj2JzGJnyRgjE48TSaXKddv5k/RLMBj1zSgrZ091HUpL4zcnTjAZD3PPjXzIjL4fZhXns6e3HajQyFY0SSqaozs3GajSwrqoKs07HC+0d1Ofm0OQdJxJJ8rVd2/jBsSM8/eBDmPR6Ch0OrAYjKUViTl4ho5EwD9Q00h/2MxGNcHB4GF8kjl4nUuJwEoinGI9GKLd6KHa4+O6au9g+3E2RxcnT3afZOdxLWpFx6i1kGc1UWLMYDofRiQJlNjdZZgv31Myk0p2Fw2TCYTDROjzJi6fbiSUlChw23FYLXRNeXmnpxGEy8v/uvvnsNfD4oSbsJhP3LJjJCyfaMOh1lLhcHOkeIttp46659TQW5/ODnQeZUZDD+rpqun1+ppJxftPcTEKWWFpaSjiV5OXuDk6Mj7K6tIJbqzMOTqqqkpLlC8asAewe7COSSnFb9ZU7RL1VaGJ25WiC9jbDeIEsGq9FEATeu27eG/YjCAJ/9ZHME+mkN4zNYsTlsFy0fTSWZGwiRCyeJMtto2fYy6HT/aycV8XyuedWZ3lOO1k2C3aTkWgyhUmvP1uCxR+LI8kKuY7pqz6DTsdf3bOW3jEf//vSARKIROJJ8rMysUKqqvL9Z/fhsBg52TnM8ESAEy1DDIz5efVQB49/8yMY9DrGpkKEokna+ieYVVVAQbYTUcgUx3RYjfQNxukbmuK7X3k3P/j1btwOC4V5bnYd6WJRYxlfeP866iry+adHt5LlsPCpDcupL87h//36Vbad6OK5wy14/RGKs5zMLMmjsSyfzlEve1r7KHQ7SCUk/r+719E5MsXJ3lFmlecTjiV55kAz8XQal8F0tkS8ThRYU1PBod4h/vXuTXztpW14bFYSqTQzcrL50rrVDIZCvNrdTbHLDAqsr6rmcyuWk5Qkjo2MMiM7h3bfFCl0TKSihP1eHms5xY7hXmLpFHdW1xFJJ3mlp4OtvV20TkxhMxr4/OLlHFKGiaUkiuwOFBW84Rh3VtQxIyeHYCqJKAg0j0+wOdyFrMr0BQIU2jKxZX4picdoJd/j4OtrN/KLk8fp8vu4b+YsTLrM9bmmooLTw+P8x7a9JJISs4vy+dXH38vW0128cqqTxuKMGS0YT+CNxKgvyKUmP5vnT7SxvbUbp9lM59gkCpkA/SyblYQk0zPlY0dXL8PBEDk2K7KqUpPtoTE/099PTx5jIhpBUpRphT7/7/hRmifG+dq69bjN51/nOwd6SUjSDSVok4kQzw0d5e6SheSaL5xQWWM6mqBpkJvt4NMfWXfJNr99/hheX4RYMkWOx8GtGxtp6RmjtCBrWrsVteWsqC0nJcl89ZktjATDLK8u41PrlvLDnYcYC4Ypz3Jz74JZVOZ6zp7ntJgZngpy95IGjrYPEYxmMuan0hKbD7ZxomOE+rIcinNchKMJuoemkCSFZbMr6B/x81+/3ondYqR7aAq73czgqB+r2UCW08L8+lLuXtfIX/3b08yszuwjrphXxX/8+FUCoShWuxm7zUikLU1L7xgPrZ9Px/AUI1Mh9p7uR5ZVPA4rp1snCEaSeGw2PnXzMn665TBdI1NYRT2Do376UwpfGHiOBVVFmPQ67l4yi92negkGMnkzj4WG2HGqh1sWzODfX9jFqcExIlKaqnwPLqORsBKnZWSS1rEJ7mioZ+/AAAadyJySAk6NjVPvyeF3rR08dvIUTWOjNI2OIwmZpMv12blE0kk2VdXwcn8H3X4vJXYXCSnN7qF+UrKMWdUzGRX4xu5dIAogqYwHInyoYR5PtJzi4MAwn1m4glg6zd/u2IrdaGSGJ4eRUIgCo4P31M5mRXE5L/V2sKuvn0AiQeeUlz9dsJjnWls5ODjEmooKFFWldWyS9TVVbG3ppi/ux3YmAHtHazcmUZepIwf8x8t72NfVz5KqUu5f3HjGuSfORChKrtNGjsNGttPCKy2dfGzlQh5aOo9/+N2rTEZi3DyrBm8sxu0zZzAei9Dt83FqcgxRFPizeUv41sE93F/XyC1VNQwEgnR7fYxHorhMZn51qon6nFwWFmUckj46ZyEJSSIpS/zv8SPMzy9kVembqx5/tTjm6yOtKjw7dIRaZz5r87TYuDdCEzSN81AUlcefO0xtZR6L5lYAsGRBJS3tI2Tn2JmYCqPICp9694VNiAAGnUhtQQ7RVIpwIsk3X9oJqBS5HESSSUYC4WmC1jUyxeBEgBFviO7BKWLxFAtqS/j1K8fYdaKHwiw7n7x7BYIg4LSZ+McfbaauIp/3blrAsdZBXHYzJ9qGicZTjEwEmZgMU1LgwmY24Q1E0IkCK+dVUVqYEeDsLBuTUyESiTR11QXojXr2HmjD5bRQVZTNzQtq+fsfvURcTlPmcVHscrK2oYqn9zcTCsf55uPbON0/TlxK4bCamVGQzeBkiEKPk1cPtSMKIlUF2fx27ymi0SSiAlazgRKPg9aBcUKxJO3DUyTUNG6LmVA6SY/fD6hYDAZGw2HCiSQWo4FV5eWcGBzlpwePMqekkEAsnnFiEEUKHTZKs9y0BiaZnZfPvx7aTTSVJtdm49DoILlWGw6jCbNgYF5BIaKi0h8I4TAaEVSBQDzO8ZFRyl1Z+GIxhoNBHBYzBlGkISePu2bUk5DSzM7Op98bYFtPDy+3dVKelYXHZOFPn3sGvaBjcVExeXYbayoqUFWVcDJJWZab9y2cTcvYJF+5bR2ToQiHuoaQFIUHF8/mcM8QLUMTuC1myrLdGHQ6AtE4oXiSApedB5fMZsvpTjY3dzG3vJBt7T2YDHpmFxdQluViV28vCKCi0hvw0xcIUJ+dS0NOHi/3djEZi/Hfhw8wGApyx4wZuM1mCu12IqkULZMTdHinmF9YmAnidjhJyzJf3fkqHX4vJp3usgTtSvfqLsTB8QEm41HurJg57fjNhY30RaZ4ceQwB6c6NEG7DDRBu0akUxKRYIys3BvTdCDJCqIgIIoC0ViSvkEvqZR8VtDqawuory0gmZT49Fcf42jLIN/40r0X7S8lyQQiCe6YXc+K2nL+9eVdzC4p4N2LZpOSJIyv2cuYCETYcryDzsEp3DYza+ZU4XFmzEWl+W5mVeTzsbuWkuU8Z0JaWldGSaEbgAUzS5lZWcBff/sZ2vsnUGWZaCxBZX4VR1sHGBsNICVlfMEYgVCcZfMqKS5ws2x+JSajns9+fD0v7GzGY7fitJvZf7KH//3tPnzhGAU5TixOE9F4iofvWI4ck2gfnCAcTpJKSGcyk+QwqyQPp9FMrs1GX+8k8USaHz97AJ1exGYy4RTA47DyL49tZywURgacZgOJWJpwPMlf3rmGf9u8i2AiSSiVwBeNUepyUex2MBoMY9Eb6JjwYhR1fP9ddxNMJdjXP8D2/h56/X70oohFb8CbiDIWzbSvzcpmSWEJpXY3r/Z2U+XKptfrY3ZOPpFkisUFJWyorSaeSvOL48dZkF/MX728GVEQ+f49d+GNxfi/Q0f50MJ5fHvnXqLJFOtnVBFNpdCrAh+cs4B/3LadWDrNfQ2zKHO62NrezU21lXzttg282NxOy/A4gUiCB777KMmUhEGnw3zGDH2wewCH2Ui+084n1iyic3SK7287SDSV4gMr5jMeitDvC/DeJXOwmIwsrShBBXp8XrZ19zAWDYNO4L7GWdR6smnIzSffnkkndlNFFcF4ghOjo+gEgaUlpSwtKWUqFiOYSNCQm0d/IMCTLad5d0MjaVkmLkmAwMaKKj4x79KJtwF+2naI0/5xvr5o09kV6Jth+3APwWSc28vrp6XcEgWRKkce95UuIyol3nT/f0xognaNePIH2xjtn+JP/u5eHG7rG59wjfn2j1/FZjXy8AfX4rCb+dMPrMZpv8CemgA2m4mCPNf5r72GpCTRMjLB6aExFpQXsaC0iKbBMUINCZyW6fFsm4+28/zBFlxWM06LiR0nurh9aeZp9dHfHSWaSLGsoZxYPMXNy+s5dqqfHzyyC5vVyB3rGlm5tIayYg9LGstZNqeCE61DGAw6VsyvoKltiNGRADuS7RRmO1k5r+LsuJvWNNDTN4HRqKezdxKDIDI+GaZ/xE80nkRWVbLsFv71c/eQ5bCw+UAbg6M+hscCzKkpZlivx4iCTafn8Il+vOEYOlVFTsi4LWYUMeOks35xLYgwMBFgJBjGH4ojoUIURINAvtNOsdvJjLxstrX3oNeLhOJJ9KLIvp4B2senMOkNpGWF06MTfP3lbZR73Dw4v5EnW06jitCYk0swHsdtMhNNpIiJaYzocRt8oAgMBIOYBT3tE1OsrChjYDKAQ2dkYCrA79o6UFA4OTiKQadDVlTu/emjpGSZQpeD1VXl3Fxby4st7ezs7Gdmfh4lVhfhWJJXPvIRFDWzqvzpgaNIiorDZCTbaqVvyk84mQRFJZZMkUopuOwmVBVah8b58OqFHO4a4nDXEB/5/m9IKRKCAutnVjMZypi3F5UX87FVi7AYDezs6OVH+w7ji8eozPVQ4HTQNjXJr0828c1bN/HlV1/BYjDwd2tuwqTT88DMBrp9XibOhA0A/PzYMbzxOJ9bvpwnW06zoiQTH/nv+/bij8f55i2bLvs3k2O2kWexY3idq/+V8qG6BQRTiYvmjyyxXrzYr6qqTCSHyTUVIWpOJJqgXSvq55djMOqwOS9c8uR6U1qYhdVyLiYsO+v8OmOnOkcoynPx73/zrrOOHpD5UUHG0SSWTPGfL++lsbSAco+L0UCYcCKFXieSSKf4wasHuGP+TBqKz8XWNJTnU5ztwmk1UZbrZsfRLn707H7sZiPL5lQwOObn8ZeO4XZaWLe4lh89uodUUiI/204okmD3gS4+8MBSHtg0n6/++/O0d4+xcfUs1i6eQTop858/2U7QH2N8OEDTqSEG3uPjw+9dQXPrEM+/fJKRsQDvv28xuw53MTIZZNuBdtxWM9luK4U5LmwmAzpRJBpKYBL1xCMpDp3oxWjWoxNEBof9hCJxEok0HocVq8FIUbaLgmw7e0/08vy2Zqw2I/dvnEfH7iZMej1yOg0q6PQiB9r7+bff7cQgitgNRkqyXdisRrq9fkyijnRaJstkRgB0gsDpsQl88RgHB4fIc9hQ9LB3cABRJ2bCJVSQ0gqJVBp/LM7GBdV8cPY8nmtpo38iwOOHTpFMS7RZJnmxqQ0BAUEQKMpysGFGDS+2tuONxNDpRLyRGB965EmyrGZUWSUlS/RN+QnFk5j1eu5rnHX2e9xUX8tnn3ieZ44087kNK6kvzGVRaRHbm7vJt9qYCsWYCkapyvdQmpOFw2ziTzcs5fuv7EcnivSM+kilZbae6MRiNXDTzGqcVjORRIqf7z/Gkf4herw+rEYD9zbOYkNdNQ8/9xy2M/GWs/MLzgZKAywsLOZvVq5FUpWzx1aWlzMcCpFvt/PwknPlZ+pycggkrmwVdFdFA3fxh5sBi2xOimxvznLTFj7OQKyDbGM+izw3/cFzebujCdo1Yv7qOuavPj97/Y3AK3taqavOZ0FDKUdOD6CoKksap+8fBCNxXtnXitNu4U/uX0Falukd8VFbksO3n96FrKh86YF1KKpKSpJJpWVkSaE2N5uqPA9VeR5Kslw8f7yV0UB4mqAtqCnh/77wbpKpNCe7R3BYjfiCMQbGgzx083yeevUk7V1jBCNxBoZ9TEyGkdIyf/OZ24jFUlSUZRLomox68nIctHSMcuxkH89uPsHQqJ9Pvm8Vh4/3snNvB4os85unj+B2WNiwpp7nXjzO9l1tLF1UzfvvXsx3f76dVExCMIIjN1Pa5LFnjxCMxPGFY0yNhLAa9MQTabJMJpbOrcDvi9MaGUOS03jMZuYuKCHLbeOJzUdJpiQUlUyy5VdPkJAlEok0gv6MW7YKkqqyt62fXJcNWVEZC0ZY4imhIzUFikAskaYn4ceq1+OxWzHqdIyGwuh1OhxmIylVJi0pyJKMw2Si1p2Ny2jGYTIy7Avz8d8+xa1VM5hfWIA/ECOWTKMTINdqZcAbRCeKZNlMOI0mfrb/KG6rhWyThblFBZwenySQSCAImVRVKUlmwB8kLqQIhTMC8F/b9nO0f4hZhXlMhaJEU2kmwxF6xnx4wzGOdA2R57Tz9Qdu5rE9xynP9dA+PMmPXznIsrpy/vuj9/DPT23HVFrEkb4RZEVFSSu0jUwQSafpm/IzFAoyHAjxF7esoiY3m7klhewfGGBnTx8l7oy14H2Nmdp6SUniR0ePkGOz8uCsxjOmxAzLSi9c8+y+mbMueHwoHOTR5pNsqqplXn7hBdvsHulFUhRuKrmyYrlXg1JrNaPxPqrtl674/seCJmh/5CiKyrGWIZx2EwsaStl9rIvuwSnCsSQblpxzYXbazNRV5FNXkcle/vnvPUtaklkyq4xxfxhE+MZT27ll3gy+ev9GFEWl3+tnVsm5bOfzy4uYXVKAXicSiMZxWc1nN9SfO3Caw22DpNIyq+fV8Ce3LyHbbeeRFw9jMugpLfCQl2Vj+/52zCY9Rp2No0d6GRkJ8GefXH92jE9/cC0eh5XdBztpaR9heDRAMiHhsJi5Z9M8xidDjI8FOHlqkOd/d4J0SiIaT/OP33yO3/zi0yxuLGfr9haklEwwECXHYUOvE3E7LPiCMSLRJBXZWfQMTUFSJR1N4x0N4tAbEEWZ4X4fQ/1ezBYjiqpQ6nHij8aIpGUikQQYRPSigEGvpyDPSZ/Pj6pTKMv2MBwIklAkzAYDm093Yjbo0KsCspJZAZe4nMwszGMiGsVtsXBydJS2ZJIcp41UUkavF/CHY/hCMexGI19auZr/6N6HIik8ebyZJ442EY9LCGom2304mmRecQF1BbksLSuhPxBk1B/GYTQRj6c40jfCB5bOJaUq3FJXw4y8HD752DNkWyzoVYGjA8Pc8d2fI6sygViSMo+bWYX53Dd/FrOLCzg9sBejKLK4shhUgbriHDbOrmV7cw87TnXTO+7jRO8Ij+46Rn1JHutn15BlsyKIkEZlfUM1Q4EQeQ4bOr1A29gkSytKKXZnVjN7evuxGY2UOaebv0cjEbb39WLW6/jZ8WN4rBY+Nn8hG6uuvOzRVCxGKJVkJBK6qKBtG+pGVdXrImh2vYv1+e+65uPeqGiC9keOKAq85/YF2K2ZAOW7183hf3+7l+aukWmCJggCd6499xRYkutiYCKANxLHF41TVeShd9yHcubmG0km8Ufj9Ez4p42n14m0D0/y2/2nqCnM5t0r5wKQ67Ix7g8zu6KQtXOryXZnTJ73rZ9DU8cI9900h23729mys4XailzKirJpbRslEkqgKCpDQz6eeuoIaVnmztvnEg0mOHqyH1VVOT7Zy/x55SxZUAmo/Nf3t7LvQBcWswG3w4rZLJGd7UBRFPbs7yQdS1NRkUtleS5SWiIaSrBgbjlTvgh6WcVtMmFIqCSlBM0nhkilJbLdNiSdniRpUmkFnQnq6woJhhKkkwqJRJRUJI2sB4NNz6qZFVSWZvPjLYcgCQFvJLPaSigkEmnMRgOzSwsYDYWRFZlwMs3gRACDKCLqRBZXltIyNkFKlhgPRTDrdKgpSEsKqjET8P3o4ZOEIwlEBVQEDAggg6CCw2JCTqnEY2m8/iiH0kM0luRj1xkZ94aJpBKkVZXnT7bxjfs28VJLB78+2oTHYkWRVSYDEZIpCYvVQCSSRFRU7AYD//j+ewAYD4TxmCzorSItAxPUFGTTMjjBsC+EKEB9cS6ptEz/pI9wJMHIVIi1Myt58XAriqrymTtWsaS2FPlMRYa/f2YLY+EwvzrSxKzCXO5srOfh5ctYVVHOsrLpq67NnZ0YBZF8m51cq5WUolCV5eH1jEci5Nlsl/RSnJdfSGNuPvrXJDwOJhM4jeey73+gbj7KpbIdaFwzBFW9cb+JUCiEy+UiGAzidF5f78ApbxhPlv1sSqd3MoFwHL1exH6BEjCvZ1dLD5tPdOCNRCnLzeJLd6+jdWSCF4+1say2jGW1ZdMSywK0DIzznRf2UJzl5C/vW4vNbORoxxAnuoaxmAw8tGHB2bbJlMT+k730D3iJxVMMDHpZ0FiKIEMkGGdk0IvPGyUnz0E8nqarZwKDXmTGrGLi8RQdXeOk0xJzZ5dmPDeTEqm0jMlsoLYyF5vFxIc+sJJEMs0//fNzxFIpRidDZLlsLFtcRSicIBiOU1Lk4U8+sob3fuKHKIqKToFYNImoFxB1Ih67lYJCFzU1Bbz48knMJgNGow6by4I/FieUTpNUJGRBQDUJGIx69CaRYDqNKoIqgs4EVpuZRCpNodtBrsuOIAg4LEb2dvaTVhVEvYDLakbUi5RkObGaDLROTBFJpwgnUugEgQfmN6IXBPb2DDARjqBXIC7JZJlM+MIJDDqRYruT0UAYWVaoycvGZjHSPjRBQpXJc9nJd9kYjURZWFHMn61dyubWTlRUqrI9PHaoiYEpP+FYkpq8TELiyUiUxeUl1OZms2JGOZ/+4dMkU2lW11cSiMYZ9Yf48Z8/SJbDylQoRr7bzt//cjOJVJphX4g8t535VUU8ue8UxbkuookUpTlu9ncNYDLrMJuN2G1Gsl12vrhhJWUeN23jk+zs6iWUSiKKImVZLh6c08jBoSH+be8elhWX8JerMqEl/niclqmJs3kuD48M8Up3F9UeD+9tmHPZv41O/xQ/az5GmdPNhxsWYL5I5hGNq8eV6MBb+m38y7/8C0899RRtbW1YLBZWrFjBN7/5Terqbsy9pIvR1TPBS6+corjQzbvueeeXkHBfImPI69HrdNgsRvR6kdbRSdKyhCQryIrCjtYe7GYjCyuL+bdnd5LvdvDhdQt59UQXPUNTDE8EGJoKUFeSR0qS6ByZ4pN3TC/fsfVAO6FIHLvTjN1mYv7MEvYf6CIZT9PROooqyQR9Ufp6JmicU0Y6IRFOplm9vIYVK2bww//dxvadbZxqGsJgENHpdTgsRipKshke9KPXi3znO5uRJJmurnFUFawOI7nZDk41DxEMJphZX0h3zzj7D3aR5bAQDmYcQERJRUiriDqVsBQjHU/TdmqYNCrJhIRAJj2YbBKREmkEnYCoB5OoQwJi8RSCTkAQQAGUFCh6GaveQDSeIhCdIp5KYzEbcJpNGA16fPEYU6EoVpORpvAYVpOBaCKNziCgA1TgWM8wiqgQT6RxGIy4DCbCyRRyUmFeUSHhWIIJX4R0WgYFvMEoyVQ6k4NTUcmxWDDrDDTk53Ln7Dp+tvcoO7t60QsitXk55NusHOscwmLQk2O3saC8CFVRKfG4+NGWQ/xy+zFkWUGRVSKxJLkOO3kuOwgCOlEk322nuW+MuqJccrPsFLjtPHPgNM8fakUAQuEE3kicEX8IUMmyWZlTXsChviFshtTZ1G/7+wbxxeIMBoMEkwl8sRjdfh9rKyv57NJlVGadC/r/h93b6fJ5+fNFS9kx0Eep04XDZGJhYfEV/TbyrHY8Fiv7RwaIplN8cdHFYzFfj6KqqKp6WeVtNN4cb+knu3PnTh5++GEOHDjAli1bSKfT3HLLLUSj0bdy2KtOYb4Lt8tKY8OVXfxvF0LRy/PuevFwK//0+Ku8fKKDQ12DAKyoK+fL961nLBIhKUs8c7SV+RVFfPymxaioNA2OnT1fACLxJIFYHOMZhwaLKRO/k0hJWE0GIonUtDHXLqpBllUaq4tobR/l8Ik+7HYzE2NBJiZDKKqK3W7GajWSl+ekqMCFoKp89zub+d5/vsLhA92ko0my3BZuubmR++9eAGmFQwe7GeydJBKKk4gnaWkeQpVVUEFEYNHcckaGfAQDEbq6xxkZ8fPbp4+Q67IR88dREhJ6UaCmJo+8bAdqSiYaiqPKCg6zAZM+43EoSwqqpCAKIgadiKiAw2RCkFWyLRasBh1mQQQl48GYTEoIsopR1BGMJEBVqcnLptDpyJg/k2kEFSLxFKm4TCyeRlIUFAnsogGjLBCMxpn0RSmw2TCrehx6I+a0DikuMTIRxCWayLZYcBtM6BVw6oxUeDyIioCoiPSO+pDTCoO+IN/bup/eSR+KnLkRD3uDRMIpRAUEBXIsFh7f18QzR1pwmIyZ7zcSJ9du5XO3r2JwLMD+5n7mlhWR47ShqiovH27jhYMt9I/5WVhdTKHHSSotM6+iiD/dtIRgLIEogNti4W/ftYFf/fn7SKUUBscCtA6Ns7W5g3947lXahiZwGU389/138YllixBFkf0DA/zH3j2sqaig1HVub21tWQVus4VydxZWg4Fcq43PLllOrefiLvGvRVYUtvR2oRNEvrhwJWtKK5mbe+E9tYvxbwd287c7t1zRORpXxlu6Qnv55Zen/f2zn/2MvLw8jh49ypo155dkSCaTJJPJs3+HQqHz2lwPbDYTH3zf8us9Dbbtb+dYyyAfvGcJ+TmZpXdb/zhbj3Rw75rZlFxGQuLXc7J7hM2H25lZnsddyy/tgqwTRfQ6kf0d/djMBpbUnNu7qM3PYVtLN53jk6QkmQK3g89uWonbamZ/xwCV+R4eXD6HL//iJbpHvdy7spH3rZmP3WJkZ1MPW453kExIfO0nm/nY7Uu4Y3nG68xuNTHpC/PbLceZmAoTCSf4q4dvYWBOGd/97hb8vgh33jGPtWvree7ZY8TjaXJyHIRDcZpO9GM1GYibDNy0oo73fWglgiCwaFElX/7SE+gMOkKBKLKkkEimMRl1vOuBxcRjaXbuakOSFFQVvN5wxhsxliYZSyMIGXHOcVqJ++LEIgnkeBqdQUdBoYtV62bSN+SlvWecSCKNlFYw6AUsVhMmi4G4qqCkVYqzXHT6fCTSacwGEbNRTyiVIp6SMp55Z9zvj3YNI4hgt5hwGIyYDHqmIjGQwazomFWQhz8WJ5xKIqPij8RBhTFfmGRcYnwihFEVkSQFSZFo9ydwmk2QVtDJAr5gDIvZiIiAJCsoqsLy2jJeaG5ncNyHw2zCaTYSjiZJKgInfTH0iDiNJsZ9ER5c2sjO5h7+6/m9BENxkFRcZjMmgw5RELCbjdQUZ7O7qYfJYIRfbDlClt1KrtvGx7/1BPluO+FUCqvZSLbTxvf/7F0EYnF+tfM4j+48TjSRomN4AllWQIZf729iXkUhokHEac44Fp0YHgNV5dbaWsqyzv0O4uk0FoOBe+tnsb6ymuc72/ji0pXYjEbi6TTfO3oAo07HpxcsxaA7P57sxa52uvxeFuQX0RPwMxAK8vG5C/lY43RLzZ7BfqZiMe6tm3leH7+n1OnCZbqxwnaScpqXRg+xNm8OWUbH9Z7OH8w1NQAHg0EAPJ7zN2ghY6L8+te/fi2n9LZCpxfR63SIrzFZjHpDROIppgLRyxI0VVX5zf4m5pQXUl+cR3GOK+PBWJp3XltZUYjEU7hsmR/hrQvrWFxXypA3iP11la7/8o413L+kkbFgGKM+c2PItlv5yfbDHOocItueSVg8u6IAj8PKR29ejEGn44ldJ3lydxOiIBAKJQiF4wQicQDGpkK8sOs02W47h450IyUllLTET36+G4vRQDIpoSoqfX1TbH/1KZJJCaNBRyQUp3FOKWtvmsmB3Z0U5DnZ+UozTUf6cLmszJpXCikZrzeCKqgkE2nMJgNmi5FjR/rw+6Ok0xlvQFVRUVMqepMeKSmhqioGBMx6HW6HhdERP8kzqa3UpIRvPETTsX56eifRWw0IqKiKgqwTicfTRJJpEpKMYoDm7jFEqw5VzVQcCEkpVAEEXUbIUDP/RwVFAR0Cdfk5pCQZh97AgC9IKi0TjSYZ8QaxmY2oSQX1jOOH0SRgMppIxdOkZQXzmZg2ARWX1YwqqQxNBlAUBRM6ZuRnc2p0ArvZyG8ONSOpMigqNqMeSVKIJyXSKRm3xYQsKYTjKSRZptyTxe3z63lsxwlcZjOY4baF9axqrGJkMsy+5l7+8ze7Kct3MzIVYtIfZWIqgmVGMbKskJJk8l12JsNResa8nOgdoal3lA+sW8Bzh1rY3dKLLCmUetzUFGUzHAzzmY0rKM85Z1L80MJ5jIRC/Kqp6WxG/Vd6utgz2M/NldWsLqvg5e4O4lKaHQO93FFTx67BPlqnJomlU9xf38CvmpsyVSGWZsouxdJpTo6P0h8K0BfwMxAK8e2Nt13wN/X46VPoRZF7ZtRf1MnkoYa5F/1N/qHps94sJwM9JOQ028dP8q7Syzef3qhcM6cQRVG4++67CQQC7Nmz54JtLrRCKy0tvSGcQq4F3skwCJCdc2VPSpIkoz8jIs8ePE3L0Difv2v1tAKfv2cqHOXHrx7GZTVj0ukIxRJ8cN0CnBYzBv30J9SfbjlM34Sfz9+zmiy7JVOk86mt5LvsfPaWi9da+z2+SIyP//BJ9KLIXfNnggo5zkwZkZ3N3Tywcg6+UIxdpzJ7bSc6RujoG6eyIIvVc6qpLsrhZPswJp3IyZMDpFMSRR4XRr3I6EiAxlnF+L0RvFNhxkeD2O0WdAKMjgRYtbqOggIX4WCcrGwbv/3lfuKJNDpRoH52CV0dY8ioxJJpyitzCQRjRCNJBJ1IPJpEFAVEUUSSZSxWI6ICZWXZTE6G8Q76QFLQ6UWklAwCmZWIw4zJaiSlqKQUlWg6jawTMJgNGB1GFIOApCpEkhIIIBlANgqoIiAKGEw6nA4TDpuZvikfsgpWkwFJVlAFFUEUUNWMA4nLYsZoEPGH48RTEjaTHlnNpByT1Izp1GLQc/fCmbxwuBVBUZlVkk8okkCVVAQVBsb8SAoYjCI6nYDRrMflstIfDCCIAgaDjngqjdWgp9jjQhQEJnxRIvEkekHgI+sX0T/u53DbAItrS3DbbZTluXlqexNef5RP3bOchqpCvv6zVwBw2czkuqx0D3sZnAwyqyKfFQ0V3LqsnoGJAFuPdzA8FaKswM2elj7uXd5AUpJ5Yu9JHFYTn7lzFbcvyJQ3Oto3TK7DNq1EkaQo3PeLX+K2WHjkPQ/S6fPybEcrD85spNzlJiGl2TnQx+rSCix6PWlF4eWeDuo8udRl5/CdQ/vQiQKfWbScpCzxhS0v0R/04zZZsBuNmRptWR7mFRSyoqTs7LhdPi+PNTcB8LdrLh3c/K0De0jKMl9ZuRbIxLn914l9LCko5YHaax9LJqsKh73tzM2qwqJ7Yyew68EN4xTyWh5++GGam5svKmYAJpMJk+nG/FCvBY/9IvPZPPwX5z8Fvp4tRzs42DrA+9bPo7ooh1AsgdNqRlbVs67zFyLHYeOuhfWUZLt5cl8T0WSab/x2Bx3DE9y+cCYr6ivY2dxNTWE2g1NBSnNcOM54O8ZSaWYW5dE+NcW/btnFX21cfcknyyybhTsXzKSmIJtxfxhZUljbUMkPNx/kYMcAuS47n7hlCUvrMzeHtCSzpymTR3Hz/jZ++OV3M7MqH7fdzPfDSXbt6WB00I9R0JGf62B0NMhn/vxmvvq3T+L22Ljpplns2HIai8lAOiUxPOADRWXf9hbMJj1LV9VydH83k6MBcnIcmKxGZswsJCffxdNPHMJqMuLJtjE85CMeSyLq9dRU5VNekU3TsQGGeiaZO7+CQ8MB0ijIaRlBUUFVQYBkNEEinEAVBQwWI4IkI+oEJEBCxmgxgT6T6F4QM84galpFFQXyCuwsqCuheWgcgyAiy4AAWVYzybTMVCSGQmbFpsrgS0exGgwokopOzlRfTsoyvnQcUck4mciSwraTXeQ77Ez4IoxNhSnJcjHuD6MoKga9HiQZvSgiqQqhWJKYlEaVVbI8FtbPqeWJvSeJShKSLLNxZi2/2nMCk06HRa9nZX0Fu4/3EAon2XOyj6IsB4dO9uENxoglUnz3iV0YdDrqK/NJyzKCqhKNp7EZDYiyQkffOKW5Ll490skHNi3kuX2n8TishKIJ3DYL2Q4bRqOO0hw3BqOeOeUFHOkZ5KXjbeztGSTPaaexLJ/b59TRWFzAiy3tBKNJGnIzQfu1nmz+ctm5Vcf2/l6OjY3wUncHFe4sPr94BXfXnjMRfn7JirP/N4o6GnLzMOv13FKZiV9bVlTCv+zbhayqrCgpo8vn5eXOTt7bOJtqT/Y0kbsYdqMRgyyf/dtmMJJlspBtvj7p8HSCyLKci5tJ325cE0H78z//c1544QV27dpFSUnJtRjybcnseeWZzZnLwG23YLeasJlNvHqyi8Odg6ycWcG7ljXCsks/6TWUZkqofHzjEmRF4T+f38OpvlFaBsfx2C009Y7ii8SQVZV3r56LXicyGY7wiZ89hdNqZt3MKsaCYTqnvBweGMYXi/GJpQv55pbdNBTl8eD82UAmdu3jNy1mT2sfJ3pHsZkMPH3gNIOTfrLsVmaeCbqWFYW2gUm+9dh2Ni2p48/fvZq23gmsJgMvbz+NJClEwynSSZloJEV2oZuVy2uZUZPPf33nZRxOM6Ig0Nk+RmGRm6nJMBPjIVxOM30dY3jHQ4h6HaePDxCLJpiaClNVm0/AH6X19DDrS7Iwmw2MjwVJpdKk4hJ6QSSdSDPYPUZFiYfSkiz6uieIhOIYUUgrCla9CDqRZDKNkpRJJyUEox69XocgCiCrIAhnnDz0OCwmfLEYRlHAaDbiTyQRdBnPrOX1ZWw93oXRKDKYTGScRPQw4Y9gNRkz5kcBChw2sh022kcmicbS6ERAhZGp8O91FUEBvQ4EUSUaS5KIphFUlUl/hAlvmEKPk+JsJ5KkMBXIeDt6PFbGglGSKQV0EAjE8PsjbGisZntzN71jAZ6YOkmu3UZZjhu31cz/PLOXniEvApBMSvQO+RAgE7MlZVZMep2OWCxNeaGb3hEfH960mBf3ZxxCYqk0+5p6cdrMfPX/XsYbjGIxGakq8aCSSUBdmuumeWiCnjEvf/XI7zAbDRiMIkadjpr8TOaSeCqTCWRbezeiIjArL3Ndbe7sJBBPEEonybVZ2Tc8gKwqFDuc5wVjvx5BEHh44dLzjn9x6UrcZ3KRHhkeJpxK0RPwn81SApn3ragqxtfsyUmKQjyd5lMLlkzrL8ts4W+WrLvkXDQun7fU5KiqKp/5zGd4+umn2bFjB7W1tVd0/o0Uh3Yj0z/h57HdJwgnUmycW8O6xivPWDA4FcCo1/PSsTZSksTciiIq8z0Zd2sgJUk8/MvnMBp1/N2d6zHodfzpb54FNROb1JCfx2+ONbOutpK/2rB6Wt9pWebhHz1DZZ4HSZIZnArw1ffczP7WfjqHJxn3Rchz2jjeNoSqqqybXc1Dty2io2uc7/1sB3XV+SxqLKWjYwwpJVNblc+2Lc3odSJD/V6S8RSLl9dgNerR60WGBvzoBPjTz93MySO9vPibw0xNhpmzsIJQKM7QgBe9Qc/cxZVMToVRVZWO9jGSiRR6UYcn20YsliIaTqDIChajnrKybHq7xikoykIKx5ga9GEy6XHlOpkY8mWKiLqt6K1mYtEE+WXZ9Az5UQRAJ4JJBwaRtEEAQSAr18ZEJIYigmgSyc1zMByIIAKqUQBB5ZZFdbx8uB1FAYtFT0KW0IsielFHPJEGzjz/nHH7h8zeGYDZoMMg6EhJMmaTHrNehyoLKIpCPJUm12lDVlVGpkLYLQYSssT/z957h0dyXlfev7dCRzQaOWMwOedAzjANs0hJpBKVrGDJsiWtsy1715b97a4tr+3ddVpZDrKslWUrWoGkxJyGQ3I4OSdgMIOcU6NzqPB+f7xV3QCHlGhLWsn23OeZAVBdVV1VQNepc++55xZdCRpIodKatdEQ6zqbGJ1LMjiZRAD10TC3rF3G44cuYrsSDdXmURsOMjCaQJNgAiUH4pEArU01GKZGNBwkGDCIV4UZGJ9jLp1jfDaF47isXdqELWEmq9KZ4WgA3dT5mTt38Z69WxmemefXv/hd6mIRrlu5hMFEgu+e7GZtexNf/U/vAZQk/ne++xT10Qi/4f39feq5fQwk5tm5pJ0DI4O0V1fzyRtvIRYM8Ycv7acrXsMHNm9d9Ldachxe6B9gaU2c5wcGGEolubmri7tWXO0y4krJeDrNuYlJciWLN6xeRSRg8sf7XiBdLPI/7qlM5P7My4cYSMzzqbvvIGwuLgXM5/PYrktDNPrKt7gW/ASlHH/hF36Br3zlKzz88MPEYjEmJpSEOx6PEw6//l6na/G9o6uplvfdup0vPX9iUbpxPpsnEjQXjWrxw7IdPvvsYdrr4ozNp7h9/QrWNdTw1us3cKhniJ0rO8r9Mt84fpZYKMhn3n8/f/TUfr567AyrWxvojFfTVh3jV265gUcu9HDHmuV86Pqr+/S+degsdbEwb9i6iqZ4DEPTaKmN0T0yRSpXZGB8jtn5LJGgyfBwgsdeukgoYLK2o5F1q1tIJ/Pse6mH9uYa3nLfNlzb5ctffAnXccilC9gllysXx2hoiLF2XRsTo3METYPvfvMobsGmvb2W7dct59Z7N9PeVc8X/uo5zp0Z5viRPmzHxQgYBIMGhVwRVzq4JYd7791MrDbCP3zmGQqpAgO949h5i+RMmtUrmtAdl8R0munhWRzLRjNNulY1s2HXCh7550MMXZ5EN3UwDaSUSNsF10VoBq4OifmcZzYMIgCJmQwaEqGBLEiCQZ2T50YQFmhIYkaAXWs6OdI9TD6rwAyPnUk8YNPANARBzSASNJlL5XGlRJOSYECj6DgY3gSAZLbAkqY4k3MphBBqHy4EDA2pCXRdUCrZDI8ncF0IoSFdqA+HGBpPAIKgodFaGyOqm+TyJVY3NzA1l0FoYGcKFEoOI1Pz2K7L1tXtJLN5BqcSbF/dQc/wFIWSRVtDjPraGG/cs57f/vtHyVsOllGivaqapc119IxNc2pgjKXNdaxpbcQI6DRXVxEwdQqWxXdOXeQNG1bROz1LvmTT0V654f387uspOQ4jqRRvXrOGvz56iP/x4n7+6I67yZRKHBwa4qaOJSxbIFJ75vIVJtJpvnn+HA3RKLbrENB1So7D0dFRru/oKLuGXJya5oWBASaTGbqnpzk+PMaHr9vOivo6MsXF7SdrGhsxdb0sWHFcl386doqt7a08cqmHgm3zB3fd+S/96F+LV8SPlKG9Vn3lC1/4Ah/60Ie+7/b/VhlaOpHl8JOn2fv26zADPx4ngaJl83sPPUPestnY2cLP3LRj0e8jlS/wRw8/T3U4iCsl69ubedsuJdsv2U5ZqQjwuw8/TSwU4L+8YS+PnOtmJJViJJVkZ0c7929YR8/0DI91X6IqEOBju3eVt5NScujKEGcHxvn6S2doqYnRXhdnSUMNv/jGG8iXLDQh+IN/fIZTl4YxdYP6SIhkMs99N23gvW/ehaFr/MlfPcXlvkmqIyHqqyOEAga9PePMz2VJTKSQSGqqI7z5bTuor4vy4FcP4TiSj/zSHQxdmcLQNc4cGeDYy5doaa/hbx/8Ff7gt7/BuTNDaJpOU2ucqfF55udyIKChNoJjuSxf3kB/7yTzMxmPAkmElOy4cRXv/dhtHHjiNA/93xeQrgTTQA8YRGIh0qkiUoNwdRhLE1iuxNEFUtNwDIEMaBDWUNO3QIQ0LB+VggJXqrcTPlsSsKazAU0TTCYzzCbzal1NAZGfppbePjTgNx7Yy/99/DCJjEpfIsHQBbbtgibQgGjAxDA0bMclVhVmLpOjqT5GfVWY0/1jOK56bx1ACKSlHFIihs4t21ZSWxXmTO840wnV1rC2qwlNE/SNzDA7n6O1sZrpVIZUoURTbRW5ko0QsGNtB8lMkUsjU1SFA1y/YSl18Sgvnu+je2SaqqogZkDnV992M5/fd4yCZXP9qk5+6/5b+YOHnyNdKnH98g6+c+oik5kMNdEwq1vqOTY0xkdu3Mn7dm0F4OzEBKams7apEYDHenuYy+d5/+atfOP8OZ7pvUKqUOD69k5+/obrCeg62VKJhy9e5LqODoaTSW5dtgwhBN88f565fJ6O6mreuFpZwn3h+AlGUynesGoV87k85yem+PCu7cTD31uaP5FK84WDx5nMZlnT3Miyxhryts3b1r+6QfJ/9PiJYWg/wa5aP9J49usHsW2Hswcusf22H88facDQWd3SyPnRSXonZrAcdxFIVYdD/P4Dd2HoGulCkepwCMtxeKGnnwO9g9y2bgU3r14KwCfuuglT1/ncwaNcnJzmnVs3krUtdnV2oAnBivo6LkxNqrEonvcewNH+ET73/FEyhRK3bFjK1HyO9roYw1MJDnUPcv2aJfyfb71Ie2M1LTXrcByXX37XLfzjQ4exLJeeKxM89tRZBgdnsIo2y9Y10NlaS0dHrWJH40luunUtI4OzXH/DSjZu6eToC5eorgoxN53mHz/zLI5lo+s64XAA09CpqatiYjTB+HACtyTZdcty0qkcA70TGAKcok1iIknA1BnonUSTgCvLqj8rV+L8oSt8uWBx+uUepCsJVwWJNVQzNZYknciBphqli3mLFRvaudQ9jjA10NXQRll0cQAREIBAFlXqTppQHQyRzBeQEgwEjpRIIZieypAqFHBcQFdN2K7jIZgn9UeA6zG2M32jJJMFQBI0DYKGTjpXVC86Ek0XZHIl1R8XCpDOFrBLDo7lUMxbYAEoObmuAZbElRLHhoJts//oZVrrq6mKBtmwvJVffu8tmIZOJlfkN//sIYqWw9RshoKrHFPCQVO5lTgusWiYbas7mEln2Lmmky2rOhiYnqOztZb+uQRosKKjnqBhUBMJMZBIMJFKEw6Y/Pq9N/OZ5w7ylaNnGE+mKDkOLnBlehbD0Dk9NsH7UKnDTz7xDHm7xFff+25MTeONqyoORfetWcNcLsfL/cog4J+OnWRkLsW7t23ip7ZsYS6XJ2KY5YfA25cv56GLF7lpSUX48YFtW5lIp+nwGrjvWl1JS2aLJb508BQ3r17K+rbFLTH9Mwlsx2Vzawvv3bn5qhTktfjXxzUjsh9B3PneGzj+7Hk237T6+6/8IwohBEFTxzR07tu2dhGY+WEaOs+cv4yuCW5bt4LPPHeIy5MzrGiop62m0jpQG1Hp4YMDw8xmc2xua6Hkujx7pY8PbNtCQNe5d+0arszOsu9yH7evWoEmBBvbmynaNhHTRENjXXsjhlANvt988QzPHu8lnS2yprOR8/3jxKJBTl4YYt+BHvbuXs3BQ72cuzDK8iUN2HmL3TuXs21rF9NTKWrroui6IDGfZe3Gdtasb2ewf5qDL/SwdGUTuq7h2A7D/VO4juTO+7dSXRNh2w0rqamLEgyZBMMGzz95jkBAx0RDBHRyRQdpOziA7khy6QKalIR1yCWyICVFy+HskSu4juoVy2eL5AsJJV8EkBIzoBOKBOjvUfZcAomma0ivK9vQwCpJ8KywCq6LtCAzl0czPQWk482Z0yAcMEnmlaOL5qj+OCHw0o4S3dEIh0zyJYtYJMjJ7lFlmCuhVLTBcVV9zROOaK5EuuAUJYGQxmwmjxSQSmQZLyaRqpyGrks0VzV965pGOllAulB0bPrH5tjQ1cRH334Dzx3pZWwqSTQSYDqRxXUlLi4ly0VoMJfMUlcdwZYOz5y4xLHeCLmSRcl1OTs0zv5zV5jJ5ig4DrGghtAFTfEq9m5ewYVnD5Z7IS+MT6Lpqh9vvpBndW0jNdEQ8UiIC9PTXNelRGcBXae5KsLJ8SQfe/AhAprOz++5nluWLQMgZJi8efVa+icT5IsW21tbmU5lCXq+o597+SipQpH/8WZVB6sLh/mZ7RWPUVDil44FbiQLYzSRIpHNcbx/pAxoL3T389nnDmEaBnduXMn792x73Z/na/H64hqgLYiBwRl6esa5+66NP1CjY1U8wt637/r+K/6A8cyZXupjEbYtW2zJlcoXKFo2QgguT8/y5PleNne0Eg1ePSb+UN8QuqZx27oVrGlpoDYa5qf3bCuf/yPnuokFg9yycimukCxvrCNkGHzjzDkCusa7N2/k748c48nuy2p//cMk8nl2tnfw+ZeOUh0J0VJVRTwYYjadI6jrrGxvYH17Eycvj/GBu3Yyn8oxNZ0mVyix7+VepmfTHD7RxxtvWs/G1a0U0yWCkSBNjdV85YsvcfrEIBu2LEHXdMZH57FKLjt3r+DS+TGKlsNg3zR1tRHSqTxrNy9hYniWscFZ5hI5nv7OSS6eG+HmO9bxj599Hsd2KAmJsF0MXWPl6iaGuscxEGXBaVVVEFksgaXUdAIXoZloQqAHlKLRtiVG0FRu9xIMw6CQL6lGZk1DOhLNdolFgtgaOLqGY9vgonrZNIHQVAO16+Dl+byUJJDO5omGA2RyXm3GY2K4CqEcJJbt4LhSyd7DQYSvDpcQCOhI4eKouaK4HrihQTpdQHfVsrxlg1DMzBBAUYFaXTxEQyTC+cQEjtoM25Zc6J/kDz/3JLqucWVkhqbaKm/HIDQNQ1Niz2SmRN5y0AK6YpKuQyZfwDQM+qfmAIiGA8Q0jXAsQO/0LMcHRnh5cJiCdDg6MsqvfuMRTo9MEA8FuW/zOuLRELP5HBPpDN2JGQKmxl8ePIRhauxdvgxN04gGg6pu5V+vBRHQdUxd58XeAYSE37prb/m167o6yg8Q/5pY3dLAB27YTku8MijXlZJMwSJgONSEQso78z+A2fn/y7gGaAti/wvdZDIFrtu1nNran2zFkZSSgz2DxMLBqwDt7547QjJf4FMP3M3GjmYuT82+KpgBfOjGSm3tjZuuNo0+MjhCJGByy8qlbGlrpakqytGRUdY1NWA7LkHD4NELPQwnU9SFw6xqqOfWFctACmrDYe7duIY9y5dQtGx+558epyEWRXcEpq7TVBXlyvA0K9samJpO8cCdW2mpjSk2Y0t2bFnKow+dYGhwho62Oob6p5maTNHfN8XUVIrkfFaJGXTBF/9+P+9+7x4unh0mmysRiQbI5y2OHehF1zXqW2uYnU4zM52i99IEp44NEIkqU+WqWJDp0Xkc26GQLmAVLCwJLR1x7rx/C09/4zCJZF6hDeDagkhUp1CycPIOruvSurIFYZpk0gWymQK6gLxnUGwGNaSpY0mUclIDGdQRpoa0VZ0qbOrUN8YYnppHs8F1BRhgBHRs1yVbsNEdgaELLI+56V6KMRjS2bG6k0ujM0wlMrgu5PJWWfEoJOAANmWGpgbKqOXhkEnBstV+HYlugxCSuvoos/NZbFsyOZZkwk0qZojKAGiaGgdUFQ5ysmeEkuUwkJtDaIJoxCSbKyEB3RRIV9JUW8VsPo/lOExnc0TCAW7espRHjhQoiVkMU+dT730D/3DgOP3TCTKORX8igWlq1FdFGEmm0HXB3jXLaKmJ8d5dm3n0XA+fP3yM2VwOR0gChs6h4WHesn4dNyxdwp6uJYQMgw1NTWxuVe0q+y73cXJ0nI/vuY6ueA0ztVligcX9r7etWn7VZ6HkOHzrxDluX7uC5lgFqB4+eYFMscT7dm9dtH577eJ6z63rllMXDZPOF3m5Z5BUrshP3bR4m2vxg8U1QFsQ971pK8PDcz/xYAbqhvKOPZuofpUC9Pal7cznlH3UxvYWNra3vOZ+Ouq+dz/OB6/bxrGhUebzBVqrqnjj+tWETJPh+SS3r1Qf+r974K380bP7KZZsWsJVfOd0N82xKj7xhop8fyaZIZkpUMhbnJobZXQ6yflLo6ztaqHh9iiN1VU8+MgJ2hvinD01RGtLnD/6w+/g2Ao0J0YSPP34GX7lN+5lbHSO8+dGsG2XruWNdC1tIJsu8MQjp0hniuQyBUxDJ1wVpDTqguVy7OUrmCGjnPJLJLLU1ESorYsyPpLA0DTcksX8jFLpScul/+I4Q5cmkJaj0oseoFXFw8QiJtnZpFqk60z0T6NHw9iuRDd0stkiQtNAA8eV1NVEmEnlwZEIhHLrEBJpKFQqWg5T0ymEFErDIcEwlHxfM1QtTegCy3VBQDwaxJUuqbxFvuhw8vIYAUPz6Je6+QJlWlIslMD20o2elZYQKktqFx2CQsPUYeXSBs71jIMDyamMAj2vBw7XF5ZIXE1iIGitrebSlUmcovd+mtpnPq+ooK7Bqs5GLo/PUhMPIwI648k0wYBOe2M1UgoiYZPZVA6pQffoNPdvX8/XT57lS8dOYdsu1y3t4N27NnNhcooDfUOcnZhiJJXiQN8gd69bSSBoIrIQNk2W1Mb54HaVYfjpbdt44KtfRROCd26q9GaOJlNMZjIMziW4f+NaltbVsLm9hZNDY2xb0gbAgSuDHB0Y4Wdv3ElVKIiUkjMj45wdnWB0PsVv3HUzUkr+6LvPc2ZknJUtr8/kePOSVtL5IueGJtmxrI2HDp9ny9JWljW/uh3gtfiXxTVAWxB1dVXU1VV9/xV/zDExn+bhI+d5y64NtNRebZN1+4bX14eWK1l8+fApdna1kymVuGlF11Wp1tOjE+Qti789cISW6iqeuNjLu7Zt4p2bFwz7rIlzQ1cXvVMzDM7Oc3ZonPpwhPZYNRuXNPM3j77MgwfPEzYMwrqJ60pWttUTNUwa41FGpubZuqqNw+ki5y+NoWsa48MJCpkie29ZwzOPniFSFWB2OsVj3z3F8hXNWJZDT884MzNpEokcibmMkp2bAstymJhKETI1zJChwAhv8rOuBCvSlSQSWVLJPK7rIi0bpCSXLSItr6vLlZ4hrguOsriSlk1mOk16Kgm2Wk9EQkjHwS7ZoKnaHUIQDBoY3gSBubkswn9vFKtEgJAS6aU3bctVuTxNIAxwHElbU4yRuTRSQNFxyznIkm1TtJ2ywjFbKJH19iME5XoZUr0HjvreEJQVj7FIkELewio4WK5y02+ORhmPhpmbz6n1NHClYlgIgSOV9FG4KoU2MZFEConreuu6YEtJU12UqfkcriOZm88SDppMJjIkC0V0Q7C2s4n7b9jAZ548gG27aIaGCAgeudCNg8Q0leLQFtA7N8exoVEMXWNreys3LuvkNx5+QgF7JMierk52LmknUyoSChhoQpSv8/L6OurC4UUDOt+/YyupQoE/fHo/bfFqfvmWPXzmuYMk8wWWNdRREwkxNDfPdCbL5186RmNVlMtTswQNg0QmT53n6tEzPsMTZy4hkfzdh9/xuj5zoIarfuyu65lKZrgyMcvEfJqPv2H399/wWnzfuAZo/wbj3NAEhZLNmcHxVwW01xu9k2re1l+/cJh1LY0srauhs66GmUyWRC7PqqYG3rBuFU9e7OXtWzdweGCEm1d0veq+3r19E//rif3UGAFq6oMk0wV+/8Fn2NDajFWwyOaL1NSH2bqsjepQkLfesolYOMj/+fLzTEynuG5NJ3OJLI7lUswWmZ9KY1s2T3znFPlckWDBoGtJPc8/dZbN25eyZHkT/YMzOLZDOl2pdcSqwszlFQAULIdIKIBruxTyJQKmjisVaEi5oKji6+QRhKImTUvrGeubwip4KODY4LpousBxXLWt6ypg0gSaBAehbLAMv+qlWFYmlUcKgY0DpgIcTYegaZCTSqghbcBU6TtLuuXGMimh6IHmovqPgJzlKNCqvB1IJfTwVzaFwHFdsBVrCpgG8WiImbkMTtElWVTyf1/F6ODw0qHLrFvVSkQ3mJhJIS3QpFSHJKQyT9bUG0sJru1SXR1iPlPEdUEzBYYhaG2sJluwsB2XcNBkaWM9x6+MEgga7N26knDY5MVz/ZQsh+poiOqCMsgey6YJmBqDyaQv4CRRyPPM5StsbGmmNhLmyZ4rRIMBZnI5vnuhh8+8/T62tldGuRwbHWUwkeDFoSE+dccdhIzFKsIjQyM83n2JWCjINm+7O9at4PjAKHHP5u29u7ZQtGz+5xMvULRsWuMxosEA1y3vYEldDbmixeqWBm5a3cX6tiaqv8cw3O6hKZ4+fom337yJ9oZKRqQpXsUtG5axvPn1sbtr8f3jGqD9mKL78gTNDTFqa/7l6c07Nq1UTvl1r683L1ssMTqXYnVrw6LlWzpbCRg6b9y0hjOjE3TUqg/bPx08xXwuxyffeBvRgMk7tm6gYNmsb2rE1HTShSKx0OIPsKEpN/lzA5N0xKu5Mj5LKGhiWw7ZXImQptNRW83/936lGsvkinzhwUPctXstDbVRzpwbYT6RVT6BAYNZ18WxXVqW1DDcN4OhC6anUoTCQYp5i5bOWkpF5YhfUxsmly6h6xrX3biSk8cHSM3nCYcN8ukShZKlMnGuJBYPkUkXyoDmui6a388FFIsW84ksVknl54JBk2KhpBzzbbWWdCvpRyl0nGIJAiboupK7GwYgPBWk9MwbAekiNQ0pJXnLUt97r8mSi21CbV2ElFUi5wHv1HxWATBUgMtjWeoAFnyVipn5tTPpeKaOHpsKGEK1FZQkGlJZZVUyhYDEBQYHZygWLLCV1FFIleLWdXAsWa7bOQJs2yWZLqhzQDG5m3es4oG7ttLaGOfPv7SPg2cGGJ1NYbkutnS5MjZD1rYIBHSKrsPgXIKS63BqdIxb1y3j6NgYyUIBgaCrtpqtna1cmZ7j8tQM25a001kXJzYRIhoMkC4V+dqps6xoqOPFwUEe7r7IsdFRdE1jc3MzD3ZfoDES4VO338mJ0TFaYlUEDQNT03jLxnVsaFG+j6cGxhmYStA7OcvqFvU5CZoGv/OmW3FdieU4PHL8Ij1D0wxPzHNpfIZfe/PNfOSWXfy3Lz3FXCLHL9+32K3+1OVRzvdP0lRbRSZfZGo+swjQAHYtGMF0LX7wuAZoP4bIZIs89tw54rEwH3nv93etf2UIIeiof+3a17ePnuPk4Di/8oYbaIhF+fKBU8xlcnzw5u20vaJQ/fjZHr557Bz3bFzN27epxuqbV3UxNJfkU995jraaan7+jt188cAJJpJpYoEAU6kMS+praK+txtQNZlIZssUSWzvbmEvlmElkCBoGN6xeQlAaTE6lCQcCJNMFTvQMc+jsIDOzGS4PTDGfzvNrH7yNcz1jLOms555bN/Dsk2dxSmoS9eYtXbS11HDhzDCr1rUzOT7PxQtjjI7PgyNxpKSYtynZNmEjQP/ADLF4lLXr2xgbTzKcnkJKhQC27ZKezyuM0TRcn21JCEXVsNHkTJpkIqeUia5LMV9UfWWOQ3lU8sKsrHQVxRFCreNH0ERoKM29UHZXSAhGTIqOo5iU8BUairlJRzKXzCENgR4QoKt6mutny8TCN5eVRa8EN8dLMyLQvMY04UoymWJZICJQ6wiVjS3XyISGSrv62U1P0qjrIG2JjnIUEbZk2dIGLg9Nq3PRK4cQNDS+9vhx7tyzltO9YwgBhqFRsNT1vjA4hRnSsHQXFwiFTAo4lEouj5zpobYmTEDT2NzRyju2beCZniuMp9OkiiWCQYMVDXXsXbkU6Uq+ceY8Z8bG+asDh/j6xXNkSkUQYOo6A8l58pZFz/Q0H/r2t1hSXcOy2lr+8y03UxcOlYUdZ4bGuTI1SzwSorVmccZD1zQ+98whhmfmcaRLz+gMu1Z00F5XTVUowHwmj2U7zKZyV30Oj/eMMDmX4d7r13Lr1hVXTbN4rTg7MM7jx3u4d8daNi197fr3tbg6rgHajyGqokHWrGhmRVfjD3W/RcvGcSXV4RCxcKDcU3PTmi6O94/SHL+6PlgXiYCE+VwlbbdzaQc7utoZm0uWt7luWQenh8dpjkVxHJexuRTH+0ZZ3dJA79gMAvjcxx9gS2crX3/hJBu7WnjL7o30js5w8vIo//zsSTLZAs8d7eVk9whbV7eTz1mcOj3Ip/7iUT78rj2YpsH5c6OMTyRJZfIEggY1dRHmZ9JEoyEuXxxj687lqv4kJRu3tHP44BWGRxJIF3L5EplsgYbGOLfcvoG/+vTT5CxbCRWkwDA1YrEQpaKFXXRwhcCylHRej5igSeINVcxPppQG0PV07ZpcRIpYOM3AVcpA4X+SXBfQaG6LMzGRrvSmAc2ddSQKBdyscutAE2WRiv9PogAjHA6QKZaQmlCA4dlcqQPxmOICbCtjnePjpGD90ib6BmawHQdXqfHRZHk4QJnVASzrqGVsIoVVdNB0VXJbCJCuIyvnrytmdvnyFFIHhMDQNRxXEokE2HfsCrXxCJdHD1AsWlhS4ng1SCEEoZCJFgDbUXU3M6CTKVhoGgQNnbzlEA6YDM4l0BBkrRLpUgnbdeiZmiFoXOYdmzews7ONh891k8jlOTw8StGyMDSNcMCk5Lrc2rWUWDBE79wM6WKJzppqJpJpvnP+Is9euEJjLMoDWzbyl0+/TEt1jKpqk1P9Y9y8btmiz8iqlgZMXeft123gqwdOc/O6ZWzqUkCzorWeP/vZ+6ivvjrT8r67djCTzFBXHaFYsvnOC+fYu30F8arvbfvnuBIppUoXX4t/UVwDtB9TvOmOTT/0ff7FIy9RtCz+67vu4s6NFdeC9e3NrG9XqZWpVIbPP3+UbNHibTvX86GbdvChmxb7L3aPTvGnj73IL9y1h61LleprW1cb27ra+NPvvEAqV+RX33QTV8ZnGJhO0D04RTZf4kz/ONWRIAKBJjT+4hsvsH11O+/au4XDp/sZnEgQNA02rWxjdjpDUNMYHJpjdiZLZ0stN+5awY7tXZw8OUBtLMz5s8MceKmH/HyBQr6EkDA2PEtzey1HXu6loTnO5s1L6Oiq54V93SBgZCTB5GSaDZvaFfBpiukEDEF1LIJdtMF2cWwHx/FrZ0pOn7Udxap8wPKYmWka2K6jalxFq8LU/HC8eppnRxUMBZiaynipRmV15Zo6k3NpbIlnWSVwdR/UQOgarodMjgbpYgmE4FVvaUIQMDQsy1HWVd4wUD/lqCy6wLUldtHGcSSa67E2Py3pzVYTgKkJhobmFHCiSoYVFqrYo24IHFv6pUbVtO2xTs2rSUogky+BplSWVkkBd1NtlNG5NKGAwe7NXQhdIx4Lsb+nn6J0cF1JPBIkFgnRVFNFf3Kegm2RLNgc7BvkrjUrCZoGFyemmcvlODc+SdgwaI3FuHvNSr52+gzzuRztVXHqqyKkrRIbmhoZT6Z4ITHIrvZ2Pv3GN/Pr332MlweGWBKPM5XOYGiCcyMTVAWDpHNFLo5Mk8gWrgK0OzZXPks/f8/iyfX9Y7NMzKZpq786/R8KGOWhu1958hgP7jvL0QtDfOrjb3y132o5ti5vY+vytu+5zrV49bgGaP+OYl1HEyWv+fe1wnZcUvkik8kMx/pH2bGsMs7nCy8cI6AbTMynyZUsnj7Xy0wyy6n+MT569/VUR0Js7mplcj7NJ7/0OP2TCXat7MQUGpoLTx7r4TffeSu/fP9N/MnXnmd8NsWqjgaklGxc3srA2Bxnroxzz67VPNE7yfRMGg1JwNCYmUzxpa+8zJvu2cLkRJJCvkRzS5yp8RRLO+owTZ0zR/s5M5clfmWKutY4Fy+M0n1xjCXLGthz4yqSyTxnz41QtGwOvHSJfK7o3bQFpZLDzFQKzZHohsAwDKRjeTdm8DtvVSpQ3cQNXWCXHCxLmQu7loW0ncUXVNfVjb1UAjMKmoalaZ5Lh8CIB7E0xfZsCdLQkDqqdqYLRbMEuKpQpZypdI+ICUBHsaAFGCpQgz8zjqu8Gf2F3jZ+WrG7b6qidkQxP/Bfl2Xws0oSgZ+aRNXsysxSsmRJPUITDAzPllmk1IQSxOiqcVo6aq6bEKBpgrlkDtPUWd7RwKa1rTz80nn0oM7xvlFylk17fZx4NMRIIonUBVEjgBSKreVLFi3VVZSky5GRUU6MTbC+tZEltXEQkpZoFa50+a9PPovtOAR0g7l8gY9u3skDWzYymcmQsyy+fvYsBdums6ZGTVSYnsVyXEbmU3zkhp0ICeOJNBvbmvj24fPEQkHu3vz9J4L4E6bzRYv/+vknCAUM6muirO587YxLQ00VtuMSj4ZIZwt849lTJFJ5fub+66mt/vHMQvv3GNcA7d9gXBqb4alTPaxqa+ANWyvN0Pfv+v6+kbXRMEjY2NHET9+8mJmNJlIEDYNfecMNHLg0xM1rlvLosYuMzCQZnEpwpGeYVe0N3LphOQe7BzB1jcZYhENnB7Bsh7fvUVJ+KSUB0+COHasYn0jyW5/+LmuXNbGytYGXTlymp3uMiGESDOg018W495b1PPXUWaan0rz0Qg/SkZiGzsbVLcxNphm8PEkoaFLy5l7NTWfYs3cNF86OquMemmNmKo0RNsqMpe/yNKGQoZwY/DqSlEgkdsnFtVykbx8hqeThXFcxGeFnCwXS9epnrxycKoRaP2AgA0EFbprAcUEP6liaRlFKpKbh6gJXV2CGqSmSp6lp1dJjaa4mkLqS9PvMzE/pvaJ0xny2WGaKYmE+1Ac2jUqtzFtHCg+wZIWZ+kpCv84mJEhHVFKsOgyNzlFdE8HR/P0LNEMQCBjU1EYZn04Bqm/uuq1LOXhuABtJYzxMQ0MVzxzvpWDZmDpkShZSh+2r2jg+NErJcSm5LtmUhRHQGEum0AxB//Qc25e2014X59DgMOOpNNFAgAc2b+TJ7l4GEwm8mQN01cYJmSbrmhpprqriwfMXePJSL23V1bx740a+eeYsBwYGeWDTBh7vvkRYM9h/eYD6QIj+qQTN8SpWtdSTK1pEwwEO9gwyOKVYYrZQIh4J8f69yvbqwuAED750TrF7JLs3LCGTL7G8dXEf2cRMis9++2U+9o4baKmv5r6bN3LndWsIBQy+8J3DnLs8TqwqpB58rsUPLa4B2r+xmEln+frLpzgzMIFp6FwcnuLRYxe5beMKGqqjdDXXfs/tA4ZOZ32clc31hEyDZ89d5uTAGD93+3V88r7bPP2C4Lb1qmn6jTvWcrZ/nIcOnUND45HDF2iOx1jT1UhLdTXblrZx6Nwgri3palLvHYuE+OT77+BkzwgHJvoYmZwnnS1QKtq4lsR1JHnboqOzkY7aKh555LRHdAS6oeFIF0MXXLk8hXQljU1VTA3Pl1V3y1Y1YktZ1lpUVQUpliwSs0WkL3sHigUb4Uh0rxQmXXW3F0IqpeLC8Nz0Fd2QYLuUXEcBgesq2yshVJ+erlfAUNOQmo4WMpRq0dAJxwJkHXA9sUiF0YBrqGXCAMdjQS4gTaHEH4Za39UF0vCASVSOUQgfx14hCln4z6/H6R44aRLX8V3z/TeU6JpQLM1VYFTyVJxmUMN2pHpvlPt/Ip33Zt34QCcIVQVVO4Ku0o5VsRAFy8b3TJ6ez9KSzdNYF6PgOAhTkLYsEHB5fJZoKEgkYGKXilSFA7gG5Eo2ritxXJhMpvnde24HoaT2e5bUkS4UGUwogcbapkYsx6WxKspnH3gr5yYm6Zud49L0DOlSkfl8nmcvX6Fgqx7DvSuW8jPX7eDLR0/x3bPdvPm2G+kem0a6kr/48P0AzKaz/LevPsWR3mGaaqq4Ye3Scl8bQFU4RDQcxNBUv+NH33IDpn612OP/PnyI2fksX3/qBL/y3lsBZdAMcOuOlVRHQ7z99i3/ausrKSW2475uocl/lLgGaP/Goi4aYXlzPW/esY4tXW2cuDJK0bJ56OA5AobOJ96+l0hI2VxNJzP0j89x3VrlEJ4rlvjai6e5d9MavnTgJEMz8zTEolwcmeKPv72Pxuooezcup6M2zlQqy6auFiYSaSbnMpRKNnVVEaoCJkOTc6zvaua61Z0ENZ07N63i9u0r+eJ3j9DbN809N6ylobaKbWs6mJpOMTmb4vylcfJFi/raKHbeRkOQTxU4PjCHoWloUtLcGOMTv3YvoYDBww8e47HvnERHIDzAMIo6sViIt7//Bp558hyGoWEEDFavbWF8LElxdI5SSZYZiaYBPng5HsOSklA4QDFfQrqSYMigmFc3PKT0mpA9Q0XHRUoXI6ATqQmTmkotUCUKJdQQnuBdakhTgVquYOOYOsIUuJrmgZWG1NU2rp/S0xQ6lcHMY2pSVMBMrecRSB+MvHykkBWhhn/PFf7/HuADuAg0XcntNS/V6KsqNZTgw3LU6USjAerqqxgcm/cAW6rjxhehqO9tV5JI5QgEjDLZK9o2l4amMTRByZWUpMu5wUkCYZNgUGc2l/OuGZwfnmT1kkaKtoMAUrkShibAUMeJgNl0jk9861F2LevgI9fv5LvnLnJ2bAJLSiIBk5BpMpNLYmY0uien+ZuXDpMsFtnS0ULQMLgyO0d9OMz17R080dPLrz/yBA//9PtY0VDPxtZmIkGTP33vmxaZCdRVRcgVLcKmQWddnE++4/ZFn78lTTX86tsXD7B9tfjYO27ka0+d4EP3XXfVa8s7Glje0fAqW73++PsnDjM0Nc9/fd9d10BtQVwDtH9joWmC9928rfzzzlUd7FzVwfHeEa6Mz/LU8Ut0NMTZuaaTb794lmy+xIq2euqro/SOzZArWrx0sZ+QYVAVDPDWXRvQELxwoY+ZdJaBqQQvXxjkTN8Yu1Z2IiR01FVzpm+c1toYH7nner61/wylvMXXHj/Ghb5JamIRLvVPcuj0APuOXGJ+Pssvvm8v33riFI/tP8fG1W2sXdrExHSaP/vkOxgZm+Opfed5et9FIkGTJS21XLk0SUrmaGqI8XMf+XuK+RLBoElTYzXhSACr5NC1ohFXCP7p8y+QTucxAzoly+bs6RHisRCGpmG5ynLJMDQChl7uJ/MrX2ZA9xqQ1Q3fKtiqJ6ucfnwlc5M40iGdyHrmiR66SCr1M10VvTRdw9E8R31N4Bo6UkikroGu4QYErn/v0QSOAAytrGJ0NY9ACfWz9Otn4GOU+tZjnMBVkn0pQJqApboJpO4b8itW6DeR+5stHAgrgUzOIpNLgHd6jlcXkx7glo/D+2o7TplFhoKmYli+Vb+3a9t2cIVLyV8uwLJdxmeSmJqGdHUcx8F2JIZQw0Wl5ZKzbYbdeebzBV7uG2I2m8PyzJibq6sYSCSYy+WZSGV44B++iuU6LK+rQziCu1auZGT+BJPpHCdGJgiZBgFd55Hz3Tx3qY+GSIRErkC0reJxmikU+cL+44TDAZY01bJ1RTsn+0bZtlx5pZ7uH6NndJp33rgZIQRf23+Ko91D/Orbb6HTE3/4UV8T5Rfe9f2B718bnY21SEl5VNO1UHEN0P6dxI5VHWxe1soff/U5RqaT7FzTyd0713B+YIK6mCo6b1nWRiQY4EvPHmc8kebn7lRPj/fvWs/9u9aTL1mEAybfOnCG/ak8hy4O8lvvvp1UtsB/um8PvaOz7FjdQd/oLKd6R0llVTPzyo563rp3EwMjs3Q01rBzYxcAqUweIaGhJsovvP8WpJS8eOgyTzx/nuVLGqiNR0gmc+TzRQr5EpFQhE984sukUnl0TePeezcxPZJgfDRBQ3M14xMpbMtRhr2oG2UoaCJtl+nJFNFokJIo4bouwnEp5kq4UknghVvEtsGxXWxP2KE5EtdSo1XKunePqZXzfEIgHTx2p27ogaoQVtH2lI0aGIbazHcKERoyZHppP69+ZirRhNS9upnus7IKI0OAraG+14QCNrFAIOIxNM1RX4WuXEqkI31NS4Wp6arJWUgFZpqQSEt49TrPbMuzrCoTLwmCyrm7XlO2EJWSGwJqq8Nq1Ey+UBasaJogWyxRsNR8MjQlqmmqi5HMF1R/mC9K8ep5yUyBuuoIJhoBIciUbIKujq0vqCtJ9ea242IIgSEEmhCETQOQzGVzSFDTuIUgVyqRLZZoikZoikbJlkosr6+lKVrFtrZW/vKFgwzNzWMIjYJlcWFsiptXdrGhrZnzo1NcHJmkaDm01cc52DPEy92DfPGX3w3AF587zvDMPNWRIPdsX8uR7iGGp+eVPdrrjK88eox4VZg37VU9n8WSzT8+fJj1K1q5cfvVhsivFs+dvMzl0Rl+7o3X/8jc+h86e4FToxP82t4bvu/A0p+kuAZo/4bCdly+/tJprlvVyaq2q1MWpqHzgbt2EK8Ks//EZSYTGd51x9ZF66xqayCdL5IvWkRDix34wwGV4793x1rmUnm2rWhjdUdFudXREOeLjxzhbXs3MZPI0l4f56NvUTLmbz95ij/+pftZsaRyXLfsXMHQ8CwvH73CxPg8h0/2s3ZlCxMTSXovTSCkmtU1ny6wbHkjczNp0sk8SKiOBrh4aohMOk82U6SpKY7rzSILx8PUVAUZG58nky1iagK76DBftNE1NYbEtV0MU6NQsAgYGgXPPLdcO3MkUiy4cfqNzn4NzvVcPvxmaaH5EkglRxeauu0bBhg6hIMqPSgljqnhmqpW5urgGgLHEKo+JvHk+qgUo+69nadoLCsMvZ991lZWKgoP8CRIxyOKhsAtysp54DVje+IOXUgcVyD8upihvBiFCxiUHUOER0C1hWzPRbHKMr4LSo5DwbLRDY2C45ZRtGA5SKEaq4Nhk5LjkEjn1DLNIKCrhvZsoYhhCBwEiVQeoYvyvL6S5VATCVMs5QiZGnXRKLom6KiOM5icp2g5bOlsIVEski/Z7OroYCyVYjqdVeNZiiUODQ5xdGyU6nCQzppqWmMxPr77Oh48e4EldTUksgWqQwGuzMwxny0SMQ02tDVz3fIOgrrObDrH3vXL+e9ff0q1IaBqVh+6fScPHTnPZq+V5efvu4FUrsDSloog5MjFIY6cHyQeDfOBe3fyyugfmaU2VulDyxdKTMykiUVfP2hMJtJMJzIUSzZB02BmPoPjSprrYmTyRcJB8wdmbrrQFJn+0eDljyyuAdoPOb756HH6Bmf41Z+7g4D5w72843MpJucz7D/X96qABpQ/XOf6JpiezyyaIO3Hr7/9FlVQfpViNkAkFODn7r3+quWff+gQuWKJh/adIZ3Ms6qrkdrqCGd7RsnkipzvHSMWCfKtR46zYU0bR04OUCpabF3fydHTA6TSBfoHZ4iGAkxNqlEkmibYtbWLvv4Z7r1nEw9+8zhVQYPkbJbkVIZQ0GD1hnZi1WEsVzI+liCTLZLNl1S6zHMLKd/wEeQzRTZu7iSZzjPUP00xryY3+67x0kuzSdst19XKacSFakYvnShcz//R8bqyNM9SXigLDWnqoGtKFBIOgDedGiGwgwJMoVz1dcW6XF/4YXqpPB2vN80jJLpaVk49GoDlNUV7JFL4NTWv5CcComxzpUJWNCKeW7FmAoaGW5CKsSHK4OUDp5AVgFVtA6IsbEEov8liSZkZC78YJ9TxK0GpxHJc1rXWUXAd+sbm0DWwLJfqqqACPVs5ecSiATKFEita65iYy5DNWwSDGrgSTULMDKG7MJPKYgpBMl/AEBrxUJjxVJa1jY383J6d6ELwiYefIF0okCmVGEhYNFZHSZXy9M7O0FgV5b71a7l91QreunE9f/XiQY4OjtJSHaMlFuPu9av47W8/yZrmBj50Y0X5+3vvuRtXSibnM/zl4wcYn09TH4swlkjRVlfNSu8zmCuWCAfUdOt9Jy9z/vI4rfXVTM6laa5b7Dzymz9zB7pe+TzWVEf4zY/cUTZBeD3x3tu3Kcbq7eeLjx3Fdlx+8Z0387++uo+u5lo+8qarP7//krhv41ru27j2B9rHjyOuAdoPOcLBAJFQYJEy6vXE3z59kJpImPfcuPU11+lsrOGebavLasLvFR+573oKJftVn9Q6Gmpe1zEdPDvAQ8+fQRMav/6+vWhCUCrZDIzMcfBUP4dO9JHPlPjYe26ib2CaTataeeyZs5y7MMroWIK2phqalzZjBk3ecvsmzlwY4fLAFMNDs9glh/q6KKWizf4Xe7BLDhMDM2gC2jvqiUaDnDrSR6Fok80W6LsyTTpToLYuSl1TjOGhWUIRk2Ky6JW9JMGAgVOw0KSkqbWaviuT4EiKmZJvLoUQqqkZ6S642bNAJbiAtfn1MdU5jDA9v0aVX1S1MkODoFmum0nhpRW95J00Vb8WnlLeNVC9ZX5dShd+JhPpMTLXpOLf6A/6NDxA9VSJnptXGYc1WdmHcPAatyUemQOhSKdmqxqb4wh0TaUh8V6XQsGg7jV+S4+xKfCWqOyqRrao3Fd88QaoyQD++yCgfyxBrljCdlyK3npzc3m/15y8Y5EvqP0MTyUpWHbZBCXjNdEXLcvrWBC0VsfJWjZtNTGklCypifMXb3sTD525wLO9V2itjlEVDNA3N4freVK2xWJcmpulZ3aWjz34EG9eu47VDfVcnkvgCPjg9duoi0T49L6XOTE0ysB0gr6JWW5evYy965YRMAx0IBw0MHVVFJyYTy8Cn77JWf5p/0nWdzbxzj2buff6tdx/wwa+9dxp/vnZU/zSOxfX0V7tITcUMK9a9v3CWACKO9Z2YjsuoYDBstY6VrT9xzU7vgZoP+R4053/OgeQ6VTO62353rF+SfP3fD2dLRAOBQgFTULBxR+UhU91ACXL5m++fYA9m5Zy3fquq/Z1cWCSqfkMxYLNd/ef5yNv3c3kbIq///ZBOptrmJ5Jc3lgmsmpFF976BjnusdwCw7hoMm2jZ089+wFxieS1NZGiESDZIs2k+MpCkULKSESDpJK5CkVLDRb4uqCVStbqImF2bpjKWdPDOB4/osZz1FfaLBt21KmJ1NousA2SjgllR4UuGhIbMth/+NnqGuuJjeXrdz18TKLwq8vyQXyQVmhJz7A+Xff8sOJV2HSNaRhqoMxlAhEagKnKoA0dVUzA5wgSI+NyaAoLy/L8T1VI4BjeuzMBzw8QYj/1r7S0WVxGsjDV8cDOjSUK4irQNAtqOUCAaYCIc3zXnQlnmVXhb0Kz8HElR5LM4V3WVQPXca2VfbVZ2ZlHb9/hdTu0umCAmMXFmZ2/TqfdAFTvUlI19XfhICi5SAlBEydG1cu5ejgCGubG1nSEOfE0CjzmTy7I0u4bmkHf/z0fuZyeZqrqrhh+RLCpsH/euElxpMpMnaR6bygaKvexbpwhHgoxO7OTk4Mj7Oiro4/33dA2YI5sKG9Gc2BuUyerx48zeBMgp+9TdWYq8Mh/tu77uLi6BRdDbUcvDLE/3z0eT5yyy7qY1EaqiOs8BzzN69Q6chA0CAYVLfXomXz9OEebt2+kqrIa7vy/2vj1u0VJ5MP33u1qvI/UlwDtJ+Q+P/ecccPvI9cocSf/dM+BLB1TQf331YB18eeP8+3nzzF5rVtvOPebbQ31dA7PM2BM/1cGZ0tA1quoGoGkVCAD967kzfduJ7HXjxPdSTE5HSKI+cHGBiaQTgCK28zOZbgb/7heQrZEmOjCe64cS3V1WEGLk8x2DeDbTsYps7YWBJXuui6RlUoQNF2mZpOURUNUNKgmLUJBA3e8rYdvPjcRV5+sQfN0JECNmzrwj09xNxshnSywIEXuunsrKfv0kQZzJBQzFtQchBS4liC9EQKYfk1MC91JqVnSOzdxDWBEdCx8pYHCAvQoqz994mbUizKhQ8KwgOAoIFrKgSSAmRYUw3Uupde1BaAmZeOlD4waF56MVD5WeJ99Q9HAnpFUMEC7C2v52GyCwgdcAQyAFJI9JICK2lIbFegSYkwBdiyLFsXDqqm5jW7uUJ4xyIqdTvv/VgIrFJiGMIfD6fClWVpqYCyR7Pr5VXDQR3HUDPeZmdzBCI6IcOgYCumtm1pK9XREDXRMBdGJ7g0M0PBUkKckKYzOp/i0uQMt69ZzvnJKZ7suUx7TYxVDfWsamrAcmzOTE7SUl3FttY2fv+OO5ACPnvkKHeuWUEqW+D53j6yRYtNLc3gQjgQoC0eZ2B6ju3L2klk8/zdc0dIZHLcs2UNt3q9mQXLYmguyd+9cIT/dNtuPnbX7kUPigA2ktlMjky+yPHuEZKZAk8e7uYdt20pr2PZDp/5+ousW97MPXvWXfV57h6a4qljPdx/wwaeON5DTTTMe27detV616IS1wDt31GEAibL2uvp7pvk7KUx3rR3Qznl2NJYjRDQMzjNw/vOsmN9Jw01VazpbCRoGnzyM9+lKhzEtlwiIZPf+NAdGIZOMpVnZi5LMpnn+cOX6BuaoS4eQbhCPWCXHHKZIvWxMLFggPWrWzn40iVCQZNowCBSG+GW2zfw9W8cxnUcZXIrJbquqRqWCTXVUaaySbLZEn/9189y6961CEOjuibCzHSaF/ddZOmKJtKpAsWiRWo+z8oVzfSUrAqbAsoqRS8FWSyWvOUegGk65UExvsGvBKvo2cz79MdPO2qqLua7iMigqQQgUEktappqlg54y3Vwgh6QiUoKUdldUQaIcoqvXINaQA69nys2H94puh4YepJ46Yk6EIDnv+gzM/zUpAZuQL2fsLwiXEAiHaEAJ6DWE67HDoUvDhHl7RYIH71jEQjdZ4zSO3yNgA6W65ZVl+V+N++4QoZGW2sN/cNzlLK2YnAhxW5LtoOzwIT57OgUFydnyJZKFB0XvWRRGw2TKhR4+fIQrY3VSCn56wOHcZGsb2liIJPg9hXL2dzSwkgySSwcZGtrKyfHx/nS2dPcv2Yt4+k0o6kk87ki61qbmMvm+ev33M+JwTGO9g0zMJPAFZKHT16gNhImUywymcqUjYJdKdm2tI2cbfHwqYv83qPPETYM8pbFL99+A8sbVA37o2/ezV9992X+5zf28Qv33UixZHHj5sUqxof2n+XYxWHmUtlXBbTpZIZMocRsOsdc+mo3/2txdQgpf3K9V1KpFPF4nGQySXX165v99e8tipaNZTtUfY8Bgq+MVKZANl+ktTEOwMlzQ9TEIyzrbGBkcp6nXu7mbXds5qtPnCCTK2DoOlOJNK0N1bQ1xBkan6MqHOTDb9vN5x88xGwiQ3tjnO4rk+iaRk11mJHLM8zMZqiJhdi0tp0DBy6xfn07M6MJxkYSYEvmk1l0XaNraSNmJEBv/xSBkMHGzZ2MTcwzMZHELjlEggbp+TwgaG2NEzB0piaT4DoUc0rKV1MXwbYc8rkSkWiQXLrgTaLG8yX0GolLNqLo+VkuFHz44dfMXImma0pY4llYlV/HF0ToZbEGoIQfhsfYAupZUOoCx9SV2AKJE9KwwwrQ7JAHXHrlq6t7Ig8qYObX06RYwOBeUUNTG1CeX/ZKf0d1vh7uuGo9zVE1M1zQiqC5Es33i3Kkel2igM0FdB/kVXrSt+TyAc1PFy4EK98TMhI0KHnjeFwvde77SGoLan7l80alWbWAwA4ILKHOVegQrw6Tcko4rssDuzey70IfzTUxrszMkrdsQoZOMGKStkrkXdUH1xALk3aLWK7D+pYWdra18d5Nm2iMRPi1p56grSrG7912Bx95+NukCkXW1zUxk83xp2+6l4hXw+qZnOGrR07RNzlHyXLI2CU2tDbze/ffUa5zfeXYaYYTSd6wbhX7eq4wnEiia0rxun1JGysb6tnf3c97d2/h5KVRvnP4PEub6/jtdy1u0AYYm07y+MsXeOD2rcRjix34pZRMzWdojFf9yKT5/1biX4ID1xjaT3j89WMHSWRy/P773vC6t6muClFdpWTArit59qUeopEA/+mDe+loruFn3qbGvd974zomZlPs2bxs0fZfe/w4PQOTpLNFupprSaVyfPCt16MJZTorHZe/+b/P09s9RmYmw+bVbWzf0sVHP34bv/db3yA5kyEQMAiaBpZlc/nSBLqhUd8Wx3IcQobOJ3/zTfzt554nmy0xfGWSgKljmgatzXHOnh7Cdjz5vKe+KxYtamojyvLHcnActyJn90BL2i7YajtNoCT6PpiVe8sqy6QmvH4tKkDmp478FKUn9kAIXE2AD2Tl9Stsyw2qNKNrCJyQKAs+JJ6y0WdX3jLpZ6m0ynK/YbqcalyQciwzulewN1/QIhY6ingg6fjqxQB4Peeqjw2h3P2lAEOlB71GhLK1VTntufB4/MPyGKIPcPmSTUDXMEyDvKNGwbg24Kibc8VwUp281CBsGqxY2cD5kWkcz28zENDJWiVaaqPcsWEl9+1YRyJfIFsoYLkOXY01TOeyzObyGIZAF2BrkrRdooiDpgkMTZK1i/zSk4/gSslEJkNvKMR/3/8sZ6cnMYROKlcgagb4w+f3k8wV+MUbd/NPR05yYniUlliMj+29jmODoxwfHeOBf/wqNy9fyn+5/RZ2LmlnPldgWX0t6/bupnd6lg0tTQwnknTUxnny7CWODAxTF4vw4Rt3YBjKt3Pf6csc6h7ip27bVhZ1tTXG+chbFrv3+/HIkYtcHptlz7ol7F57dX37Wrx6XAO0H1PkixbfffEcd1+/lprYa89HWtfZRDJbuGr5wPgcTx7u5r6bNtD2iim4ifksLx29wj23bsA0dW6+fiUzsxm+9dhJMrki77lvB8GgSk8ua1+siCqWbLat7WB4LMF//ctH2LK6ndnZLNlcieqqEHXxCAcO9PLut+xkeijByHACXRO84207uHh6mHw6jyYhnyoo8+HWOKOj80hHkpnPky1anDwxSF//tGqIzZYoFiyCAZN4LMTl3gk1DkUoRZ1tu0gX8lmLfDZJwNRwPLskAE0HwzSx8yWk3zMmpZrWXK6VSTTPzcNdUOiRtlNmYWi+YbCPAJ6YQxeqcVr3wE4oXxEMDUcHaWpKih/RVH1NAxnUKuzLc9vArACYlGr5wmxpGagWpPeuAjWgLFsUi18XoBrA/fSlptiZL8BQ6UlVC3Ntj53pAtcB4dEnV7JYrCIXHJd3bGVlo6t+1rzlQippfsm7vq7XIycWPFBoAJrEQflaSiQ9wzNYjkswoFNfG2WqkKPoOsxnCxzqG+YrR09TdFWztq4JhuaTWLi4GuimjiscNMDCQepgCZehdApbSAaS8zRGo6xvbCKgazx06SJh3SRmBpjOZpnJ5pjO5KgNhemZnmH7kjaODI4wXyywrr2ZGSvPly6ewbUlZ8YneGlogO2t7XQ2xQmZBl8/fZb5fIGcbXFdp5pacdu6Fezr7SPviVHesF2Zh790vp+ibfN6ydbmZa2MzaXKrQHX4vXFtZTjjylePHmFwckEoYDJA7dv+f4bvCKePNzNPzx2hJ1rl/AJz/zUj689fAzHdVm/qoVtG5WP46c//xzdVyZprK8iEDRoa46zdmUre7YpdqbEEvBXX34BTcDFvgnyRZsAgkjI5Nd/7i7aW2p49tnzfO5z+6iqCrF6RQujg9NEAybLVjax7/GzpOazCF2nWLAwTY0737yV3ksTAFhS0jc0i9CEx7ZQjdRIDE1T3opBg1y6qI7Jv+O7/p3Uq80sPFnvDhvUoJQuqNSjI1UK0Z8y7f2J66aBEFIBJihK488sEwLMSn3Mt3lydc1bLsr+i7YhcIO612umYQdABhRa2UGBE/QNhkGaolw/K9fLPPZUBqJXgNMigchCFua9jv/jgguxcEyMui6gWV5NzaunaUWVihSAXvKmVfsN1qhj8llvWZwiFaiXD0EHYUuV+nRR4hKvR04sSE36vydd/eLVMQpPjakLHB20kCAQMckVbTBg08pWItVBzg5PsHNVB5en5xhOJNXMNNTxREMmGdtSDmQGvHndaoZSSVa31HN4YpihZJKO6jihsM5kJoOL6sOM6kGklFQZAa7MJTDRqDFDBDSD25YuQ9c0sgWLqGFyZmqCt21cz+mJCY4Mj/CODRt5YaSfkuNwY+cSIoZJwXZ4YMMGnujp5f3btxANVEwKciWLoKGX69efeeYgwzPz1ARCdNTH+YDn3H8tXl9cSzn+CMKynR+qCeiezcvQzgl2rOv8nuulsgW+8uwJdq/vYuvK9vLyW7ev5MiFIZa1VVwKLNvhiRcucMPOZQyMzLF5XWXW2Rtv38idN68lmy9x4NgVuq9MksoW0TXBsXNDpDJ5LvRO0NJUzWwiR2tjNbu3tnD23DBCCJobq/mnLx3gwvkRDF1HuAo0brl1Hc8/dZbjL19mxapm+i9PsmlbF9fdspre82Pc9+7r+PxfPkMmW1Q36v4ZNR5G1xFAWkpMXcMqqeGanR11XOoe9+owyqKpujpEcl45iPg3X033yl4ScB1KxYraESogBpSFHo5lowc8Lbz/qOzX1HyjYKF5TdIKSaQhkLoOQipwMwTSVEDomkoY4gbVPhxNYJui0l9mLHAA8UFMrxyiz7IElIHL9etnPvD556CxGMj9bbyQXnq2vIGmRB5lQHMAU9WotBLKucSRCI8pCptyH5jUKCsc/X8Lp2ZLQyCEan6WtlDg66gHIs0zT/abvx1XuYGV+9WF3w6gwC2fs3C863eyb5yq6gDxWITNna2sbW/ia0dPM53NebVOMDSNSNAg49oITXJyeoyGeJQHey8SDupUhwMEAhpzxRyRoIllO6SsIhoad3at5IXBAdAEteEwnZE4JduhOVZFtmQxm81xbmaSdLHI3x47wq0rlvFfbr2ZXR0dHJ8ZpUZoPLBhI3/y0kssq6sla5X42O5dV31mI6/oK3vy3CVsx+XtWzawbdm1wZ0/yrgGaK8jnnrpIqcujnDf7ZtYt6Llh7JPQ9e4ccvy77vebCrLbDLHldHZRYAWNA3+vw/fTffgJJl8kapwkIeePs2TL1zg6OkBfv/X7lu0n5XLmsrf79qylOHxBFcGp/nSw0fRdEF7cw2hoIltS97xhi185aFjBDSN996/i1OnhxgdSzAyMkf3uVGWLW3kxptWI13Jpk2dDFwcJxwNUMwWab15DY3NcRLTGWKxEF/53H6mx5PMzKXpWtFEfW2EVCrP7GQK6UiCYUP5ItqSquogLY3VDFyaomj5k6El2fn8K8AKdE1n7YY2JkYTzE0k1YmJhXdOWExtVDj2Aorn18E0D8QEqq9M07zeMR3X0FTfmhDIoI40lPze1ZSdlQyq1xwDZMifb7aAkfmu+bBY7CEqR+fX2cqgt5DN+fUyD6PLZ7SQ1UHFrNgHSKmAQ3NU+k9bAJbgiUsCQjVa+ylQVwGSGmND+ToJ12v29lKNmlSPGq4NmiZVqtN35PefJVxZ7j9zPTAU/g51yjVIVxFklcHU1IiV+UKeP3v8RcygweYlLRRdl9l8HgnMF4qK8QYkmimYymcZK2awhQPSZUl1DdJwCJsGN7UtoXd+llzJYkm0lruWreDWzqV8/eJZPrp1J5YrOTk+zua2Fnpmpnmo5wKaEBSkTX04zHgmTV8yQTwSYlVDPe2xav7y+CHqq8Ocmh4naRf4RPWNhAyDz58+zp72JWxvaePk+Bj9cwl0TWN1bT2RqEmmaLF383JWN11LIf4o4xqgvY5ob66hb3iW+pro/9P3LVk23953htXtDbz9FtVT9ujBC5y4NMrPvPE6dF3jsYMXiVeF+cibr+f2PWs40z3Kfbdv/p77vdg7ztLOehzXZc3yJm67fjW5fIljpwfIZAqMjCa455b1HDp6mT/5yydY2lZPJGSyelkTZ470YVsO73j39Ugp+dLf7kPXNZZ01fPEN48yP5sllynS0dXAtptWoQOJmQyagLGBOTrb6pgQCWam02i6hp23yqq4dLLAy89dxLZs/MZmM2hgmAam7VLIl7yclcRxXXrPDuPaTvnGKQQVo2F3wd1f09RddUFfmb+B1LRyylH5HCpAU8M2FRNzTIE0dOXLqAllZaUJxbx84UegYg/lGxCzENh8dragt0w6C9iZVklDloHKB78FGFze1gdqD8MXpi9d18MXTYGYkEKdvvd+dgl0RzE111dLetfK8XrMFrG/BWDJgkuLAa7jjaaxPaGIx+I0IXBdiSaEakdzPcMVFgCyDpqhXhcCggGNTLFETtpKeGnbHB4coTYSwhCogZ4aCE0iTHBRTL86qJORRYrSQdMlS2vraYnEuJScZjSbpDYQYSiT5BuXzrG6poGRbIrfeuFp5UZScricmGUynaHg2sQCQbKlEjc1dfELO6+nLVZN2DTpqq6hKRIlUyoxm8tyeX6WoutwZGyUNfUNjGfSvDQ8wItDAzx75QqZYombOrrY3NRCyi4RChqEDINLEzN01MWvYnGvN77w5FEujUxTXx3hZ95wHXXXpl0vimuA9jpiw6pWNqxq/X/+vq6UlCxHyYK9J9qaqjDV0RDhoElNVZiqSJDr1qu0ZX1NlE+9gpm9MvqHZnjpUC8PPn6KXVu6+IX37yWZztN9eYJw0KQqEqS5IYZddKiOhChmLabGkwyEgtRWhVi+vBmnaPOVz7/AmcNXGO2fRkjoPtbH9Ng8tuNSKtqMDc/SMdnE+EiCTCqPHtBx3SIzU0mWr2qmKhZi+cpmnnvqnEpfStBKNo6nPFB2UYLG2ioy81nQBBbqJoarxr/YtpdzFJoSH/g3Yuk99pdFHkKJP/B/Bqio+Px6GYZe7i8joFd6yTxgk4ZKwzmagIDA8cDJHwsjBV4akkqtDI+Z+WDmv6f3daGxP/j1NLmouVphjaj4NApZEZiIyv58CzB0lWH062pSUk576hbKU9IDO2xPui/Lu66wuFdU18uvLSDAEnBdAbqsuJh4wKhb3sQAx3um8FKX0hCKeOoCPaCRdVykCTnp4touQgfdQJkfuy5FqQZZWjgIE6ojIVKyhCNdHN0mHApSsmxs6TDjZNlT3caHV+/gNw5/B013qYka/Pyam3l+tJ/Njc0cHh/m1OQ4AoGOxuHxYd6wfBUr6ms5MTFBRzDObcuX8dxIH1VmgJBhsCxex7ODfRybHOYXt+8hVSqSLBVprqqiK17DL+3cwxfPnmBgPkE0GOBDW7dzZHiUfzx9irdv3cD2jjZ0IfjWiXPURyN8dO+/ztEjVyiRK5SoCgfKvXHXohLXAO0nME51jzA7n+WO3Wv47Z++s7x8fCbFhcsTvOvWLQyMz/G/v/IsjivRNQ3pwLnL47zr7q0cON7H+pUtNL7CGBWgvaWGyakU85k8zx3ooampmn0He7Asl3/4k58G4K/+7z4mp1KsW93KB9+9m+GhOSLhAFWRINt2LOXoy73se+wM48OzGJrElBp2oYQA6htizEylsIo2hXSR2ckkTrGE6+qULAfHkfReHGfjxg5OvtxLOGBQSBeQjnIRwVU+fOFIgJb2WiaHZsnmLRCCQEijWFQMTPjpRSlVTs0PXVdiEL8h2hfZLfK09BBE81OOHuBJr1na0LCFUBJ8TcnxpTfd2dXEArcPBWBuUO2j7Eq/QJqPjue+4YGPv84rRR7+68aC7RakGhXisxj8dBS44aXtzAWs1GURSGmuV7cSnuu+q5ibEnlU0pnlFgAUg8TbNwvvnb5oZOFx+jJ/x6vbIVWjtlSpRp+NlvvtvOtj++tp3iF7Dwa2DjVhk5pggEypRDwappDL4OqQlxaa6c2TMwWukNzatYSzyUkyTpavDhznwaFTbIi3knAztLhV/MPlo5yYHGcoPc/GxmZGMyksxyFTKmHh8LNbdvLsYB/vWL+R/lSCf7x4EiklAd1gLJ2iMVJFz8w0JddhZ3MHH9m6k69fPMOpqTHW1jfw5ycOcHF6Cl3T+MZb34uuaaQKJUxN431btgDKeq6tpppdSzv43L4jSOCjt/3LgO0X3nLjv2j9/2hxDdB+AuPAiT7SuSK3X7960TTd7oFJ8kWL7oFJjvUMMzWXpboqyI41HZy4OMzkXJqe/ikuXJ6gb2iGDz+wh1LJ5tuPnWTX1i5WLG1icHiWjtZaBo/OMjaVJF9UM8PuvGUtLxzuZdvGTjpba2lqiJGYyTA0NMfdd24E4JtfPsjjDx0nGg2Szxaxijaxhii65VLMl6hvrvZSWg6hqM7o4AyNzdVEYyHGhufAcohUhXBKDrl0AeFIjJKNZtsEggHqasKMDycwTZ2GmgjFVIFcMuc1/SpANAwNx1FTpHXDoJizFtyNVUihZOEYOtXxMMm5XCV35wObK72maYEwDMX8BB5DU/1kUvNFIYpuOQLcoKjcgHX1vUuldrZQyOHPO0NWAPBVpfg+cPmIsmA7dT4Vwun35oFckM6UFbCUFYYnnEqO0HU9hiekAh9XpRwxFJvTPOAsA48ivosBzq+peWRX+g3ZPqPDq8V5GWOfnfn1OUNTvW/+FAGhQVUsSLFQKO9A0zzRiAbzVpGEXQQJ804RNAjpBjLokpVFhOc5mZQZnppKYOoahu6iSxdH2FxMj9IciVIXDhNwDdqqYuxoaWM4M8/2thZKjqRvfo6OWDVCg49s2cEfHHmOvvk5hC65kpxjc10r6xuaSJWKPLBuA1+7cJbHBy6xt2sZP799Nw3hCI50CWgay2prWVvbyOmpCQ6MDvIzm3cQNSvqx/65Od66fT3xUIgnTvcwkkhxeWqWlU3/cc2Ef9hxDdB+AuPtd20lkyssAjOAW3esZOOKVhpqooSCJhNTKd522ya2rmpnbVcTs/NZ2hrjjE8l2bi6Dcdx+dSfPcrcfAbHcVnSXk/fwDSXL0/S1FjN8Pg8p86NsHlDB0HDYGhsjp4rkyTmMrQ0xTl1ZpiDBy+zakUzy5Y1ks8VmZlJI11JOBJE00DXdVasbiFeEyFeG+X88QHqG6rIZIoMXZogXh9l+do2BnsncaUkpGvYwqEqGiA94yr2USghSzZZ1wZLGRdPDE6r2prtLBATaDhefc0pSpqa44xlZhfc7fHYgifwQJBMFNSdU+ABmFTrC1lpmFZFH1xTpRndgGoxdoRKj4FQ5sEegKkma3ACqPSdZygMLEoV+nW0MothwTG+IqSXGfWHevrNx+XXpVxcy5IgfYt9vwYnJGXbfQTSlxx6AEjRQ0ZdAV7ZqNgUZXBaeGjSk/RLn+0tFKV4wOo3c5eLY0IBuZBCsU1PXKI5/irCSzsqp5A5u6D8Jh11vnoAjICGLV01FmjB+YVMg+qaAFNWFk0XNEQj5EUeW1iYmkBqNkVsdM3FH4Swp2k5DcEoY/kUOyNtjBWSuEimChkCms7dS1fwrSvnODo1TFd1Lbd3rmBncwd/d+4wWadIUVp89ra3UrBtLNdhIpshkc9TH4pguQ6/f+hZbmzrIhIMkJcWH91yHV88d5LpXJbxTJqVtfVIKfm9fc/xfF8/m5qb+cv77uOX7r6BP3z0eT67/wgrG+v58E3bCRjXbsc/aFy7gj+EyBcs/v6hg6xf3sId163+gffX2lgNXN1vIYSqKQE0xKM0xqsollReKBQwaW+qAeDOG9YyMpZgaiZFV2c9y5c2sH5lC3/52WcpFCyqqkK84607KJVsdFNjw9p2tm3s5MipQe66uYvf/9/f5fjJQeqiIXRD4+ixPpYta6S1o44737iFn/rQTXz7SwdZvb6FvgtjTE+k2HL9Si6fHaZ9aQNv+cCN/P3/fpRCtkhmLsvFY/1orkQ3dean06rmdrwfIVQ/WqrkULJLlNJKzWgblkcP8BQIAmHqavxYwMAqWOAKxgdnlIxfyHLvmDA854/yRfMBZgE10jSPzUgFcJpWqZ3pKs2ILsqCD8fvJxOUBR+uCRiVqdPl1CFcBWavyspeEQtNiOXCdbXFY1mkkBX8XrCsDGSax/BcWQZZ6agNREgqn0VLUypHE2RJAZI/3q08b83fv19/8+T/5Wu7gDX6Ev3yQ4UJ0qochtDACOg4lovrjaFxvWvmqxulrtoMHB2EdJFIb3K3VH6f4RAttTHWNjTw/Hgfuil587KVPDvVQ9JyWBqrpSkU4dBcD7ouCWkGy6pquJIdYbZUzXUNK+iZm+Zyeob/vv0ehlIpnhju5rmJyxSlxbf7zxELBHlxvJ+JXJq2WIykVaC1Ksafn3qRtTXNnJweU3VIQyMeDDGdz3BiepzuxAz1oTAzhRyaEPz0xm3M5nM0RpSIbCqbJe/Y6LrG3qXL1CXSde5Yt4L/9eR+XrwywJYlLexevuS1/0CuxeuKa4D2Q4iSbZNI5Uhmrnb0+FHFqiWN/NbP3LloWbGkPjSGrvGN7xzDMHR+6WdvB2BiMkksFuJNb9jMmlUtDI3Msm5lK2+6ezNfffgov/kH3+bWPau4eGmcHVu6OH5ygLe9aTtLO+tZ0lnP//7Uw/RdnuLXf/vNSGDw8iS6rvHW993AyvVtjA7M8NLjCd7ywRvZ+6YtnHi5l+cePI5dsnFKDlV1EUolB11K6ptipGZSNLXWMj+ZpKWzltRshlw6r5iC7d09FzFUF2l5wOULKRYAlxACPah7QpHyQvSArmy0KgsrThhC84AQL73oGQ0biuG5ZZBTW/pKSOmt7/qM6pWAtojmvMZrC5apY1mQatRQQOsZAJeNE7204sKaWnmfGurm7/kxKhBaWIQTSNc7F9eruzmgBQRYUvk3+gDm1+D8NCZUlJTeP5zFpLgsgPG3i3jdE14KMyccpElZOOJ4Ij9Xpzy125/Y7XosT+ogDXUdZp0cM+ksl0uTxMMBipT41sgp2iIxUpZk3kpzZ0cX/fkRWiM1zJXm0ITLaD5F1snz4ZXv4+8vvcxEIcl8KU/SzjFVSJIu5dnT2knYMOmenyKgaYzlkiyN1fLwmz7IB575OufnJrm7czV9yTmypRKaEDw5eInbOpfzofXbGUrP82j/RabyWZ4e7OWurlXommAmn2Uml6MmGOJt69bzmzfeTEOkokq8adVSHr9wiXNjk9REXtst6Fq8/rgGaD+EiFeF+a8fvaf8c9/IDJOzafZsWfYjfd8r/VMUCjbLljbwre8c47mXLrF1Ywe/8rE72bGlC3PBMMGW5jg/99O3lH/u7ZviuRcucmVgijVr2ggGDLp7J5hL5PjYB25hfGSehx4+QWdbDe95124uXRwnk87z8v5uzhztZ/DyJK1tNXzxr55RPWipEsm5NP/w509QU1/FwIVR7EIJJJghg7A3ny2fLZAYm8OxHcYujYIU1NSFqa0N4+TyFCwX4fWBIV3MkIGVt5FFF3QDu2RX6mBezQsh0A0N2/Ybo8GfVeJ4ignpbwCUDYc1H9y8FKImkKaiDa4n5nA1z3nem1fmGIChFI4sEIcsikVpQBb1iC38WnZC8Wtg+AAlVd1JQyGJP7rFB77yPuUC0PESekJWHgaEXHDeUiGFI5CaRCjvKTW9W1NjZXBE5Rh9Ob/nJoLvje1QbrIW3pACR1bYnb+OPwlb6h5WywpWlgecombG+alL01C/uyI2jqF2IIMeSBsuQgNLcylICBqSAhaakSMYzpDD4eGRI9zRuomWSJz9E+e5pWkdj49fIFnK8SvH/ol8SUPX4cbm5WTqivzx6afJ2RaF2Tw1ZpQDk/1EzQBr403EA2GqzCAfWrOD9qo425va2d7UzlwhxxMDl3hpbICjU8O0x+J8eMMOtje18uXu05yYHuPm9qV8+sRBRlJJRlIpmqNV/MMb34EQgvF0mq+cO831bR0cGBjini2r+R9vuZtr8cOJa4D2I4jHD1wkmy+ya8MSjAXuIrl8iS98/WXWr27lthvW/MDv88TT57jcPwUoVaDjuOieG/wte7536nPPzhX89d/vo7t3gs0bO/ns/3wfv/jbX2FmNsPQ8Aw9lycIBw3GJ5IcPdrHJ373zXzmT57g6KHLSMtl086l/NJ/eRMfuf//kEhkEZ4psGnoGIbG/GzGeyc1LiafylGybJyireTGJQvXUY/5Q+dGUdUVVStC08r1Lbvo5cCk8KysXDCMigzfY1iOb4CrUaYRUlvgx6hrqkcNPMd8SaUPzauVefPLQN2IHUNUTIWFx+p8NaPHLBbWzICy1L3MvHgV1ua/JiqAp/ah0mvqpi/LyxYxOH+PC9WShoswFJhJKdHKrEqosTKGUsEqAPfyixYq/YhAGBJsr74Iyr/Zq70JWcn++uKWhWClmwLHLW9ZBljXt9WiIrjUPL9p6dXdfHGND/x5zcHQwTZkmfWKoKNaAgToAYegbhAKObiigCEspq08CIkmXEpk2FjTQtEtMW8neGHmFM3hKOuql9GXnqNoO6yMtXN8doj945eIBYLknCJZp0hAmGTsIi4uq2sbiJthvjtwnqFsgjcuXVv+vdWFIvzU2q0IDS7MTZG3Lc7PTXJL+3KylsVoJsVDfRfY2dxOYziCqRmMpJO86Vv/yLfe8l7GMimShQI9MzMki0Wms1mKtl127H+1CfOvFUcvD3P0ygg/vXcH0VDg+2/wHyCuAdor4vCZATpba2nzRq/8a+KNN61nai6zCMwALMshnSmQyRb/RfubGJ+nsbEaoQkunB9h7bo2DEPn1pvXEqsKkc4UWLmiieXLGhc5gnyvmJ5J8Ys/exs9fZM8te8CA8OzmIbB7GyW8ckU27Z2kUkVmJtO89WvvEx9XRVhXSMUMnnLA7u47oZVjI3MoYcMZMkmGjMRUrB0fTsbdi7jje/dzT/8yWPeY7h6urbzFm5JSfBrG6sp5fJk5/P4dqKhSIB8pojERUh1N5VSOew2L6ljcjjhsQbVpSt0zXNy1xY0TCswc4VXA9NQqkUXtY23ivR8HH2j4bIFllCA5ZoCDLx6T6V+5i5gWWoZi2/mUO77KoPVgnoTCwFMLK6PlW2xPFSUmkdtjAUpR22BckOgGJmHMEJToCa8kxQ4yvXEcUB6KUfpMTevloUn3XeERHNF5WQWWIf5tlr+QG9XgPCmDLjIRTVLAWU2uTA7LFHgt6qpnvPjM+U5cQjVc+jqiomWdAepK8COhgxKQkMKF3QX0xBEgw5SWAQ09fsM6i4t4RhpK0/Y1Dk0e5ask8OhyGg+jaHpuBGH6kCQaDjGTy3fycvT/Tw30U1bNMqslaLaCBLSDSKmyduXbSFtlehODDGQTmC7Lqam8fENN1Q+O/kMJxMjLKuuI2YG2d2k+kD3ti/j21fOc2/XGk5MjXJiZoypYoa5Yh7blfTMzbCjtZ31DU2ETZVz/eMXXuDos8+huYJ4KMR/vu3mRZ/T7tEpHjvVw1t3bWB5U92i1y5PzjKZzDCXzV0DNC+uAdqCyOSKvHSyj+pLQX7ugX99v8erudiDmvP0W794z6ts8dox2D/Now+fpLklTmtnLQMDMwwOzvKmN29lw7o2Nqxb7A3nupLPfW4fra013HfftvJy23b4s08/yZLOet7zzuv5nd9/kGg0yO/+l/vYf7CXl49eYf3qVnLZEv/49YN84TMf5uvfOMwTlyZIpQqEQwGWrGzh4rkR/ubTT/O3n36an/vFOwlHgzi25JY713P0hR4mR+fY/8QZHAmGqWOXnPIoGNeqSOw7VzQwcmmCjJ0BXKpqq5Sq0c8K6kL97CkWAkGT1qX1TAzPeSzEe91nVKC29cZ1KEGHXwPz/gkqzceeV6M/a0WJPxQrcU3Nm1mmbK4QlVqZf5N25YJ040I1Iq9gXd4zzdUtsHIR4KFLr49NXQN1U/fArFyjWwBcZYWjVL3imls5HenlCqUGmnKmd4UGjoO0DPUeRoUBYoPwwX3BKB08NaKf5fQtrPw6nD8dG4PydgtHyviqTD8LaoQM+tJJpQ5FnTMCXF3iGiohKU3vPUzIuhaGAfcvW8PTU2eJBnSkXsCVEt1wEKJE0HBwhM3uphWsr17FlwYfwaWIrhnorokhNDJ2gZSVoj4Q56GR42ho1AXC9KQmMDWwpEXSkqyvaSVZyuNKyYXkOG3hOJtq29nd3LXoNxcxAoR0nX3jl9jTtJQr6VlWVjegaYL3r92G47osj9czkJ4jUcyzsaGF3U1L2NSobPN8MANYWVdPslhgNpXj8uwMI8kkHfE4B68M8cyFy9glBw3BbDp3FaC954Yt5IrWTwSYZYologHzKmX2/+u4BmgLoioSZNu6DlZ0/OT4rTW31lBbF2XztiW0ttUyPDzH7j0rX3N9KSWZTJFsrsixY/0sX97E4cOXuXBxjKpoiJ7eCf70/zzB2tUt1NVG6WyrZf3qVlLpAtdtX0p3zzi2ZfOFL71EJlUgmytSXROhpibMytUtnD4xSDKRRdfgb/78CapiYeqb4hzY34NdtLCm0nz69x9i89YubnvrTg4+dYbMfI5spkggZCKkpLGtRkm3JdS3xJmfTpNL5ZUBLUIZDztuhTW5kuHeCTRdU2kyTcMt2UhTUagKQ9I85qV6xNTEaS/l6K9kgvBolvQcQiQeI/MAzX9NGqpGJw0q3ob+jfpVhnTiZUdfVYXoMywq66m+NVlRRZYdQjww81KbldoYIJSJMxrouocUrvC+d9E1ieNKTF0gpYPlaGhSQxhSWVA5DtL1GsPQyv1r0nuYEKZQYCXUMQlX4EoFXgrcKtcM6e1GULEm8RSR5V+J/0xiCvKuje3IchpVQnmMjNBQoGaUKSIIF1c4PDpxFk1zKVAkgIuhuQjhEDFLmDoILHpSFxnNXcYQBWwpCAhBLKBTE4zy/iX38tDYYWJGFelSnrlSjqqAiRQOIcMgbkSYL+XRdJeSa9OdnKRkW4znUnRU1XB6boytDRUf1agZoCkaQWiNxAIhNAH/7eSjjGVTdEZrKdguuib45r3v4+f3P8yO5nZ+fsvuV/28PrBxAwBPXuql5Nr0zszSEY8zPDfPmeFxtna28sDOTaxpbSxvYzsup4fG2NrV9hMBZtOZLH/6wgFWNdbzkV07fqzHcg3QXhG3/xBk9//SeHF/N6dPDPDAe3bT0lrDyNAsjuPStayRUMjkvR+ssMV3v2c3tu285r50XePXf/0eTp0a5CtffpkNGztoa6slEDD48Adv4pHHT3Px0jjx6hB7b1R1vPe/cze6pnH0RD+7dyxnZDTByFiCLes76G2poSocIF4dIhwJkMsXVT1E14lUhRgenMU0dOprIkRaYvR3T+C6ksGBaX73z97Hle5xMvNDuK6LI5Tzej6jXP51Q8cuScygQTFfwjB1pBQ4joNm6gqQfLcP1/XYkk/hPArk18ugzHb8mV6uAcKvkelicTHHJyGaN97F9NbDE4BQASn89/V/XuDCsVBmv5CZ+exMLhRuyMpmZUVjWdbvpRn9FKIv9BAuAonwGJvmzWnRNdVyIIRAaA7BgI1ANRobnhJSuX45lGyJREc3BLaN9yKge0UtQ6VXcUQ5/VsxbpbllKMUUgHXgssifQprUH7Nd+f3wUoKgSNc7xr4eVlvfwH11QiA0JVziNBUmdTRXcyAj44SU3MJGA66sAnpgpCuUq4RzaAgPS9G0yCghQjrEcbzScYL03zq4heQ0iSkBzCJs6KqjRenegmZGo2BajbXdvL8+BUc1+W+JRs5fWoEw9CoDYZoC1ezvLqSbfnO0Bn+8coh2sNxTEPnjraVPDR0mslCipAeoOQ6NIaixIMRJotp/vCGu2kOx8hYRb5y5QRvXrKBtkg1j/V383fnj/CWrg28NDzIhzZu5+f37KbOUzu+a9dmblu7gt6JGVa3LH7Afvx0D1OpDFOpLPdu+cFr8T9oVIeCtMVjrGn88ROBa4D2ExC6rrwaNa8O9N1vHcN1XX7hE/dete7RQ1d4+cUebr51Ldt3LX/NfZ4/N0IuVyISDnDXXRu5666NjIzO0TcwTX1tFFdKDFMnnSnQ3BDjoUdOMT2bZnx8ng++Zw9z8zluu3kNy5c1MjubYXJ8nrqGKto6apmaSHLXvZs5/FIvtuuiCZ1c0SKbLxGMBLEtm9bOOv7mf3wXoWuE4xHyyZwSDzgO6fksxYJFLpVDSIldcojWRNF0Xfk2Co8VeD1ofm1LNUiLsjKxrCEXKHblye2l5qUahSfqAE8QAar3TKGOGmMiymlLV4DrOeYL4akbffk4VOpcvqZELqgR+d9AxTXESwte1Ye2APzK6kUNxU50P+0qQXNVTUz3/nnbqzqZxNAlhmZh6C6aUN0OGkKlfTwg0nUN3fO+lNJLS+piwbgZT7IPqp6F8FoD1Pc+2FYeGLw8o79NWWFZOT1/dpn3dmqb8jWS5fXCAYO8a6v6qu/FaUqk5qJpBpqhLrImIBbUCHjvZXggVmPGSNopHOEo31NpU61HuLP5JnK2Rd4+wWQpiZQWJdcmIDTCAcGZ5GXqgkHSRZuklWU4O8vf7PkpYmaIkGaQsrPUhyJsq2+jKRrm+qZKf5grJWP5BNOFFJ3RGvZNXEQIh3ct3c4dbWspOjZ/cPoxkk6awSszvDTRT00wzH2dmzgxPczp2TF+ds1uuudnKNoO+4b7mMxkeW6wj5uXLF30GW6MRWmMXW2IftOapTx07Dx7VnVd9dq/Ngq2RVA3/lUpw6Bh8Ms3vvrk7f/XcQ3QfgLihptWc8NNFWa464aVOK/BwhqaYlTFQtQ3vvagu0ymQD5bAuDgwcu85a07GBuf55HHT3Ghe5ylS+qpqgry7YePY9kOtTURXFfS3TPGiuXNzCWy1NdGefA7J3Bsl5UrmnjPe/fwgff+NYWiRbgqyLPPXMB1HLSAgRHQCVUFMXWdUtgkEDSYmckwMTiLaeoUSzZ+gUczDRzXJZNW880CARPHhVyuVF5H+F2+C+pckdoouVTBSyNqyg3E0Co9Zb7UX1CW5St/xQqKSB/4PDNkNbOsAmbSENg6yIAoMy3Xc9RfWBPSpLcLn4qVUY2y8tGPMtBViIn3rbrJ+wRHsUOfzSkRhOY1FleEHhLdS8kJ4fqDtlHeyS6mrtoUJBquqynCJCWaJjAMlYrUTAHSxbW8axJwlBLSRc16cxakZD0AUiddvozqWP1rKLxVZEUw46sipSEr896gklL1bLhyWGgGNMYiTBaySByluERgUcLUbTQh0XVJ2DCRuo3AxdAcLOGStAq4AgIiSMDQEcIiZWc4NHucmWIGVzqENLWdqQkaQmHGczNYjs7HV93JQ0Nn6EmN0xCK8vT4OarNEOuqO0hZBWxp89jYaVrm4hyb7eN/7Xgnpm6wo6Gd/7n97eyf6iGg6UwW56k2Q0RMjXPzg6yu7mAsP0/MCBIzI6yvbaHo2MyW0tSFI0xk0+yfuEwkGGB9YwMRPcjHNl/HjpZKSvOV0Tc9R100Qk0kBEBtNMyH9+58zfX/pZEqFvm9559jTX0DH9159Xy3f0txDdB+AmPn9Ste87Vly5v4yMdv/57bz86kyWYLBAMGy1Y0cvLEAF/+58MEQybr1rTQ2zflmQ+3UF8XY9uWLsbGEly4MMrsTJq21hpOnhrkfPcYs7MZkqkchYLF9GwKy3JpaY1TEw0xNDSLoQui0RBveed11NdX8fUvHmB0YAZs9dScyxaRlqMoj+NghE1lXyU0tQgQIaFukK5EM3SC0QC1jXHGBmbUCekCx3YVwBlePkrXyndzBVS+1B+1jlcD83vVXFPdVssjThaBlDIY9vvN8Cc0a6h03MIamV9bEgvTaip8YlXORi7YpnJXr/guVvrKPFcMHTDUwDHhCUTEgm3FAkooEWiaixAq/6kJlY7UAcd11CQAV+CigM939hdCQ6LAUiJUjUw4yg14wRDPRSEW/PMR2W8sc/GGocpy7UyBuizXAqWARfJQ4TFRBI4mmSymlQjGY29SSAVsQoDmomkuFmlvE+nNYpVYuOhCknMKNIXqieoaA7kRpBRYroUhdNpCDfTnRomb1aRLGaqMAEvi7Qjh8Ia2jZiaIGIEODR9mbF8gg3xdt7atZnz8yP0Z2YZz8/iiCK/c+obvH3JTn739D/TGq7l19fdw8szPXx4+d0MZGd4dOwIJ+eusKVmORvr6pjNl1gVryPaEMR1JXe3beLI9AAdkVoCms7ne44wb+VpDFVxY8drM61cyeILB4/TWBXll29XSsuSbZMqFGmo+uGMs4qYJl3xGpbX1n3/lX/C4xqg/TuMrqWNfPhnb8UwNM6eHQEh6GivJRA0+dVfvIu//+IL2I7L5g0dDA3O0NFWy4ULo0QjQRoaYjz48HEmppJEq0JYtsPZ8yPsf+kSZsSklCqRTBco5i2lyJcSI2Jw/zt28tlPP01NY4yhK5PYJZu2tlqsbIGZ4QRoYJoGgbBJUUqq4xHmJuc9FuClDjUJhoYZCTI9laYyVVqjWLRV75muL+hTU9sKoRR6qnfKA0dAarpy/FjQ66Ra2tQ2rgA3gAIIzWuW9vbrCFV3k35PF5VUYxlgvBfKgze9G3z5hg/lBujythqLwA3wHDI8qlcGs0q50DtNQM0Y03WJ7gGUvzPldCUr4OXJzUFSkqr5WRMCiYPraLhCjXCxJer66d6Bu5qn7PepFywCNB9UUddT+KlVh7K4pcxA/VqggPIoa38unRD447T9ayy89XRTgbMmHAK6qheqFSQ6ytbKooTuMcG8LDJamKQlUEvEqGI4P4mJQdiMIIQgoJkU3QIZx0XDojs1xNJoC1viK3GwmSkmaQyF6cuOMZZPcF/nNqaK8ySsNAERoC5Uhalp/LczX8eWFrpweH7qDKcSfWyu6eDmpk2kSuuZKiS9lOQcS6PNPD1xGo0A1zcsZ7KQ5K72Sj/br2y8mbpQBNNrGnSlxHZdAn5/pRdh02BTewvLG2rLyz7/0nGG5+b55BtvpSoU5AcNQ9P45d0/GSnDHzSuAdqPMB57/jyXB6b4+PtuJmB+/0vt2JXG6B8kSkWbvt5JNm/rIhwyyeVK3HP3JtauUTPdftZzDOnrn+b8+VFePtiLqevcdsta5hJZWprjNDVVs2ljBxd6xnlq33nSmTyBgMmSpTF0XWd8dA5dUzZbQtP4g997kJ6zo6STeeqa42i2TUdHLeePDKj6oK4c8B0XzHCAvfdv5/gL3QxemlAHrR7NcYFUIq+W+bPM/O89z0WoVG2k51kodXXnlF4DtBPwnPKF8Bw/vO1epT4Gqom6PF1aqrSj7zfoC0TEK3rO5ALAcb0b+qI6mreqXAgIvkzfTy/6qUZYkNaT5e3K6sYFtEmixBuuVLUwx1XIIjVZrlfpwlVjWFyBpklcx8VFQ8NF6N4yKdA9YKekK6ZlSih6x7JwJLasHPPC85E+JV147gvOFV+9CYBbUW26qr9M6AvylkIidBfDe2YxDCUQCeomraEq5kqzhAywpF0GM807OClt8m6Bkp3FQeJgky/OkbSyNATqsFyXjDWPi4YuJN8dPcg3hw7huqaqNWoa8UCQG5tWENI0MnaOulAI23W4pXkVa+NtDGUnEZpkT9NyHNdmTXULQd1ASknOTdAYsrmreT0ba1bx+Ngp2iJxttSsYKqQYlWsiYJj8ZcX93FL00qub1pc//6z4y8xkc3wv29RbT2fev552mIxfnbnTt61Y9OidTd3tBAyDSKBH7/C8SctrgHajzCKJZt8wfLk6JXIpAs8+t2T3H7nBhqbVC0sOZ/jc59+mlVrW3nLu773jKQTL/eyfE0rNfVVr/r6dx88zvNPnwMhaGqvobo2yq/86huuWm/5skZcdy0N9TH+5rPPITT46Q/cVC4Mv/DyJVKZAku76jl/foxQNMDHPn47hWyJr379MDOTSfK5ErlsganJFMWijeu6vO3d19N3boT9j5xSRsJC4DoujuXgOi6abnB4fzfX3bqe0ZF5HNtWzbUlX0UgvaYn784oBLqp4yA8WyxZSY85LlL3cov+zVb3UpGA9MHMnyytVXrKHEDoaiyM9JmaUKzM1aiY9fqpy3K6T4UvlAAfJP39ywUqxgXA5d/0ZWUPEhZI9BeKP6RSN74CzPw3dlwBuKppHBeJ8IBNqjKhAIGLKTw9jBA4LjhCw3ZdXFd4ZsPCO88FbRK6x2LtV9DRVzK1V0tB+uDmX5ty2vQV56A5FQcSL3epGyC8FGXQ/z0hsaXFWCGPLoTXYy7QpWBpuJXR4jiOJ69M2xkkNgKdGqOG6dI8BccioAeZKEwCDptiKxnOJ5h384R1A1vohHWTmBkkaeUZLYwzNjaJRZaPr3oDq2KtfG1oH39z+Th3t2/lHZ038qnzX6Toptleu4br6tfx8swxvj3yOBOFOQZzo/zFtt9BCIecnWesMMVNjUqa/+JkL0+PnmcwM8Nz41fYVt/OPR3rAVgWryViqD4uKSWGpr2ma8iNK7u4ceXiNKXlOJivYHf/EeMaoL3OePF8PxeHJvnw3bte9x/O2+7e8qrLz58fwXZcDh+6wpvv3wZAKGRS11BFY3P8e+6z+9QQLz1xlp4zw7ztgzeBgFB48ZPart0rePw7JwmETUoFiy2bOwDVXH3o0BV27FhK2Ntm+bImnnjqDNlckYNHrnDy1BC1dVE++Z/fzNGTA4RCJv/pw7fxncdP0ts3zWPPnGOgf5rJ8Xk6W2qpqrIoZEuMDM3SUBsl40qe+NYxknMZbMsXtkiCEZNiQaAFdBzbZXx4jie+dQQjbGJnlQrP15sHwialXGmBokIqaysJEneBKwj4j+rl5b6rB4tZUlmtWDYm9sDOu3n7Lh1SU5ZMZRNiWMS6yspESSWd5oOVF/59XjEHKkxGLFgBH/QkmN4yj61I6cvz1XplQ+DyG/hpRoOSZRE01TJHaqqHTAPds7+X3rVx0JRZsFD1Np/96bq3nm6oupdvkeVWxtX443sWcsRFJ/tqwhEW1P/Egquy4BqUU6qaW/GtlOq4KnVJqWao+SU1AS6CsBZifAGYBbUALeF6JgvTlFxJys7hSg1d05nOJym6FqYwqQvFybklhOayuqqTN7bt5Uyin0OzFym5eQay4zSH6im5Jf55aD+d0Qa21Sxj/9QpklaKiBFiW+1yHh9/jv2Th3EpcXvTDSwJt6ALnbWxlRhC54aGdTw1cYKttcuRUvJP/Qc4MTuIhUXYMMlYBdJWxTHoHas2Lvj1Cj65dy+vN7rHp/naof+fvfeOk+Qqz/2/51RVx8l5dnZmc5Y2K6yyhCQkQGRMNmAb2xiHaxyu8e8aHPB14BqwMfcCJtkEk0SSRFBAcZU2SavNeWd2cu7pWOGc3x+nqrpndwUSIBuQjj6r6amqru4+1XOeet73eZ/3SbYu7uFlm9Y84+f9Mo4XAO0ZjhPDkwxMzFAsezRmf7o7oYsvWUZjY4blKzrjbcmUw6/9zot+7HO337WPgZMTvObXruRTH/4+Qgje/ee3xPvLZZdSocIn/uM3OXRwkPt/eJBS0ePUyXE+/OHv41Z89uw+ycbNi7n4oqV86F/uZGRkhpmZIiOjs7hugJ2Q/Ma7P8eq1V20tdSxdHE7iVSCppYMGgO+TY0Z1m/o5YJ1vRzYO8B9d+8nN1vGr7icOjEHgJ1yWLK4lcnhWSolFyEFnq9IpBwqJY9SwSPybEQKnIRFoBRL1nQzcHqKwrSR9QMhE4hWQF0FtWiBlFXvRpWQxpop6kAdMq2oo7QOpffxtnAoYcBMRW4VIdvQmmon6fDla9lKDHph5KymUXZN0XTte61x6QgBxRDMMJAaNegU1ICZroJAFefR2CjtIZRGSYFQFgEmlBd6L2OhQSiCuD5AhUxAIoSOgS7u9RI59sd3BjUAFgNt9Hl0HG6MYa+WpdUyzAjYopuTSMgaX18QQiEAV4c11kJjoUKbTgNQllAoXIKaiSgrl3IQUG83MucV8XWSQBWxcRCWxMZmZf1iutMt9GU7GS1P8bq+GzhTHGXGG+WmBevZP3uCPVOnGCmP0OjU05FqIG0luLh1FYPlS1hRbyyuymqORifNSGWMxyf3sLFpDasal9KcauDVPTdzujjEkzOHeV3v1djSohJ4HJ0boc5JsriujTcuuZjNrfMZ1k8zWrJpmjJpFjQ/vfL5pxk/OHiUk5NT/OblFyP/m51Aftx4AdCe4XjrdVsoex6Z5E8ftxZCsPosy6pnOrZcsZIlq7rpWdzOirU98+7cTx8f4+H7D+FWPGxbsu7CXnoWttDYlGF0dBa0uXufnS2xc8dJVq/qZnBwivUX9tLWWs+OXSc4cHCY+oYUyYTF+MQcR46P4vo+T+zrZ3gsx6+/6XLqLlnOD+7azwMPHWGwf4rm+jTaVxTyFdDKLDOBadA4ODCF8gJ8N6ChpY5kymZq3BgXG5NggWmfLBCOxNKS0dEcqWyCZNphemjGLH6R24dlniMsiQpRwoBTtPqbuYhChcoy8x2zK6oAZEKRYYTTCoEsMh3WGBumCIhq1vRqDRfz2RtR3it6nghBQldfuzYnZmkj0ZcGzEQIJKYjtDCL+9lsB2JgiHiMH1gooUiKwCg6a14ismcUQpC0NG6AKcrWEAQmrKsVSEsZ13wlqmwzqJmsmh/zxtm75r1PfdbOaPLCDQq0rcKPYyy8CJmjwLiemMttviOOHaC0jy0sUlaKgiogwtsAX2sGixMkhIOvBWVVJsBMcaAUKSvN5e0bKQQlbui6lBP509w1cj8tiRZOlfoZdc1zU5am4hdpSrSAqLA/N8htQ2lW1Hdz18gD3DpwG/kgR6B8WpwGetLdtCabOVU4Q0eyjVJQ5sv9d9CRbGO8MkVrspmv9W/nlQs3sb55cSwCebZjYHqGuw4d501bN5BybB4/McDSjhba6rJ0NNTxP178k1v1/bhxfGKKU5PTeEFA8ue8CanQuvb26+dr5HI5GhsbmZ2dpaHhubn7+GUZQ/2T3PbVxzl5Yhzblrzv/7yBRGL+l891fQb6J8lkkwwPz/CVrz/GbK7ES2/eyItvuIDHd55k+bIObv/Bk1x+yQo++fkHmJoukEg6jIzN4jiSVUu7mJkuMHh6Et8N6G5vIDdVID9TRHuKdMrBy5fx3ABLQDrlkEzaFGaKNLfW0dRSx+G9AyBCUIq+fZGMXlBTf6bBV6bAOhIpROzHMSKGwJGQtOM8me8IVFqiLBnnz0xDTgN2cf8tW8SaBy1MGxMd2VlF7U0k813tf9RfSrRGh+4VgQQcbfJAocuHycVF4bmQgggdezNGUn1zOvO7iJjbeW+MzZuyLVOrJoXCthSO5eOEXZsjQqSUQCPxlESHiOUr8HyLwLfwfQFKogKTvNJhqxkCYRSPRNemlq2F7yHS7tSGH6P3VwvC8RxG4UezX8oA24l+V8bOSiosaWT5llTYVoAtNQnp0ZhIkZKSnJ83NlgYtaYJ10oyVoY530VpTVuikaQlUdrnwqZlbGpezZyfZ7g0wmh5nLcsehUPT+5huDTGYGkMSzg4IkVHqpmmRBNjpVnak3UcmjtB3i8ghU9Pqp2Uk6A71cHWlg08MrGLfbOHWJDuImNnSMs0qxuWc3Hres4UJ/lq/0N0ppp48+JnHkY8e3z20V0UXI/Ll/axsLGBzz60i2wywbuve+7ViYFSfGPXPk5NzPCHN16BHSly/ovGs8GBn2+4fWE87Rg4Oc6C3has0NG/o7uJto4GHn/kGJZtkUjYHDsywtjoLJddaexxEgmbZctNmHP/wSH6B6aYy5c5cmyUW166kSsuW8HOPae476HDnOyfoKk+TWdbPVs2L+b+h49w3eWrmZ4pcPr0BBMjsyZiJiCbSWL5iumJPKV8Gak1IlBIx0IrRX6mCBrmZoqMDc6ElEGjam2WRA3TqgkvCtsK5fCqJswnYjcQYQkDZgICRxCkrRistBAEiZDdiTDEmBBxvixuAxPlw6IwpFONtiF1NVImBKh5ddMxyMXRuUiGXiNHx4q2hf9C38V5zEyaRTw6aa3T1vnBzOwQYZ7OFF8LlJbGPkwbNV8c7ZO1nbw1flCNl8aBOyHm+1ASzknosSlgnqvIj6xbO2uCIiY1/yAdh1cVoWFLKIowKTWJrxWWBDt8/UA7eEpQCYpIIQlUlXGCwBEJCn6FrJUhJZM0JTKsaujlkYndPDi+m8cm99KZbkaiaXCyWNLCUyUC7dGZaqbsl8kHeSzRRCUogCjy5OxpSkGF1/TewPWdlxGogH25AyStJCvrl/Kfp25luDyKqyu8queltCSaWduwgo8euZWFmXbeuOhK2pON3Dd6gO50E6saTHRGac3t/QfY1rGI9vT5BV7ReOOWDRwcHWNjj1EqL+9oY0OvMTs+OjyOY9ssbm/+kef4SYclJSXXJ1cqo6JmeD+n4wVA+zkZh586w+R4jsuuW3vOvlNHRvjW5x6kb3knr/61qziy/wwP3rmfbF2SbGOGG27ZyP137Wc2X6alo4Hlq7v42Ie+b9rOdDZwemCS4yfG6e1rJVCKl9+yicsuXcbhI8McPjLC5duWUyhU+NwXt7N8STt9va2oQHPFVSsYHJnh8V0nGRiY4nP/uZ1tm5fyw/sOkk7aONJibCSHV6iQTiYQgC0FCdum4itUoCiWPdCmeaNSGPSwBCsv7OXw/jOxkMNJOlSCgEj6FtdthR2oRcjatADtWLFdlbBNu5fAluikNOwqZFiBQ5hbC0OKds2CXRN+1JKqRD/Ks0XFzpK4C7MIBRdaixoQIDTurYooYusrAQgVA1wVocJ8WBRuk0aoESkCZXzcjx9Gwm/ek1LKWFxqaR6H7CyKfHqqCmKGzZjf45fSYS1fbYi15r1EqTYd76iCWs09SPzO4nCkIAyPiuo+auZDm0lW0fwKo+K0LRPbDQKNEg71toWrixRcD8e2SKCxpEBoRVSHmLaSZG2HSXeOYlDBkpo7Rx5D4SEAR8EVbZt5YvoADXYDu6f3kbKS+Nrl+q6ruOPMDwmUy+VtmykFJb5x5gdUVJkLm1ZxWdsmHGnzuZNfZOfME2xoWMcDY9sZLJ8hbTm8pOs6rukwjCnQCltKpJB0p1vwVcCj40epd1IxoB2cGeX03BRDhVl+e60pmh7IzWBLi+66+nnXOeXYbFpYTVNkEw6HhydY1NrMX/znnbh+wOd//w3PmVnxr16++Tk57896vABoz8G4674DpFMOV1y64hk/56G791MslLn0mtWxp2M07v7mLg4/OUBDs3EG6F3STl19CtfzcV2f3Y8e5+SxUY4cHKaQL9PYmGFsbI4LNvSx9oKFHDsxxvRUgYGhKYSQPL7rJIsWtfHHf3ATQgpsSzKbK3HkyDD3PnCQi7YuYa5QYeWyTixL4vsBT+wdIJV0yGaTLFvaQWG6hCtc5ibnUG5A4JbMXXWgKRaNrZWTCMNXvmFjfhCwdN0CBgemODMwSXNnI1OTebAkLoR1Z8S1ZpGFlVDKhMlkyCgsaSytbEngSKNgTMmYtanQmFhbwoQSa1xDAjACD0EsZggEkAxZltCGocUtUXS1PYol0B5xbViUS1Phz8i/0eBFqDCMiqYFVSd5aVhZZDQsBEhZzZPN5zJnM5sQIGrSUzoCJ2Fa53iBwpISV0HCMgpSFX3Y2rxfCIQiYkaYz6Zjekr1RSB2AokwWcfUNZwPFYZNa7ErPubc77yQEeHWMfCKEKDN+zPAZ4rAbfKeS4DACovnlYCORB1pK8FQeRyloTvVzpxfZEJrGuws7clGptzpeB4DAYvSC7l3dAczXoG2ZAs3L7gCS9ghPisCFIOlIV7cfTU7p5/k2NwxpHBpdOoZK49zuthP1srQkWpnuDxCR6qd6zuv4ZqOK/CUx7cHf0g5cHl973W0JBsBsKXFixesp95OE2iFJSRrmjo5NTc1zyvyE0/uIGnZ/MVl1547YeE4PTHNp+/bQV9rEy/ZsIrNS3souR7phPO0z3m+jBcA7TkYT+4/QyppPytAu/m1W5mdKp4DZgDX3rKJLVesZMWFC/nqJ+/j2pdv5PW/cTWVsseex0+wddtyOnuaSaYTVMoefUvbec2bL8NxLL75zZ2UKx5veOOlfOnLjzA2maelJcvA4BRf+PqjTM0UuPGatVy4ZiG+1kzNFNn9RD9Ll7Tzzx+/m2wmwcVblvKJD72FM0MzrF+3EBFoTpwc46ldp80b9E1/sqRj4Zc9AxAahJBm8XY0TsImCBSDgzMgBK7rUyx5SEsa/0Gl5/c2k8JwB1uafE7N9igep2XILiwDZkoQhhgNGwtCmX5kMzXfcipcn0PFo2FbGpUEHXWLdsw2QybMIioSVG2cwoU7ZnwRC5PhORwdu+wb8UfIbazA5MdqRRBSRQFEENGjCLnOpWsRiTJ7DQgFKnQQwcypEGDKAM25o7Bk2LgbpQxoaC3ikF38ODJhrG3kdj6Qi34JESlyaRGRHdbZgCyIQVxELa2j32vZoBYEgfH1tFEUlQtCIRE4ofJUAVNuPiT9SQSKo/lBfO2hhSavCvQXXWxhYYkkFVWhyaln++RezpSmSaD5nvsQR/KneGPfS1lW18eOqb0MTY/xnaEfUu80kLUdXF1h2p3m8Nwx7h65l7RMsaZ+Fe3JdlbULWdDs6kzK/glnpw5yInCGUZKkxzKneZVC1/ElhYjpb+gqZe/3PttFqabedeq65gsF+ira6YtVccn9j2GJSSX9fSRtH70sjw4nWNldzsXLTX+j3/6ymt+5PHPp/ECoD0H421v2IZzVrfqHzcW9LayoPfcpqAAy9aaUMPj9x0iCBQ77jvMza+/mI//43fp6G7i0qtW8cj9h3BLHtuuWcWH//4OvvudJ/jA/3kD4+Nz5OdK7NhziqHRGTJ1KfIll4U9zZRLLnXZFM1NhvmVyh62bVGueOw7OEhTQ4Zi2aXsBmy7aBmtTVk+/8XtlEouuekijQ1pirkyiWwCqTQpW6BtCxUEtHU2YtuSU0dHUco4+5fdwNSXCYGVCAUhxpMp7IAcqRFDAAsXVuMOH67QdijFtwSBDM2FhRF9BE5ND7MQvGLLK1HNmUX5NKLiXcd0bFZhcbMRhOiqIESZ30VoqqvlvCW62gMtAjNboW1ddaIPBQ8Cs006OiKb1VAjBniMpZWOWYoBtyojqybFakOH4WfSEhGGDaWqYVthu+mY/ehIJBKFKyPWF3afFuIsIDOvdXZtdAyronpMHMrV1dxj/COidmedolqaELWvCW9YwrsFPxDYQiOFqOk/agDaV9ENQIBC42lNk12Hp3xcFdCTbmfKnUUgUb6i6JfZO3MMjUAJidCS8dI0B3LHWN+0ircufg2+Fky7U/RlumlyMpwpjNGe6OAjh/+NfDCHBLwAtk/swRKSf9r4fhJWgv977AtMuTO8uufFTLtz9JfGuXtkF+OVHDd1X4ItLJbVtbMw0wLA54/sYrCY46+33shIYQ5bSn5j3UV8es9OPj7xOL+95fwGC5etWMTmxT2kznIfOjQ4Rm9r089Fj7T/rvECoP0EYyZf4uv3Pcl1m5ezdMG5PYDaW+vP86yfflx09SoaW7IsDwGuqbWOhuYMAC951VbOnJ5g+epuOrubuHCDCWO8853XsHvPKT77+e14niJfrPCSmzZwy4vX09pSR227iI9/+K386fu/xpkz06RSDps39HGif4KTJ8f45Ofu58JVPVQqPiNDM0xMzLFpfS/ZZILexa289JZN3P3t3Ty54ySLlrUz3D/B8MCMYW7pBJ09TZw4MkoQFu7atk3g+9HaBVqTyCTwfB9fiSrTicJPUG0LIwXJbIKiG4QAIqrhSGEMhlXUrFOEKZqzi6AjPLBrnD0cjQoFGthGyCGiHLgSxloqiBbnCHR1DUszLFNHdVxosy0KJwLCDkJHr8gtP2Q0IlIqhp9VRG4g0f4ouBju13HMDyI+JwgZliRqDWMMjc1xQRzKE6G6VCBEmNsEdCBMMjGI7gCohhmjNxUpG4nyacKcOHorcVKRWLlqNutq/V51+qpPi3FOxABvwFjP+x5IDIglbBUyVGG6H4SIawtJISjQnmzkwqbluMrH1x5NiSb2Th+hhE9HshmNYnGmm6V1CziSH6A3bdjOPaOP0ZtewEu7r2FxtocvnHqC4coUs36RGa+EQNKb7WZF41Lc2QApJLY0y6gMm81ubbkQIQSVwOX/HfsWnvLja/hry6+KPigLs008MTHMt08e5H0XV2tQx4tFXBUwUSiScRwyNaFEP1DYljwHzAanZrl950Eas2neef2Pdhr6ZR4vANpPMPafHGH34TNs33uSj/z+K2msS59zjNaa22/bw6JFbazf0HeeszzzYe7YNVJKVq3vjbe/7d3mj8B1fe757pNsvmQZJ46OUt+Y5saXrgfMH1FjU4beha1oAU3NGSquz10PHOSNr7qYuUKZT33xIXwv4E2vvpieBc0Evua3f+0apqfz2LaFY1ucGZrmim0r2bihj3/+yPeZnS6y/cEjlPMVpFZ88d/uJz9bxHcDmlrqKOUrnD4+jlIa11VMTuTZfPkydj56kmTSZtmqLo4dHMbzjRhAo/FcPwyHxTPlCdQAAQAASURBVKtXnEdTUZ8UAAFFz0dZAp0wi0gQFUs7NU4gNQAWy/BF9XFUQK3D0GIEZjqU2ccLaWSkGwooNLWLNgZMdHh+qUIVo45tr4ySL3TwCHNnEaDV2j9VvZjNuWWIpqq62kcfn5pZmrc1FoEoHd+sVHNu5hkqFIcoLQgCw+xiJhcxrbDnWQxk0QjC1wpDrCJ67Qg3a1ArmpfYmzLaE+Pw/E+iQhAVAqSl4yLeIGzWYBHagZ2VC6z91dMBtoDRyiTTYzMkZIJy4HKqMIoMJZltyWY8HXBw7iR5v0TSTvHwxAEWZrq4sesynpo9yor6PnJenkO5MwidpjPVTVKmkELyqp5baErUcXX75RzO9XPb4EO8YuFV/O7ytzJUHOf/HfsGF7euZWvLGn53xWuwwot8Kj9BOfBY3WiUijf0rmS4OMem9gXzbiz/7PKrCJTivT+4k/a6Ov7kyisAeOR4P3ceOMp1q5dx5YrF865+V1M9Xc31XLSsl+fzeF4A2vhYjta2eqQUP/7gZzAuu2AxwxM5pnJFMk9D78tljyNHRpiczD9rQNNac/c3d7Hywl4WrejkCx+9i8mRHH/wt6/hfA34RganmRqf4xtfeJih8RyBUjz+yDFe/NKNACxd3MHy5R0sWd7OLS9ez5/89a0sW9rO4MgMn/jig4yO5XCk4MjxURZ0NWMJweRUnif29iOl4J2/ehV//5E7+Pin7uUVN2+gsSXLtm3LeXLXSUpBQGNThlTSYXZijlQmweRYDs8LaO1sZHayQABMTxfZ8cjJcG589u8dpK2jnpnpAoEbgDRqNqBmoYNYJBLlVixBYBO2iwFC0YC2QQnjRj+v5UutS0eUS4uKp60wfBit40ldZSCRB2PkURjGHrUlw+RT7XWIWsKIENDM4SL2cTR1ZjJ01JdSVUvtoo8pIpYWvn7MthQCea6m4hxU0/N+xt8TbToiCCIQC3Nz8aER6sdfPiLPL1HbyPPsNxA/N3o/EauqOTac6zjSGKkho0OUuVGIcqSxDYowbW+wNJbQpuQgco0Om7uK2noBraoCEzSOkGFNeICrPQKhENrCxQNgsDyBUgF+EJDzyyxLtdOYqOPxycNMuQXeuewmpt0C3x3agdYpOlM9ZK0mrlt4BesbF/Ppk7cz4xaoBAFH8wPYQtJfHOd3V7ya+8b3sGPqIEuyC/CUzwf2f4W2ZAO/t/IWbu3fQSXw+fMLjbNPczLNH6y/4uwrCxip/IbubjrrqnL+joYs9akknQ3nSvwtKXnLVb8YSsTncvzSA9qxIyPc9b29dPc088rX/mya1wkheO21G37kMel0gl95/SU0Nz/7nkWzUwXu/NrjfPMzD7BoeSd9q7poX9B0XjBTStHQlGHtxj6233eQQs40PdxW0zBUSkEpVET+2xcfYsWyThZ0NaK1pqUpw9b1fWxa18d9DxxicHiaQ4eGmZjIc9GWJVywtoeEY1EqePQtbGFwaJqjR0ZIWUaSHHiK3Y+e4EU3X8D46CxuySWfK7J24yLyhQoIQbI+xZnTk1CbGwLGx+awHcuEEcMlV0XdlAEZ9TULFzIsI9EXtjQOGJZhSypZs75GEvyos3SNHD8iG5H5cKRIVDIUcEQAFjG06JwAURIp8EP0CYEuAtsgpEEhOzPdlsNF1oqArDZfFAIYNecPf0Ysxgod8VWgY+l9LYgIdKgIrdatcc75otCdeb7S1dyuDpma1oS5M02smxfnPVUIcDVxYHn2cdGHJnR/DgX7kVI0DI8SCXHCEggZO69EbJg4n2aiE5DAwtUCGYCPJCM1nvZi78oGO4EtJBrBuoblHM4dIx9UaLbrmPEKMbvOeab5pxKakfIklQDq7Ck2Na3kyZnTfPjQdxkuTlIOXCbcHJe2reLxiWPk3IBtbWu5tmMLnzp+J8fzw7Qn6klImPEKeMpndcNito8fYrg0QyXweHLqNHVOmnctD7i6czVF3+WZDF8puurquGxR9WZ4WXsr77h8C3ceOEpfS9M5YccXxvMA0Lp7mmloTHPB+v96Kt77NCKPHzeaWuto62rCrUwwcGKMtgVN/PqfvjTeXy65JJI2Uko+8J7/5NSxUax0go7uJlo76pnOlfj0J+/lD/+k+pyX3Xghd913gLLvkc2mOHRilFLF59LNS7n1jt0cOznO1vWLOHh4iPGJOQaHZxgYnOL7dz3F1i2Lue7q1aQSDhdvXsz+PaeZmy1x7YvWcsfXduBVPH7wrT1GCBAoKhWfctkjN1uiUvEYz5cJbEk65RD4AV7ZN/ggBal0Aq9YicHGLJAibNcikSmLwPWrQg+qUbF4mxQIZRSOYNZlJargFbvlh9J6HYo1DPAZMNOWNs01Lcwdf61sPw6j6aqEXxhWoINIqqhjkBOWRkZhx/CZQtawr3joGjIahQgFQqo4fySFABma81IDJuFrhr0HEGfBWfS6tTBpumw/zXERCMmwctwPg3u1TLAmZ1dtAhftFyGWReFFEz40/lOgfV0Nr4aik2razDBrA2q1ahQzZKgeLWsV4qdFk5Nizs+TshKsqe9l1D1NKSghLM1vLH4TQ5URJt0GljkN5CoVCkGJVjtDyqpD64BJN4fQgu5kG64SFPwyzU4Dc27A7Wd2kbQclNb0ZVrxAkUl8JmulDicGyYpMzQ7zaAnmXFhbeNCXrfwSj5+7HsU/DKWSJGxsuyYPM6ibCctySy2tFjT2ENCWpycm2RJ/Y9eG+49fpL+6RnG8gXeuHF9vP27Tx2m4gc8erKfa1Yu/ZHneD6OX3pAy2aTvPntV/53vw2OHhhkx4NHeMWbt5GtS/3Y4//nh9+E5/rc/sVHuOjqVfH2ctHlo++7ld5lHbzhXS9i+ZoFnDo5TkdnA0uWdfCOd1/P333g27R3NAJQLFbYd3AIaQnGJuY4MTjJ2HSe6VyRQydGyeVLJBI2B48Ms25FN//jd27gA/94G0PDs6xdtYDHdp7koe1HecuvXMrBQ0PseeI0s5NFioUK3/vOE2zetoK25ix3fONxVKBpaatnanyOp3afprmrkcCxCGaKgKBU9uMGj0JAa0cDjS1p5o6OMc8pRMowBCjxg9BFPwpZRS4goUJRh52ozfMgatAZg2O4iCoIZfgmt6NsjAgkUulFwhBhygykbfKWQkZrdxXYhKVCkaFAad94RcYJu+h81TBiLXBJKUxuTEQVCOE+rdFE3o1ViX30HmQY5Yxrx2qAsYo5VcZnmE/1mCAAFSUTzx4xawxVkVKDI8CFqgTyPE/S4f7aNxEeK7SuXpOo+ac6m0WG14uI7TL/gFC84oSHRN7JWghmvTI+gFIsr1/IyMQJIhXLZ09/EbDoSXdzNH8MX0GAy4zv0iosklaKinJRGvpLo0jtEKgUtw/tIue6JEWKi1qWcDQ3TqAkf7D6ZuqPZxgszPLJI/chhWagOEnZl6QSDmcKMzQ7WSrKo6J8ltUtYLxc4HRhhv+94c1knRR3DR3ksfGTVHw4MTtFS6KOj1z28nktYj708HY8pfifV1zJ5Yv6GMvnuWnV/NKfV25cyyMn+rli2eJzr+ML4+fYw+S/eXzqtkf59O2P/szOd/CJfmanC4wOTj/j5zgJm1e940oWLu2obkva9C7toC+0sHrTb13Lx778Luoa0ixc1IZlS979Bzdyw00XcubMFP/yf+/m6LFRHtlxgpGxHFII2puzLOpuoa0xy9tfu423v3YbuVyJT37+AfYeGGTThkV88qNvY+vmxQRKIaRk6ZIOntxzmm/cupP6pjSeFzCXK7HviVNMTc9x8eUraWqtI1WXond5JxWlGB/PMZMrYdtyXscXpGDd5j6mZgqcODFOVNSrbYl2ZNzmxQuUYRWYdXhew80aCT5gjIRDlhD1O6M2n+NQXTSjmjHC80ltpPUy+kdY7GxUiNLSSEuZx1IhrSgnpnBSGiuhkbYCqRC2OV4Ic7yQOhaCmBxagJQK2/KBIK7Hsi1NwtamQ7NQyCiMGEv6iX9GRdjRv1q3EOZhj2FZkY/j+VgcIQsTIVsVMgzvSsBScbF5lAiLMCcmm/NTd/POG6Ydw3/mLkNjfCJ1zWNikQrzbFJM7gxcX+Irga8sXF9S8RXlwAetUVpx65n7mPMrSDQZyxQuS2DGnUYI8LUbdh5QzAZTjLnD2EKghUKhSdspioHPifw4U5USJeVzy8KLWJhpY84L2DnZz7rGPp6YGuRMYYbjc5O0Jpp46YJNvKxnMysaujmRn2JxehEtdgcdiU5SVprT+WmKgcnbLa1ro8FJcU3XMgbzOabKxXNSCGnHIR2a/2YSDm/etIHm9HzBWTaZ4Po1y//L/RR/UcYvPUP7SUfZ9X6mrRJe9oZLmJ7IMz2R59//+U5e8vpLaO9qfNbnsSzJG85qM5NIOCSSNhNjOQC+8sVHOH58lABIZBwOHhnmystW8me/fxOZdAIhBF+9fRePP3GKT3/pId786kvYuM50p/7yNx5n7YouHn38OHf+cD+FQplivsz7/+abJC1JueQx6QY0NWWwhUAKwZO7TlNXlyKfK1PIVxBCUNeQZiYf9XuKFGuazu5GNJpjh0cIAm28GO2IYUU0RlTdQgjDhGH9GToEs7DAWmP6Y6mQfETF0ufc8Ydah6j4OXL1iCT6UfhMhECoQ8l7JKU/d+iYOKI1UgoDBkQfIcylCUJFY2RLFWBbBloSjkbrYH4uLcQSo6k0KsdItRiFFqtKRua5hoCIm8mK6H8h0GkVHVf9MLFuJAQmQeiPSU1fNB3Gb4V5UR0JTHQMO+Y1BIZCxWHF6J6hGiomsj6D6g1HCMAiLFFQHkibOHcasV8V7hdC4AVgSQVobBlFME0385zvApKUdOjLLqDku4yUJpgN8mEFgiYlkyTsOgQSV1k02k1MlcdAS5pTWRrsOk7NjXNgaoLB4izfPP0Ev7XqKi5pW4Yb+Ey6eS5uXcKhmQkeGD6ILSQz5T1MunP4KuDqzlWMlfO4vubPd95GW7Ke31t3FZualnAiN0lPupkrupacs76866KfP7l9sezy+bt3sWXlQrau/PlXUL4AaE8zfvc1P9swpZSS1o4GntpxgvxsifHhmZ8I0ACe2H6EfY8d59W/eS3pbJJv/Md2li7rwEk4KKXYsKmP0bFZAq0ZmZhjeGSW27//JK9/zUUESrN3Xz8p26JSdCmVPUbGZrGFxCt7+G7A3n1nuP+hIyzqbSGbdsjnXIZHZmhpyFCXSZCfLSIdhwBFQzZNtiXL8MAUnuvT3FZHIumgBZQ8n0rZR3nV4NfkZB7PDcjWJ8nUJ6gEisCPlhpMPiUKVQFQU2wtojyYQNUA4bwi6hp3/MiLMTxNvJYriD0ZY5PdyKIqfCNai5omm9TgwPy8V8REDIOq5tosWaUvjhUYhiZMN2khgphZiXBbdLY4H6YNUNdG9UzfzapQQggR+mPWBCAj25OaUQNxVSb1dPdqNenCWPQRPScMH0aHnPO82rmu3a5FWEBPNeQZM7vw89ggtImtRt6Zoe0nNha+UnH4FyHxfAshpZkTpQgE+OFNg0RTCCoczJ1CCouiX47rxBusepSwqbPTvGzBNfSkuvnHg9+kycnQkmziX7a+HVcFZO0k/3LgISSC67vX8m+HHqMpkeZ/bbia8UoeNPTnH6XRyZCybOqdNM1WPe9cs417hg/j+XlG8hVmvBluWtBK2nJ4bLSfQ9PjXNTai1ZG+PH/9jzGurYOrlu07GkuyNMPrTUPnTzNhgVdNKSePo1xcGiMvtYmsj9B66vpfInRmTzHhiZfALTnw9Bac/T4KEsWteM4P94d5JqXbuTS69ae02X62YyBo6OMD80wN10gmXI4fXyUIweGSSRtUhmHLZetYHBgmhtuupDBkWn+9h9uZ/HiNr7wlUcZGZ1l+fIOBodnWdzbyjvffCUnT49z7OQYqVQCx5YMnJkmk3Joashw4dpeduw8gQo0thT4viKdSeKXXMolH7fos2BBE7Zj0dCUIpVKMDmRp+wGSEvGSuzIxNZzTVtGy7FI1ycpTearTEBW7+aVEEgBdlJSClQo+RZmUZMQhF6N6NAd/ywapSGWicd1aNSspwIjBBFUqZ1VZT86FCfUpoaiIaqvUMOEohCmgaEoJ2VJhW2b+ilLhDVoBKFFVZR7I2RmGqVEGKWrLZammk8Lc1QR0J0rwQ931LzfWmVp/DgEoChsGRVXm8kPf8ZgVpNHCwu2TR7vPKMWMMPPJpSuikSiMGlUoiGrNxUhVpnrHDqAKDSeBEuIsH5bh9dP0pmoJ+fPkXT8kK2bsgSBwEPjBx7NVhpfu4iwjtC2EkxWykhctrZcwJdOPcBgcQZXBWxqXomvNSnL4eHRk2xo6uPk7BT3nDnGRLlA0fVwpMXByXEOzYwxMlfibcsu47bT+xmYKbCuuYMTuWluWLCG8dIuruteSc6rkBVZPrjrAd6wcgOvW7aeu08f52VLV1H0PPZNjPLwYD/d2QbWtLWfb0afdhwcHefJwREOjIzxW5edn931T85w+55DNGVT9DY10lqf5aJlC5/xa/S0NfJHr72aTPIXwyfyBUD7Kcfe/WfY/eRp9h4Y5LUv33LO/nLJ5Qff2s2aCxdy/w+e4pKrVrP+oiU/1Wu+7G1XUCqUcZIOnuvzxndezZc+cT9zc2XWbVzEQ/cdZma6wP6nznDZlSt53cu3MjI2S0N9ionJOXxPcePVa0iGvcq+e88+8vkyfQtb6WitYy5foa+nhSWL2zkzMEFTXZKGhiwtDWmOHx7Fdz20b2JYjm1RLrmUiy7F2TIibOniuwEAMmGbMFiIJhHwzM5VoOSF+a5q2CquOQvl92U02CakSCgICUImpqOQX3gfEYlFqkrG6JzEIbLI6ipOSKGrasawLgpLY2q/DPjGtoRwXmYTg1p4UFRv5lg+ltQ4UoM2fo1O2LQyspwKxHwaFAlEZHi+4Bww06EZhwGC2AikFtDOCrXGu2NgM68XtUKMhYW1ObGzWVoQHVBz4trwJTHZqu6umRzzcarIKiJWGZVkgGHIgTSqztAtRqMj4Wv83QijnwyVcthWgOs6pB0NtsYOlaIKHxBM6QJaWwjt0OjU8zfr/oDP9X+X6UqRP9jxbzgyScH3qASCnZMDvP7eTzFb8ejNNDNTqjBeKrK03qfOSjGQm+WO04d4YOgkd/YfwZKC8WIBpMYSgusXruKCli6EEPz+uqsB+O6pQ/z9jvuZ8ypMF8vcsngN4/kC28/08+pV63jD6vXcc/I4/bmZZw1oKzva2Ds0wlU/QiCyoKmBrqY6Ll7ay5cfeoKGTOpZARrwC2Wl9QKg/ZRjxbJO9h8a4rKLzh8y2LvzFJ4XsP3eQ5SKLnO54jM+9zc/fje2Y3HLr187b7sQgs/9/e0c2z9I99IOLr95Aw1NGS65ehXHDo9weN8A+UKFpsY0bsXnxLFR6htSlPMul1+0nAsuWMj/+stbsR2bd/76VUxNzLFkUTt9C1u49Tu7saTgitcsZ3q6yPh4nkAJrrl6DVJrDu8fQilNOpXA1RU2XbyYwePjZNNJZssF0y9My3hNlYE2gBYtxmGSSIcrYGTAm8g6VHwV1/UijcFwFGoEYj/GuDlneJwO8zQ6bIip4+3ELCReq0XN4hvZWkWhxeildE0uTVFtBUN1nZ8voY+uS5Rz09h2QMIyubPQpjJWNZpjzXMsBKHWMs5xReFLSVh7JiILq7CYPFAoYT6kDHuBacu0j4nBIx417ErUoHs4oZGFlgZjfRVN9NnIfXYYUXAOvMU3CGfvqJ386IeoCdEqA1xV2ywzYTrKESrD2EXYm07IKF2nQlYmECRwRBKBT72dYsbPARqHNIHWuDpAa8HXz2ynO9lDveXy8Oh2LOHQlmiiEARsaVnM/UMnyVdcpmSJd6y8mL2To7x15RZyXpl7zhxnZWMbg/lZ2lJZ6pwkC9JN+MpHac23jx+kf26Wly5eHU/V1o6FLG5sZmVjGwlhc2F7J/f1n2J1qwGvaxct5bKFT29IrLVm79AIqzvb427RB0bHeKz/DG/dspE3bF5/znMKrstEvsiiliZsS/LWsPXLG6/YREM6ed7X+WmG1prPfe9xuloauPnSNT/z8z+b8QKg/ZQjk07wptde8rT7t1y2HCEF67csJpl6drR98PgoTsLm/m88TqXk0tzRyEU3XAhA16I2XDcgX3R59O79XPPyzWy+bDm3fuFh/EpAqVDhxNFRtNa89lcuRkrJF76wnaNHhhg6M8XaNT1MTc7xTx/6PqWSy6teuYXtjx8nCAIEFvc/dJjmpizNzVm0FzA5nmPlsk6ue9E6XvvGS/jw397O6eNjzE0VGTw9iRTQtaCR0aEZCBRLV3QxMjhNueRCaMPU3NPIxHQxBBoRsyctBaWKMUkUVijfx+TSRCTntw1jUzaIqEhaVs9T298M5kcBa9NCQmH8GCNmU5sjCkN4Ah22QgmDi7oaXoz31zKP8Mlha7cQvHTYbTkEOqp2V7XvtOoCYhZmJRQyVisa0YMyCg3jnoERBgEEKmo9E4pGasJ8hPm5MENl5imQ4TYZf+Y4dBjHZGvis7UgdvbjmrmdPyJQDPcozgU3EbLO8HApISMTzCkXXA2OMkxehK1jLHMNpDZgn5CCgCAi8iaXqMELLFzlAR4WNp72KSmXBqeeiuuR8xXbxw5zupCjojQpkWRRfSsf3vJWDsyM8fhYP12JVqYLYxBYfOngU/TnZnng1GkjMmlsguWC37rgUt6+ZiufO7CbsWKetnSGoXyOfRNjtCQzjBXydGSNm0dHpo7/uPFX4tl5uL8frxLwVz+8l9++6CKuXbL0vGCmtea7+4+AgBOTU+waGOLXLjURoPuPn2K6VGI4N0dvU+M5z/3cY7sZmcvzx9deQWO6mltb2X2u7+zPYiitOTUyTcULnpPzP5shtNbnfid/Tsazab39yziCQOG5Pp/8869wfF8/y9cv4vf+6S0A5KYL3PvNnbT1tPDdrz5OR28LN73mIlZe0IMKFH/5P79KqeiycFErjc1Z9j7Zj+sG9A9OogJN76JWcvkyuXwZaUuaG7OsXd/D8uVdfO/7e3Fdn7bmLGnH4eBTAzQ2ZehozjI7U+Itb7+CD//tbfh+QMqW5GdKJkwmwasEpNIOi5d3kpstMTYyixeFtDJObAWoHRlaVolqmDEMAyoJ2hH4tgDL3J3riJlF7C1mcFRrzWpCkRELVHb4e7hdyWr3aBW1eJHayP7tqg+jcBRW9DgiFrGRcPh7GM8zbzvKj2mkDJBCk054ITvT2CLKm1XzQBGh8TVoLY2XYbj6e0qE5ErgB7Kmpg0qvgxbv0g0MnbbQEOgRQxSQqgQTAWBFgS+QAVGPXMOMwtDwlXGFG6r2Rf7OkbsNl45zmJzNUOELHfeETWEsSGRIOe6pjTABi1UtTuBo0EqrDAHGZVKWKElVnvG5McqqkJKCja3LOJA7iQIja8qpGxJ1k6yKNuDF0DaynCmkON0foaC71FnZdncvIxX9m7mXQ/diiMll3YuZjxfxPUVxyenKXp+HB5tSCZ40+qNvPeSq8NrFDCYz7G4oZl/2PEAs5Uyp2dm6MrU80/X3Xze+fg/2x/iof7TEGhWtbXxDzfddN7jpgpFPrF9BynbpiGT4oZVy+hrbgKg6Hr0z8ywuuP8Icod/Wc4ODrOW7duPK+70HMxPD/AkvJnZi9YO54NDrzA0H6Oh2VJrHSCF7/1Ckr5MomaWPbD33sS3wtAKd7xxzfz2L2HaGhOowJTN+bYFuNzZYqFCnP5CsOD07R1NLBuXQ+jo3M01KfJZJMsWdLO3qfOkLQlKxZ18KpbNrP9gcOcmcgjm7LMTuVp72wkk7KZnszje4p//+T9VEouvhfgIdCBQntGaZZI2uhAcWhPP3bKpmdJO6dOTgCh6EGYBpzxENWIGGe5gcQJExsj2ICq1WBUKxU9N8qdgWFaUehSh4tqyA6EErGaUfgGMGNPQYuaBdsAq1DENlg6EKFUP/QtFHEHMyPTDylIFHaMTIxro23xx47Cm+HbCYiYnAmjJcNuzeZ+U4bMLmRuWqGlTaAVSpt8kznMgJEVheREtT2M1LrKevwgvBoRmEWhSKqhwRo2dQ4NE2f9jBOg526O5j8yHY4ji2FtQq7oElOtsAA7tt7SGgKJIkDa1fNGhelTlUKoHoVioNk7PcLVnRdy//g+NA49KVMfNlzsJyPSIJLU2XV0p1rpy3ZyYHqUXRPDHJ+5jyDQdKWzfOLK1/Fn278HCE6O55DKdBVvTqVoS2epd8zfoBsE7JscZVO7MRp+29pNjBby/ONjD1L2Te3ZY2cGuOfkCd584QYWNTUB8OLlK1jc1MyRsXHmKufaYAVK8R+P72Hjwm6uXLaY5e0tdDXU88F7HsRXivfecDWZhDMPzCYKBW7du5/XbriA1kyGi/oWclHfs8uT/bTj2bbLeq7Gcw5oH/vYx/jgBz/IyMgIGzZs4KMf/SgXX/zzV2/x8zxWblrM/keOsvSC6pf0uldfxN5HjrLpylVYtkV3bwv/8Oe3goC//PAbectvXM2tX3qE8dEcF25ezMtfs5VVq7u54xu7GJ+Yw634vP23rmUuX+LTn7yPQwcGOXZwmE99/IfMjucpzpQ4Uxlj5epukimHzs5Gdjx4mLnpAlffcAHTYzMUvMCAFGYNklLw0tdt5XtffpyoNkuFYgYhBZsvWc6RYyNMzZUBTF8zwnUvbvciqhGv2u7J0eIaiT3OFoJE++JVj5g9xfkybcKVeAId9iRTYTdSHYoJSGrD5pQAH7QIa8ziSFo111MbSVMKLCsCpTAMGISAjA5zPpHnop6Hb0IIhDYJvagAWKAIlJGhWzJAaQtfmaanloAA07RTRkAWvhMpTMmA1sYZxHx0gZSmODl8xfN/0UIw07W/nw1StR6W0QiLp885qwpvCEKAFDVKxnmhyOi1wq6kOmxHowMRpv0EOgBpaRLSYlldM/3lKePHGAaYLAE5v8zR3AQ2aRqcBG5gUQxck4OzLBzhUHA9kiLFsvpONjct4cN7t9OYyrC+uYeEcPjGsf0szDRx1cIluBXF48MDCAXLW1r5i8uvY2G9CfF9+fBeZt0yc5UyGzsW0JWtpytbz+9t2ca+sVF+8/ZvsaC+nkAppkpFvnPoEFt7FrCtt48LOzsprfTwgiDOjyUs84WeKBQ5PTVDxQ/47Suq62RLNo0XdWY9a2w/2U+gNI+fPsPNa1ae95jny3hOy82/8pWv8J73vIf3v//97N69mw0bNvDiF7+YsbGx5/Jlf+nGwcePsffBQ9zxmfvibYmUw9Zr12KFd0aOY9N/cpyZ6QKT43MsXdHJu//4Zpav7mbx0nY2bFrEof2DHNp/hnvveBLLEtQ3pOjpaeH1b7yU7q4mdj52nCMHhwnKHs2NWQIvwC173PLyjTz5yDHy00UK00UevnMfay9cSNKxSCZs0ukEiYRFa0uGh77/FEIKnJSD7di0ttXT1tlAImlz9PAwxXwFtI6bPqOFcce3CHuJETfwJKxHM2ErTWxoG26vTfucA2bEWGLCb7rmdw3CE+AJhA8ogVQC6VqIsgRPgi/Rroltal+ggrA4OV5Tatw5iJplVhNPYfQ0DsVKNLaMRCJBWItm/llCkbAUggAIMBJ/SFhme9JSJC2flB2EIc2wHCB0I5EiwBIBjvRJOR4p2ydh+zjSx7EVtgxC2XrkoUkIGHAODM1jYyLefQ7LrK3Rq2VhCkQQ/osAMQiBLQK9aLuqeRyzaDE/nBmDrHkvgdacKEybvKIwF1si4qccnhsh71fI+z6Hc6O4gYVSCbrT7VzdsR6hE0hsvnL4KT648yFSIoGNTb2V5tDkOB/d8zAPDpzmyPQE/3Ttzfz7S15LJdAM5fI0JVN84KH7eGJkmBsWLceRkoPT4/zdjvs4nZsGoM5JMJKf49j0FJ7S/M21N9CRrWNwLsfB8QkOjI7x5Sf3krJt/u7u+/nn+x/mK3ueiqe1s76OX7t0C2+/ZPO8y/Lrl27lty8/PxF42dpVLGlpYsvCBefd/3wazylD+9CHPsQ73/lO3vGOdwDw8Y9/nDvuuIPPfOYz/Nmf/dk5x1cqFSqVSvx7Lpd7Lt/eL8RQStHQWg8C5maKzM0UqG8618HfdT1WXdCDbUvuuHUnN758E/ffuZ9Svsza9Qt56IcHufO2PQydmUYpzfDpSYQQlEsulaLHn/z5y/iL93yZpCVZt66HZCrB0IlRho6M8tf/4z9J1qWor08zO1lgciLP1H1HsC0TPrSkpL4uRW6ygO+bppuZbIr27iZmJuaYGJpGC0nR9cGSRmyRrEUgQAvshIXrBaFLkqiysejIIOx7ZlUjZLFikvMsurXhxqilSxTWCsmT8gxrU7EaMlxQTcwuVv7FqkcAHeXVIpWgOYcBsWqcLjLVNWBmnuOgYuuqqOjNVwFSCJy4cLjKkiLzYW2+DFgisrEyzFeGMhVzTsPOhNaI8A0rrRCWINCahC1wPR0zVhF1MoiVj9GkhGy1ZjPh+4jCmmZuw2NrQ4vU7J//dHMtgpAln+961b6+CyQwncLDULEKhMlzKoUFRFGupHAoKw9bWiSFxCOg4JUQQpASCSxh0Z8rkS8PkK8EDBZz5Co+2oPpokepqJkrl3F1gC81gQsDU7P88T3f56+uehFvXbcBW1o8OTbKQwOnuOfUcd5/5XW8fOka+udmqAQ+beksT42P8HeP3E8l8PnIjS9haXMLAD0NDbxm7TrmymXed/c9eH7A5YsXkbIdXBVw3Yql8/6W+1qaeDZDA9tP9HNgeJw/uu787WieL+M5AzTXddm1axfvfe97421SSq6//noeeeSR8z7n7/7u7/irv/qr5+ot/UKOr33ke0yPzZJpzJBpSLPn/oNc9Yqt5xz3lU8/QFdXIyvX97Ln8RM8ufMUOx89xsDJCV71pkvoXNBEbqZIS0sGr+LT0Jjho//7Ngb6Jzl2aBiNpqkpy8GdpxACLrtmDcf3D1HIV9BaY1mCtiVt+K7H+PAMvhdgW5LVG3oZ7Z9i7MyUYV6BJp1OEASKsTNTVLxQii80wg8DYNJCComyJM2tWcoocqVKWD8mjEAjCjuGSkMhjD4hZl9URSBEKaDo3/lGlMMRxCIFLTDQ4GuT+E9oCFM62hIG1HQUVDWvJSFkawppmXcihEbWJIkkGksEodOIxsLDlmChsKUKxSXmjWoMQYWIcUZZtOoHkWGYEsu0kpE6yuEp0y8snCBbmGcaVhtgSYFQFr7BzfCfAuwq+RIhVEWUOQoF1poOx283/EXEb3Y+KtVsi0EsmvvwZEZByrxyinlDm6OqDFLHpROBZ5G1LSph3lDIgEBDSSu0kEYkY0ka7CR5r0BaOizK9HFwepSy5zKUH0EGDlkrCdrUqWllWNVMvgRaIm1Ji5Pm+MwUC+rq2TM8xD0njnPpwl6u6VvM9kVLGS8WGMrn+NrhpxiYm+VvrryerJMgbSc4ODXOooYmVra2kbKry+s9x45xdHKKbMLh4NQ039i7n/ffdB2PnOrni7ue5KY1K2jPZpkqFlnX1fk0X2L45/sepiGd4h01DM6Wkq29PXQ31MfbposlSp7Hgsbnl5juOQs5TkxMEAQBnZ3zL05nZycjIyPnfc573/teZmdn438DAwPP1dv7hRjFuTKHdp3k5P5BXv7O61izdSnlSsBH3/tVZibzDA9M8dEPfJsH79yHEPDwvQc5fmCI3/iDG7jxZRspFVxa2+vY89hJVqzu5i//6Q286o3baGhIUS667HnsBEcPDOO5PrYlyWYSFOfKFOfKHHvqDLbWOEqTTTkIT3HmxDijp6ewECxf0UlTfQpV8bj+FZtoaM5gWQK0ppSvUCm6tHc1kkhIRKAQXmAs3zVoXxG4Pl0d9Vxz1SoKZZcg0Hhe2LpEVevKFMTO+iSqZEJFxCICsygEWcvewiEIdSBhOxMZgPRB+NUcjwmVmdCj8IQRjMQ9aKTJqQVUm1Eiw/ybGdGaL0WojsSwNUcoLEsihcaxFI7lk5IBSemTkD4py8OWUXyOWFBydp7NnF+TlAGWVFhSkbJ8Mk5gQoyWH+bPAiQBdljQbUsDelqHeTyJCXXKKKl1VlsbCZHfZSzWsKlag9XcVIT0c35IMQw5Rtuqocez0KsmPxchX5xbi0YQvqHAQoVhX0un0IGFUoKKb6GUjReKYiSSzlQTea9CyYeZsubgzChpO0HZDwiUxg0UhYqP5dpIX9KXaeQHr3kH1/UtpzmRYnPnArYuWMjlPX3cceQwf3TX96hzEjQn0wghuGXlGrZ098TF0EIIpsol7h04we0nDrKsqYW1bR0xmM2Wy3zn0CFetno1b1h/Idt6+0jZDvtGTdrlvuMn+eHxE/zg8FG+uPtJvrznKfx5ti3V8eTgMA+f7Ge2WDpn3yvXr+WSxb0UXY9jY5N85uGd/Ot9j/JzLGJ/TsbPlcoxmUySTP7sC/9+UUe6Lsn6K1axaE0PTW0NNLU1MH3bHpykjWVJbMcikbBJpGxe/2tX8+j9Rzi4d4BUqIb86w+/kW9/9TEOPjmAFIJbfuVitl2zmpa2Oh657yDX3HgBOx85womDw2TTCSYn5hBak0459PY1MzkwwfI1XeRmiuRzJWaGp7Edm/aOeiwhKObLDBwfpVysUJgtVwuolUKpgMGTY6y/eBl7Hj2OUtok8G0LZUsINMNjc3zjO3vww2+hZQtcrVEWROKQeYu6Bh3VnUXMDKrNPKNF2IryMTU5G2LMCE9WZQiGkUXHGAECFSBBdYGPIEaGbI6qLRUIgkCQcEKZvDB5K1sEYT2aillbJOOXBIZVIEhZPp4KCLRtZPdEYplo1RdIYQKNSgjS0qfiW3F/MVsYtaOUoXIxDIWagmNTfO1Yod2xCjsfCBUzPhVIhCXRoehAnD3xNZ8zDgmqcBKVmDfHKKq5M0SsIamyZ2Fay0Rh4JAwxteEUBQSgWVkeBwC4pxbwbES+LiYzgUCiSBBmlX1Xeyd7sfDx/UsBFAWHhu6FlFHnv2T4+BLmhMpxnQZC8HLl63lw49tR/mKBjuF0vAnl17B73/vdsYLBRKWzdvWb+KKvkXkXZdvHT7A/adPYlmSzmw9r1i1mhsWL+f9D9+NIyR/e9UNBErzyGA/j585w9HJSVa3dtCWzfC9Q0c5Mj7OkuYWrl+xjH/ftYfXrr+AdV2drO/uZKpoastseX6e8elHdlKouLz0gtXn3Q/wH4/uYSJf4MKeLpa0qf8y2f7Py3jOAK2trQ3LshgdHZ23fXR0lK6urufqZX+phhCCV/729fO+lFfdsomrbtkEQD3wWzWNP//0b1/D4MAkX/70A2QbjYT/Lb9xDV/4xL001XTO3v3wMR679xAzE3O8/h1X8Tuv+he01rS111GXSfDHf/8rfPHD36dcKHNkz2kWr+pmolAxCnoFQcWnfkETlaKLW/GZGc9H75hk2sFJWBTnyuhAc2DnSZas6OT44WFEoFFKIbDQWqN9ZeqpbBnneSLhR6ScjBSMQVhcHdWdRS1i4jpgGb+FmvmrAhvULrTEYBnldZAiNlGWKQNqCowYJW5EFv4U81/LgJhEaw/bUqRsHyHAFpqkFWCFxsRaCCTKgBwahYrzbqaTtMIW4Id1TyZdVa0rQxgrLCDuwC0xnQw0psDVgKF5LQdNIHx830EII+fXlocSNkqL+KMIEaCVaXgqhSHSZsKriC9EWACuIdSuhHMa1ryFDDZiY7VzHU2XhnDFCWl2UL1GtVHOaL8JB1OtKwzAKwsqUpFKWXi+QNoWWkDWSQOCrJVmoixMaUNYQH5ydpZCURP4EqlhLF8igU17Oktnuo7PPbmboutR8lza0hk+vWcnR6emaE1lefGKZdx76hRf3r8PPwh4cnSEtkwaJcELAl6xfDWPj5xhulxm24JeVja38Z4ffs8YJvua8VIBpsb4ra1bGZ6dQ2nNr2/dzOf3PMnChgZOTE/x8nUGoBa3NMff3ZPT08yWy2zs7o63XbZkEdlEgkXNjTzduHxZH7v7h3jZhavm9Vp7voznDNASiQRbtmzhnnvu4ZWvfCVgBA733HMPv/u7v/tcvewvxdBa86kPfJvJ4RkSKYe3/enLaH0GzvzL1yzgyZ2nmBjP8cSuk7R3NpB8/SW8+JWbqZQ8vv2lR9l4yVKuuGEdAyfHcUseX/zXu7nk6lWoQNN/eIimhiTrNi/i9e+6lo+9/xssWtmJ8jUtrVnWbFnC1NgcXb2tTE3UCHZUFK4SeJ5P54ImpFLkcxVcP6D/2CgEGm1Js9BVfEQ2ET9Ph3JuHfXiEiAts6YC1bolhCkZi0JgZlM1BBZtq3Frj/aL8HXE2YtsxOQCsKQgENWcjVlwqzLy+SGzKkpGRc+OZcJ8SkMibhlj8mtWaE0ihDJF1kJjRX76AoRWBFobMb4SobVVmDsTsvpyIspGBeHbqXr8R78FaAJtgxBhlFBhC2PsLBD4QoXN5RS2bUoOgkCavJQAhIWWYa4rzDOBCkOw0fuK8maAK6q5shAE57HhaMI14BGLciLDElk2bvtV8DT0WYUsTipJwtGUdcjyhcBFgpBUAo1lwWCliBUk8f0Ejbak4HlUlIcQNoO5PKVygIVkZWM7g9NzqEBTLPncdfQomzq62D5wmooXcGp6mu3SQgWa1kyGl65YwwcfepDexkYeHjDy+KTjkLQt5iplfuO736Iu7eBpxaaOBdw3cJKEZZFNpfm9LZfyjYMHuKJvEY5l8ZoL1vGaC9bx2MAAi5sbOT45hbQEm/LddNTVzZuur+x7irzrsqGrK77mb9iynjdsmW919cVHnsBXAW+73LiIXNjTxYU9z1/C8JyGHN/znvfwtre9ja1bt3LxxRfzkY98hEKhEKsen0/j9m/vprunmS1blzyj430vIJFyaGytI5U51xx0cixHKp0gW2+sbUrFCp/913tYsbqb7t5llIound3mju9Ln7yfJx8/wYo1CyiVKrz2V6+gd1Erux86ilZmUd1w6XLGTo5RLFa47d8foDRXZtmKTvpWdjHcP8lQoYwqV1i6ooPO3hbccgXHNnkm35dISxIEilTKoau3hcmhKVRgXNCDChDWomltQnZWoPG1RgYmBCW0QJtWVkhbYNs2hcCP784jMLFtQoPjEAyrKa3qOCtchg5ZQK3OIXociSDiGilBlQZFTEJUwTICQEuAVjFzcmwfx1JY0oBVQvo4dkDa9mNpP0TOHYR5MrBCYYctAnwVGHWn1igt8bDwlURpGYr5I9NkSNgmn6eQ+FHxNWEPNy0MndECJSUJO6DiG3G71gLbktjSSPgDLRDSTLDp12ZMmVVIhbVW5m5CyKrCETOBQksD+tFU14Yfa8O92uBgHGgIWZwWYY4NEH61AD0qy5BuyGpTUC5qZBJjWiylsSaTgjQJk3/VAXMVlxm3bJSyWpB0EjjSYbbkGc/MQDI0mYdAEASKou8ymitwdd8SfnD4OIHSTBfLPOWOsq23l+F8ni898QRzpQq9Cxv5o8uuYO/ICEooHCnZPznOmbkcDV6C39i4lbWtHZycmeZ0boa/vuJFNKfS/PqmLdxz8jjfPXqY37noEpKWzdaeHmZLZTrr6xnM5Xh04Aw3LF/GX99/L2vaO/jVDRu5afkKJkvnNgE9e5yZnsFXZ989PH/Hcwpor3/96xkfH+d973sfIyMjbNy4ke9///vnCEV+2Yfr+hw6OMT4eO7HAtqhJ/tZvKKLd/31a867f/fDxwiCgAfvOUhjc4Zf/4MbAePl57s+uVyZ/pPjFAsVBvsn+dBffYtSoYKTsIwsvmxUiicOjTAxOktuYg6v7HHq4KDpi6nBq3hsv2MPbtlj6MQoxXwFFSgO7TpFca5MIuWQL7qUii4IQSJlwozpbJa2zgYO7j4NQmI5Npm6NCXXJ1Ca9p5m8mWXfMlHWiaPJoTGUtIoGK1wYZOaMn6cdzELnbG98iPX99pu1dH/4mOr+bFoQZXRQiyqP2o1CdFCLYFAgTCxv7AztgEv0GglEJZ5bJiEUS46tqoaDgsTVkwIH8sEANGYPFZSKhQKJ2RwjvAQGKWkT4CQxgKrrCS2UqZImgAvNHxWWqEwIGdSesZh3tdRvsQUjCdtjR8IvDDfl3Y8KoEFtoUfqPAji5ApeqCtMKenQkWpMTvWSqClRrnhBAdU47UqBE+oAbqa0G4tUws468YBUwMoovsGEfc7k4KQFYes0jWuORnXpiQMEFs2WL7EUQ5lr4Jl2fQ2tjCeG0T5pobCVZCWthEkKRMdqBBgAQ2JJIHSTMwV+cqT++irb6S1PsPRiQnmKi73HT/J0pYWTk5N4wjJ5Yv6aM1m2Tk0SE9DPW+6cAM7hwf58I6HedWKtUyUigRK8ZmndlFwXeoTST746IPUJ5LYQnJmLsf+sTHWd3ZhS8mNK1cwXijw5PAI1y1biq8U9Ykk9Qlz81obavxR409uuvoZHfd8GS94OT7DceDECAs6GmmqS//4g88zRoZnqKtPUVd3/kZ8nuvzyb+/g7mZAsvWLOB177zmvMd9/B/uQCvN4lXdNLfVcelVqwj8gHLZI5VO8IVP3MvE2Bw9i1qYnihw4MkB3v0/b2ZsaJbhgUnu+95e0JBJ20yPzWFbksbmNJ0Lmji5/wwdC1pIZxz2bj+CW3bRgSaRtHErPis3LaJUrDA3U2b4zFRk7EAi7RD4ilQ2SWG2bPJOljAmutLCSScolVxwLOyEje9Y+EKALU2aJiFQCdvkymzAsfBtCBKGjUX9zgKLWOmoBFV5f5hL4zwKRwRVxV30L9wVixWo5uGUBcrRKBtIaLPNVpBURhBiB8gEEKoZpaVI2h6Oo8g6ZZJWQCJUIWbtMknhhzVowhRUh+FHI/LQpCwv1ksoDS6OcXzSkpKyTFfjkEkpbZxXfO2EeTY7PNZ8COMdouMcpLHEErjaItAWXiAItEWgTJ5MgGFnQhAocH2LyBvS8yV+IFGBCXeqioUOJHgCfIkMzEUwSlGB8DCmymEeLQay2p+qeknia0Z1OyFOSsf4W5puCGHbHCc8haOQCG5as4L7z5zEDwJKYZeG1lQSmZBMlIsEWiFDD0yFeY+rWlrxPMXpqRla02muW7yMU9PT5MoVlIbmTIqehnoeHhhgdC5PQlis6+ygPpmkMZliWVszE5US1y9fRms6w/YzpxkqzLF98DQrWlv544uu4BXf+AIl3+c9F13OZLFIQyLJBW2dfPXAPgquy+W9ffzWFlMg/cGHHmKqVOQDL7r+eZnveqbjBS/Hn/GYzhX53sMHacimeOertp2zf65QZmQsx4olHU97jq7uph/5GsVChWKhQrnkse36dU973EtedxFKaRYvNyx3LlfiX//+Dob6J7niurVcdu0aTh0b44ZbNnLH13dQzJfp6G5i9YW9PHLvQaQQDJwaJ5GwyCRtVlywiMVL2+nsbWXd5sXc9rkHmB2dxbIl7QuaaGyuo5ivkKlPcWzvafJTBZo7G02RbkWRbkiSzqbITc/hF8rosJDXskxJcCptUSx7cfzJSVrUZVPMFF2wJcKWuFqZ1VyACASBrcLFUiAcSDgW5UCZAmhzmvlhRcwCqkLFXAxU4cp+9uJaC2TR75FKsrZziqmZ1oY5hAxDOJharlAi71g+2WSFpBWQtI3rhx1K5yNwE2EAL2n5CCAlKkgR2WlFLV9M8bXUBpj8QGLJgIp2TE1bWLjtKoGvFBXl4CmTc9PCRqGxwtisEyK3sARuIJBBQFknTaG4Ai0lthRIodAqwNMWlpQ4lsINqk1HpTDU1netqtdi5NISEmhiMUi1OSrnAbN5ziHR86P8Z9QmBvO78mr2hSBpIqga6QmUBQ8f6adcCVDhc4WASbeC5UA6YaMAXysIzCJXn0wwky/j+gFawUypzNHhCYZmc9Snk4wWCwzP5pgsFHnrhg18dsceZotl0jJBUzLNE4ND7B8dpRh4dGXqGCrOkbQsrlmymMG5WfpnZjk9O8NrV67l64cPsH98lPdcdAX/+PCD7BkaJlCKiu8zUynH37srFvUxPJefB2Zaa760dy+r2trY2tPztOvA+cbBwTFOjk/zko2rGJyaZWquxIWLnl/5tBcA7RmMpvo0S3taWbf0/F+Or9+xm9m5Em977aU0N57r4vFMRmNzlne/7xUM9U9SLntPe1zf0vmgmUzaRoQhYPGKTg4/dYbOBU0AvPS1F3Hzq7cgwz+YdCZBoBS2LensbuLNv30dhVyJb33mfrTSLFzcylj/BJYl8coV5qZyOMu7+LNP/RaJdIKPv/fLPHT7blq6GggGZwh8n5Qj8csVAjcIa4Ggs6+NG1+/je989gFysyW0iBIogkrZwxOSTMph3dZFPPL4CcCo/wLbqAQsV0PKLGTK1uBpUgmLMuY1YiMLXWVkNVGwqugAqsAGpl+aP38+9VmPo4XVAAsGBHxtJPyWNk4XtgmZJRyflGNCfVEptCU0WdszeTF8MiGIaQJSoYzfkSbUCAIZSvxkaGLsKoWnBEomjauIrnaH1kIiEGFLGR8s27ApFYTYHcrhhY5TiklLI4UiCAJ0IEOnkajOTWPbCktrvMAwZCkEwgI/EBgxSjSBJrw6z8iY6q55k1j7r9bjUVW3ycgVJTwtVvjTr7nhqBH7mLynAVMrgDnfjXOrIgpNhnWG2jc95lLSxtOK1lQG3w+YKhernbmV5sj4BEGgqQQBjrQIdEBzIkW+5NKRzrCsuYWbVi+nt7mR+mSCxwcGsIVFT2MDKzvbmCtX+MyeXUyUiixpaSbQitWtHSyuH2KqWOL9D9xDECgKnkeDk2Bbbx9vW78pnqptvX3x4wf7T7Fj8AxvvGADD/f385WnnuK3L76Yl6x85t6Md+09ymS+yLKOFr6/+zC5cpm1vR3PK/b3/PmkP8UQQvCqa9ezctH5Gdi2LUtZ1NNKU0Pmp3qdTDbJ3d/Zw13f2n3OPtf1+fpnH+TUsfllEImkwzve/SL+59++li2XLuPwvjPs33M63i9rvswbL1nGS3/lYnr6WrnoylVcduMFZBtS+J6PH/o2dva2svzCPhYs7cAWgpHTE/zbX3yV//jAN5kZm6WuLsnA/kEqpQpbr17Lsgt7KeZK+GWXwPVI2BKpNE/cdwC/4hlnd23smEwnZoHn+hTyFXY+dsIwBq1NwXO80GKOB1CmJU3JC1AeJEUoE9fz19H4lxoAi7dHjiJhSDGW+kfHhmo74lo0qqYXWlfr3sITC6GQ0hQnR009E9IjIT1s6RtGJgJSdqhmFIpmq0ydXaHOrpAULmnpk7Uq1NtlMrKCLQISwidrlWhwXOplibQs02gVyVgVErKCIzyTlxMBjtQ4oX9jQlZCYYkiJT2SwsMKDY7NFAicMNcHxifSzLXClqYVi5QBUmLq1bQpxK4acKmqN1ioNkUCPnH36KcDtnlgpqrhSKFMXlNE8n+XuNBdagNaVgUsF0QJhGe2SS88l2/+SQ9sT2B5Rh0qFLh+gO9BxQ3wXcVEvkB7KktHuo6ktA0ue4KU7dDT1IAtjPNLSyLNqfEZ9g2PkStXODg8xp0Hj+JIi1dduIai55OvVLj32AmOjk3w1OgIRyencKTF5T2LeGzgDBs6umlIphkrmHDjH1x8GVf2LqJ/bhalFc3p86csTs/MMJLPo9C8af16ti5YQEf22d0cv27beoSGrz68ly3Lerh0xaLnFZjBCwztZzJWL+ti9bIupmcK3HPfQV7y4vVk0j9Z2/LLrlt73ur+odOTzE4X2fHAkTjceOCJ06bmrC5FT18LhbkKb3v3ixgbnuEHt+5k+doF/ODWnaze0Me269aQzibZevlKBo6OUtdg/rCO7RtkwZJOLr56FZ/5m1tpaq1n7UVLWLSqm2xDmh98/kEuf+lm9j58mPqmDKl0ArQm8APauxqZmcihfUXUp8S2YOLMBEMnxowmz5bgOIY5+QpfBGgHnJSDtCxc3zcBNzt0ewgwTTwDE4bLph1ygW8ECBJcz0j6IwFIPFNnEYd4gY1+RgdGzIDqNl17vqi2LeyOHBsfhwoTIVXoqh96NFrGqSNlGxNhW/hkbTesNTO/WxgbLDsUgiSEhx2u7BIjInF0VVSiUEgdEIR/nhamjsBTCmE52FrhC4WlrDiH6AZGDy9lmDfSAUpLKqZKHSE1llI4UuPrIMzpmQmQwghIauvADGfGALY0ykewTNgxYlo1IKZVDTGuFYTU/jQfLmSb5mAR5dWi89SSv/A1LA3a6FaQQEpauEEQ51KFNK9vKWhvqmPOrSBsKLu+EbUIODo6iS0FDakUM77CsgULGupJOw5juTwlzyctTQ3DnlODLOtspSGZouC57B0aMSFdKUjbDiNzc5zOzTA6l+d16y/gHZs38647vkOgFW9dv5HXr7mQI1MTpG2bxlSKMzM5cgWXtqQBqEAp5ioVmmrA7S3rN1LxfZK2TU99A5cvWsSzHd1N9bzy4nXs7x/lslWLn1Fvsi/eu5vjw5O891eu+7lpAfPTjBcA7Wc4Hth+BN8PeGJvP5ddsvwnOsf6i5aQmy5w+xcf4fpXbYkl+4tXdHLtS9bTs7jadfb4oWF8NyCRtJkYyzE7UeC7X92BV/Hw3IDepe1IKbj7W7v47lcfp72rkTe961pu/pWL6Q1DlxsvW87i1d2UcwUcxyZdl2T1lqVsuno1UkqO7DzBrR+5g5VblvDa378JaUm+9A+3MT0+ywPffBzfC0IJuimqdss+btkD20LakmQ2RSWyiwoLgC1L0tPXSv/QdPWDxya5IAINUiOVwHV9E57yQNthrowah6TQF3BeiArms4Va9lDLJmpYWsTCIuamFRCZ1ljh+0kG2HYVHaUwYgQDXAqJwpFBzFiiAmpLgkWAHfpDJWVAAh9bmhBqgDQl1kLiYYp/rfBYBdha4AthQpWUURhxh6+gpBxsCYEt0FoSKIGLHQZANQkRUCGB1GBLcJUpWI76tGkFgRKmNECbWjSlBVIqAt8KQ47aVGUH5jrFy6SFYWmqZk5rACzKnUG4rerwFefa4nNFIeQILKNrFakjI1Uk4PvhHBuzE3MDZJvnTs4VSCUc3nXpxXzo/u1VAZACT2mm5ko4liRhWRwfm2RdVwfZRIKy5xsA1BpLSCwtGMsXac6k+e7+wzSlU3zjV9/EX9x5D8cmJtFS46mAuWKZDz20HakFLZk6Sp7Py1as4vh0Ox/d+Sgl32dwLkfRcxmYnQXgM7t3c2xykm29fdywfBnZUNmYtH/0clx0PU6OTbFu4dOrxDcuXsDGxfNd9w8NjrGgpYGG9LmCtGwqSV068UvjKPICoP0Mx003XMhT+8+waX3fjz/4R4yHfrCPcsnlkbv3c+3LqzH3pau72fngYR66cz8vfs0WJoZn2LptOUtWd7PzgcPsPXqCuZkir//Nq6lrSPP4fYcY7p+iWKgwO1Wk/9gIE6MzLF+zgN967y0APHj7Exx54hR9yzr42D3/H1/8h++w4869bLl2LQDf/+x9TAxOUZgt8ugde7jmVy5jy3Vruferj+DmixRyZdoXteOUDYhmsqmwfUyCX/m9G9n58HGOHhyiVPLRUpDMJqlrytDUluHU8LTJURGxg2oTT3zQSfNTJk2RtQibbgLVBTMCJPP0+bmz6Liz/1ZrwYyzwo9Cx96FWmrTSVnqGCxjoic0gbawpUfa9ozpcJgfEwQ0WmWEgKT0EUJjE4T2Vy5JKlgyZEgCEtrFE0Zh6IQhzqRl2JVAogRUtANC4WPjK0MRHcsoABXSuIIgCaQ0JRwkwrCtRBLgY8DJlppAmQlQWhBoGQZ5Q2YX7tO1kxhRKoGZm0je6tVMSDQioIpyY1RzW/H9hjb3CFF7r7NBbd6IGJ1P1SYrZHZxMbYygCUkUIFKYPwMr1q6mO0n+6lLJPB9RcFz0WD6ioW1hmemZ7GEpM5y8ANNQzKBrxUtmTSHRifIV1wWNjeSr7g8dvoM1yxdTMnz6Gmsx1WK8VKR0zMzLGxqpK+xkYf6jeLxvv6THJmcYEG2jt/eejF3HjvKGzdsAGBtRwfHJiZ48MQphmZz/M62S3gm44vb95Avu6QTDks7WjgwMMq+/hFed9n6pwWkybkC/3zHQ8yVXP7fb76K+vR8a8FXbnt6Adov4ngB0H6GI5mw2bpp8U99nhe9cjMfe/83OHloiK1Xr6K+sZqbO3FohP27Thnhhmfu8Nds6OXovkEuv34tGy5dxtYrTCL5we/tJZ1NsOKCHuqbMhx+6gxH9g7w2MghFvS1ccubt6G1ZmJohp4l7TR3NOB5PuWiy9jABP/5wdsQErKNGbbccCGP3r6bNZcs4/gTpxk+PkpprkTg+kwMjCNsm0AJvIpHXVsjrd3N+EhOHBrGCxTakmAJAg0FL2DfU4NmTRFVNNLCFMsijXNE5NKvEaE/Yw061f79hko3dTZ4RWCnq2GpeU/VVAu3wzCjMuqDqmVWlPSRet7dvrTNydKWT4BAYPJXTVaRhBWENWYKR7gIochKF0cE2MInIT1SQqFCRHVkQILAgIsw0n2pTSJJR+4h2kchSeCjhUcpsMO4p8bXpqjax6YCOEIQoEBYuKEAw9aKQEuE1tgmqEmAqc3ytAwZj45l/TrS1NewWZO3NKUMwg8BKlSAxqwsYmvhdQEMmNWGHXVo0Vgb+j0rLDzPpDgEMKFBVMKQsG3OqwUkJfzBzVfyTz94EE+b93PfoROs7uqgK1vHSy5YyW37DtPZUMdELs9MycXHtKWZnivTlE2xpquDM9M5yp5HR10WR1j86Q1XMJEvsqqrgyPjE3zzqf0MzOaoTyXp7WviZWtWcWhigo5shsOTkwzl53jz+g1ordk/OspEqUA5CLhu6VKuW7o0/jiX9/VhI/j0zl1MlUomX/ljGNK3du7H8wNa6jL0tjYC8MD+k8wUSswUyjQ/TTlRS12G5myalOMQPI3p8XM1Dg+M8b3HDvGybWtZ3tP245/wMxgvANrP4UimHK64eT13fX0Hn/nH7/L6d11HU2sd935nD/UNKX7zz15KImnz9U8/QOCZIuWeRa00be5j7aZFfOGjdzE2Msvr33lNHKJUSrFsTz9tXQ3kpgq0dJh6jjWbF7N3+xHaupsY6Z/AdmxsB2zH5uDjx1AKso1pHr1jN3bS5lPv/SLJbIqeFV1c+pKb+c9/+Cb5qQIyocg017P2spUcOzzG6Ogs3/3PRykUXIRjYyckSgp00qZY9tASZMrGV9o4fwjMAm0JkkkHT5uwUtwbLcBI8sOc0bwcmTL5FaFBnw/UwkMJlXC1wr15KkgB2DpsNhqys6R5nrRMcbQQCiF8EraR7AuhSUqT/6q3K0gJAZp6UTEF18IjIXUs+nCET0aaejTD3BQBAomPJGHyQsrHEgZ0PAwNEQKKKmEWdwEZ6eJpi0ALCiqJry00PkkBFho3sLCMnTECja8ME5YCpIzsrMwNRCTBVxqUNkpKrUNPRy3jnm9mDg2Ios11EbUgFDAPnCLwivNqtT+pOa7GrSW8n5iXi4uuowxvTixASotyqO5MJxN8+q4d6DIIx5xnruSyq3+Q5ro0t+09zJxbYXlrC2PTc1gKEpbE04qUJdGepjGZpHlBJ/sGR5gplvGCSV65cS0XLerl8zv2oIGRuTkAuhvqactmuP/kKYbn5rjr2DGEhG2LFnF6ZobvHD2IlIK3XrCJK3oXMTiXoymZikOLAJt7FvDQqdNM5kv85569vGnzhnlrwNHRCe548jCv2bqO3pYmDg6O4foBv3NDtWzojVduZGhq9mnBDEAIwf9+881Pu/+5HDNzJYoVz7Tm+S8aLwDaczR2PHqcxx85xstetYVFi5/93cnF16yhUnTZv/sUX/rXu0lnEriujwo0f/j6S/jeVx+nLfR3TCRsdj10hGx9Ctu2GB6YYmxohnSNZZaUkr2PH+fwE/1c+7KNLFzcysHdpziw5xSv+90buPplG3n3tR+gUnL5t0f/mqnhaeobM1z96otJphM8cd9+ju46wfTIDImUzfor19C1uJ2u3laOTRcQaJra6hg6NU4+Z+46fSTSsWhsrydRn2RoLIcKTF5I2oKGhjTTeVOXoy1Q0siv7YQENzBFzVJUY1UhkM3DsohlRbm02qGrPyIiGBpsVIUJcShRz69FQ0NKgWOEIEijBEw4CiFF6AZignO2NBZYVujYmwzzY5YwBsXRzbcjfBwCpI5q1YwLfxKFIzRFHaCVJCEFLgnTnFN4pISPrySO5RNgQCzAwsK4gmRxKesEltJUiFqCSuPCErt/GHamEARKE0SKTTSoAF9buL6MJ0SFeU+lBFrJKmPVVOsmItYbzX8kvY+mPwKrKK9Wc11EVOwebVfV88eqyVpGLTSOFHiBBiXIZmwSQpIvexTzrvH9rK1pCyBhS5a2tfLk4BClIGDn6UHqnCTliofnm2uWkg5eEPDosQHqM0nqU0l+/0XbePDIKZKOxSceeoyd/UO8aNUyzkwZdtaezbL7zDC/f+WlfOShR1jV1oanAi7r62V5Swud2TqSls3vXnQpRc/jf917N32Njbx85Rre98O7cYTFh2++mTesv5Df+fptPNk/RHd9PdfWNPo8PTHDXLnC0MwcvS1NvOclVxofy5rRmE3RmD2/UcPPw7hk7SIuXtP3X5qfewHQzjMePXyaJ04N8/Zrt5JK/ORT9NNexytfsoErX7KBH3ztcaQlGTw1zp6HjvLJv72Nt/7hjTS2ZKlvTPPNzz3E9a/YRHN7A62dDSxf28Nbf++GmIUBTI7mWLKqm8d+eJBvfPoBUmkHFSiaW7P4bsDmK1bhpIxLhe1YfPJ/fon+g2co5QpsvPYCbNvGdiycpENLVwPTI7N89v/7EkMnRnEci0xzlpHTE8hMmkBa2MkEWhjfwLKvmJnIYzkWKhQY+EIwmSvhpC1cX6ESMs5lzZY9RDJ0BrEj5hSCm1VN50R5s/ixrhEWROCEeRy3MQuFBdF25snyzbmVpSChTWsBCMFMYYduFQlpxCGmdiw0H5YBPjYOnmkbg2FlZt33SBLEqkJL+jihkESgcELlRL1QBFISaEFGe/hIKmHSKCEVEosAFbZfkZSwKOskCtNvzZYBWgk84ZDAo6RNI0+TnTOF1EoLLCGMhyMmBGxZgiDQRjQSqNhhRCtpOnZrwK+6hIhwMqNGqbHXpqhem3NEIpzF1KjuR+vYwSWK8gIxoEWMLRA6BrdisYIbhpJrWaEVqlg14HmKmWKRkmeuQ10ygQoCHMumHJj6wEApXC8gYds0pVPMlMo8dvIMf/XKG9Bac9eh4ySkxc7+M3iBYrpY4kUrlpKvuHxz7wHWd3Zyanqat1+0OTYYfsuFG+OPeGJ6koHcLK2ZNL4KKLk+BybH+OPvfZ/fu+RSmpIpzhRneej46XmAdv265VyxcjEpx6w/SecXc6n+rxab/GLO0nM8jo5MMjSdY7ZYJpWo+/FPOM+46NJlXHTpsnO2l4su3/n0vVz0onUsWbvwGZ1r9cY+jj01wOqNizh1eIRKxSWZcijmy9z2xUdo725kyepuuntbAHjV289tw/4v77uV/GyJv/742/mX993KqcMjLFrWyYJFrSSTFp/9u29z2Us3s+yChdz9pe3kZ/LkZ4porXj8e0+QzCQRCJZtWMTr/uhlnNzbz22f+AGBZ3qAlIueWUiCADuRoKOvhWxzHb6UHDs2jk4YPbzMOAZAwsXK8zU4YY8zIVAitJuS4CfChdMO68ci/8basGIUbqwNLUaPDVFhngLSrglLhiuliqT5UQNLO3ysBcJWCCvAcqqrrGUptIJkwseSAk8JMpZPmO0zQo2wW6XxJjS1aIEWJIRHOsylWUASzzA9rfHCF68TPr4QBAjS2jasCkFF2fjCNuxKBCQCgYs5tw6TV1KYXJlCgJQkVEBZ2aHjv0RLZRSUCnxlJscXAktq/BoJogqi2C4G1DyBcKVhQIGInfWr+ciwtDxiSbUgFt1YRKFENf8YWxjT6thAWlRTl/OiwuHx6aRFNpNiulTGVYqELdFSm07WPmgnOo9mulSOo9ktdRmmCyXam5IUChXyZZeuxnrSCYdVXe3cvGEV7/nKHUwVinxj935OTUyzoK6eBfX1NKaTtNZlODQ8wV/f8UNWdLYxMDtLd2M9Fy7o5AeHjtGQSvLStauwpWTf6CjfO3KUi3t6WNvWzkuXr2Jlaxv/Y9s2PrVjJ02pNOsXdPF3L7+RgyPjrF/Qxd/efi9rF3Twqs1GqJH6MSA2nS/x1fue4NqNy1m5sD3e7gcK23p+1Z9F4/n5qX/MeMtVm/jTV15NZ9NPBmY/agyfGmN2Ks+eBw4/4+c8dMcTHH3qDKW5Ml09Tbz8LZfxlY/dQyJhsWZjH5deu4YNlyw953nf/tIjfOmT9xIECsuykFLQ2FrHlitXccHWJbzq169kcmSaRMrBtgTlQgVbwJf+4Tscf2qAxrZ6ynmXW37rev7P3f+LJRv6mByeppArsvOuvQS+QoRFWbZtfBoTmRTZpgz5gsfkeJ6Z2VJoJGzagXi+orm5DidjoW2BlZQoR6KFUTAGtiRICVYsbQ/ZUphDCxErYnHSrgEimLdo1rKA+b9qkxuzjAGyjkDSNr8rW6MToVrBUmArhFTYdlR/FmDLwBQfC01CqrgjtPFRNK+hhTBS+FAt6Gk7DhelpMJDkhIBWVEhLQMyMiApA5qkT6ssk5Q+9dKnXnhkpUtKuDgo6qRLvShi42FjatosEeAIRQKPjKiQkB4NVhlb+kjAFgGO8EjaPgnL1L9ZUuNIk6czwG7eqRuI6kQKQlDXUBFhLx+B0DIMFZ7V2BNMLk5Vw47z7s3nR8tCZqcRSqM9XS22DjuKR/m4qOt1UhoBiyMF9akkVgCpMIenAoUj7BgkLW0WtoRlm5+ORcKxGCsUKAU+E3MFZisVlNacnpqh6Lq8+MIV3Ln/KJYUjMzmGcvlOT42yX0Hj7PvzAjHRidZ0tCMHcDI7ByHR8fZuKCLD73iZi7uW0jBdRnK5Xj0dD8Ap6anuevIUd5/9z2UKz4bu4zZcH0iyZKmFt60wSgTFzQ28KJVy6hLJvD8AD+Sfj6DMTA2w1yxwv5TI/G2Y8MT/O+v3MMdjx98xuc5e2ituXPfUYZn5n7ic/x3jRcY2nmGEIK61HPTOXvJ2oXc/BaHrr5nnle7+U3bOHNinEKujAo0D9+5jwe/+wRXvmQDvxq67Z9vTE3MUZir8PVPP0Ayk+B33v8K3IrPD772ONn6NI/+4CmO7xvkkhetY+vVq9m3/TDf/dz9JNMJmlf3UMqVyE/nefi2XcxM5hnrn8Qte3zhb25lZiwHQH1rlkQqiRsAldBxpFBBl3ysbAqvUAFAWQIciZOxae6oozQekLAEmcYU03MlpG3hOYqcawQjh0YnjdIR5t92CQNCQc3jGMyiY0X1WCw9f3/E3iQgdVVkEoo+CLeLRIAMfRuFNAXUCVthhyGulOMDmkCFhd5h7FMjqCgHIQVSQVq6aEzOKyl8XG2TEh6WDrCleTkL494Rk0PzDqkIECogIQQJoXDDttpKSjytcYWkTnj42qWikygtcZURk2QtD60tKjgkLVAqwNI2tggM4xN2zBqTNhRdCyuS9IuaiTLV1dX5VxA38JzHxET8NM18YIuZWfiYMCwcyflRYFuChGNRKvvzhCSh/gQVaGRYd5ZNJugfmzFpUwl20kJ5ytS8WZC2LeYw4HDViiXcvv8QJc8nUGUcy2Lb0j6ODk/gewG+UkwVSvzv2+7DFjAxW2Q6V+LPb76GX7t8Cy//yH/Q4CRZ3NbCmalZMk6C5c0NrOxq4703Xk3R8+murydfqvDk8AhnZnL0NDQyXSgzNDNHOmFzQUfVYUhpzfhcgbI334MtnXD4y1dez7MZ65d2s7Ctkeb6qiikKZumqS5NZ3P9szpX7RiaybFvcJTjY5O867pLf+Lz/HeMFwDtv2EsXPbs2ue0dDTS0mEEINtuvIAffmsXS9Ys4JpXbOHub+6isSXLRVef25b9Hb9vwO6xew9y5uQ4YPIllmVk2r4XsHTtAoZPjLH77qc4c2KUkeOjrN6ylL/4wrv51z/8d+ZyJY7t6+fgrpO0dDTSvbSLRNphdmKOTEMGrSHbXEcw50KgsdIJo9qzLWMEa1loRxopvpD4gebE6XEqEqQlqFiQaUoxUy5TcgO0FdaaWaHjYOi4JCxIp22KykjyFKagNhZ11ObMCB/buuroTs3+kH3E9WeWriofHQV2BGYaKSMT4rC7NAEJO3T/CHM6vpYIrfCUxBECO2Q8gTau8SmhsUMWpzQ4+Mb4F2OblaohRTZV5butoRTq3S0NSQLK2iIrXIo4lIVhfrbQpEQRLSQVlcERAZ6SSKlxlI+PRVoGuOYV8ZSF0EbFIcPQqwJsKcKO4jZC+ASujRY2OOH8RfVnmDcZMbUIlCIBCJr5npnRtoi5+QacYim+hqBiWgbNC2FG4UeFaScDBL7mzNC0uY62mTi/EoAtSFgCT2sqYXsc31J864kDeNoIkVLSolzxefhEP1nLRilY0FjPRYt6+NrjT+EFQfgxNX/65e9Rn0xQLLlYUrBl4QJKnofrBaA0rufz1R1PMTiXY9fpQVrq0ixubqazvo72ugx1iQTd2XpeccFq3rppEzv6z7CstQWJYG1HBwdHxrhs8U9XrwrQcpbdXltDlt9/+bkph2czFjQ1cEFPJxcu/MUzNn4B0H6Oh9aa+7+9m+Xre1lYY0p83Su3cN0rTYfar3ziXuobM+cFtGj0Leugta2OO7+2g6tesp4PfuldKKX51z//KvmpPGNpm6NP9TM5MoP2A1q6m9BaU8xXmJnMY9mSbEMat+Jx9IlTZBrSNHY0IwXUt9YzOzFHqeShpemplUwmqHhGGagdaUBNChPis8PeZwIsx8IVAW6xREmrUAQSLmmi+i+ZsnAtRcH346bJOgIzUc2JRWBlWJc+l5VF54z2SYjpgAjDjFIhHXNOOwwtOrZGSmMG5VgGyKQEHQo/LKGMFB6JG1hIbZMUAZYl8HFAB1S0ja3KOJbCISBq1RmlBW0Bdk2QzkIghCClNV4IfD6QVAHTOgy/CYVHyPDCxFSd9KhoD0dIpA4LvbVxGxF4YUNPhcYh0BJfG6cQW2iUCLCkjR9ohLBAChMS1GFSyzLdu4UEfGHCjiHLEjXTWAtmUVQzJs01Ag6hqTb4rL1UtWq+GueQCEvbGjLMFSsUox44UqBCwNOWAT1hgfIhlbJwhKTg+QgtWNzSxESuQL7s0pLJMJrL8+1dB+htacSSkstXLqJ/YpajQ+PMFstoX+Nqxa4Tg6zobuP3b7iMuYrLoeEx1vd2Y41IDg6Ps6q9nd+9dhtCCPxA8Yp1a3jJmpX88MgJvrBjDx978DEWNNbzn297PXuHRnjRynPz69FwfZ9cqUJb/dN7OXp+wJfu2s2WVQu5YOkz6532TIcQghsvWPEzPed/1XgB0H7Ohtaa7/zbvSxc3smy9X0c2dvP/h3HedmvXsmiVed+cd/4rutQGj72gdtYdeFCrn/FpnOO6eptoWdJO+lMgju/9jj7Hj1Gc1sdv/n+V5OpS/LPf/wlPFdRyJVp6Wjg1//ytXztn7/PxOgsdsKhpaOBy1++md337CM3XcALNM11KV7/npdy6cu2sP32PXzs//sqLZ2NTM6WKZU97HQC5ZiGklgCYQmEY0FC4ofa6rIIaKrPUlQBQcUNTYJ16B5ihrRMrsxVusrGapkZVFlY+G3Wkbijdh/EK25sdwVhDi7Km2mjolSm7sz0PAtCWb5CSgNojggNfRE1LWKiTtSRS5QduiESI64IBRw+VvyHF6UBRfhfZL/nhB9QAkkkAZoiAY4gZIDEBs4akyvTWpC1XDxdxtUJslQoqgQWCiUkjghISoGvLXwlkMLCkQF+yOYsran4phZNyrBtTlQPEYYaa+c1kuVHQGYShswDLCCMD5vjMkkbX/v4FX1OvrN6RWtGrbQfaGtJ45UD/Iopm1ASEgmJiyJpWwSOoCh9UgmbVb3tLGipZ/uJAcoEKF8RuIrexkYmCyVeumEV33p8P/WpJGt6Ovjzl19HfSrJZ3+4g6Onx2mvy5CfLaECTb10+NUrNtNWn+FT9+xgSWszfS2NpCyLXccHuWX96ljR95d33ENTOsV4scDh0QkWtzShlaYjmyVh2/zqRZs4Mz2L6wckzuOf+Ll7dzEwMcufvPKq89pVAYxN5xmZmmPX4TM/c0D7RR4vANpPMIZGZ2hvqcdxfvZmnm7Z4/i+M+Sm82y5bh1brl7Ng7ft4btf2M67/ua15xzf0dNMPlfC83xOHR3hcx+9i6tuvIB9O09x02u3kkg6xohWCkpFl2x9isHjY/QfHSGTTVLflGXrtWvp7G3h3q/vQNomjNWzvIsHb99N39oepsZyPHj7Ewigva+dUqGCj+Ceb+zAR/DAbXtobK2jd1U34swMw8M5AqXRyrjsO+kkJAR1zRnsjEPB9ZgqlvAt0y4lqFmYhRAkkpKKr4zdlQ1lbVZEXcvGolt6q+Z3gVmEzwYxIPIujOlAzTHm+GixDgUgToCUgqRjQM0SGAGIrNaVRTko85Z0GEYkFPKb3mJJK2QLCFwkljYrtI+O0306/BgyzEPJENxsYUDHuIUYpuULTVEolFUBrSlrhzQudlSIrQ1Tk0KRtFxsGVAMnBD4JUmlKSrHgG4ZAjJYIgBtI0NH/goRGwpMyBFdnXxl7gSEwDAzaj4ExO77UQ4sYm7xfqXwParWWKJ6+uoF0vGla6hLkJ9z42s1PVMm4Vjm+2WZ+5DujkaGp+dobMgwWSmRkQ5ruztZsaCd7UdPkRQW3Zk6psslKq7PTK7Ipr4eWlJpkrZNoeJRKvkMTeVYtaCdTMIhm0gwnSuyekEHQ5NznBid4r3/8V0qvs90ocwlK/t44PBJnjg9RHM2w76BMRa3GZXxktZmBKC04pIlvbx2wwW0pDM0pgw4DU7P8tmHdtHdVM9vXHnRvL/n3ScGacgkWdbVQl3y6fP4Pe2NvOXGLXQ0/+yFa7/I4wVAe5ZjZGyWL39nJx2t9bzl1c/Mg+3ZjGQ6wdv//BVkQjf8LVevMTLwp1E/ff5f72ZyJEeyLsmhfWfoXdLOD297goamDIeeHGD9xUb9uG/HSYqFMn/6oTfRt7yT4/sH8Tyf//u/vsYFlyzjlb9xLYPHx5ieyPPg7U9w8sAgK7csZ/e9TzE3WyKZsEllkkgb7ISNnbAZG5rm3/76G/i+prWzkTf94U385789QN4NyM2V0JaF41g0tGeZLlYYmppDFySNzRkWL2nj1MQM2bok07M5tA2ZtEMp8E3Dz6hDcfg543Bh6OU3j6GFv5vHOgatarPOatH0vPhWzAaq8TJhaaRjNItSGmNkoY0yUGCATYogbN1icmwC46No4yNFZDWsQZp+YlobixIJBAIkVhxqjD5jZCYcGWzZSOwwCKmEQoSF1JbQpHWArzVJ6dKuFQrL5C2FwhI+UgqaKJJXCTxhSgp8LfEVIAWONt6OWcej4vokLJtyoJBIPL8mEamEUTeqUL3i1ziDqJryswisImViTVgxTg6GxxTLJoYYFbrHPzVxJ4RaRlYouzHYCYzXZCbt0NlZz8nhaZSA/pFphCXwg4CK56N8ONQ/xoHBUQq+R1drA460WNXaxlMDI2jfGPY+eXKIguthC8GOowOs7Grjmw/v48jgOJYW+K5ibq7CygVttDVkeOzYABU/oLOpjlddvI5Hj/fTWp8h0Jqepnr+4/5dDM7kWN7VSv/0DBOzBf7m1TfgBYr+8Rk29Rkm1V5fR3dTPRctPrds5/t7DmPbkj99xTXn+3OfN3raG3/sMc+38QKgPcvR2lxHZ1sDG9f1Pmev0RI6gHz3Px6kub2BbTdveNpjGxoz5KYKpNIOti25cMtitl27hgNP9HPB1sUopTh9ZJT6pgwNTWke/sFTXHHzBhYu7SA3XYjP09zRyKt/5wY+9YFv8/G/vBWv4mNZkkzGIZVNkalPs/zCheQm5njZr13Dtps38L3PP8TnPniHWZQdm39537cYGJk1dkrpJNISaEeSL7i4vo+2DapMF8rM4aMTgpzrYickFaUpap9UxsENAm7atJJv7joUg5cQNXfxkVJuHjhBDFzRiI6fl6CJjoy2mTAjjmFSwjJ7LMsUSyctP2ZmJswYOoSIiJEZzycR5tOSsYNIlWf4SDK6TNb2TNiRwHgZitBlK3rviMhWkgCNDF0iZej+Yc4pSIXJJxuYUZYJ4WKKodPCiE6QxrFEhp2kFeBIbRiipSh7NpaQRj2JIiED8q6NkBLbVrieNHm0eL4jKiVr6HF4H6BqQKx2+gXVO5IaJiZC4IpZcsjUYiATIRsUoYFxTeE2AvJll3y5EjM/FZjQdEM2TUUFUYUBuRAMAz+gq6mesdk8ljJOKdMzJTIpB1sLlna0cv2Fy3ndtvX80adv5+iZcbKOYxSPMwW00mxY0k3z4ASHB8e4eHkvR4bGmcmV+B+3XIltSf7x2/exr3+EXLnCocExlNA0ZNJ8/6mj3Lx+JWu72lnW3gpAwrbOYWbRuHHjStI/hZnD8328MHPPcjiOxZtfdfHP5FwnDwxyePdJXvzmy8+pqNdac2jnSRrb6lm+vo/8bJEla89tyV6YKyGk4Jqb1mPbFktXdZPOJlmyopPP/tP3Kc2VObDrFF0LW1i1YSEXXLyMwA/47D/cRmG2xLL1fSxc1sln//F2ThwYZHYqT2NLHbPTRQAWruiis7eNUweH6OhrZ8GyLn7w1cf49w9+lzVbl5BtypKfK+NrqFQ8fMCyQwSSgraFzeQqLmkhUJ6HlbIpWoqKHxjRQcbCkxobgRJQDDwDiI4gLC2ax6xqQawWr7Q24Uod2UrUTmf0uFY8Ev1fVvdpDdJSYYsYI9EXwjAwGXovSmHspsyWACtc8UXo+mHWXxPeDJREWP8/e+8dJsd1nXn/7q2qzpNzwmCQcyQBZoJJjKICqUTJkiytZclreR203rV3HfdzTitHRQflREmkSIo5EwzIOQwwAAaYnDtXuvf741bPDAgqUJbXloyjB+JMd1V1d/XUPXXOeYOp1rSAQAlitp6D6jMHXNFRH2/ubWvDXRNmjqWizKAieQ6pISYgJVwjSqwlvnAQGjJWmZKKgQRLKXQ0Hwu0wMcmESn/y2joZ2kdJWkF2rhVK1X5FNFZnid3VUE0ajgfAFLZOhIjPk/uan6bWAmT7CqY/GhuOfs1Vb5LiMzQmK3Q0OD6cy1oiVG2sR3JubFp4jGbnpY6JgolcmUXGZP0NNTz62/axr88vZNwQRvPHzmNH4T0NNUjECxtqeeNm1bSWJ3mf739en7h4/fiuQGOEEgheNNlq3h8Vy8nRyawkJTLPiU3oOT5aDTHB8YIPEUQmLlqV30tY/kCPU11bOxuJ2bb/OotV5933X7l+X1kS2U+dNNWciWXzz21iy1Lu7h06WvfKO/rHeT5vSe5+4YNtNS/NiT/0R3HqEkn2Lqq+zWf/88QFxPa64ggCPncV15k6eIWrr78X48C2v7QHvLZEtNjOermyVSBuaA/8NtvIZ50+PNf+jyjA1P85f2/ghNzzttuy7aV7N1+gkx1gvf+4hyPJZ8tkZ8pUVufZunaTtZuWcSNb70EgL0vHGdyJMvMZAErbvPAF7ZzpneYWMLmhru3cvrYEAOnRulY2MiyDd3EYjbv+/XbsR2L3/3ZT5GbLlLMuwydGae2uZasO4kfaCZzZYNglKClQFgSz4JQaqZ936AYRYiyJEpqmurTDLkFlIZ43NyGB4FxS/7uvmMRqbpyPqI1tcJNOz//m4REtNCaEmdWRd/wpvR52o1mgDVvyCNMq9GKHrelxpGmojJAEh3ZvUiUDolJk3AcYaomgUBpiyAqJaUwySfUFkqHeBiQRqgljgwMn41oPRfG5KUyPwOBInLv1jqatlUoYQJLC+xohU8LKKDQWhNioYTEipqQMvocItSR2LFAaDUrlSV1iE1AoGx8JbElxC2PkpfBTAWJHDSjk10hU88DhGiiVmNEgK6ARBBRkprXbkQwK12WsmyKpQCtzBcnoqSGOcXm+wyZHcgJrY2q/6u+dmlBJhljulQitARhqDh6ZhRPKTP2sxQDozP80mfvo7W2imtXL6Knto7jQ+N0Ntbw3OE+jp8d56P/8C3ecsVarlu3hLa6ajKJGNlcCTQ8vesEhbJHT1Md6XScX797G001c7OrzsZaWmozbFzcwRP7jpOJxzgzOsXQWJYFDbW8Vjx3uI9s0SS0qXyJ8WyBU6OTXLq0i7HpPF97ei9XrOphaGKGWy9bychklmyxzHSu9D0T2o6jZ0knYhcT2sX44aLsBgyPzPzIbtRguF//8Nv30r2sldvffy0DfaMXJDOAyeEZwjCktrGK2qYqslN5fC+cTWivPHUEy7bYfPUyHr93J/d+9lk+8ltvmt1/wZIWPvr7b0G+hgX79of309HTRG1jNYVCmanxHMPnJkmm4zS2TnN8/1kKuRJt3Y0UsiViDRma2usQQnD7z1zNo197mUVrq3nD3VtI16X41J89TKnkghcwPVPCijm4wqDkhCVQQqAts7IFEpStcWyLVYtbOXfkpGktobBtC1ebhchVCjWPJH0eMrGySEYfzSSPaLuI9KsjI0pdQVy8enZW2V8yqwpS6ZtJYVZiOSupZeZgWlWIU4aS5czrqQmMUWeojVmm0gJHhvgKfGkR126kqaiwUHhaEBOGUO1riEekKzXbWoyAIFTGhqLyzpEILAzPLSmNk4I5BwExGeIrDy0zSO1SxqIkbMLIJ0cKKGubmAhwlY2UGqn0bGewFJolQUQtQD3bJ4xevSJ7VfnQzN0XzLd8mS9SXKnOROVQAkphYEjxCGPoGu0euQfhWBahNjc3oR+1YytaWBhkoxsohBAUS55pO2qNkhodChpqE2TLLr6rGZrMYsUshIaHXjrCyYFxUnGHwcZaPDdkIl/AUyFSSn7rs9/FQnDlqoV87fG9+H7A2Hie+uoUiZhFUktOD06el9BScYf333AJf/TVJ2lIpfnQjVv5zBOvkElcuE68fKwf25IsaqmnUDZglwVNtfz6W7eRjK7tf/zuKxzpH2HnkXOsX9zGlpULeMPWFVx/ybLvK2l1z42bSCWc7/n8f4a4mNB+iKjozGXScT72Szf/q6zKhTD2MLGEY5JV42vfbX3tbx4h9AP+65/ewy/+0TvwvYBYfO6PdddzxxBSsvnqZay7bPEF8wswCvueG9B7oJ+6xioe+sILtHU3Mjkyw8pNC7n+rkv5xO99i3R1CikkUkJ1bYr6FoPgbGqtZaR/gl3PHOX4gXN88H/ewRvesZV7/+lZBnefYXKqyORMibIbEE/Hae1soGWxxeG+EZQKQUpGpwp0LWqgPDFDLvCwYhLLFsQSNnsHhmbfdjnUpn81TyT4Almr+Ulp3q26UnO/V9ZdmB3DGN8sI5h4XstSV/pilYU1Gt1IaVqLSpnKofJSnrYJwpCUbdJKoHXE7zIJVURvMIyk5y0dDXdQlHWcgPLsdkqbFuurlyejyqiZ+/iV44noN4EjDERECo2vFSkZeZIqn7w2DtYx7SOMLhRpYeHrNBo5C7rQQuBGyJtQSxyhKCONtJXQhKFpt2IpAwqZ3999ja9htjKLdBphrrCrhK5UXhKCwOwsbOZmZpXvzJK4YYhVQYxEFbcTk0gtidkWVZk4XhAynS/hlYLIL09EyVMzM1NmaU8TJwYnDGcwhJmZEhNuHqXMTcGZoUnKXkg8blOXSdDXP057QzXHz4xy6OQQXc21jE/kGZvJU3Q9fB0yNp1n+/5TXLryfFL0gy8fQQCBUtRlkvz6m7fxWvH0gZMIKfi1N1+DihL24ESW+kySg31DrFnUxjuv28CXn9zLm65YzUyhTGMkwfeD9Bl72uq/7/P/GeJiQvsh4h8+9yzlss+v/vyNxP6VqteWbfGh33nLD9xu3ZXLCDwzoDBQ9vPvvG6/53L2vnSSv/yNr3Pu9BiXXL2cK1lzwXEe+uILTIxmae9uoFzwEFLQ0dPEqksXsW97L/G4AZNsvGIJtU0Z7vq567jqtnU0NFfzub94mMEz43iuz8RoFjtmUyq4hCEUSx4njw/jKUhUJfBdn+LwFC1d9TQ0ZKhtTHOkb5RyGHJ6bJLG5mrq7Com3TJOTDIduohQGYwBzKrqywpaEc6bmV0IAHnV7/PbWtHgTUQOkvP9z2Y7YBXBv2gxFUStLmFmYFLOrd4KjVWpkLTRaRQWs+hFT1nEpT+7fRgNmixhTDtDBWnbQyGY0SksnSUhBR6GOC1E9JZfNXMyabHijGPeT4WdVqnItBC42hC0kwJ8DKKxSpaZUimksElbPq72TOUoHBQmiYlIgdIIKCtKvo1tabwwREoLhVF4mYMxmjakjNqJsnJu530FFQbEBQCR+d/DvBsQwFRqgcCyo3sWKYhbNiU3mKv+BFjSwrEktiWIOzYx22ImagtaCmxH4sRsZlwPJTRjYzlaqjL4YUip7OG5hgCfsiwWN9VztH8MB0FHTRXJRIzhqRzL2xs5Fo4wNJ7jI3ddyVce3EUx73LLJSt4y43r+dLDO8nmyrw6LlvZzXi2wFuvXPt9Febv3LoK27KwpMQCntl3kv19QwyPzdDVXIdtW6xY0Mz/vOf673mMi/G94/un/IsBQEtTNa0tNf9PX/OK2zZwzZsv+Z7PL1jSQl1jFUprCjmX070jr7ndzmeO8MA/P4dlSX7xj97OFbesp7mrgd3PH+ebn3mao3vOEI/bXHbTGkbPjPNnH/0cVdUpHvnyS9Q2pnnTz17DZTeupa2rge2PH+Jrn36GQIVYCQcsC+IWgRTomI2I20yXXO6+61KcVAwdF/gpgYumpama6vo4E0GJsVKB5oYqrJhFImGhnQg8JyG0oaYqjophtBwrbcEKv8zifGsYmK3colHY7EMXlBOvShjzs4hBN6pIz1AaDl3EXdMIgggtqJH4qlJQCAIlUdrCU0bWqvIaljBqGxGcJNJitLG1Am1R1ja+lvjajPtCrQm0IkRH/6vkhfMgLNHjAikkceFgC0FSCCKnHRxMcnOEJhaBP8x7qYBaFHEZoLXCEph5mhTGjFQGhMoQw6UVqd8LjAZXxX9Hzp3G8+kSlRblhVF5Xs//Wc7bV4JyILBB2pIAjRuGsxWekFBXlURLmCm6TOaMJmMuVyblOEhtZLvCUFPIe7Ooy5l8GUsIlrY20llbQ00izqWLO7j7qnXUZ5LUpuJ0NtRQk04Qc2wuW7kAIeCWy1YilOZrD+82SVoKxqfztDVW8wt3X8XSjgZ+/xMP8+Czh2Y/Y006wfqedvIld/YxpTT7Tg7yV994lr/+5nMArOxqYWn7nI7rqu4WEjGbzpZajvSP0NNa9xpn8AfH2bFpPvnAi4xN53+k/X9a4mKF9kPEXbdt/Pd+C68ZV9+ylqtvWcvBXadp6TAXwmD/BI2tNcQi6G+p4GPHbKbHzR/6U9/cwYmD5zjbN4oUgg/9zptZuraLmvoM3/jbRxg9N8nRPafJThdYtr6bm+7eQn6myBf/7gl2P9/LudPjZIs+8UwCKSXaC6hrrjbJrFgmmy1w/2P7ueXmNezoGzBIRinY0TeAaym0BclkjCuXd/PSybM4CQs/mzeE4Oj2qiadpKACymFIwrFww/B8IIgwi5yCOePJypin0r2avUmeV2EQpYSKdmPlaaHRClQoEE5F1kqitE0QGosYMFZqtiACegQ4AkItsEVAoG0sFRCzDJhDa42vBDEZEpv1R4s0BrHwtMLSkrylSWpFenZMpRFiHogFMVvwGAj/XHaWQhLXNqFQhIQE6EgLUuEqQUL6+MpCaQdbQFwESDS+sJEaHBFS1DGMo7XElho1SxTHSGSF0RsL59nDVIAblbFj1BpWEbpx7lzPneMLIkpwwuK8LGjHLEIvNK1QpVHSVIMF1yNwg9lthyeyZGdcQ32wJb6v0JZx4LaloKU+QyaV4IN3bqWruY6//PLTjE/m6R+cQvmageEp6lIp3nXrJq7btATHtvjbbzzHgy8c4c6rVpOwbXw/5Pd+4TYyqTiObXHfE/u574n91FYnGRzPkk7GuP0aY/Xyh194gmMDY1y5ZiEffbPRUnzh4Cl6B8Y5OzL1PdU8mmoz/Nztl/GJ+7dTk0liWT/aOOPgqWFKbsDxc2M0/Ru4hPykxMWE9hMa2Zkip3pHWH9JD2s2L2RqIs8XP/kUU2M5WtpredsHrkFrTUdPE93LWrn7w9cTBiFn+0YZHZji6ts3sPX6VSxYNneh3fi2LRx6uY+uRc1cfvM60lVG2WBiJMvhPWdo62rgzvdeyd//yYNgWay4ZAFTE3lue+cWPv53jxFP2LS01lDyfL783Z1GyQFYsqiJ3tFJ0Ao7JglszWiuQHtjNSfHJnEci4Z0irzvkQs9GmtTDJRzaA2BUISRYn6l7Yc0oIxZJ0eAqHVWeT56CIQxj9TRLExXSoRISmsWPg6gzTxOWwKltZl3Kcu05iIwg8a0CEMkUocRR0xE7TcLP5KlghBHW7jKxrMsXG0RI8DHItAScNBCIlSZmFR4gCNmx0VzLc5537nAtJ8rSiLmQTOPsxH4UXVmV4wwgZTwCBHEcQmExFAQjM6kpZTxaiMk0AlCbSGlAgV+aM3NLANM0qpA9GUEfoxOv1CV2Vf0fvWrQCHz3r9m3mxt3s1HRdi47PuoyIYmHrPwXQNtdIOQVNJB+pqyG5CNXBzQgNLmK7QEScfhG//3g3z8S8/Qe2aMvYfP8Z3HD9DVUE1zdZrhiSyjYzmq0gmqqpJ8+ZFd1GWSJBMx8ych4cldvbz5mrXsPdjPL//xN7j7po1cvrGHT3zpOXJFl5XLWlm3rN0gNKNY3tVEOhnjho1L+OrTe1nS0ciGJR2cGprkN959w2smmRcOnaa+KsnKBS383B2X4Qc/uo/ZLZcuZ/PSzvOUQ5Qytb71GsCwn9a4mNB+guLl545zdP9Z3vnBa3jg6zsolz12vngC27GoziSwLEkYqllvNCEEH/yNN+K5Pl//1NPse+E4p48OYtmSpesWcPLI4GxCGzk7QTHv8ot/+k6Ska37cw/to6o2Zbhwqzsol30GB6ZYsLgZK2ZR15ihpEM+9cknCZQCL2DF8nYeeuUIASYxhEnBwdFRfIw6vo/C9RWPHOtFSuOerCyBtiHveoTAK2cHkZZAWRo30mXUGiwHglDP9q4qiLlKZXMeCuFVsx2Y175Ez7UxowQ1CxRBoJRGWEadUQFCCaRUSGleR0pQWhBg4RDiKxtbhthoM3fSkIiOF+BgiyKujpHSxnImwLQGQePikNAKJRS+NhB+h7n23Pz7dZPDjd9a5S1XEpuNnCV9h7NEZYElNLZSWEIQQ+FqESFBQ9wwgRBQVkbuLAwlQpgsb85r1JeV9uwbEhXQh2LWD3X2fEctSHQ0JqvsM689fN72lWQ2dz+BisAiWoIfKhJxG9cLQEGp7BuvNKA6EcMRFmXXIx53Ip5fSDoWY8+hszRVZzhtTTA4PM3Le0+TiNn8zW+9nUWdDXzqG9upSscphyHfeHIfX39yL6lUnFTcIWbbTE4X+Oy3X6IxlUADY1N5nnmlF601ccfi5itWcvnGhdRk5pTu77lxEwB/863n2N07wGUru9m8tJP33nz+2GBoIsuJgXF6B8Y4MzJNXZTQLCmxYt878WhtaCLfKzkJIS6Qwfrr777AdLHE777tpu95XICBXJa877K8vun7bveTEP95UvdPUOzf0cfXPvMMZ/pG+fs/fpCXIzPQ4XOTjI1mGRuZ4ZqbVtPaXkcsZlMu+dzy1s30LGvlF//3nSxb3cn0RJ4v/PWjjA5O8cAXt9N74BxBoOhc1MzbP3IDD37xBb748UcYHZhCa82LD+83iMh9/bPvY88Lvex89hg9y1qpa6khn3d54akjbN22gku2rTSAj7OTFF0PK2bR2FnHqdEpEGDbkoULG0wxFEaDf0yrqioVw7GMp1dJKVwVMpjNE2qNEppQagKpqE7FkA7YtiFZ+3rOv0xHQyNdkcKqDNBmB2nm33lgkvmztFdJW5ikZpyaVWT/Umm/VWxfxKt0mcyabBKfG8YoBZUqUeIpG601lghQyhyjrIwuYqDjuNqKLj5zBC9KnkH0OgqTuOeTkzWaEI3SikCHBChCrVDR4yL6bCFylrStNHgRItJoQkpsEUafWSOFUSOx5gkwam0WUCIRaSwNjsk+usI1e/XKESWniiVPRVBkPmikstl5ocAREscy3L3K9lZ0DMex6GyqwTFs9tn9fT8kCEPCUNPSkKE2nSDhOExMF/iTTz/GwMgU6XiM4ci3z/UCPvWV53l5/2nWr+igWPbIFcp0NldT8gPOjE5x7cbF/PWvvpWl3U2EWpGuTfLp372HxQuaOHZylK0be6irT/OJrz/Px/782zz24tFXfxqyJY+FrfXcc8Om8x7PRbO1bz53gC89sRsvULQ1VHPnFasvOMZrxefve4U/+sQj+EH4Q20P0NlQQ9f34MGdd+xDe/jnA3t+6OP+R46LFdp/wDi69yxD5yYpzJSRlmDf7tMcOjTAe3/uWp565CD337uTK7et4La3nn/3t/Wa5bM/3/e5F3jpiUNkalLks2WKhTK/99kPMnRmgp4VbTx+706mxnL8zf/6Ol2Lmwn9kOvevInlGxcycm6SXc8e446fuYJMVdJAi/snqKlPsW1VO2s2dnP0+DDJZAw7YSNDB+FIli5qZsZzWdBRz8BUzvCIosH/io5Gjo6PEwqYCTy6GmoYyeYp+2Y+piyzrW2DL0BJjS9D4pZFoBRhqGZbU1JLVLTSGw17op/Pj8riaOZvmvOqCJgFl5gNFNJSWJYAbRGEhkCtLTOTAYHSPg6mLSlnOXJ6XmKzUTpAorBlhRBtDD9taVqJAQ6e8hGWQ0kFJC2NjxkUFTHctIKGNHoW1m/esqikaMyRBVKbeZmRtjItUlcbAEuoK+nStERFxGrT0fDK8L30bMsvjJKU9itgEIM6VGE0dwwFylYIP2p3RrnOseWcy3JUUs6qflSS3OwXMvfdJB2HkuuDwOyvZz8oOjQt5ZglqatO0d5QTT5XIut76EippewHlF0z3xwcmsFXIR2tdcxkSxQKLipQ9J0dR6DZsKyDQtnj9OAE/3Tfy3hhSCoeoxD6pJNxSmFIzLEQUrCwvZ5Agp2weNctm3liZy816ThOzKLoewRa4wch3e311Mwz1qzEPddv5EtP7Oa+Fw/ynhuMxdOu4+d4Yncvaxe1cf3GJSzpaKSruYYVXS0cOztKoeyRfg3O2vxobqjC9YLX1T68+7K1P9R213b1MFku/dDH/Y8cFxPajyEee2gfQgpuvGXdj+V4b33/VcxMFWhormbVxgV8/YsvcubUGFrD0pVtDA1OEWrNoUPnWL36QoHT3HSRQztPIy3JklUdHN3bT9fiFp75zl4mRrJMjMxQ05Chv3eYhctaGOqfYMXGhazY1APA0/fvxvcMZLq5o47f/si/MDo0w8LV7YShYtHyVo70DvOe917FFdcu5/9++gnsmMXg1Ay+DYu7GzmTzTJZLBJP2xT9gMFsFjtmocIQLeDczAwNmTTxwGfK89CW4dmkEw4zgYsWUFQB6bhDOQznxIgFbGpqYd/YKF6oDCtZijlzyUqIiHA9v0KLcpqe9/v8wY7WEqVNe05rUEoafd6omlNEiUJohK7gEecOE6IJIk4XgIgU8MG0E7UQ+EqCtIlHao1aa/I6RpU0AIcgqh5LGlJofGEIw46owEHmEnjInHSWp403GpgEqaIU6COjtqUCbTQkTas0MAjNqLHoWJpypMwhhEBKCEONtDWqotgBJmGFESgnMC3k2VNcOZdy3mwMk/Q8X83+roGiZ96tLWHe12sAOVF+9EPFubEZzo1Mo10dKfmLWR3IClHbSTjUp9LU1aaYyBVxvYBDvcMUCi6BUuwvDnLNJUs4uWeSQhiwrLuZn3vrFdiO5C+++jRlN2DrqgVcuaaHfNkjEXdYtrCFxZ2NfOPxvRw5NULCtmipr6a7s56feeOlvOm6da8572qpzXC4f4S8O+cQ0NlUQ3U6wZKORpZ2NLKyuwU/CPnGM/voH5mmvirFB27//nJ6t1y96oLHlNLsOzHA6p7WH5lOFCjFA8ePsaj2p4PDdjGh/Rji6KEBhPjxJTTbsWiYpx7ytndfPvvzwkXNLFzUzD/8/RN4XvCaCS1dnaC5vZbaxg4Wr2pnwZJmNl6xlIbmap66bzcrNnQzNjiFJQS5qQLVtSlueaexWtdac+s9l9O7/xwLV7Tx/KMHGTw7Sboqwcr1XRw5MsSf/cF36F7axH0P7Obxl44TKMWS7hbG3TKnxybJhT6rFrewb2SUuGOxpK2W/twMixtr+cj1l/NnT73ASCHPcLlgFmRbk7AtljTWcyI3ibRN5ZVxHPwIpFAJIWE6dNESGmJJpoPyHGGXqC0YDd1mc9z8luM8EElFS1DMk77XkXSWVqbVqSomlqKinG8I0XOwjLmDSqRJGApKKBJWgEZhWcaMMxAG6pGgjNYKT5jZVFqGuFg4WqNFpP1IhKrUGiXErK6jqdiMogiY6smNlB7LGrwoSQaIiBZgGGxFHUMIG6HB0w7CEoSeFVVvmlAZHUzHUoTKio4sjDpK6IBQCP0qBF4FKDIPyn+eGHE0evMj9RdReVqb71FE50pEZDsB1KaSBF5AruRjCQgDBaGhEggF6USMwAvwdIiUYAuJHbPYvKmb53b34WlFa2sN65e2sfPwWYbGTMtxfKaAFpqSFzCWzfPE3l7W9LRydjxLJhlDa3h630lKro9tCRa1NRIqzTtu3MCffeFJCq7Pti2L2X10kC88uYtPfvdlbt66gnQyxrXrF7GorYG/v/8FckWXy1d209VcN3uaWuqq+PAb565hgGf39eG6ARPZIm+++kL+6A8TLx0+w7H+UXoHJnj7det/pGMIIO3ESNo/Hangp+NT/DvHBz7y/5YEOTVdYPHSFupqUq/5vJSSmvo0+ZkSyXSce/7rnMbjO37hBgBuu+cKbrvnCn797o8zOZolO1XAidn87W9+jYXL27jrw2a78ZEsjS01XHHzGvpOjzE+nkPELAaHs9Q2pRmfzBEKGMsXueLSxZx5dobhbJ6mzmqDUAwUJ6YmKduKg+MT/PMruxktFvB0gAbitkQ6gkLgc2h61OANpCZlW3giMK7EEYjDioi9vTOTtKTS1FgJpvKlKJnNKX28uvVowiQeDUa+aT6UX2O8vSLFkAoSMgxDLGsOnx6EMiIVaywZmAQXte0UImJ9mYolUBahAikEbihI2DoyfdYEONE8TKBR+FriIFHCUKjjUc+uAiq0IiCJxRykvhKBnvOTCyBCUJoKLdCSQFv42iKI9BvLYZSYETgE+DqOpwzJ2rY0gcYgHUMx53BgMrhJcZaILHqEURKJ3s1sHhNz768i/BxGupq6opyPSU7RfQJEYiRxSzKZLxmwiYAwiDrFFmQScbpb60g5DnuOnot4iwJPaUazeZ7eeYKpXAmtNX3DE4znCvyXN1/O0zuOo4DewQnaW2oZmclzZjKLt/8URTegKhmjp72BfX2DvOP6DXzh8V2MTBcoewGfeehlpnNFQjQLOxoYnirwG++/kXf9/ueZLnjsPNLPkq5G/sdnHqK5Lk1NMsFEtsD1G5dy1ZqeC/4CTw6OozQsbKljTU8rM4Uyv/me66lKvbaJ5w+K9UvaOTk4wbYNxv363MQMrh+wuLXhhz6GJSW/edW1P9Lr/0eMiwntxxDpzPf+gyzky2x/9BDX3LaO+I9JZ+3b39nD+GSeN9+xAc8L+LuPP0qp6PFLv3oLmQhq/+6P3ojvmQFy/4kRbMeivbvxvOO89NhBslNF6pqqKOVdvvWdp0im49S31FAquIyPzLBmUzfPPH2EB7+5i+tuX8d0vkz7ggbGJnIcOz1GqiqBpxSB0jx/4BSJdIwJr8z+U0Mk0w7JmIMnQ1y/hGULdg4OEYsbnT4rDk5cMuN7EFVlji3wVEgxDCs3+YRyrk1YAUtMFkuMeMYRQIgoGc3Oy+dgc/NUlTg/G7yqP6mJYNgRAMQCpUzrLQiM8TbOHJgy0JIYIToiR8csZZyeoxmPlKa1JzUobUD1EMz25sIoqRilDweBIIGPQ0g423qcG/kpTOtRR9WahcAnjOZyc58miE6IUoIAJ6rmjJeaitJtpU2qBfihNEhICwLfVKAychUIVITMQIG2Z5NPpaWoA+aUXip8Mj2vpetHD0eCxKJy4yCiZFb5vqI5W6CVEaT2QVYypISUY1HyA46fG6c2FaepPs30TJmSH6ClqTGLgU+IxrIMUTwUMJYtsGp5Byf6x0BqpgpF7rl5E/e/eJj2hmo6mqs5eNqmb2iCha31dDbWcMfWVbz3pkuYyBbZd3KAT33nJZJxh1992zWsXNgCwOd+8x5eOnSa1T1tTOaK/P4XH0NKwVVre7hm7SIaqtPsPTnA6ZEp3nzFXPX1recOorSmoSpF/8g0//1d28gkv7eJ5w+KdCLGz7xh8+zvX9m+l7IX8L/vuuFHPuZPelxMaP/G8dxD+ykWXHY8c5Srbv7hhrQ/KCamCxw5PkTsUZs7b13PyRMjJBIOZ/snWLnaWMyk5iXZB774IrZjccObN/PEfbu59vb1LF/XRX6myIrNPWy5fhWf+/MHSaRiDPSNMXB6nJeeOsKZE2Ms3biAto46zpyZYPHSFk4NTlFdnWQ4m0dKAbYkDBTLFjcT2oKRE2dorE1RkgrhGP3LdCbOAqeOwxPjCKEp6ZBQmAXW971ZZGJ9KoVPSOCFswu0tAV+JMERimiWpCReUJlTifMMJc+rzqJfZmHjEZxdVnhslUVztuVoepezrctKqw8rUpMXKB2QEIpQO3ihwrFAYFEOBTGpUMq8HymMikhMBkipCbVA4BhUn/RNshMCX4ezih2etpFoSlg4wsy7QlGhyVXg/iFEiEilNT5zCTvQEGiLEImrLZQGP2oTBlriawubEFfblMKYqSUlOChynoggIxqhBX5gmc8CiBhoLwJ7KGbLMO0Y0EhFxzF6m3PnXpr35CgDOpl9KpqBIUxStC1BVTzGTNHMTnGipAagBdXVKUYn8yilmSoLVve0cOvV7Xzx4d245Yj4LiWZTIzOlloSMYfxbIGn9pwglYhxbmqGRMLBC0KODIyyuKuRzsYantl/koLnsai1gbqqFH/37Rd4dNdxXN9nQUsdf/Jf7mDnsXO0N1Szcdlca9+xLa5eb6qi+uoUn/v1d/HkvhOcHZvmqf0nufuqdbxw+DST2SJbli+gvcGMD65et4g9vedQWrOovZ5U/EcXOX+tuHL5Qoqu/2M95k9aXExo/8Zx7e3refmpI2zZtuLHdsx4wmb5slZaW2ro6mrgr/7mvUxM5Ghtq33N7TddvYxY3KZc8gi8ALdkBtY33r2FG+/ewqNfewkn7rB8w0KmJwoMnB5HDs5Qdn1O9Y6w8lLDa7v/27tZv7WHbMHllz90Aw89foCvP32AUr4AaBZ3NDIZlskkY5TDgLzvMe4WOTQygmcpGjIp0kmHcbeE8hRKCmNOGS1+00GJmG28rTa3tFMKA3aPD503A7OFxJtHaAVwkPiRYvt5qLooZpVDotmXCnWUxKKFWZtFvILmMyC+SLEjaq0pJdEqRGHjhSGOVHihg8L8jJJIrYnbAiEtI5UVYQxDZeELgSXN7wgrSkuaUFvYQkduN5UPKvFRxNHRdiZsDAamAkYJtMnJAQJPC9wI0WhaihIlonlapP4fInFJgIZAR6ojmqhlaqpLIUBII5UFEq0k2heVtxVVZ9pUV0KgpUGnzgJWFOdZyCCgo7aaoek8fqjMhwgq807QER1jshypflQqvdCgSQUwlstj6GmCeMJiYHKGsy9OUV+fIgg0PW31HOkbIRZ3mC55CNenpbEaNFy6vJPPPPQKOgGuCnn56FnWLW7jkhVdFFyPlQta+C+3baXk+jx34BSpuMPITI6afJlMMs5brlmL1ppHdh5jZCpHPGZzfGCMD916GS11Rlj8haOn8cKAF4+d4R3XbADgnddu4J8e3cE/PvIKH7h5C+0N1WxduYCn9vTi2Ba/9vZts3+f0/kST+45wW1bV5J4HeaeSmnKnk8qQkhevqz7Nbd7+lgfTx/r480bV7Oh67UVS35a4mJC+zFG37Fhnnl4P7fedQmtnQY1lEzH2XbHhn/VcQeHp/nWQ3u4bPMiNq/v5qM/96qWgsVrJrM9r/Sx95U+3vruy6mpS/PUg/vwtaax/fxtR85NUV2f4dZ3X46TjPHEfbuIJ+O0djWw4YolfPfBfdhxm+HxLFNPH6W2KcO/fPVF9p4YJB2zGY8LnjzYx1/fuJ6qmgQF12NVdwtuGPLp53aQLuQI/DLlIAAfbCmpSSdBakpBQKBDQkvjqoAgVCQcm33jw7Skq0y7TUS8JATFMEBoiS0EARpCo4M4vzKbrRbOUwyJHtdmwdVOBQViFkrTZxRzVUZEigqFEbRFgxtIEjFFoCRaK+K2IFSm0gKNEnNQDYcwelwQaItA20avUSh8FSKi5BZGCvghRpkjjMjQvhY4kRSHzyxfmZC5SihEEGjwotoq1Abk4VZ0RjT4kQWpEJpSEIs+o3kNFz0rVGyhTfsuUv2QMpqhBdHJs825Rgi0pcES6FAbg8+KzqMylkFaVJCKAtuGnPZoa6rm3Pg0ScemUDQZTVWQimoOMKKjrqwVSYUqFX1mx1RygdRMFUu4npGAdqRFZ6hM9W5LFnc0sOfUIIN9WVYtaGZRZyPvveUSdvae49TwJDWZBMmEQ9/wJJlMAq01f/6tZ9jde45MPMHqrmamC2XaG6v5s3ufYnQqz9BUjpaaDJuWdHJqeJJUPHae48azh/vIl1ykLRmcnAHgkT3HOXh2mA0L22moTnFufJpvvnCQS1YsYFV3y3nX36M7juEFITuO9nP1ukUXXMcPPneI/b2DfPjuK6mrnpubf+6JnZwcmuC/372N6u8zh6tPp8jE49T8K9qbPylxMaH9GGPw7ASFXJnRoZnZhPbjiLLr47oBhaIhZ37y889SXZXkXW82Nu4TE3niMXt2flaJ0eEZpqcK5HNlpibyvPDMUYRSTIzlaO+aGxxvumY5h3ac4pN/8B16lrey4fKlbL56OWu3mIvrmeePo/Iu+dECmaoELa01RhHdsUmkYzh+EdcP+NNvPc1QPk86E8c+eJixUpFUwmFtRyu7R4YI0XTX13J8epKEZTETuOR9j67qat60YiX/sP9lhBB019QyWMgy4xeNzJOAxniSac/F1aFZOIWcVbOYrcDmRmdzv88iFOZ+1paZ32iNaW+FGOh/BQcORsMQQEu0rREygsEHYEmjnuEGIVYE0Y9ZAbYIjQmoVliWWaU9bYjMnraJad94pkWr/iwgk4orNrjYJDCttzCaZ4VazArUVz6GD2gkQSR+HEb8syBCWirMa4uo8ioGMXxtUQxtAm2AIQJBRRVESo1QGkGA0gkjAVaR+zA9VFDanItw3g2AbdqzOnqDOoL3mzawaYmOFUuMFctYNuT9YFbfa7aKm4d+rwBJKq8vmBuNSkty+epudh49S9kLCTXUJmMc6R+h7AV4KmR5zMJxLBLapuB6/H9ffhwhBEva6lm/tJ0Vnc0k4zanRqeI2xb7zwzRPzpNoewRs23efOVqmmozvPXKtXzq4Zc5PTpFe0M1dTVJFrTUEkta3LR+GfVVKc5OTFOXTvLmLavpG53iif29PLDnKBsWtVN0PYQlaa6vIu7YTOVK5IouUgraG6o5MzJFdTpBXSbJHZev4qUj/Vy+euFrXv+JuEMi7lxAE1jc1sDRwTEe2n2Ud1614TX3BVjX2cq6ztYLHu+fnubR3hO8Z8N6Es5Ph4/axYT2Y4yrblzNlquXXWD18uoY6J9g387T3PLmTebu/3tEsWQ4MYu6m/jVj8zJ13h+SDBPMeCfPvsMmUyCD//C+ZXbzXdu5Mbb1mHZFntf6aO6NkVupsQTD+5nzcbuiNOjWbZuAR09zdz72WfoWNjE5GSRJx/Yy6rNC/ncp57m9IlR6purqKpL0T84yanxadav7eLXf/4mFrTV8a1nDzCaK3DvzoMUXA8loae+nnO5LPiC09PT5HwPW0r2jY5QCDxqknGW1tVzbGqcmbLL5w7uwRaSuG0xXMySC0zydiwLR1qEGvxwzuYlJm3qYg5F4VMsRjYjzEMvzk9yYu6h86Agel5FNg+gMAvvi9prSkW2LZIIui/ROkRpA6hQ0RDL+KdpNBZa+6bSwFSWEo2vbISAmLTwsbB1SFwG5nuItpGVGR4SRYiqJFgEAaaaCucafLjaKDv6WuBTkU2RkYWNaTV62sLXTnRUY0UTajPjE1F1qzBzP0dYlHSEGpURCjGiEximt3Hv1j5gCYQSzDLAbSrGcKDELOhD2+YYoTJV1nz3GBlG5qyV70qaGaetxGwbuSrhUBWPkXd9Xjl5Du2Y1qPvh0wVS6Qdh2TCIe96vHTkNO++cTOP7z1OruyZuRyaQ+dGAehurmP94jZGZvIcHxonV3JRaJZ3NnLZ8oXc99Jhiq7Pof4RfufdN3F8cIwvPrmbmGPz8L7jjOeKHDo7ym+97QY+88QOmqvTtNRV8bWX9hP4ivXdbVQl4wxncwbSv8bcFK7taWN1dytSCvwg5J8f30FDVZpfvPNKUokY129cct61+8TuXlrrq1i9sJUbtizjhi3LAPDDkD/92tMsbKnj3ddvYtfpAQ6dHTFt4O9jW/Na8VjvSYqez5GxMTa2t7+uff+jxsWE9mOOH5TMAJ557BBu2WdoYIqOrvMrub37+9m95wy33ryWf/7ydroXNHDPXVvP2+ajH7juvN/XrO2k6jVUC8D4rwFs2LKI9Zf2sG/HKSYn8rN//N/+lxc4eWSQn/+NO2jrbuS+L7+EZUuuumkNliVZvKyFfXtOEyhFbqaIFXeYzhV5bsdJSlqx7bJl3LVtPX4QsufsIGO5Iit7mhkrF1nX0cKipnoe7evDEoKaVJyC9hChwFeKsWIBqSHne+hQk4o5NCbStGYyHJwaIS4txnMlfBSBHeG8lSTjONjaIlsqk7BiCBFgIVhcX89UocB4uYzGtClDOL9Sqyyc2rSx5mySTXUWt6SpAnXEy5ISJUKEECgFtm3aihUpLIEhB5vTaeS8YoSmY6lNNaeihqEWFhYeaE0gbAIdmCRseoIoNHFhyNCOVoSRZmOI0Y40EoqRAsjs77YBf2Dh68rzFqES+Noh1BpPW4QIQg2utlEIfAx4RGkrIlebSq0pVsNUuRR1XKNpnTSAEV1pzUaIT3yNViKCoVZuKMxp1kJT6RfPChULUBakbJtSKUBrI5EWBAoLQRCYfdJxBz9QoEKkFvhaMVoqELdtwlCjlaa1qZrpiQK5okfB83FsC0sK2ptqOX5ulMGpLCU/pKkmhR8q4o7Z99i5UXIllwVNtUwVy0zlS9SkknQ319NQlWJX71lcN+Rb2w9Q9DxsW/I799zEPz25kxZZxal9vVze3EXCsVnZ0cyilnpOjBqawCWLOvntu81NpePYbFneRUdDzey1KKXgYP8wD+46Sl1Viq0rFrzmNRuEipeP9VOVjLN64fmVlRSCRMwmHhGpP3TTVsp+8LqTGcC7N6zjyNgYG9p+euZqFxPav0Pccfel9PUOX5DMAM6enWRyMo/rBrS31dKzwEDt8wWXT3zpOVYtbeO2bXP6b0ppbrl1/fd9vdHRLKlkjExVgg1bzu/Rt3XVMzo4zf4dp8jnSux9pQ+ABUtb+bs/fYi3vPsyrty2ku3bT+CWA6qrE2Q9G2zBniPnaG6q5rZrV6O0Jlt28UKfgeksg7kc024ZXyuSjk2gFeUwxI+ghX4YMlzIk3ZiLKpOM1DIU2fFaUtVsb6pncFcnrO5adN60oacW+3EmHE9XD+cpQp4USWnlKZ3bDIqsEwikJFOYFmHRF6cQKWtJeZaZWCQ6QJc1JzxpzLIShn1MCtoQkFF0FhE6h8GPJJ01KykVKAtbK0Io6rI1zaWDlDScMRkxdhTmypIzKYVk6wCBCHWrDhxJSmCiBKXAeKH0fwt0NLM4RCzCU5pQUHFCbHwlaSsY4Ra4iqbki8JtG0URYRhroVaMKXHsa04oTJovtA3CURrY5iq53vzxKI2pK9MpYYw1Ac9xwms1MSy0uLU4Iam7WgBXQ213LVhNX/zxIv42szWZjxT3TqOYGN3O7vPDGAhaauvYXQmT953GcsVeNvVa/j6U/sNojRUNNdW8c5tG/ir+58z6vwJh6vX9qC1IFsqsbN3gP1nhjlwZph3XrOeP3zPLcwUSwyMz2BJyf2vHKG9sYZ80eXM2DQfv/95musyVCXivPvajbx4rJ8v/NI7iTsWo9kC77hinZEIswQ3rlvKYDbHJ55+mY9cdxm3bV7Bs8dPMVkoUp9OcXRwjHtfPkB9KsmuU+e4Y9NKLl3W9ZrXq21J7ti6iobqC3mmlpT82l3Xzv6eisd+ZLRkwnF+aiqzSlxMaP8OUV2TZMMlPa/53Btv38BNN6wmkXBYOI83ZuYcIgIamNi59zTPbD/OtiuXs3m9QTgdOTbIKztP8dY3baYqk2B6usjv/K9vsHR5K7/6sdsueL3LblhF3/FhnvzOXuJJh0uvXkbvoQGa2mt5/skjfP3z22nrrOfabSvoOzPGosUtdCys51Nfep6pUpl9vQP0D01xbibLTLHM4EyWMa+ErxWhowlDzT/cdSf/47uPMFYsYMVS9E5NoLRmQU0tBddjyi0TKMVEscR06LJzeJDFtfVoDWnHQSsIAoWtbCzt4wfGfNMAH+b6ibNnJlKDN7JV4az1C9oo6YNB5xEY0WM06Kj1qwNlHotmOxrDR0NorIgcLJ3oaQFKq+giEnihhSN9U52YPdERASvAzOgq0HmlNZaIYWmNHwoyUqGwsQmQQhqtRnQE25hTJTFHllGFZlMxq6mIJFeSoUJSUhYKy8zTsPC1jadtXGXjSGbVQUxlqiiHAk9JLAlxR+MHykhfBYaAp5VE2EbZPwj1rAQVkQ6nVmoWjFIBhQhhbiB0pAkpQqPj2FSVxAsUt65dzhdf2UfBN2gQxzKEaq3BR7Pn7FBEbhdcs3ohX3/poKm6haapNkN9TYqyZ/hoU16J+3ceZrpgHKWTUnCwf4Rs2SUdj2HbkrIb0FCVoq3eQOk/+cBLvHSsn4++8UpmimWOnhsjk4ixdUUXD+44yqmRSQKlyCTirO1u5U++8zR16SSuClnUXM9dl6wBKbh94wqeO36almqDfDw+PM5EvsjwTI76dArHkjiWRWdjDasXtNJU8/09y9LpGKcnpuhonKvwRmbyfHffMd62dS3pHzPk/6clLia0/4CReA0CdjoV51c/eAO+H/LF+15h/cpO6mrTpFNx6mrn7uSO944wNVVgZCTL57+4ncAPqa1L4czTevvmV16msbmKRYubaW6r5YY7N/Lo/bvwygF/8KmfpWepaXP0HR8hZlusWN3BwsXNdJ8YIVdy+a0/+DbKFixY2ERbZw0jkzm2ruyiuSaDh6KlLs2K7laOjY6zsLGOf3plN2tbW3jgxHG64tXYlpn7/N833Mb/98LTFDyPIJsl55UJy6ZiOTk9SaA0+dBHBoKkZZtKwY/kiPW8TmIwt+SjI0TkrBKFoC7tIJBMlMumNVPZtFJtWBgDS9uorGg0OkI56BBD+lam9abmyrQIPGmg8eaQZkJV8SuzpUksNgF2VAEJIfGUZcw+tXleYaorG0WIhdQKLQShNrpQFT4zWs/Oz0JkNPYTEcfNyFcpjNxVScUIItaaG1roiJdWDm08ZeErh3DWikCfd14sqQkijSopLUMk08LIUEVNUClBRQhIXbGjrvwnOldo06YUOqJBRN9HKQyYcMtoX/PXz7xIVcyZBYbYthF4rqiLSBSJRJxc2eXxY300VqfJuy5FP+DrLx2grjpJzLGNmSyw/8yQcWLQhnh86dIF9LTUMZ4tcPOm5Wit+eoze3ngpSMkHZu2+irCUPHAjsOsWdjKgdNDrOpqobWuCktKwshc9g+/+SQbetqxpOT05BRttVVsWGBadd89eBxLCn7j1m2z19ibNq7kptVLqE4aoNbilgZ+/U5TWb1x84W6jK+OB3YfJVsus25BG8MzOZa2NvLE4RP4YcjeM0Nc+T0g+v/Z42JC+wmLiekCw2NZjvXtYuOqLj78/rn2w8u7T9HUUsW2a1ZQlUkQBEbX7q63bKa1tZZnnjnKqpXtnDg+zNkz4xzec4aGpire9t6r8D2FW/bZ9UIvJ48NI6UgFrfZcGkP6zZ285UvvYjvBRSCAK0gEY9xxYaFXHvlcjqaahjLFrClZGFdHZ/5hbv4+OMv0JpOcWBoBF+HnCpMgYQ3LFnC+rZWljU08sfbn+PE5CRVsRgrGpvYNTxAqBUxy4qsVwQpy6EUBOafPx+5YbhjcWERCDUreXX5gi6ODI0y47tmjVQwXfCjMZXZTwuzsFYGVDriXxGAiJnFV2NAI3PAEkMgdxISpUJsaz7IROCHkLRCo8RvabOYa8PnsoSOLGgEWkg8bZjDJeEgQkVKQlmFZGRgEpzQFbB9pMtYwUsIQkRUdVWg+ua/ZW3jY0egERkRtQ1Z29U2vraZ8Y2JZxDpOyotCFVFnd+o9xvjcNPnNYAlhRTGjMa2TYs0DKPsNdsFFYZGUanY9NzXNGsCGuVOHYkb5wOflXV1HB2bIuv7JGyJGyjcIDAsgKhyDrXxOdNA/9Q0ly/oon90EltK8iWXyaCIUppk3EajcaO/EdsWjOWL9E9N82tvvoYTw+P89pcf5bbNy1nR0czDO47x5994lhs2LOHmS5fzxN4T3LJ5ObddsgJbSnqHxqivSlH2fb754gG6W+upT6eoqUqQ9cp0NdSyuNkghW9buxznVQjE33r4CVqqMvzyNVe85nU8ni/wV4+9wIYFbbxt84WCC3dsWsHQdI6vvLKPqUKJt29Zx92XruHA2WE2dnf8oGXiP21cTGj/TqG15vDhAZYta8Nxfnjb9damat79pi18+Ts7OH5q9LznXt7dh1KaKy41iKlfmqfhePr0OH19o5w7O8F//bVbAHjwGztYu3EhLz55mKrqJIEfcrp3BOv0BJ4fMD6eZ3w0y2XXLGfbdSt56cVe/HyJRd1NbLtqOYuWN/M3X30W4Uh2Dw6SD3ykLXj0QC9f23EALSFTFacY+DSnM2QDl68eOEBnTTUPHD9K1nNxbIv+3AxbOzrZMzoICjwVkrYdPD8kVOEsslsgaEmlmCiX8XzTStzY2srJsSkmCyUI4KVTZ8+DMlbGOLNqIRXuUwDCwczBwqiisDRz4FHTlhSmcziLvlNaILSYbXlGqRWEnPXz8pTEscGWKpqTCZMUtIqSnAGIBFpjR8nOJ0ZIiFvRdtQBjgjnMgGGSF2xg9HoiN8mKWsbNTttM5VRUVmUdBytBSUVw1VOtF8EKNHghUbjUYUQaiuC/tsEqgI8wZCsiWD086qsiuK+KSLNPHPWJC3i7TU4CZrTVZycGMeXc9+DCo39zYRXnv1e/MrsEs4To5aWoKkmzZnxGbTW7OgfILQhIaT5zoFUzCEWs1ja3sTpkUlu2biMbNHlgV1Heen4GT7/7C4+/dgObCmYzJf42esu4R8eeJGpfJFnDvTxhz97G4/t6eUzj+3gF267gicP9HJmbJoVXU04tkVLbRW/dPuVvNJ3jlOjU2gwrcYoNi24cA7VVVtDY/q1tVYBErZNXSpJfeq1t1nc0sDilgYaq9O8eKKfjrpqHMtic8+FYuQXYy4uJrQfYwR+yPYnD7P5yqXfV98RYNfOUxw7NsSJ3hGaWmvYuecUb33TJXS21/3A12ltquYX3nMtSqnzHn/LbZvOs4WfHwsWNNC9oIG2tlq++509XHHlUsaHZ/jKp5+iqaWWzu4Glq5p590fvoEwDPnnv32Smck8MzNFsjMlWttqaWmv4/GvHmV4bIZvP7aX1N4UA5M5mpszyKjtFISKr7+yn3TM4cqlC7l+9SI+8dJObl+1jD94/hnKQchUsUzWN3O2eAS4+E7vEeKWQAsLqTV534/wehau8qly4tTGE+RcF9c3Pml18SRHRsZBQ1JYlCtNuFlAQhRRTqgkH4GODEcjdRA9b8NopmT6ZOa/laSoUbNADqOuYdZutPG2VpH6ho7meoGS2FKhhHnMxQKliUfVXaAlPpFepZaUlSQuDRgkFIJQ29j4GDF6wzGr1GoqSvHmEQutJa6W+Moy0lYqgV+RwVKmzai0oBwa+L4fbRsoMTuHC5VJysYixzRxE5ZNOYwI06GITEE1yig5k7BsSpihV9ySuCrSuNKaKa9MMQzwKgNOaWaY0hEoXzNSLCGkAe9oCUnbprOmmvGZIjPlMpYtsYTAi17fyJWFWEIiHIlUEksKNixuZ+uSBTx2sJer1vbwsTu3IaWg6Hm81HuW/tEpQqVQIRzuH8GSklULW3jh4GlsW+LYEjcMGMvl+aN7n2IiX6C1toqBiSwdTTXkXI8DZ4d59MBxquIOH7p+K4514U1o//Q0CdtmolRCOZphL89kqUh98sKklUnE+djNV7/mtTo/VrQ10VCV4tlTp7l+8aIfCc34nykuNPS5GD9y7H3pJGNDMzx+354fuO2q1R3YtsXlVyyNUHmzU6AfKuIxm+Q8U8CpmQKHTwzRPk8xZM/eMzz82AHAJNudr/Txpc+9gFv2+eYXX2JsaIbR4Sz9J0fNIh1o/uVvH+f5xw6xZGUbazYtZMnKdtxIH27Z0lbWrekikYkzNVNiciRPS32GK1cv4pYtK8mk46QSDjWpJJsWdnDF0m6qkkkW1Ney49wAy+oaiFmSQIUsrmswfKwwJGlJiiqkFIYsrqvHj+oNR1pUJeNUxeIUPZ+cZ8ivQsLS+npq4wmynkvW9SirkIRjk4o55jyKuX+OFMQsSdwxrTNdaSNWEHgVLqDGcKeiKk2cx2nTkSxTxdCTKElqpKVxLCMxFSoD1RcCXO3gKZtSaBJHoG0CJOUouYRaUlRJiiqGpyRlncBXplIKtYOrbTwdw9U2rnYItYWnbWMJE+VhTwuUlhEk36Go43jEIqV9o7YvtNF0DJVlWpJK4IUx02rEIlASL5B4oY0bmPemFARK4Kk5vzMjiQXSAjumkFLTGC3WQkKARtqCylqvgFJoPAOkFYFXhEGkVtAjjiVIxY2IctEPODM9wzu3rMW2LBKOTXtNNUobErUG1ne10ViVIuu6aBsaazPkPJ9PPv0K56aznJ6Y4pe+eD9/8dCztNdXoyU8e/wMX/rld9HTXMfLx/t5/8e/yqXLumiuy7B+URvrF7XzG3dfR00mia8CatIJrlndw9///Fuor04xXS7z7Z2HuGJpN0oKhmZyr3lNfurlnXx2x24ePXmCl86eZaJY4PjkxHnblIPXr7X4tQMH2Ds4xJnp6de973+2uJjQfoyxbusiqmqSXH/794fRA6RScd7xzstobq7m8q2L+cD7rj4vGb06tNY8taOXofHs7GP5ostMzrRdHnrqEKMTOb70rVf48rdfQWvNrj2nOXhwgDBUWJakoSHDlVcvZ/GSFkI/YMmqDn73r99DMhkjZlvc/bNX0tRaQ219hnf87NXc+MYNLF7Zxs49p/mrv34U25Z86IPbaGmpQQtYubiVbZcs5czYJJmEwyWLOunpaKDg+8RjDvcfOMJ4vkCoQnacG0AKwdULFiClJAwVWzs7iVkSx7KRQlAbT1EOfMJovXPDkKFijo6aatKxGKFSrG5qpqu6BqUUJybGIzCDJrQ0mVQMmJs5VZKOhyZA4+mKPIV5vIKJiAB5c6FMtTmHUNdG+YMIYh/pO8oIvi+0mgWpaMxcylcSX8kISVipgox1jK9j5FWCQFvkwwTl0KZMnEBJsjoWeZiZuVZJ2ZRVLCJHWyhsdAT8KGsrkrYyYJBQGzVIFWk5+tqi4FsUVYxS6JAL43jKohw6hFqilCBUEqUlgYqg/9FnV6rS6GUWJWq6n3PJCKEYKE1RgZgKyyBBm1PpCB9TqcygI1NlklpUqTmWwLElCk3J903LEoNm/drOg8SkpDoRpy6VYEljw+zrF3yPlrqMoWFIWNbeSK7kki2XmcgX6B2dYF//MM8fO81YoUgqHqOnuZ7njpyisSaNY1tMF8psP36GN12xms7mOiayBa5evYhMKkZjTZpfvfNqPvbmaxnL5UnFHaqTcS5f1k1bXTV94xN8acc+popzDs9l32eiWGRrVyeXLeiku7aGn9t8CT+36VIW1dVH4CP4bt9x/vDFZ3hxoP8Hrg/z482rVrGksYHu2trXtd9/xrjYcvwxRixm84a3bP7BG74qTpwa5b5H97FsUQtvvGnda24zNpXnYO8QfefG+eBbjFngp7/1IuWyz2988CbuuGEtOw+coe/UGP3nsgSB4q63XEIuV45gz/DBD10HwC+/99OcPjnCuz54Lc2tNbz1fVey7+WT3Psv26ltyLBiwwJ++2NfMUkgDOnrn6CmLs3T24+Ty5cJQsWmNQv4nV++nT/+/OMMjmdZ0tXEX7z/Dp47fpovvLiH6kQcVwfcd/CIMWMUgpFsnt6JCXw0Rd8nH/isbmwh77skPZtAawqeMXa0pURqA4TwVMjKlkaGZvK8MjiA0pqzvo8R/63wuATZsIwnDOxeK0CbuRcQtcnMzxWfSkHF0XpukdaVdXz2Vk9EoAdDsA4VxB1FTCosaaqUmAyxpcaWBgBijmX0nZSwIpX8CDERIRi11kYOS4S4OGjlkxcJYirEloowVGhhYwGeALTAwD7McTRm7mUspM2xDIRDoLSFpwSecgiwcZWDG9oRH81UgDYxipFNaKjEHBVARzL450UF+hLNC5lL9tICW0AQgiaku7qeS5oW8K2jh4xLQqRg0Z6pZnAqj9CCnvoaEjgcGzPtYjnP/TPp2MQikvRkBHuP2w5JaeEFIccHJ6hKxkjZFmu72jk2PE6+7JJJxgmVoi6VJBVzmMoV8ZXimpU9dNRVcWxwnO1HzxAoRcnzOTs+w1suW8OLx/v5zS8+zP+86zoScYfJQomDg6OkkjH6xqbYe3aI33nLDSxsqueVU+dY0FjHVKnE/QeO8L6tmwD4h5dfYTCXY3FTPQdPj7KiqYHhYh7Lljx9to/VDS28ZdkqemrqODw+SmdV9Q+3METRUVNNR83r2+c/a1xMaP+PQmvNxESehoYMQggGh6d57Nkj3HnzehobMtRWp1jU3fQ992+qy7B2aRvLe+aETdcuaaPsmpZOTVWSG65YwbVbljI0PM2n//kZVq1oZ9vVF6r8b9y6iEx1nLvfZxBY67YsYt2WRXzhH56k79gQvUcGGRyYorWjlmuuXYV+/ig33LCaockcJ86M0dpcxcETw5w4M8Yv3n01X396LyO5PM8dPMVVqxfy4MFj7Dk7yFVLu9k5NEhzJs3NS5fyrSOH8PyQ6mSc1poMCtjU2kZfdoqlTiPbB/qZLBUNkl5aLK2tZyA7Q19ukpFCjjDUlINgrnJyImFiDVppgsAst9Iy5FSlNE6EmJQCvFDNW6tN4kk6FiUVoKWaqyrM8C7aTCGsACUUthXi2CExqZHS1GO2NAnIFhpLqFlFfWPDUoFhiNnRXIhAaGkoBcLA8D1lIyUIAgI0eZUiKVwD7Y9KPyO6YRFokzRNVzQSyhICqQVSKLQyc8EwsovRQFlZaGFuEMKo+iuHIVpJykFFWaSSrMwbFRcMIgFERdLxvLAdSahDtBYMl/J8o+8AytKkrBhhYBLaTLGElFAbS+L5iuHCJDKa0wkZmYBqKLi+QdFaFmFo5l6u8umormY0m0cJ8z0nYg5NmRTjuQKNmRRnJmdoSCd546aVHDgzjCMtDpwdJl9y2dTdzjuv2Ahas7vvHO++ZiMCyXiuQLZYprkmzV898ByWlHQ1VJOKOyxtbURIgesHtNfVAHBJdwfZUontZ87SOz7BaD5PcybD+rY26lJJNJqWdJr6ZIobFi5GCNg5PMD6ZkODWdHQxIqGuWv8yNQoXzy2h2s7FnFT19Lvee1fjB8+hNYX/NX+h4lsNktNTQ0zMzNUV//k3aG4ZZ/HH97P1det4sCBsxw8cJYVK9u5dttKHnziAANDU6xf3cXWjT0/1tc9NzjFn/zFQ8Qdi1/8yI3nEbTnh1KKez/7HAuXtXLptcvZ/uRhTkcglY2XLyEWt7n/gb1kMgne/KZNhKHi6e3HeOCpQ0zmC3S21fNbv3ALozMFvvDkLgKp8VXI6p5W+iYneb7vjOGlVWcItEILGMzPkPc8qtIJ1ra08JEtW7j36EEeOHkMS0o8FVIIPBriSaa8MmVz649UAktIfKUi65IIrTivmBCmC2Y0GkMicrJRBDEzmIgAbEVQfRuScZuC8tB2dBkIk9ikDVoorFiIbRuxYSkUjuWTdBRCKGJWiBVVZhKNI0Ok0DgyICZDHGmeF2hiIsASc4RwITRxEWAJRUz4xEWIlIqk8LCkUeuPC2PZLMAIVQmNhVEjUTDrPB0iKasYJWVU/YvKYcKvwlM2hdChrBzC0CIbxNHaIgglXtQSdQPDeVRR/9Wcbhlxx8QsMhEiT7NI2NjM8ERUCUe/a9BKojwBWnJpYxc2kmzZpW9yCt8PqUsksAOLmVIJS1jmRsRTCAUpbEpuQG0yQegbCH8QKuK2xRvWLOPQuREGp7IsbKrj57dtJZNw+Odnd9FRV8OBwWHKXsC6zlb6xqY4NTKJbUn8IKQuneSSng5++6038rHPPUjf8AQbezo4Nz7Nis5m2uqr+fTjL9NaV8X/eefN3LvzIBu627ljw9zN4Eguz+de3sOVixaQdV1e6R/gttXLePb0aX5m4waa0unzrq2HTx+nKZlmc8v3htifzk7xxeN72NaxmMfPHae7qo73r7jkdV3r/xni9eSBizO0f8PYvaOPUtHjmccPsWRpC8lkjOXLDRnz1uvWcOv1a9myYeG/+nW01oThHOKxs72OD39wG+tWd3Ls0CD/9KmnzxMz3v74Ib7yyaco5F36T45w4rAhpV5+3Uq2XLOc9p5Gvv3VV8jnyoyP5RgfN0Pw4dEZvv3wPiYn83S11lFdk+Srj+xhQXMtb71qLeMzBWrTSd6weim9o5O4no9SmuNj4xwbG0cA3TW1uGHITKnE/tFhPvrIg+wdGcaSkqznkok5RuexXESDSQJS01SVJB2PCLgxcGKSWFzOVVQVry4xj/eE4ZQlHBsRbWe0CaPGmdAUQn+WUoWlEY75h2VUMixpZEfidoBjK9JOgG2H2JaKnJ3D2URlS4MArNRlFWFhMdsmlNF8ywzw5hgCRjHfWLkYzUVJBKagUlTKiIQdVUjzbkOF1qiKGFaE5gu0HamjSHQoKQRxw0FT4CoLN5AEoWEgV/hoJmGJCMFpXtUSBskpxPzFIpqZCVOpitnzGT1mGwjo/olhRgo5Dk+O4eqAEE0x8HnXurWEaEphgBuGxq5GgWNJrljURV08gR+E+IHhF4ZKkSuWKbgejZkU0/kSX31pL3/xwHMc7B9hLF9gbLqAFIKZYpm6VCLysFM0Vqdoramib2ySmG1xx+aVdDXW0t1Ux9uvWs+H3rCVZe2NrF7QSnU6zr88t4tjw2MMTmf504ee4cC5YQAKrkfOdZkqlrlh2WJyyuWzu3byxKmT/OGzz8yemZznkvdcnh04zWP9J77vdduYTFGTjJGwL1yGd4ye5b5Th77v/hfjwrjYcvw3jEsvX4JSvWzasohkMsZ73z8H05VS0PUDIPqu6xN/ldhxvujyL99+mXXL2rn6EsM3++yXXmBiMs+vfvhG3HJApirB6lUdrF7Vwb1ffZnBs5N8/pNPcfm1K1ixppP+E6Mc2nWKkbOTXH79KtZdtpgzvcN0L21lycp2Hvr2bna/cpIFi5r4b//tDWitefGVk+zaf4Zk3MYPbW7ftoZn956kt3+UX/u7+zg5MUV9TYpFTfU8sv84dckEx72QbLFIOhEjGY+T9zx+47pr+O+PPowQgs7qag5PjPHGpcspKp+nz/QxUiqggZRl887V69k9MsDO0UHG3AKNyTTt8QxFz0NKwUy5jBOzSFk2MyXPJLJKBpACC6Mt6KrQpAfLwMOZh7gWcs7OaxbViEbrkFhM4dghlgzNvEwoauM2nnaxpMKWczcJVmRUKjCJTkVKHlKBlCpS+jDSZSpqgapI0sJCGpAKAltUpm+W8VTDAeFSgWyGVBwwK+/UJJ/IN5MQixIJBCHlMI6rbAqhTahtQoUBqmhTaakIsq/13IJqS6PCH5EVqIy3LCoJWM/KiJmTZh6TslK1zZ5Z/DDkTH4GgKTt4KmA6niCZ86cNt+HNuasrTUZFlXXkpA2fUOTDM/kaEinmC6W8ENFXSLJrlMDNFZnEGgGp7IMT+epjsfIxOLcuXElu/sGODsyzZbuTv73W2/gsQPHOTE0QcyxOTo0hiUFZT/gyOAIC1rqyJbLDJ/KcsuGZVy2dAHJuMPOvnOcHJtk/YJ2FtTXMpLN88CBo3xt7wF+7/Yb+f3bbyRUisNjYxwZHSPu2Ny0ZAmrmppnP/UfvfwMMcvincvWUht/bcHwSoyUcoyUchycGuZ3Lr3pvOeeGuhjqlzk9u6V2PJi3fHDxsWE9m8Ytm1x5bXf36n60acPcfjYEB9891VUzeOunTwzxr0P72X1sjZuv26OxOl6AdO5IlPZ4uxjbc01xByLL31hO8NDM/zKr91KLG6+2re+fQsn1g3x8Ld38/IzR4k7Fm/7uWvZcNlinvvuPuqbq3noyy8xNZHnzvdcgR+EBK7PitUdxBwLIQRn+ic4emwIHWpammtY29hJvuDy/O4+ZooluhY2UpdMELMsXuk7S2dDLSdGJkjFHDLpGLWpFBu6WmmvqeaqRQtZ3dyM0tDTVEc8ZnNkfJy7Vq3kTHaaqkScs7kZuqpr2D8+zOEpQx7XQKAUM76LCs2iGgpNUzLBkroGzs1kOTM1g21JbCUpByEemrgljHK7ZB74o1KpmZ9FVLUBYGmkpXAc02oUwlRpllSkHJdAaFKWsbOJxmNYQkV8NNBiTpprzjBURJWjEYCKtPeR0fsJdUhMqGgipmc5YBoI8bFm0ZbA7DMVVGWUwZXG1TYaga+MwWeozIxOIwm0qcSCUBCElfmamK0mK8f2QnM+jKWN0WtM2DZxYTOpXPPq2szSLAReNLGoTSTIeh5uYOgWNakkM65HQjuUlE9rOsMvX30FA7kcx8fGOTAyirSg3kmypauTX7/+av7XNx9lYGoGFUKh5HHZom52nxmgKhGnJpXgLZtXc//uI7OAn2zJIwg1e08OsrixgSMDI+w/ayqqa1cuYng6T206wUsn+/nZay8hZls8cegkodK0VmcoeT5/9J2nzbnSUJNM8N9vv4ajg6OsW9DGLeuW8YEv3Mt0qczvPvwEa9tbmSgXOTk5yS9ctoWVTc301Ndx34kj/N72J/mVS65kQ3MbjpSsa/rBCvaLqxv5lbXXUhe7MPG9d/kmJsvFHymZPX/uDItr62nLVL3ufX/S42JC+w8QrzXErK5KksuXaW44X8S0oTbNb37o5vMIlrffZKRzXnj+OKlUHCc2V4IIIVi6sp22zjo+/9eP8ei9O1m1vou923t5yweupXNxM3bMYv9LJ2lur+Wf/+ZxivkyH/rYrSSShue2oKuB1tYaamtSxGIW0rZYtayVbz29n+pikt967018/L7nWdBcR011kqGpHL9+8zWM5vJsP9VPzLEYKxS5etFCXurvZyCbY3FDPb4fcnxsgks7Onj6zCn6pibpqatjID/DeKlAcyptgB22WXQ9HZBwLMoExC2DesuHLqeykyg09ekkGSfGuemZyM5MEEjQjobQcKFUlFYq5CpNBY5faaOBZStD+EVhS0XMDqlyyiRsH0tKwCMmNSqSkBKVbzHqu4UaHEElPVFR2Jj7thU2HrHZilBFhOVKo0/Npi1d0fSK9pXR/6vKDCtqGXo40SxLYAlFLkwipcT3TBtTKWa1HhFm9nXeu9KV92ZAIzVWgpmwhAYa7Sr+Ysvb+NCLX2DCLVFhTSbtOL7vIhBIbRGXDoEM6ErXErgGeFLvJNEqyccuvYr7jx5lplSms7qGP7rhRv7PE89QCgNSMYd7dx3k+PA4iZhDsexTcD22957GDxQl16c+k+S+PUdQSpGOORTKPihjfvvdvcdAQMy22bKok1ApPvfMbnafGuDw0Cg51yMV38clPR1ct2oxh84Oc2psCgQs8wLKQUh9JslNa5bw+Vf28sSxkyxraeQP73wDf3jnG3jo0HF6Jyc4MT7BZT1daODmpUvRwO7RQcqBjxsGaK15+/ILZayeHenl8PQQH1x6JVnfnL/6uJm51cdfWymkNVVFa+r1J6SJUpGn+vvYMXyOX7nkyte9/096XASF/AeN7bv7OHPOtEzuunXjj+WYe148gZSC0AvY/dwx3vT+q2l6VdvzxJFBpsbzXHr1sgv2/7tPP0m+4BKiqa/PsHVzDxtXd/HAi4cZnynQUptBObBpUSff2XOEoVyOHWfO0dVQw4HxEcpBQFU6jragHAQk4w4jxTxt1VVk4jFsS7KgroZHTvfSlEpRCnyyXpkwSg5XtXXTWV1Dd3UN9588xlixQEsyzcnpKdwgoDaWZLpYxg/mel/zQeghmrht4aqoVWhpo7ovwYqHRupKKmKJAClCErGAhB0Qs0MyTpmkXTGDMZWWQQaaFDM3BjGVlhQaS4bEpJERtqVBQToiICY0tvBxIkSk2UaRkB4xYVywK0ASw3UzLcpKLVWZcWkEgTZzuZKOUVYxckGcskogRSNTvmLSExQCG6UkOd8h1LbZP5SzfDd05bOAUq8F24c4Fg3JNMPFHIGGpLTZ2NDNc8OnzAbR7M3B5rKGRTw7cJq4dpBKsLG5nfHpIsfGJ3CQJG2HO5ct5/5DR5FI3r12Pd/ecwjPC+iqrqZ/bIai6xOXFo4tDZVDCtKJOC01aUrlgK76GvrHpnADRVXCYbpQZnVXCz1N9VyxvJvPPbubgaksqbjDcC5HbTrJyvZmquMJ2uuq6Bub4uDZYbTWpBIxNnS38T/euI3Hjpzg/oNHmfJK/Nq1V7Kx08haeaGhnsyvmL7Ze4ihQo6F1XXcvmj57OMT5QIZJ07cMvXCZ3uf50R2jP+x9mb+7uhTAPyvdbf/EFfs6w+tNfefPMqaxhYW115oT/WTGK8nD1ys0F5n9PWN0tlRTyxuMzmR5+EH9nLrGzdQV//97SBeb2xe3cXoeI7rLr8wsfyg+Mpnn2FqvMBH/sf5djEbL59zxd109fJX7wbAkpXmAt710gl2bj/BG9++hQOHzvGlL7/E2vVdXL9tJV/81sscOTVCtlRmw6pOrlrbw4MvHuGqdT1UpRKMzOTZe3qAo8OjBAL86jRaQ9b1KPg+TTUpYtJiIl9kZXMTCM2077KsqpGC77GgqpbmTNqIFQMxKbEti5dGzyLG+rEtQcZJcMeSFRR9n3OFGeJO3IBjhCIVsykGxlsraTtsamln7+ggudDHJQTLJDEhwbYsLFvjiQAhNbZlkoeUAkeGxO2AuNSkLRspPEATExJXm9ZkqM1UK23FzaxOGwSkLVVEeca8kA4QwnC2hNAgLAQeUqhIKlJjaRspfCp+awbaXxlTzVVqQcQZMw9bURVoI6LqyteSrFeiFKmLhBq8SFC4QiNQgnnM8cpzEJMCX13YNQhQjJcLs27TKTvO9pFTcxtoQAkS0uHF0X4Umqp4nDDUFMo+fVmjgRhojRuEvHJugOpEkpFsjn98eScZKwYIxnJFrluxiBeOnabkBVQnE4aaIQQ1yThrO9vYc2qAchDy9ivWM54vcnpkgqIXsLqrlZeO9bPv9BBeEBKTkquWLeQ912zkgb1HKXo+YzN5xnJFFjfXc+TciKm21ixjWUcjWmtWtjVRnY7z4OFjjBXm2voTpSIxy6IhmeKps33YUnJN50K+cfwgV7QvwAsDvti3g61NC/mzA49RDF0+vvXttCZr+NklV1AMPDJOgs0N3T/o8j0vXho9zZGZYd63ZOt51lFnc9M8ee4k9yzfgCPP78i8acnK73tMrTW+MiLgP21xMaG9jjjVN8rjjx2kpibFO955Gfv2nCEMFft2n2Hbjat/8AFeR8TjDm9+w/ofed944l/31fpeyNDAFOOjWb5z/x5GR2c4eyZFc1MVrh+iQsWVm422XG0mybtvMiTT/aeGuH/HYTw/pKWmmqFsjoPnRkhn4lTHY1QnE6xobGTn4CCWgsl8kTtWrOD2FcvonZrkt597goLvkvNcHCGJSYti6FEI/MgPTlNSmpzvM1bK8/jZExQCn2orjggltiVZ2dDEaKHAjOsiJbw42o/WUTU2D4auUZGpp9EWsewQy9YkHYmUHilbkLI1GSdGdzrOcCmPLV3iElJofCXwtDFPU6KAY2lsLRFCzb5GpYUYUcTntSEjulsEqrBEiBJh9FzkU2ZUHk1bdJ7RaCVCbeEpI3kVIMmFcUIkgXYoa9OWNDB8gRa24c5pTUVu0QBTtJn7VZKlCufmckBc2CgdEmhNEDl5CwRj5WL0+QRJYUR2C65vHtdQF0+BMn9HB7OjVMfipBMOnVXV9I5OcuuypXx5zwG0Nk3f+kyKq7oW8FLvWT50/aWk43F2nzxHyfWJIcm7PufcGcazRa5ZsZCGqjSjuQI7T57lzNg09ZkkSmt6Wuo4OTzJyEwePwzwgoBjg2O87+o5wYNQKZ4/epqVbU2UwxAlNLtPDwLw0NHjtFRn+N2bb5hNIKemJ/ngg9+iIZHio5dt5VOHXmZxdQNXdyzkw+uNm/zR6WGmvRIvjPRRFXMYzo/w5PBB7um5EikkGcfMx2/pmJuH/zCxa6KfweIMOb9MzbxZ24Onj+GGAUcnx1jb2Pp9jnBhfGLHK5yYmuIPbriBhH2hVdVPclxMaK8jOjrrqa1JsWXrYgCuvX4Vp06O0rO4+Qfs+f823vKe17aseD2xYk0H+3aeYv/O09x996U8/3wv7/vZq2hrq+O6y5eyalk7a1Z08PdffY5CyaO+Ic07btzIi8fOcKh/mFBq6qpS1DTH2T84wtqWFn7/LTfxyLETvHLqLDqsLPOS6WKZ+44c4+Whs+jAGJktqW1ASkF1PMb9fUfRQEMiTTEoEyijJrJ9qJ9CYIi42dBFKImNpC83ia8USxoaODoxRoAi5gjCSCHeso2VvacVoYjQiVJgSWP94quAmFQo6eMrQUxoFiR7mPFPR9WTqZZiQiOVjySBwos4YxIvYlBUah+LCnzf/E9ro1xSSU2meSiwhB1Z11QSYBi1Fo0eYwVRqLRpNZaUjatj+EpSUHEjYaUFnhKVTbEtSSw0OoumUaqwpMAOjQDyrL1bxKMWs6AWQUza2FJSCoJZAfyUFSNf0SPUpoz0USgFJd9Da4hpmyBUaF+RdT2kErSmMiRljGLZo+h5fH3/IfIlDx0KVAgxy2Jho/Et6x2Z5PIlC+hprONvH95O0fVnkalaazKJOG4YsqSlnl19krbaKtZ3t/Oeqzby0c/eR3Uqzu/ccANfen4v391znIGJLJdH/mGBUjiWxbWrFnFydII9Z4Z4/NAJrl6+kPUL2uibnmJJU8N51dCn9u7EV4qm6jRfPrYfS0gWRjJUpcDnK6d2cmvHam5sX8HS6ibywTq+dOp5Flf9cOuCG5rzGbcuTC4fXHY5k27xvGQG8J4VG9g/PsyahpYL9vlB0V1bh6/UeZXdT0tcTGivI2Ixm7e/87LZ36UULF76+v+g/r1Ca81jX3qe47vP8MHfu5vevac5trOPt/7izVj2+X/cNXVplqxoo7ouxRNPHmFyIscDD+0jnnR4x1svJZ6I8cBTBymVfYYmsghHMjSe5dIlncQti70Dw/RPTLGkrZGmdArfDdEK3rZ+DZ011RwZHWOqXGIiW+TA8AhD5Rx536OkfGzbojmZ4c9uuIXvnDjC3vEhQqWoT6U4NFkgE4tR7cQZKOQqUD+zkEYiw+lYjGm3xGAxy6qWJnpnxkFo7upeST5webS/1yzu0lRLtmWcki9vXsT+bB8BAZbUWEJTZcdI2Zod0y8SFwY8YlUmZ0ITsxQxS+OGilBLLARKmoQUaD2vmWcsU8AkDwdmX18KDDwfCAhAme9CCYhFiEMfTHWkoaTMZauwI2CKjJqJgmIYQ6GxCPGVjYo4arZlkk8YVW5ShkZBBYHAxtcaS1gkpEM+9Ai1xlMBQtsG0Qlsrl/AlOsyWJqmFAQGgKJtvDBkrFTA80Pi2EgkWc8joyRxYRMQcnZyBomk5PpYCPIljzBUpBwbtGZoOsuhwRFCpVjb1cqf3/csvUNjCAyVIJWI8Zatq6lNJ8i6Ht/df4zDQ6P88T23cPDMMH2jE5wen6IukySTjFOdTFD2A7wg5NTYJH/87aeYzJc4N5nl5vVLef+2S3jb1nUcHxmntqqB9161iXQ8xnsu3XDBdbOxtY0NLW3cvmQZ/3J4NzXxBHcvNeCPfVPn8MKQRweP8N4lplpLWA6/tOLWH/q6/IcTD6C05ldXvPWC5xKWQ3uq5oLHM06cK9peX/uyErcte/1jjJ+UuJjQfgpjcixHXWPmAquJr/7VQ7zyyD56VhlPpSOvnGTo1CgzE3mO7T7FxNA0d3xgG2Du1BcuaeUzf/cYMmYxMVVg5MVerJjNTK7MjTeuZnhshtODE1y6ppvbrl5FY22Gt//R5yl5Pn/5oTupz6SIOxYf+/JDxB2b//31R2msSXH7+hXcs2k93z16nPFCkSrpoFMZTmenkEBcWgxks4zk84wXi2Rkgs3t7RSVR2uympgtaEml+ezh3abCiBZcFUHgkbCupZVTM5OMlfLkAxcN7Bw/x8amdpQIjeJI5HHm2JJQemwf7aMp7eBSNNUaGk1AMSijpcLDIhklOxnxzQBC7Ud39BpFgRgWs2ksKoEEIuK5GSBIUtbg6bFZ5ZCQAFdrRFSKyAgy7+FgGR9r81oIMxcTGBV/YkbJX4kI5GHSpiMVoWVTDubOjy2MikrcijOjfIQOCZWF0gohBKEO8aOkK6OSsBQGEVdNsG9iGDdQdCRrccMCrgrxQkVcWrQnqjlRniZEGW/OAIrKJ65sHGzcICAMNHFh4Vg2MSTF0CdQIZ3V1ZTyHnvODDCddfn9bz5BT2M9O/vOoTW01lVxw/olzJRc7ti0in96ficT+QJF12Pf2WFeOdHPyyfPcumSLjYsauf+XYc58u1RLluygLddto6ZUhmlFCUvIAhDzk4YbtzpiSnO5rJ01dXQNznJvfsOsW3JIrYt6Tnvunn7ijnk4s+u3sy/9L7CyewYq+va2Nq4EEtI1tX96KabS6o6+A+MzfuJiosJ7acsDu06zQuPHGDBkmZuefvW856rbazCsi223b2VZCbBXR+9mZmJPMVsiXv/7lEaO+q57f3XICMk11MP72diNEfX4iaSCYfqujSZuhRXX76U1Uva+Mw3tjOZK5EtujTWGlBMXTpp2kLxGLtPnuOpAyf5r9ddxtGRcbYfP83B/hG6G+u4de1ycoUyjx07wehMgU3d7SyormHKK3JyZho/UChtWnHZcpmHT/RyU89iru1s45ae5dzwzc9gIaIZmwFcxCyLtJPAtsBVAVtau3jmXB+WEDhSMlLMc/+pwwTRTKqiBq8w+2uhmfZLxC2BsDRxSxPi4eoQqQS2DGeTVNRto9JYNCafEZ1NKNAeFhIpbBSKjEzi4SEx5GlLSqgoc2C6d2E0n0KAxEbjowkIInPOSH8ET1t40dwMbaD4WkgUFlKEoCpqkj4xIVHSQqiQpBUj7sTJqSLxSPrKsiyKQUSgFqAIydgx08pFGVRsaJJcKTRVWX9hmsZ4BuH6FFWAH2pOuNOzf2eOtvGUT9JyaEqkqXZiDEzlmfHLpGIxblm6lN7Rcfbkh9DAPZeu55H9vZwcGKfkBuw7PcRktmh4kJYg67rsPzfCFcu7+e6BYwxNZSkHinLgcmxolBd6zwAwU3LZ1NPBi739LG9r4vo1i7lkkbl5C0LFnz34LNKxqKtK4gUh20+c4dT4FOP5AotON7B3aIj1HS289957edvq1Shb8/LgOWpTcTIxh19YdznnCtNMuEV2jJ9ldV0bU16Bo7lTLKluIG79aMCwO9q3/Ej7XYwL42JC+ymLWMyiv3eI6+7cSCFb4uHPP8d1d2+lvqWGDdes5NiOk/TuPsXaK5djOzYNrbXcf9/jrNjQzdqrV8wms6N7+/EKZcIg5MDefqyUQ9EPabUFR/qG6Ts3wQ2XLyfmWNxy1SoADp8Z4b03bOZv7nueD3/8XlqbqhjPFRmZyVOdiDM4kaWroZp9Jwf4xisH0LbhhU0Wijx+8AQ3rlsKWrClPUPJ9/m5+7/NmuZmiq6xF3niVB/f7j3C8YlJ4tKmIDyuaO/iiQGDtquKx/nY5quYLJc4MjXKjOfSVV0LQmMJwbRfZqAwE83MzPkSApAaWwp0VAm1p6vRooTCQ2KQjRoZgSgkQYQntCM0osAgF+d5gqIF2EJhlBY1ZfJIrXFkkmWZ5fQXjhAiZishHc3WKsRlISQxUUegZhAijMSNBZ4yNjEVkWEVpbmg4pE2y1gQaBEixJzJqBJlirpIqAVxywIdozmdYbCUI++rSGkfXO0ihIzafZAQNsVAoYWZ36FholgmDE3rq+QZg08BNCUyJHBw/Rk601VYymZr5wIOyVEOB6P4fshDB4+zbfFCVLtmZUsT77t8M1sWdPHeT3wNKQXttVUMTM1Q9HwWNNZwdirLmYkpLlNdrO1sYcepc4AB1Txx+CS2LVnV3szfPryd2lSCL//SPbPXw707DzJdLPEzV2wkX3Zpqk6xqaeD37r/MRY21PGXb7+Njtoatvf3s7q1hb7sDDmvzP7RES7v7iTl2OQDl5Fylj/a+zi3dK7kA8u20pKsohi4/H3vd2mKV7Nr8iQ3tv5oIK6L8eOLiwntpyz2vXiCVZsWEngBB7YfR4WKF7+7l9vffy2p6iSpqgQrLl183j63f/A6Bk6O0H98iE//76+x6srlfOVvH6e6uRqlNOlkjP/2m2/kyWePUleXZmqmiB8ofu1DN/Kx/3sf979wmN/90M188oEXmcgWWLWghf6xaS5buoA1i9q4dGkXD+85RkddDctaG3nm6CkSls3a7lYmCmX6x6YQUrCxvQ1fhTzS28uBsVHcMODUxBRVCQelFLmyi7QFzak0MtIefGbwNBV/zqRt89XjB/jvm65mc3MHv/XSo5zLzxCXVqQqkqY+nmDUy2PkmiAmoS1dxYQ3Q4iiOpbk2tblPDr8MqBJRMhKgUJrYZKZruAhNJaWhpQdzcviIolLGaErLch58lhSE1DmWH630YBEABZSOGhClA6IBEYI0eR1zky4tEmfSmlcbZnaK2ovepHdS6VCNNVoiKskWissgRF11gG28COVD4tQGymvQJdZlKmjN2vEfEu+AiyqLElO+ahQYDynrdn2blw4lMIIwK9gaXUTRybHaEqmWFHbzM6hAQSCchDS4CSoSyb5tauu5Fe+/SAjhQIihOdPnKY5U0VHtZkPNVSliNsWScfGcSyqUgmcmE1jVYbBmTwSQbbocmp8islCkdaaNHduWMkD+4/h6ZCDgyMUSz4rOs4HYvRPTNM7Mk4yEWNJZyN3bVxNOh5j19lBFtTXsKSlgcZ0mnfUr+UdG9aSc13WtDRzw6LF2FJyfbe5VvaMD/DtM/vJ+WU2pkx78eWJY/Skm8mHJa5vuZBQfTH+38dFkbCfsrhk2woyVUlWbOxm8/WrGO2fYOn6BQBMDE5Rypc5dfDseftYtsWC5e0UsyXyM0USyRhL13Xxhrsu4X0/fx0/84Fr2LChm5vfsBYrbvGuN1/Kf/vg9SileenAafYcPcs3n97P2GSeTDzOu7ZtZNuaxUzOlHhubx8At2xczl++7w4+fNNl/M3772RpSyPrO9o4MTxGOhZjYX0tubzL0EyOA0OjhEFIynaI27ZB0Hk+JTfACgVfO36AchDQmEiSsBwkgrcuWU17upqTMxM81n+CS1o6qY4nUJg2YjYoMVLOsbyugeZUmqqETcyBdfVt/NNV7yXhQMLW1CUselJtpGSkmahkhEA05pWmJVhp/4FCga64OmtcHRk/RkhIKcy8rUKetvAxNZ7Rb7Ixcz9fhQRYBNj42kboZCQUbGFRR6htXG1mc0oboeIAAZHgcQWFKISpqhwRI2M5OFIRky4Z2ycmQ+K2JiGlqbxsRWMihs8U3VUJNCVsyyNme5QpRVLIEahEKsN0EwJfqQgWaUxYT81MoTVMllxakxlW1TcREzZFzyNh2dy3/wgPHjlG3LKRQE0yzt0b11KfTnLz6qXkyi6P7D/O5p4OblyzlJ6Weu68ZCXL2htprsmQjDkkYw47Tw1wcngCNwjpbKilsSpDOh5jTUcrPY111GeSjObzBPOEuv/bTVeypLWRhw8dxwsC/vGlXXxp935+8brLGCjl+KsXtjOUm3OgrorHuXnJ0lkCtRca8IyrPVbWNZGJW3zjzA601lzdtJqFmWbe33MDUlxcSv8jxMUK7acsnv72bvIzRXw3YGJoCidmsevxgyzb2EPPmi4+8PtvJ13z2nI7b3j3Vbzh3VcBsHnbHDkzCEL+8bPPMDyRYzRf5NTAJEsWN/HywTO0NVYxUygzMVNgUVs999y4iZ3HzvHy4TMcPzfOZau7CUKFbc1d8NOFEknH5sz4FK4boALNeL7AJ555mUTaoSNdxZ/ecTO7B4co+B5f3r+f8aAEAkp+QIcVY0VrI8mYw/7JIWK2xaGJUUZKOVwVcHR6lJ2jZ7mhcxFZr8zJmQkStkSh2DM5SNy2CXWIFBBIn7899igdqSqm/RzT/jSf7LuXZKTsEUbgj5hxETUixMx6OSPQSOGA9iN9fKg0/WSl+RdJWjlCYxt/G6PQb5qFkU6+nOWgCcDXXqT/KAgR+LoiPxy1FxEQtQhVVOnNthu1cQFQKJKWAp0kwDdqJhoCq4RQMUItKYQz2CLBiJvDlgpBjDASTxaWRqnIokYaY1JLCpSGmBAoaSS0mhIJBgtFUJqHTh5nVW0zMpAUVMCh/AhFz0eFmvpEikm7xPLGRmaKZW5dtYyuuhr+8dmdzBTLCClQKLwg5Nmjp+hqqMW2Jel4jJpkgvFcnheP53nH5etY0dHM1UsXcv2qxfzzi7tZ19HKM4f6yJVd/EjV448ffpqO2hrec/kGbppZQtH3ef7MGfYPDfNnz+WoTsTwUdQlDEfsxNQEu0YGGC7leNfy9WRiMf73jodZXttEWZcZK+Xpyw+xe6qPjB3jlo71XNl0IYk5UB7j7klaEisuAGZdjH/buJjQfsrimjs2MNQ/QSzh0NbTzPXvuJyOxXPUgkxt+vvsfWEopdj58klefKGXa7at4KZ1a9h35BxP7ezl1LlJ3vPGS1ixpJVTw1PcvW0dMcdmX+8gvf1jLGpv4A2XLDsvmSml+Zend1OfSfKeqzYxUyzzyIHjaGXksOIxi5i0+eqeA4yXS+wdHEIK6EhX0VFXTUdtNf/nuhuZdIt84cgealM9jBRy7BodIAhD4pbF4clR/usz99OZqcEWgnWNrVzfuZj7zhykNzdGIfQQMsS2YWGmgeHyOEPlcYRQWDIg1B4hpl2XsAS2MLO+GplCUULhG6JzBPBAeyaxETljaxBCUlFGlEJhYxKkiCo2k4IqBOyKdqOkwkTTZrgHgK9dwiiRpkU9QvgoNCXtYhT6HVKynnJYpKRLJmHqyEtNQL2dZNwvRmxqB6VCMrZFjdOOLWxc5ZOQNSSsKnwlOJkfwg01KSvJuC6DLwmU4eoZ1Q7N5e1dbG1cxCcPvUwyFqcxEEzkCxR8n0Njo5SDICJWC4QS2Ei00vhByHihRMkN2N8/RKHscWpsikwixlShxJ7Tg8Rsm4l8gf7xGf7knbew4+Q5mmvSTOVLBKFP2Qu4cskCfuu+x5golpjIF5jMF/mzd96K0hpLSnafGeDlvrOUwj6eONnHn9x5M201VaztaOVbhw/xuX17iTkWVy3s5h/37+Ijm7byzd5D7B0dYmVjE8emxjlVHOf4zCiXNnVyT/dGpr0SbuhSUiWSdux7XjP7p+/HVyWUDmlPvT4i9cX418XFhPZTFotWdbBo1RyEeMn6H42rAlAueXzqz7/L6bOTrFjawrZtK+la0MClGxZy6I9HqKlOMDCepbO1jrdcMzdDyOZLFIsux06PMDFd4PjZUSZyJdb2tJJJxtmwsI3GqjQNmRS//sZt+KHiuROnmS65xIXN+y7dwD++tJsNna2kbQdPh9y8dBm/cf01s6/xa889yd6JIWwpGSnmsIXFzV3LODI9wpnstGkzuiU2NnfwrqXrOZEd52R2wszbpCBlx6lPxrmmdSmPDOVIWQk8XcAWCkeoWeJzU7wKT+VR2jXJTrnEhEE8xoSDADxtkk1MKIIoyckItWgRRG1HSIkYQpr2Vpw0nigZoWSI+GCV1qXxUjNkZ4El4lh4gCQkwI8SLggsHBSClJ1CiIDAz5lWp6VRGIfrbDiCgzBalQRY0kKKAj2pNKeLU4x7M5TDkLJ2aY610pVuJgwVA6VppFQsSGcYLrrkA40OzXFaU1U8OdSLJQQDhSwJ5ZBwHBZV11EsB5ybydKayeC6AW4pwEKQtC1WNDdx+5pldFRX882dh7AQjOUKKK0IQuNmnozZTOYK2LYk1IrpfImn9p/kjs0rUBrits3+/hE662pY3d6CGwZs7Gzn449v522XrqUxneK5k6f/f/beM8COszz//k05ve7u2d77rnZXvTdLsmXJ3cbYYDCmmF5DDYQkhH8SEhLyphBCILQAwWAbbHAvsmXL6m0lrbS993Z6n/Z+OLKEvCtZNjbYsL9POjPPmTPaM2eueZ77vq+bFeXFtE9PE0unebqnFxWd9yxfxpaqKobCITZVVPAvh14g22FjIBTkLXVNrC4ooT4nl0KHC31cY2tRDTeUN+E0WXCddfv426W3X/A7CaaDPDT2EA3uBlZlr6LauYGeyB5yrTUs8PtlwZx4gYvys2/t4ti+bpZtquO2924+15IG4Kl9HYxPhwhEE6xqKmPXkW7cTiufevsV6LrOp/7tAcZnwyyqLkTRdEwWkTF/hH+6+zpcNguSKDIZitA6OM7JoXEQDO45eIKSHC9/fsMW/u6xZ3FazSwrLcLrsLGhqpxclx2LJPKJZx6hPTCFLmkZV30BNhdVEklnmjDWZ/v4VW8bmmFQ6vRQ7PLQG5piMhnDaZKxmCXcFjMpI4VblvFYTXgtJoaTo6SMEGZJxyqCWUzjli00uKvwKxPEtQF0Qz3XfdokWDDOztYw9LMZj2YsggnFUCmylTOWGEQhhVvU0YT0WVMp7azFsYSQKZ3GIjhQ0EjpGcEzXozKGZCZy52tijtrAqyeTQoxCVZUI+M0YRctJPQIBiZEAcxYiOhpjLN1Zpl2MALa2aVKUZARDCtR1UxcN4gpIhbRwdUFG9ANiV+PHCSoqAgGyDhIa7DOV09KEXDJNvaODTIWieKQzJTbs0inDWySTENWHk7ZQo7VytqSUn5ypJVEWsEkiJR4XMwE4zxzppey7CwSaYXqvGziaZW6ghyWlxbzmXseRjMMblnWyKev3cwHvnM/PROzeJ02NjdWMhOP84nt62kqzscwDHZ39+OPxjk9OsW1LXVohsGJkQlMksiNSxrJttv4t737ODYxTkOej4+sWkO2LeO88dcvPE1PYJYfX/tW5Jd4G84mY9hkE/bfmo31Rcd4aGwvK7Lq2Zi7GICQEuKhsYeod9WzKnvV6/Jb/FNmwZz4T4hf/ewAVpuJa29Z8fKDXyHNqyqxOSzc/O4Nc2IB29df2OdtYMJPOJbKuE+IIt/8zK0AHGof4mjXME8c76aqKJvvPnmAfR2DbGqqIqWpdE/MUF+Uy7bmGhRdZ3AmiNtiwSpLuKxmwskkf759Mx/49YMcHBuh2OtiOBnEEAzybHYMAVqy88m2Onh77VK+eWIvjw50ZgqnBVB0jXA6iSzIeExWFF1DQmZDfiVPjrcxmAhjSus4zSKiFMckZgqa7bIZi5TGa3agEyStjZ13vkdHFg0E4jhFOxoampFGQMAsQtoIYBIM0lqQakc5w/FTCIKBScj0pZYFDd0QEA0N9WxvatUI4hCzSAvSbxXZvlh0nXH5VzK5+wiATbAiYMNhdhBWZ5CRMYtgIGGXRAzDgoqCWzQR1+JoiIiIuE3ZKLpOSAljFcyE9CQqOiIWrJJMRE3x+Ph+fJZ8BAwsIkiCmVyTm6lUnK7IGBOxOIIuE09mUkZ8Djv/tOkavn38IIdGR8mW7RwPj7G9qoZ7W08xGY2ypryUjpFpRv1RLKKIJIgE4wlEATonZvjf999GrtvBT/e3ZmzIDJBEiQ99/1eU+LzUFvgwBMjzOPE4bRzoHUIxdB461c6AP8iaihK+sHMzFlni8OAI2Q4bM6k4X3lqF00F+Xx07Rp+0dbG6ekpYun0OUH7+PK1BJNJYqrCj9oOsLmokkXZeRydHeQ3Q23k21x8umnbuevcJpmxSRYsognjRdNkk4c7y+98zX9/C7xyFgTtTc7I4My5vmWvNYtXV7F4ddXLjtt1qIvWzjFqynyc7B6jY2iKox3DfP6d21jdWEYgmmB9Is0Hr1/Lw0fa8cc6eLK1k8bSPKwmmalQlHteaEU0CYwFI+xu72NjdSXP9vYxFo3xrnvvZyDoRzd0Sj0e+pN+BCChKWiGwQvjg1R7svl/a7ZzZGqE/nAg03JEEBEFCQGBq0pquae7FR0Di2jCI9spsWfRG01hCDpWSUTBONsTzUAzEjhFO0ktiihIqEYKWdSxCuLZLMeMq37KiFJqqyWmhZBIEVIDmVgcOoYxzmx6ALukZV4DVimLlB5AFHQQJGyGhYCRAiCuh8gyFRJK+zGLFuJ6iBfNszRDBeSzpdWQaV+aIJn2Z1xERBVVN8iYZIlYZZmkmkQlilOSkfBgEs3YTSYwTAhGHLfsIZUKoRsChmHCYXKQ1OJo6IwnZhAEgSJbFuOJKIKgU27P4YR/jKRuYEag2OVB1E1sLazmll//lLSmIyoCR+OjyEgcHx0j1+IglkrTOT5DrstO36SfZEJBRMAsSfjjCVw2M7d866dsX1RDKJFpA2MRJWbjMXTDIM/jxGE1E0mmcNhNPHOyj22NVRzoH+ZA3zDhdIovXX0F/7P/MH2zfvYNDCFIIs1F+UzHojgtZkYiYd7W0syL/povkmd3kmd38sxIDwMRPzl+O6fDIyRUBYdsZkn2hQ4gnZF+TILK0cBh/MokOwq2vOLfVSA9TEfoSRrc28mylL3i9y9wcV6XXNOBgQHuvvtuKisrsdlsVFdX85WvfIV0Ov16fNyfNB/7/LXc/Ymr/qDncLp3nEl/mOeO9vCLp47zzNEu2vrG+coPHycQibNjVT1fePtWvE4bN6xaRGNxLvleF3dfuZobVixiJhJnYMZP19gMiVRmWc5qkrDLMpF0kolQlOvrG9j7vg+ytLDwrI8iNGcXZGYrkoltJZl4RZ0nl1urWliZX4LLZMafSDATj3Nv9ykUXcciScTUFPf2tzIajWKXLDglG5vymsg1O5HQsYo6TtlKyohTYPUQSE9gFgQsokGutYAsUw4u0YVFALOgIhgxyuzFlDmaqLQ34RCkTJxNUJEBq6BhlxQsok6OuRCzoGARVCyCRpbZR5G5Es6aEoeUaURBRTGCmM5mQ2aS9F8soc5g8GIzUM4uRWrohoZHzsUleUGPgpA6m6yi4jYJGPgJpSeZTg0AGmElwLvLP4jHlE+O2YFHtuOQrKQ0g4iawCxJLMuuI2OBpRBW41hlM2ZRotGbz6PXfojNRdW8MDFEXFWxyjKGLhBSUuQ57dT5fKwuK0EyBAZn/ARjSSpzskgoCg6rmWAiU+KQVjXMkkgokWQ0GEIQBAKJBElV495PvJMv35S5dmrzczK1bQ4bsiAyFgyR53awsaqcv3j4SX5x/BRpVSPLZiPXaSempHjniiWE9STfOX6YH504zj8eep6/2bdrzjW8e7wXh0nmnXVL2V7UiEmU+GzzlWwrrEc3dO4bep7j/h7GEtPMpEN4zR6KbRe63OuGNue48xFOT5DWooSUscv/kS1wWbwuM7SOjg50Xec73/kONTU1tLW18YEPfIBYLMY3vvGN1+Mj/2SR5Jd/JmndfYa+tiFu+Vim03Xrs23sffAwV925ifpV5wPXs+MBsgu8FywvTk+G2P3oSa596yocLuu8x//AW9bTdKKfE12jyLKIzW4imlIoyHGz//QgbcMT7D7Vyzu2LM80+NTBKslkO+0sqShix9I6vvPUQXZ39JHvcXGwdxjDLOC2WnE5rUSUNLIscfdDD5AwFIrtXgSTgVUw0ewtoDs8yx11S/hpeytfO/Qs+XYnNd4cSh1eYmqalfnFPD7UhWoYrMwtp9Bppz+WyWocS8+g6BrPTZ7BJoNNkql25jKdGiHH6iShZbIaNUHFiZUiaxHD8VNkmW0YiCS0SWLaEPkUEFXGyTEVkFI9JPQIEhHsYhoRW6a5qCCRVgfJ+ARnMgaD6jB2OQ+rYCNpJNFJnXXjP/vHPVvvhSAgo6EgIhsiNsmDW/Ixmu45a7wlYJIsIMSIaGHAoMhSR0idIKoFiaojmAQ3CBJpNBKGAij0Rs+w0beaieQsT0+0ohjQ4m7kRHAAj+yiLTCIhIRNsqDpEnElTUo1iChJUprKNWX17Bruptjj4m01i3mso5uJaJRNpRVMhmJMiBGmIjEMwG21UJ7tpSTHy8PH2ynIdpHjtDMdiZHWNHxuB1c21rC7sxdLdibhQ5ZE/LE4D7WewSrL3LyyiYSq0jE9w6LCPDpnZnDZLeSk7Jhkkcq8LD66eS0pTWU4GMIQoW12Cp/dzrtblnHaP0nixW4Bv8WGggrMooQgCOTbXLynNmNC/oPep8CAGSVAQktxZ8VONEPHJF546zwTeo7B2EmWZ19HvvXSqxrlzlUU2xcji5aX++ku8Ap5XQRt586d7Ny589zrqqoqOjs7+fa3v70gaH8ATh/oYnJwhng4gcNjRzbLmTiF6fzXf/DxVk7u7aJmcRlpRWP5FY3kFmdzaE8Xiqpx5sQQqzbO79I97Y+ypK6IK1dn9odjSTqHpjCZJJorCznUk+lHdmZ4kvxsF2lVJT/LxdMnunnPtpWYJIlYMoU/HCOlqFjtJsS0QHNJPkPhELJJ5JHOTswWCRUNk0ni7qYV/LKvjdapcRxmM7tH+tg/NoiAQI7NweHJUZKqwo3VjdRn5XFLTTOffe4RhoJBOv3TTKUiFLvcPHrdJ3j//u8xlJjEgY0/q7uTXVNPIqIyk57GKZsotxcyk+pHFVJ0RA4goKLrk4hCZuZkYDAc3w0YBNIGFnLJNuUQU6bPmhhHcIhZiIIZ1QDZMKOfrSszEDB0g1JbHQPxU2gYiIJEqbWF0WQXGsnMLM14sSeNOWNLJQjMpIczcTvBgl3KZEKm9BA6GgIGCW2GtOY/Z81lFhSyTeX0Jc+cNTs20xY4wagSRtMFJNGDS3IwqwRQDIORhJ8s2YtFNOOzuDg2M0Fa11ANgTOBKRbf/89ky04U1UA2JBxmM/U+H7kOB7csauLR9i6uaaxjNhbn2OAYraPjdE3OYJIkUprKSCCJKIpMx+KU53jZ1dXHnp5+GgvyecuKJlZWlHBqZILB2SA1eT6GAkH+/Zl9qLpOXFNZUV6MSZbZOzTMLc2NHB8f54WBIWYSCe5etYKbFjWSUNJ86/h+PDYrTbl51OXkcG/PCcZiYYoc5xMMdpTO3/A2rqWxiibeU3k1HpMDURDnLaJ2mXzYJCc26fKS134XMUtpacyiaaHGbR5+bzG0UChEdvalW4KnUilSqdS51+Fw+PU+rT8J3vqpawlOh5geD2J322je0EDzhguTOqpayuhuHcTmsjF2eoRnf3WY2z+xgx03Lae3Y5y65ou7iX//NweQRZG/+sAOUorKL55tZXFVIUtrMu/58h1X8esDp9nUVEX/5CylOR4Odg/z7KlerlnewLce30eu20Fhlpt4WiHX6aCltICW8gL29A5wbHwcu2xiMhrFYTOjoJBSVXQ9Y+tkkWQeG+jC0A22l9UwHosgGgIO2cyJyXG8JhsDwQB5Nhd9AT+CqKMZOi6ThZF4ELPgoNCSi9Oi8Z/dD1HudCKLMioJklqcsfgY+dZ8DCNMWleRxfNxGFF40XU/s9wkAAqzNHju4JS/BwMFC4AxhSTkIWLDIiikMg1h0AydpDFDLOVHFNKZdH0kZpUxvJZiQqkJdNFAN1LohoQVC5JgRRQt6GdbwOhGpnuAJoq4pDwiWsb0N6xOIp5tVQOgkyRizCAKAqKgoxkqMSOKbugkNAlFTzKjqghGAptkJaUJjCYDWLHR6h8lrqlIgkRCBV3PFJVLokAwnQZdY/dwH42uPIZDYYbDQT6xcS2yKPK3123n2NAobpuVQ/3D/PzQSW5fuZjfnDhDx+Q0JdkeJiNRSrxugvEkK8qLWVVZCmS8GsOJJH97y3YeOtnB/cdO4Y8nKPa6+MWxUyQ0lfxsJ4igiQY762sYioZ4sKOdz2/YiM1k5iMr1pBrc2AYBv/a+jxRVWHfVD+5DhtpXeOvluzEdrbRZV90Ap/FjduUMR/4eN11l/UbK7U3UWp/bZv8zkdYifK/A7+k3F7MjcV/2FDDG5Hfi6D19PTwzW9+82VnZ//wD//AV7/61d/HKf1RM9I/zVO/PMKW65dS2VCIxWam7UAvY31TjLaUsuG6ZXPek1uczZ1fvAlN05gaC3DFTZmsSdkkUd9y1rFc1Xj8iVOsX1dDdvZ5Z/F4Mo2iaqTSKuF4krGZMIOTAbrHZrjzqhWYJIm3bsikOOefdeXvm/IjigKPH++gb8LPlqYqPnHtBu4/3EbbyATbm2o4NDTKvv4hJhIxdMlAkAQUVefdzcu4qrKGiUSUdQWlfH71Zj69+xH2jA4gIlLp9mKVZCyiRI7VQdv0JKqhU+PJJhBPkO9wcDI4zmQ8wlcOP8GsGiGqB/HqApqQwiYWoMtWAkocyTBQ5RQTqSm8JgGT6MAiWtF0FYEkgiCczR/UzibWg4RER+h+cswNiIIFXRshoY8hCApxLYyBiogJEw7SpND0JC9WosmCiFlwoqFgEizYZC9BZQK75CasRtCJYjJUrsy7ldFEJ6dC+9AwMAQdl5yLz5JHOh5DM6Ig6EiY2eB7H8/PfAdZcCALbjBCCJjRUTNlB4aMKIAsiKQMUA2DKkcummbmRHCIsJbEJJrJt7mZjinIqCg6FNrcfLJ5E984ugdDBUkXsZplcix2/m3vPrpn/FR7s9nTO8C22ipKs7ysLC/m/w608sTpLtZXlSOIBtOxBP5Ygo9vWUtNbg4OSybJSdN1ttRXIkkiFpPMDYvreaF3kKlolNaRccpzsih3WMnzOJmIRqnz5dBSVEiDlsvusT6eGuxhe3kN11XXM5OIMhmPkNI1/MkoIT1OOqZQ7c7JdD4AYmqSB0b2km128d6qqzEMg7iWwCHP76zzh8AmWcm3+Ci2v7Iu1X8qvCJB++IXv8jXv/71S45pb2+noeH80//o6Cg7d+7ktttu4wMf+MAl3/ulL32Jz3zmM+deh8NhSktLX8kpLgD4p8LEIkmmxoNUNhQCsHhjPdOjfha9xJj4pex9pBX/VJhv/dX9XP+uTSxedz7Gdvz4IL95+DjP7+nkn/7xbee2v2PnCjoHpvj1C220D07y4ZvX84vdrXSNzJxLbX4pH7x6DfGUwiPHOmgsyWNrcw2CIHDb6hZuXNaIxSRzz9GT6IqOYWTqmxaXFCBJAkPhIC7ZTKUni4d7Ovj+qSP4EwkKbE6qvNmEUklssom4kiaeVqnNymEgGODI6Bg5Djses41Su5e0lGY6GSWiJ0kZ4LWY8ch2QkqCZd7NHA0+SbGtEI1xYqqfqJpCEgxs5nw8ZhdpbRADFVnIZC9aBTeCoJDUZ7CIbmJ6GFWbxmsuodZ9MzFlFM0wGIw+jV3KRseMrkRIkMDAwCTI2KRi0kbm3zoqipZERyOshs5aZGXKqScTAwzGOs7aXykktChJLUpaS+GzViMLEtOJdpJGlD0z/4uBGQWBtBpEFEwscq9kLDHNcGIGSUyTa8rDJhRzOjKMT/YwHJslkFIwCRKyyYSmy2wvaGEwGuK0f4KJSBLdgNbpcXJtTsy6SHdglkKnmy9t2sRv2jvpmZrlidPdJNIKY8EwgUgCiyTRUJDL3u5BVFXnL67bwn8+ux9JFHGazZwcnuBw/zANhXlMRqL0T/vxuR0gwA/3H6VzYory7CxuWrqIhoJcLCaZe9vauHXRIgwBarKziSppHhrsoCcwy1Vl1bzlyR8RSif4WNNGri9vZM9UD6cCCaZTAVZYCzCf7dxslyzUOIuodmV+M49P7GEgNsr1RVspfQUCEldGCKe7KXBsvez3XC4mUeb2ssubNf4p8ooE7bOf/Szvec97Ljmmqup8QHRsbIytW7eyfv16vvvd777s8S0WCxbLQqD0d2XxmmqaVlRc0IU6tyiLt3/62nnHJ2IpbI7M3715bQ1drUNIskx/x9gFgrZ0aTmlJdmsXnVh0NskS4zNhEgoCl6HFY/Dykdv3ICq6ReIWTyl8IsXWtnaXE1FfjZuu5W7r1zFuD98Lj0dwHI2tnfnmmWkNJXynCyq8rI5PDJCR2CaA+MjhJNJqn3ZzCYSWCWZwXCQmViMQDzBtdX1pBSdAHH+Yt1mFuXk8zd7nmE4HGJLTiWyLIEEAxE/761fxonQMIF0jCKXjTPBQRJqksOBdhrcy5lNT9Po3shs6gyTyR7MgoxJsuM255EtLyVlzGAWNKLKJBPJLiyiDYuYS0oPY+gKspRDjnUjYWWYpDZFU9ZHCCrDzKZ60QwRt7kQL3ZCWpB6zzUcnn2YhB4DZGoslUhYCMaDaAZnW8wIpASJE6E9KLqG/FvxHAMIqlPEYyPIoohLciNoMXR0HFIOKU3Er4ZwyoUEUkkUXSJtZNrjxLUkHosZm2jGLjuYSYfRDB3DkFjtq+XA9BC/GTqJWbSQZ3VjNWwU2jzE0yqdMzPoGjR6fSzNK6QyK5tPrV/Hd/cfxme3c019LT853MqoP4zTbKapMJ/93UNomo7P6SCdVtF0+MWhkxwfHMNuNjEdjlGS4+Hx011YzDIv9AzgcVixWc1srKvg+pYGZFHk2b4+QqkEA8EAV9VkrlWHyUx5tptqbxZpXcMkSlgkE4uzC2nKLqDQ6SLUGSOoRuiLTJ37+wmCwE0l6869rnSUEFLCXFhu/fIMR36DqsfIsi7GIuVcsC+UHmQ4tpcGz60LSSGvA69I0HJzc8nNzb2ssaOjo2zdupUVK1bwwx/+8FyfrQVeOxJJBatFnncG9Nti9iLjw35y8t2Yzee/9tYXOtn32Ala1tWy6fplZOd5eP9f30IsnMD+kqxGk0nir75805zjOm1mhqeCvP/GtTRVF57bLksik4EI333sAMuqiwklkjzd2k00meYT120AoHtshgcOtOGwmEgqKosrCtm+NJNcUuxx8Xc3ZJZ+vrv/MLu6+9hYWcZAOEgwlWLvyBCaZvCOxiXc29HGhBbBajKxsqCEoVCIhmwfqwtLeX5wAI/Zwrubl/HBZatQdI27Hruf/nCAQxOj1OZm0z02jU2WmE5HMFIaa3OLORUYIdsi0x8L8OHqz2AWBZ6ffhaLaBBMDxNUU1jlAjYV3Mmvhz6LZmRssBQthEssRZREREHgeOA+zKKTHEsVL0z9B5oaRhScJPQgkm4gCJnS5r7IcdJ6/Kyjh8FkchCbZEciY6ysGZmObZqh4JI8qEYICVsmY1JIY8eNLIloRgyrZMIsOfCaWwirM3jMRXhNlbRHWkmoEgPxbiyihRXetZwMdRJVDQJKiI25y+mNTuOQUiiiQUgBSZDQVIM4KogWRJNEU5aPg+Mj1Ll9oGda6jTnFnBybIK+mQCyKtA6Mo7XasVqMvG5bZvQDJ0HW9tZX1uGWcrU83ltVuwmM+FEknhKwW4yccvyJtrGJtnTNZApkI7FuXlpI73+AP5EgpFgmOPDY6wqL2FTRQUPdrZzanrynKAlVYWBcBABgfWF5fxk6x1YZROmszOxApubv1p6LWlNRb1Eqn2Du4r+WCdPTT3BuuxVZFmyybW8/Eyt1HUjoXTXHDEDGIntJa1FCKb78FnnGhsv8LvxusTQRkdH2bJlC+Xl5XzjG99genr63L6CgoW139eC6UCU/773BerK83jbzuUvO35ixM8D//sCvnwPt3/ginPbC8t9OD12ymov/F4c7oyTQiqpcOLYACtWV1+0RODg6UFWNJQSjqfm7DObZBwWMy67BYfdQnGOm53Lz2eUabqOrhu47VaeO9zOwFSAJZVFKJrGfz9zkJbSAq5qrmHfwBBKWmNZYRFWq4nZeJzTwSkUTePHp45T6/VxdUUNNd4cjoyPclNtI5WebE5OTvCvB/bSHwxwa0MTkijy7dZDTEWjOCULVxRXUZ3l4ddDJ+gLa1Q68xiITXJwthdBUIloMiPJWb586l/5ZO3baQudpsJRSkSNousx/JFxTgX3kGfOxSJkoxg2EFQmkiMkNQ2LmPGG1AyFyWQXqhHDhAm7nItAkrSRQlGjxPQIOtOAfLZFjU5YnUTRvWiGhmqcr0STkFifcz27pu5HQT/b7NOMbLJzY/HdDMVa8afHKbM1EFJnmU3PMJ4YYmX2rWzNv5MvnfwUqmEg6ALHAv2YxRzSWpBJNcJQtBV/WsMwzKiqhEmQUHSDcDrjA1np8tDpn6VXC4MOgXiSRd58YmqKgdkAx0bGMUsyW4oq6ZicwWu18EhbJ7Iosr2hhlg6xZ6eQQ50DyELIr8+cgaLLLG9qZZbVjThslkwSRJjwTBOixkNA4fVzC+Pn+EXH7iDyUiUo8OjLC8tAjL935py8+gKzbBrsJcry6uxm8x8dfV2vn7qSe7Y/QPeUb2SWyvmxo3Nkoz5ZW6B1c5qNEPjRGg/siBzS8m7LzkewG4qwW4qmXdfg+dWgukBcqzzZ1Uu8LvxugjaU089RU9PDz09PZSUXPjFvoGtI99UuBwWCn1uKoounTn6Ijl5bvIKvbSsrrxge35pDnd94fqLvu+Jh1tJpRR03WDtRdL2b9jUzNH2YVY3zXU9cNrM3HnVCvI8mWSQrS0XxvAeOnQG3TDI97qoLfRhMUs8eOg0/VMB8nOc7OsdJBBPUOr2MB2J8Vx3P1+55kqi6TRxNc3t9/+cfz2wj7UlpWwpreKzux4lnE6RVFWOjY0zGY2wqawCwwCrnLncxyIhgskkxW433ztziJqsbFyik+vLG7mmrIGvtT3IQGyIiBZCFmxoRoJgOsoL00cJKmmOBc7Q4qmnK34SVdMxCXHGjWm8chZxLYRu6JhFHwpToAsIkhePqRBdj2AV7ORa6lGMBEHVj1mwEDdiiIKIbpxvICMgYRgCDtlLVIkgoCEhoRmgodMa2kdcSyEikGPKJqhN4zJlU+taSltwN1PJIZZ6r6Y9coSwGsMwdHZP/Zz3Vn2NevciRENiODFLd2SauJZAMwRMggkBM1ZJQsRGSEshGCImw4RFlLHJZj7avIFvndxPjz9AIqUgaCJ5NgflzixW5hVyfHQCsySR63SwubqMY0PjPHa6E7fNylAwSL0vhwdaT+MxW6jIzmJgys9sJM50OEZVbjZbF1WTUhSeOdNLNJ3m+qUNJDSVYm8mHT7f5eTaRfXs7u3n5MQEH167mipfNgdnhjg4PsyV5dWZDFazBbvJTFxLMp4I8uTYGa4vWXxZv5Xfps5VR52rjtOho6+q59lk7ClEwUyuPfMQKYmWBTF7HXldBO0973nPy8baFvjdsJpNvP/W9Zc93mSWeevdm0mnVX7+nd00Li1lyZpLJ4gAbL5yEc/vOsOSFRUXHWO3mtm0bP5j/fTZY4zOhHj/jjWous6vD5/mxlWLKMn28OCh01QX5ZDjdNBQksvAVIBFpXn84JnDZDntfGrHBv7tqb0kFZWGXB/RdIrbljbjtlhwWyz0BwJYJAlJFMl3OHFbLDTm5DEZi2ASJNYUl3BvWxuSILK8oIi4kukn5rZYkUUZwYAWXwGTiQhxRUVA4NeDp3hb2SaW55TQFRmhNzJGd6Sf9nA/neEpDEFDx2AkPspMajbj6yhYseppoqqKQzZhl5xIgoygWTCJEmkjQUQJ4DB5EZDoje/HhAVBkFH1JJIgYhI9KJpKihRmw0q5YyVT6SHyrCVUOlZx0P8ESV1BMDQ0YCo5gYGIIJioca1kItXNet81PD/9MEPxMUxSNt3RDmqcy9ENg6QWp8G1lW/3fIukZjAcm2UyGcXAgihoaJqI2WRH1rzcVLaE7QVL+NKxXzIcjdAemqXAkkWR3ctsIkGVMwdBkdDsOv54glhSodyRxd6hEeqzfORYbPRMz1LicRFPKVhMMlmiwNMdveyRBrCIEpFYEofJjCQKGT9Eu42yHC9//+AzJNMqpTleSrM9fPzKzDVuGAb3HT/FspIianJz6Jn1MxIKMxGNsGdkgPF4hAKPk8Gon+927mVFThlfarmalqw8JhIRtuTXMZaY5XRogKvyl7/iGq4mzwoMQ6cnspti2zJssmfecVOxZ1CNOEXOzEPibOIAomA6J2gLvL4seDn+iRCLJtF1g3RSYWLEj2ySLkvQvFkObnzryzuIR+MpzCYJs+nCS2ppZRGGbpDttPHUyUz8rHt8FrvZRPf4DC6bhbeszbSe+eCONYzMBGkpK2RLcxWCIPDpqzfy6XsfZt/gENsaqllbkZkFjoRC/MWTT5JjdpDvcnJTXQOlbg8rCor4j4P7QYetZZUszitgc3k5UeW8O8TqwlK6ZmfZUFLOdTV1/MeJvaR1lcNTIySNJIqu8YuB/aR0lRtLW4ipBoYhMRQP0OD2EdMizKbjiNiRBRWHbEcgTNpI4TZVIosS2eYCFnk2kNb8nAg+hSi60A3IstYQUcYz4oSEVdSwiE4EwUTSmAY0DEEh21JCT/wITjWbhC6gGyZUXUUzBIqsFYwlxzAMEVFw0BHt5UNVn2E8OYTPXESNazE90XYO+5/HZfLhMxcxFjtD3+iDJHXQDQtJzYSKjteURZGtkJiiMx6LMp6K8NO+/RyaniCagqRiYDUgy+ygwZuHLAj0hwJ4zVb6/AGcsgXZEOmf9bOsoIjTY1OMBsI4LRYWFxUyFYqxtLQQn8PBvzzzAoqmcfPiRkZnwywuLuCxYGZmds/H7kAUBY73jxKIJ/nMdZu4dkk9hmEQSqZIKgp9MwGmIjFqcnO4e9VyEoqK3WxibVEpRW4nBU4XLpOVLIsdn9XBv3c8xmw6SrkjF6fJyi9HniOlKUx7g+RZs17BryfDVLKLUHqEcHqc5Tl3zDvGnzyMpifOCVqF590IwsJt9vfFwl/6T4SffOsZ0mmFT/7VTbz3Mztwno2RvRZEEymppY6DAABXmElEQVTe/3c/p7wgi69/8sYL9g1MBwglUjx0pJ3OsWm2NFezrq6MfV2DrK8vZzYS51cH2ojEU6ypK8VtzySiPH+6j6/96lmuW9HIVY01HBsa45ali9ANgyPDo/zvsWO0jo8jCAKKrnHfqdMs8uWxrriUruoZCpwuBmeDPH26h+P9oywuLOSu1Zk4yvHRcWYjCbpnZ/iXwBSt/jFqs3KIqwo3V7bwxGgHB2eGcJplkvp+EnqchJYioqQ4E5qlyG5icdYyJlNjmAWBGWUKBDM2I4lVysGfnmQs0cryrI3kW4pRDIGoEsdlK6LWdRWiYaU98gSgIeoaGhGKbEswEEnrCjE1zrHAb5AFK8H0LEuyVuOUfOyZ2YWGjizaUXWRlKGjo5IjWvnJ4P8gCZlOARWOaopsVYSVKGOJMcYT4+jogBsMkA0bDa4awgqomsREPIk/lcApW1ifW4Kgmzg0OQ6ApgmMJqL4clyU2bPYWFTJfadP0+33c9eiZYzHIjzXNUBSUXCZLATiCayyjKrq/Kr1NIqqsbq0hLVVZeztG6R7aobT49OIOpwYnWBzYwUlXi93fPNnWGSZnUvq6Z8NcHRglOuWNvDvz+xlX98wX9p5BVfWV1PlyyyxC4KA3WxiOBLiZ33H2FhYToI4TpOFzzVfyVQyxJ7pU+iGznXFme/9uqK19ETGyLNm0RY6xanQSbbmbaPAWsjlkGutJZgeptRx8c4Wld73oxvnPWvtpgXz4d8nC4L2J0L94hKUdGbJzZN16a7V6bRK95kxFi0pvaylGU3TsZpl3M65Xo+ReIpwIkltkY+pcJT6olzahic5PTyJJIoEInEmAhEKPC72dw6SVjWeON6Bouuohk4sleKdi5YyEY4yGgyzd2CIHxw6ylgkgk020ZCbi90k0zU9w09PnOD9K1fy/7ZmHBQG/AEePdNFPK3wZEemGeUnrliHz25ndVEx/lScfLuLdfmlPDc2QJbNylA4xFQiitfkYH1+KX3RaWYTCg6zGYM4SU2j2FqN25TDSGKGM9EOBCGFS7agGgohtStjriwKjCWGGI2FUXWBlGFgkdyohspEsh/h7E9PQcEiuIirIRQ9QUpXUUmgGaDrFiKqwrHAbkTRi1lwElEj9MZG8FmLmE3OIhhW1uVcwUNjDxBSg2DodEQ72eLbRqG1jqByHMUwEAUvHrmIifgEuVYbueYiOsJtzCbTpHSRpd4KKp0+PlR7Fc+N9xFPCxyaGkFVRJJqmmJrFn2BAI9qneTZnQgGLMrN487FS1ETGuORCL9p6yCUSHJVTTVuq4WOiWl6pmf55vP7qfRl82+3Xsc3nt7DoYERyr1eJkMR0h4PhgEzkTiRZIosp40/v/EKEmmVB46fZjgYYjYeR9E0AqkEjx/o5qNr15BtzzyQ9UVmiKtpHhtu57rKek74R1jlKyfP6mGFr4ixxCTZ5kxhtM/iwWfJLBUOx/sYiHWR1NahGzoHZh+h2FZDuePimYeiIFHv2Q7AbPIMTlMxFunCpcf5MhtfDYaRMasWhVdaNPCnzYKg/Ymw9ZrLD4g//sBRYtEUyaTCirXnlyVnZ6MA5OScdwnp6J/kyOkh/vtLt2O1mOYc665t559mm0sLeOh4O0vLCvHarWxsqGQyFKE4y000maY4x8MjRzsoz80mpamsqS3jHVcso2tihpFACF032NlSx+OdXdT4spmMxUilVbqmZvDarThl0wWF3OVZXn525+0E4gnuPd6Gruv86+69fHjDaqyyTH8gQFTNeP2FUynC6RTjsRiqbuA1uegN++mKTGGgk2f1IZlkVFSOBcY4FRplWVYZcU1FRMImZRpnSpiwSmaqHFUMxLowiSoIGbuuycQEk8mfYBZliu2riSuT+JUBIloIBDNpPY0oSMiCBcPQUQ3QMPCnA5Q7ShGlCLKmUGIro9BWBgyg6gZPTu4mbWhohoF4tkHKfv8hahwNpA0rMVVFFiTG4pMomkgoLVHqyOdKyYzPnINVMlHjKuRnvcf5ed8xri9tpiM4yVgwTltkihyTA0EXODQ2jKro2ASZZblF+KMJvvjoExiawariUrItdo6PjBGMxRE0gw+uW8m/795Pc2E+Pz5wnIaCXLrGM7Pn921YQZ7LyZ/f+xjH+kfZvKgSfzSOx26jKMvDx3/2G2ZjcRx2M3lZTrpnZ+kPB3hhaJDttdWssWcMFzYWVNITmqHO60MXdFbkZGZE00k/MTWGPx0mrStYpAtbLLlNdiocBbhNLhJahJnUCGk9iaoH6I8epsV7Lfm22nl/H0ktQH/kcSySm5bs91/27+qVcHjmeyS1IJsLPv+6HP+PlQVBW2AO67Y0sPuJNhYtvjBD9f/u2Q/AJz++/dy2I6eHmA5EmfJHmQpFUTWdtU3lAPxq/yl8bgebmzKF2MOzQQanA0wEI3zoyjU8eryDvkk/3WMzGfEqyOEta5u5ZU0TPROzVOVn87WHd3Okf4R3rF/KNc31/N0Tz7KisIikodE2NUVFthdF14gk05yemOKLo09S4fVQ5s3i+d4BFhcV8M6VS7hz1RJu//49jEciPNnRzVuWN7F7qJ/RaIRst5UKZ1bmqV+HfJObZblFPD/Vha6KWExmGj3lFDjM/Gr4ADElgVUW6Y7MkGPyYaCRbXJgky0scTcwmhyn2F5AUPEzkx4hS8pDMcKE1FlkQSKOTpVzGVPJM5mGqIJMSk9iCCIiVqyym2wpF5dcSFCJ0BHpYTg+SlRRsAg2thfcgmboLPWs5pHxxym2FzCasDCZMAECpfZyxlOj7JvtQjcE7JILi+jCLcGUkmIikeJnAy9we9kWjs2O0BeZ5briFuJamu7gDP8y+xw7yur53vHjpBWd7+x4C7pu8L3jR3mks5OkqlHu8vJMdx85Njv+cByLJDMRjGCoEEmkqfX5eOxUF29d2symmnJ+fbKdWDJFZU4WJVkeCt0uUqpKIq2iYbCutpxAPIF49mFkfXUZbWOTvHv9cr7+7B788QSbKytIahpPDnSza7SXlQXFXF1Ry5QSZGRylq8szRgHhJQI/+/MN3HJDv625TNI82QnbvBtZ42+BVnMPIRtzL0Fp5zFdLIbi2jHIl18FcMievGaK8m2Ljq3bTD8ADoqle7b5owPp/uZjB+m2nPrZc+4nHIBJvG1Cwv8qbAgaH9k9PRPcbxtmLdcuwxJenXF7Ln5Hm67a8Oc7YtbSnnpCuTbdi5nfCZMWUEW9z3XmknvbypH1w1a+8eYicaJpxV2LqunzOdlaXkRi0ryMscrK+SFzgGcVjOJ9PmkDUEQGA2E2HW6h8bCXLonZjBLEg6LidIsDyVeDy67FafFwntXLqN9apoH2s7wbE8/up7pYtyUl8fqilIcZhndMHCYzVhMMilVpT8Y4Lv7juD1WDDJIn+/+WqGokG+d+oIz4+cxGUxM5tIMqsksItO1uaVsiKngm2Ftbww1UtCTbE0O4+e6DiLXC3E9BCNriIEAfJteZwMd1BiK8Mmu3BoeThMVkTBi0GauDpBQosSSs2iGQaqISBgyvQzQ0QwUmh6gmbPlXhMFRzw70dDJKYp5JjzSOsGT008j9fkZjThZzYVZCQRZF3OCq7K38Fj47uJKgKKlkNaj2MWZRo9S+iJjqALErIgENbSTCXC/FfnLgRE7KIdSRDJNjnpDfgxiRImUcIqyOiiQYHdRa7dwd9dcRWff/pxSlwubqlv4rHObpYVFZJltRFJpniqvYcij4uVZSVsb6jhv3YfIMduw2OzckNLIz870IrXZuXa5nr+48l9tI1OIEsSd6xdwtUttfzL43uIplIYRjPvWLMUgJSqcuuSJvqCfg6NjFKc7eT/Tp8gkE7gsli4uqKWjfnVpLTzBdJO2U6RNZ8CW+45MYuqflQ9jdd8vt7yRTEDyD67vdjeTLG9+ZK/D0EQqPHccsG2cLoL3VDnHT8S3Y2ix4gpo7jMlxdTW5R1w2WNW+BCBOMNXBgWDofxeDyEQiHc7stry/Cnzk/uO0A4kuAt1y2nMH/+1OLXi57RGTRNp74sI1iTwSj/8ehePHYLX7h5ywVjHznZSfvoFD6HnROD48yEYrxv60q2NmWWOH+w+zDto1NU5efw1tXNWM0m7jtyihuWNNI5NUPn1DTvXbsCURAwDIOv7XqO+lwf337hELFUiptbFlGTnc39x08jAB/bsg5JFNg/MMhjXd3E0go3tSzimsZaFp8t9v/m8f18r+0wbrOFlrwCJNmgOTuPuxvWsHu8l3X5FfzzmUc4GRjCIUvoYoIciw2TqOKzOPFZ7KzOWcbx4AkEIJieZDjehSyKuGUwi2bMZ7thVzoXkVIn6Y21IiHjlHOwy9mU2usIK2ECyjSb897BieAxRhLjjCcimCU7dc5aqhxVdEWHmEz6ialRQukwMU1jo28VhdYsvt//EJqhUWz14TVlM5EKIokyK7yNPDByEFkwcWPRWh4ZOQMIlNrySKk6gWSKpKLTHwhSYsviqqJqRqMRvrHtmnMzpz97+BFm4nG+/5ZbsMgyoUSSM5NT5NjsDAVCrK0owWk9b+n0k/3H6Z6Y4b0bV/BMRx/VudkcGRhFMCCaSrGpvpJtjZnv/MzYFP5YnI21FRwbHqM2N4eH2juIptO0T0+T53bwkdWrufuxB/BYLPz7ldfjukyrvF0T3yOtx7mm6JOv/gK/BLqhYGAgCXO7x6e1KOF0Hz7bK6+DW+CV6cCCoP2REU+kGR0PUFuV/wc9j1gyjdUsMzwbYjIUYU1NGYqmcWJknKUlRfy/h5/BJkuUZWXRPjLJmeEpPrJ9LdsXZ+IWum7wZFs3w7NBhvxBpqMxmkoLKPA4mYrFGAmG+fKOK3BaLJwYGednx07gczoIx5P4o3Fqcn2MB8IcGhxBROC6xfV8dvsmACYjUb708BNgZOy8rl/UwObqCsyShEmS6PHP8vOOk/SEZil2u8h2WvnNwGk2FFbwycUb+Pczj3Mq1E9IjVLtzCXfLlJszSFpRLij7HrK7cX8aOD/GE+OYRENppIDWCQBiyjilrNZnbOeA7O7CKbGsEpQ5qjHY8rFMAwWeTfz1MTPSKhRlmZvY0veLTw58SyPjD+GTXQxFA9jES1cW3gF7eE+PttwF8PxSf7y1LczFllGJlNyY24zt5VdzSOj+xmK+QET9e4inp08haaLiIaF8XiUlKaT1kDTwCM7WJ5dxjP9/UiIlFqzWJJXyFc2bWMwGMQiSXz2sccZDYXYUFrO56/YxD1HT/BwWwdeq5VFeXkUuF3cvXHluevg357cy9GBEb511824rRbe+7376JyYpqW0kP96103nnO4BFE1j0B9EEkX+/DdPIIkC/3Hr9TzU3snti5txWuaKxaU4FniGycQgVxe+i/7ocVJ6lCbPa28YvMDryyvRgYUlxz8y7DbzH1zMEmmFr93/DOW5XhTBIBRP0lCUxxPt3QTjScKJFHesWkw0nWZVxfwWQaIocHVzLa1DY/g8Dk4NT7CkpIB11WUYQCSZwmmxEE4mefBUO9ORGA25uVgFiVRK48m2LtKKxpd2XkGW3cah/hF6p2b50f5jxBWF9eVl7OsfonV0nGPD46ytKSWipLCbTWyoLMOfSNA2NUXX7CzvX7EMRdfINtkosWfxzyvv4Obd/4I/FSGmpklpbo4FB9noW0RK1xAEAZtswym7GUsMIIt26l0NSAKYBTOVzsU8PfVrEoZOWhPRDC87iz7IoZld3DP0IwQMrsi9hjr3Kn45/BAuk4tGdwvF1hI6+h8koWm8MHOCckcBkiBxxN9Jma2AgBJjMBbAa7LzoZpbcZsc3Fi8iV8NH+TJsTaKrHm8t3Inp0MjOGUr08kY/RE/o9EI07EkZlFma3E1X1mxnS899xTNuXnsqMy4w/zP4SPYTTL/sP1q/nH384STKSRRYH1lGU+29zAaCOMyWXjfhpUc6B3CANZVl+GymgnFk3zh549y14blZDvtJBSVpKJwbHCMw4Mj3L6yBZ/Twc+OnGA2FmdrbRXZdiuFbhe5TgfvW/Xy1m7zkdLipPQ4uqFT47p4LaWqJ5iIP0uBfSvyGzBu9fjYf+Iy5bAhd/7atwXOsyBoC7zmWGSZ6oIcKvOzKch20T42hdtmoTTLwy9bT5PvcTAyFGIyHMNqkmkpnt/fUxQFpiIx2kYm+OCW1RR4XOf25TjsTIajfPu5g+jo2GUTT5zuYkN1Bdc211HidXP/kTaGZ4Nk2W0EY0n+5sFdaKIBAuxcVMttb2nhth/eQyiRRElqWEwyg8EgNaEcPrVqHYcnRnCYzIxFotgNG8emxzk2Pcry3GKWe2uJpwVEw2BHwQq+2/sQT4y3ktIVfjr4GFtyl6PpGgFlhmpHFZXOSpZ6W/hB3zf5evtf0uJdDFaDjsgJBuLDfLv3XxmLjRJRZzGJZmQhh9ZAG0cCbUTUFDbJwWAkRI6cx6wSIq1BnbOSU8FeLKKZNb7FPDJ6GAGoc5XhNjkIpKJ85uiPSOkadtmKLMjsm+7BIsp8qHYd/92xl9srVrFnvI8JW4Q6dx6r88pAEMiy2kioKr3+WR7p6mR1SQluqwWTJJLrsFPodnFydJz/O3ICl8XMTDjG8eEx/urBp0inVSZCEa5srOEd65bw9OkezoxOsa9nkPU1ZYQSSVZWFjMaDJFIq3SMT7Ox1sHG6gp2dfZQl++jsTifkVAIVdeRX6Wx+TrfxS3dfpvx2C5SWoCJ+LOUOOfvSPGHxCa7sUqulx+4wIKgLfDaYBgGQ9NBynK9iKLA+646/0TcWJyJqZVme1hRXkSB28Wigjye7ew7Vyg7H9FkikAsgSSK52I4J0cmyLJbefRkFxtqyzDLEqsqyjk1MsHQdJBj/SO8c9US1leXE44lGZgO8q71yzg6MIpNltnaWEVDYS7/+cx+vr3rABsrypiIREkpKnk2JwOJAGdGprDLJn5+w9txWEz83cFnUXSN0ViYn3YeZ990HydmJ9AxqHaVEFYUnLKDkBKhNdhDVAuTUpP8w5JPYGDwf4P30BcdYINvPaqhk9J1zoQHcch20poDVTJhEhyEVJW4ZsaNnV+OPkSpvYTFnkZA5Figh6OBQeyylQZXFbOpEMOJaXIsXmbSIe6q2MGuiTackosvLHo7AN/peZKUrmKXbGzwLWI8EcVrsnFH1WqiapqReBCXycLbqpbhT8WpdvnYMzrIcyP9nJ6cYlV+Md2CTG/Az3uWLsdpziz5fXDNKgb8AR5v7+LM5DQWUaLY48IfixNPpXFZLbhtVvqm/fz7U3vZuqiaZFrhpuVN/HjfMUKJJJORGB+6Yg1jwTDFWZlYryyJRFWFg8MjTMWjVGVnIb1Ci6r5SGpBukKPUee5Fqs0N65c6LiS8dguCuxvzOXIK/Lu+kOfwpuGBUFb4DXh6ePddI1MU1eSy/bl85sYl3g9fOGqzQA8dKaDVVWl57oTz8f/7j3GZDjKn197BQ6LmaHZIE+d7mYqHKU020vP5Cx/cc0WAMYCYQQDDAPMsoRZljCJIv2BMJ1jM9y9eSU3H/0J33pyPzoGaU3HY7cwHowgCAJpRSOWUtA1gwF/gBXlRRweHuGtLc04JQtZFjudoSmeGurmnc4WbKKNq4oaeGGmA5Mg89Ha63lm6gTNnjKO+k8hCiYUXSWgRLm99K3smnyBH/X/gnrXOqKqgiyaUPQ0BgIgcXvpHYSVH9Ab7cdjzkMWzSRU2FC0hmOBPgqtKTpEP0lVJc+Sh0NyUWkv5ligB0XXeHzsOP2xabJMDtxnOyw3uEsotvoYS0RYkVNBW3CcZm8xxfaM7dP/W34tD/adZjAS5J7OEwTTCSJJhdlEnHyTk4Sq8tZFzfz9nt38sv00716Scdwo9rixSBLHRsa4srYaRdfYVlvFFTWVHBsaozYvB5fVwuBskAeOnmZ5WRErKzNLy29fvZilZYVYTSYEQTgnZgDDwRDhVIrftLeT73Zxc/OiczWFD/W347VYmUpGuLGi6VwrmMthJHYYA53R2GGq3VfN2S+LNkpd52dzhqEAEsKrMCNe4A/LgqAtcFGi0STplEr22ULq8akQu/Z2cMuOpRw6M0Rpvpea0kx/PH8kzkQwwo5V9QxMBajIu7hXXlrTODQ0QpdtlmXFF7cdWl1Vwn8/d5hfHTvNu9YtozjLTb7byY1LGkGA6tzzrgw3L1uEompct7jhXJad124j1+XAbjEhIKAqOomkgsthwWW1sLa2DBkRr8tGn9/P9toaJsNR7CaZDeXlNOTl8s777kMUBT62fB1f3P8oxQ4PPpuTVXIZJ/3jzMSTzCZGaPQW8ZXmd549G53B2CSfP/Gf9MfGwDDIMpuxShkn/XW5K3hL8Q5+PvQrppNxPKZcppOz3FJ8MxE1Sk90GK8pi97oCCPxSTrDw/RFp5BFC26TlcOBLgLpKBbJxJ0V29AwOBHoJ9+SxY6C5SQ1BacocXPpav6zYxfBVJJl2eWsz8sk3Oyd7GMqHmEyEefQxBCBZApJEEmqKg7ZjMdlZVVeCe9bvBKX2Uyuw8FTfT08PzBAMJ5AQuTTG9bziU3rUHWdjslpmgryEASBFeXFDMwE+J/nDnNNSx2f3rHxgu+0Y3KaY8Pj/NmV5421u6ZmSCgKGyvLWVFSRExR6J6dodDlYiYRI61pHJwYoj86y6biSo7PjGaWRn+LpyYOElQi3FY6V7CqXFuZSpwmz9Z00WvtRQxDJxr8cySpCLv7cy87foE3FguCtsBF+b+f7CUSSfK5L2Ravu872oeiaBw+OciB9kHaB2znBK1zbIYsl50nWruYDsf481u2YDPPdQ4BMEsSb1/aQrbdPmffgD+AP56g1Ovh68/syTSWPGssbBjQNxvAabdw85JMUevJoXH+5oFdrK8t43PXbuaho2cYnA7w0avX855NK+iemGXXyR6WVxWzvqaMVFqjqiibt61bzJG+UZ5v70PU4LqWBpqK8/ja089hM5nwWKz81wsHmY7FAHAKZj68aC29wQC3li/mZGCc99ev5R9OPkFvZJp69/k44K2lV3Df4D5aA32ouo6BwUwqSZOrhCllkjJ7MR6Tm7iWpNxRxebc9eyb2c9Ycoq3l91GUushKkR5b+UtqLpGbzTIYCyIS3JS7sjHIomElBgrsuoosvvojUxwdeFyOkNT7Jro4ERgnM82Xkuh3UuWycnB2BAPDJ3gjsqVPDbcwf6pfmYSUTAkSpweLGKCxb5Cdg30MhgOUmRzE1XSDIdDrCgo4uMr1/KXzz5Nn99PKJ5E1Qxc5sxDgyyKNBdemIQ0G40TTaaZisRY9Fvb06rK8z0DoF/4nf/q5GmSqkpjQR4nJydYVVxCS34B/mScb7bux8Dg1poWbLJMX2SWFb65iUTjiWlm06ELnGJeRBRkCuxL5r0W5yIgyZVI0uX5Oy7wxmJB0Ba4KE3NJYTDiXOvb9q+mN6hGe7f1Uosmeau687Hyd571UqsZpmB6SAD0/6Litm5YxfMn4l534k2Iqk0Ny1qQNU0qnJz+NDm1QAE4wn29w1xanSciuwslpYWIksSmq6j6Zm75GQwykQwimboWEwyPqedsUAE++g0H7xqDfF0mpoCH4e7h+kamiKd0mibncBptSAiUGhzct2Seo6PjpFWNb6wfiO7BvrYOzhEfVEO3YFZvn7keWwWGY/JxleXZ5aqDMPgWx3PUO3K46rCRo75+3FKPj6/+K18pe1/MQyd4WSMGmcdSQ1GE1NouoUss5MaZzVH/afIteQymhhjY+5q7KKD7/U+xvFAL1lyNn2RWcocOZTZc7m6cAmtwX6uyG+hKzzGk+OnyDI7WO2rwSqZ2DvVz097D5BU4dmxLvzpGN3+IIcmRihzZGGTzNgEG9l2G6IhMh6dotjuZkV+MbOJBP5kgtFIiCyLhV93t9M2Pck/b9/JvadO8XBXJ59cs5bml3x/XZMzPNB6mmua6llRUUyx183/PH+IJ093MRtPcNvKFnZ19eK2WbBbzMzG43hsGe/PnY11xFJp7j99mpFIiP86fpCgkqA6K5taXw4nZsYodLgosLtoyMqb97q5s+Ja9HnELPPd6ESVQSZiT1DqugWrnI9h6BhGCvElWY2CIGB3feKS1+4Cb1wWBG2Bi7Jx04WNCGVZor4qn4a+Apx2M8V53nP7SnMz/871OFlVM38q/uWws6GWqWiMFWXFfOeOWzgzMcU/PP0c71+7klyXgw9tXsUL3YM8ePwMqqrROjDGjz54G1kOGz3jM9TkZzM5G+HRIx3ctKaJgiwXy0oLMYkisiBSU+ADoGtshslQFJMgEIwmmQpG6Z2epbEwn+6JWa72ZXPnyiUUedxU5+bgMJnIczrpCfgZCAfIddgpd2adc6JIaGlG40FskhlZlKh1lZDSVBK6yP+s+TyfO/YDBCGTbbgyuwGraCbP6qM9PMCHjnyNJncZTpOZNTkrGIxN8F99v6I9NEq22Y2Ggabr5Jm9jCbCPDJ2An8qwpGZAb7c8hZmUxGO+wd4d9UVfKx+ByW2Vk77J9k12kUglcAqWdAM6IvMsqGgEsEQcUkROoPTmJCYjEepcufwjoalXF1Wy78d3Ud3wM9/HDvAsrwiRsIhDowM8XBPJ2PRMGemp9lYUQFkOo5Lokg0lSalakRSma7lkiQiiiL9MwEiqTQnRsexSBJl2V6GwiF+ePgYf7vzKqZjMZwWEyenJ8iy2egZ9pPSFGaTcXZ6ayl0OhlPOPjXU89ilU18dcU18143Q/EJQukIS7LmNs/sCP6Yifhe8q0NBFInKZS3MxP+Jmm1j8LsryMKc021F3hzsiBoC7xibr3qcpdvLo+RcIj/OXqU9aWl7Kg5bwib73JyeGiEeFohpWZshW5e2kS1L4dn23v53u5DiIJIvsfFDcsbefhIO8FYgmRSYc+pPq5cXIPTZqFtYIK2vglO9U/wxTu2AfD2jUuYCIb5yo+fAkVH1TTetXE5DpuZbz97kGA8SZ7LyU8Ot7K5ugJ/MsH/nTrJtooqFENnbVHGHPfRwQ5EQWRnWR2fa9rB97v288x4J++q2kB7aJwWb0bctxeu4MBUD0emJ1ji6eOGklW8s/w6/rH9x9ikAKIg85aSnZhFE/nWbFRDp8ZVyFtKruC+gaOYRTNrfLUkdIUSezbf6nwcRdeQBRGnbGcmNcThmX4WZ5VxbUkLy7LLOeWfJN/qwSyY8Zqt+MxO3JKdK4oreaDvNO9as5ynBrvBEGnOycy4VuQX85Nrb+PBrjMouo6i6shInJyaZGVREcncfK6pqyOlqnzul4+RUlW+fM1WlpcV0TY5STSdaZ2S63Lw5eu3Ek8rRJMp8txOUqqKRZZ5oX/wnPB97vHHmYhGKPZ4aMnP55s7r+Ov9z7NkqJCrqyooS7Lx9r8cn410Mpzk13sGuvgyqIG7hs8AMBt5WsBeHbqEAk1xWJv3ZxZmttcia7rlLm24jBVAGAxVQMCAq+sWHuBNzYLgrbARenpmUTVdBrqC9F1g188fIS6qnxWNF/cj24sEOaFrgHesrIZ+TK9JAUEJFG4wDXiRa5vauC6RfX84PAxqnOy2VJdSVrTeLq9l5Si8vFta7lmceap/LoVjcxEYgyM+5kJxegdn2VJVRF3XbWSf7nnWRKJ832q/vs3+5kORqgpysEfTXDXFSso9mUy7v72loz5ctfUDLOxOL880Uabf4qhSAhJEPjk2nUcGh/h4PgwE6kwspQRNFXXCaTjzKbimESZxVkZ0XtkuA2X6OaofwgdjbiaiQl+5eR9xFWRz9S/k7CS5Id9j9MVHWKxu4a/bHw39w3v5xeDB9iQ10yVuxBDELm9fC0vTHVRbCtgbW4lqqHznqrNXFu0hPsGWvmvjucJpxSW55Rwz7a7iCgp2v2T3Nt9islYhKNTo+wor+OOuqXsGRlgNp7ka+uv5v87vJcn+3r53JpMEsfqwhJ+euoEFR4vg8EAY+EIf7f1KhpzMzHTyXCUhKqiahr2sx6ZD5w8g91sYkfj+YcSu9mE/ezys0XO3G42VmbMq4dCQbLsVuwmEx9ZvZqanBwsksxnVmzg4MQINd4cVF3nK8ceYTjup87jI65lvsN9052YJfmcoG3NW00wHZ53ybHYcQXFjgs7Rrvtl1ej9vtmKjlESo9Rar94G5sFLs6CoC1wUZ546hSGbtBQX0g0lmRg1E8qrV5S0B5p7UDVdLonZ2gsmj/e8VKK3W7++orzNUCBRAJV18l1ZBzPY+k0HVPTxNJptlRXUpLlodznZVFhHjcsO592UFvkoxYfq2pKGZ4OUlmQqXHLcdmZmongD8TOjS3L9+KwmnnPNRc6SHx310FqC3zkeByYJYkNVWX0zvpRyDjETcWifPmZJ5lR4oiiwHubl6FhMBYN8cPOI1yV38i2klqmE1G8FhuaYfDN9t2kVAWTaMUmS4hY6AlNcmR2EAEosxXyf9NPMxSfIpKK8/x0O4W25zkdnGAiEWJ5dhlhJUWjpwiAzvAEXeFxHLKZ9uA0qq7z10uuo8E7Tqk9i3t6WrHJGRFxmSx0+mfpnJ0l22pDUw2GIyFKXR5OTk0wEArw8/ZT7BseYlNZxbm/gz+RIJRK8uvOdgocLjwWK88N9J8TNJ/Tzhev3kyVL5tvPLOHcDLFirIiXuqj99MTrYxFInx+w8Y5YvNgZzuFbhfvbFlKyW9ZGuU7XNxYnbmhC0BYTaDoGouzSrihNOOHmG9zYZfP+zhWOIrAUXTudUyd5cjMTymyL6HWvWXuRfcG5UTgaRQjvSBor5IFQVvgolyxKZOYAeB22Xj/7evxvKTT9ch0EK/ThtOWubncvmYxp0YmaCjMnXO8hKJgM81NFklpKn+552nqsnx8YMlK/vPIARKKyte2ZWZK/3ZwP4IZrl9Uj2EY5LudfPMdN845TlpVMcsysiRSkOWifXCSxvJ8HDYzd1y9nLJ877mxN6zPpHArmsY9zxzHbjMz5A/yfGc/PrcDySYxGYryj2/dyW1LmmmbmOLzhRv5twN7ebSvC7vJzNrSEv6n7SiT8SiL8/LoCE1RaHdx46M/IK6nMYsSuXY7+VYPVlEmrqcwCzKHpwfpi0xjESwktDT/3P4o1xa1EEmlGY+dQkOnxO5ja/4yTgeHKbX7EASB3ZMdPD/RSa7VwxebrueXgyewSipLsosRBIHbK1YyFg9T4sji+bF+2mdnuLtxNSenxxmNhihxukmoKoFkglKXhw8uWUU4neKR7k5qsnL4yLJM8k1a0zg4OsLOyhr2yUNMRGPc0tDIssLzgvG/h44z4A9w99oVFLpdBBJJPrdlE1bT+VtK+/QUR8fGzjZHzYjTi0zHY3jtVjy6hc/sfoS3NyzmLXVz0+oFQeCfVt3MI8OnuL3yfG+9m0pW45StpHWFjnA/zZ4axAvqxgQEQULgzVVLtsizkaQWe/mBC8zLgqAtcFGamy9M7sjNudB+J5FS+OFjh8n1OvjwjZm6Io/dysa6ijnHOj01xT2nTlLkcvGRVasveFqXBRGfzU62LSOWqwpLzi3LAVR4vBxLjHF/+2lWFhXjjyawyTI762sRBQFBEHj6VDf7u4fYuaSeVdUl3PtsK5FEClmSqC3xceOmuS1BzvRPcGZgkrHZMB0jU0RVhcbSPHI9DhK6istmwWk1c2x4jD09AxS6nHxm3UYi6RR7Bge5vb6ZJ4d6ODY9xqmZSXRD54HeM/RG/YiCQaUnm6lYnC0lVewoqeNzh36NYmg4TRY+ULcJt8nKC1M9WEQTXz/zCIKgU+cux2dxk2P2Uu7wUe7wnTvfwegMZ0JjNAIuUx0ek42lOaWIhsQLE/1sLKik0OaiwZuHxxRhIBzgtH+CsXgEh2xmZ0Ud11c2IIki0/EYv2w/ze2Lmtk3OETn7Ewm89Bq5XvHjrBvdJCfnmql1pvD8sIiBoMh1peVnzuXpsI8ftPWzjeeeYGokqYmN4eHznRw25Lzf+dHuruIqimcVjPtM1M05WbidIqmcW9npuHqdCJGNJ2i0z990euw1JHFhxs2X7Ct0ZO5Nh8e201KT6MbGkuzzs9qHHI2m/M/DoA/eQKnqRyz5L3oZ7xRKLbPb0qwwOWxIGgLvGqsZpn6srxzS3uXIs/hYCIaIa1rPDc4wJaKynP7JFHkz9dkbliTsQgng+NsKz3fKfvOJUtx2620jo3TnJfHf3QdwCrL7O0dJM/p4B0rlvDLY6eZ8Id558alAGxeUs3etn4qCi5e4P3s0R4i8RR3XL2MjrEpdrf1s7iskJPD45Rke/jyjZkEkmMjYwQSSQJnE0WeHxgknEpxYGSEjy7NxHB+1dPGT84cp9mXz6bCcmJqmulUjIlYFLNhYv/4KJvz6mjIymVpThFfb32WkBohpemsza5jMumnzl3EJ+t3MJ0Kk2eda9F0V9UG3lK2goiSosjupSkrM2P6y8OPMRAJ8MRQJ++uX8kqXxmF5W5UXec7bQcRDAOTJBE5m7DxQNcZQskUmqFzYHQEt9WKquvc336arZWVDIWDqLrB+5euoM7nA0NgLBDmrnvu55+v30m+y8nK0mKuqKnEJInE0woeu5Ud9TUXnO9bFzXxZ088wngsyg11DQAcGBvm4d4OlucXYZYkqrKzWFNcQq7dzl277uG9javYWnThcS7Fupyl7J05ToO7at79SXWasehTmCQX9VkfuuzjLvDmZEHQFnjVCILA7VsuL+Mx1+Hgb7ZeyYOdZ1icf/FuADPJOMFUgpFoiJX5xUBmCezwxDAuq5U8h5PPbd6IJAp85L7fEEmnuP9oG4ZksKq2jIqz3pCVhdlUFmaTTCmMzoSomEd0b9nSwkwwhstu5coldWxqquKff/UcFkHmzs3nHd6vbqjl2qb6cya5X9iwicd6unl7UwuhZJJTk5NYBJlryuoxiRK9kVna/JPk2514zFY2FVZyb+8pKlxZ3F61jCOTIxg6rMutJqjEaMwq5OqS9wHw4NBxVEPj2uLFfOLAL7BJZv5j7e2IgsBEIsJPeg6zqaCKIrv33PldU9rAv514gV/3n2YwHKDI6eHPWjYSSqd4V8NyVuQVIyJwbHqME1MTjEbCIMDG0nIW5xVwdVUNT/R0s7KomLFoGIfJzF9suILF+eeLxa9+5ElCiSR7BwZ5S0sTvTN+rltUT13e+RnkfSfaMEkidXk+7j9zmq2VVWypqKTDP3suRpbvcOIyW2jIyaXKk8XXjjyLy2ylTPMwk4yxa6R7jqA9PXGSU4FB7q65CrfpwiXvHIuXG4sv9GAci58ky1yOTfZgkXw4zZVkWxd6kf0psCBof0TEYinsdvO8mV6vN3s6+5kMRXnr6pY5+8YiYX5++hQ31DXw8VVrL3mcppx8/mbtlRyfHieqpHCaLJgliY0lFZS6MrMW79mC3EVFebgsZm5obKAky8MNixsQzjb87ByfoSY/h589fYzpQIz3XreKvKwLl0yLfB5sFhPf/OULlOV7ec81q1lUls9zbX3sPtXLTWuauPfgSdpGJrn7ilWU+7wA7KipPVde8LOjR0lrGldWVvJ0bx+TsSg7a2roCfm5tryBg+MjjEYifHbpJvYOD+FPxHmkvxO7YOXddZmY1ePDHfSG/KzMLeFnfYcpcXgYjoTpCk9RYvei6BoWSSaqpugJzSAYAuvyKvlB+2FO+Sf4m5VXoRkGsiDTGwqwtqCcjz73IJph8Dert5NjtfNfJw/iNlnwldup9GaxtqiUHFvGqeWBjjMcnxhnU3kFywqKWFZQxEv5/JaN7OnLiBnAfa1tGIbBX+7IiIluGOwfHKZzZobVZSUYkkFKVegKzDIUCnJvext/tno9lZ6sc7PxqUQESRS4sbKR+qxcaj05VLiyCKbjeM3nXWTSmkpUTZLS0oTReWpiP9vyV5NlntsbK6JMMhDdx5jYykrfXRhoVLhvveQ1t8AfDwuC9kdCT98UDz1ynNqaAq6/5rWtE7scjvSNMhuNc8vKpjnp9wPBIOFUis6ZaWqzc+a8d//EEGOxMLdWZ+IvXcEZ9k8McnxmjA83rwFgR2VGQDRd56dnWllfXMZfbDufil2a7T3370O9wxztG6V1YIzVjWWc7B3HYTXzrZ/voam6gC2rzqeVu+xWyvK9NFVkZiPXrmigZ2zmnLt/uS+L8WCYM6OTZDtsuGwWosnUWQNkmWtqanm0q4vGvDzssomkqrGuqIy7WpYzEYvQHZjFaTLznaNH8NosfOvYQWKKwo6qWqJKim8c38P+yQFkSeCDTavQNYnRSJxFbgu3VSznQ/WbsEiZn2mtOxcbZk7PThFX0/QGZ9k/PsR/nNhHS3YhSUVlc1ElH1q0lrbZSToDM1S6s/je6cPYZZl3NiyhzO2lzO1F0TR+cPIom0srEIVM2YR4iQeh7XW1bK+rpXfGzxPt3awsLb6g4eZIIMSG8jImI1ESqTT/eN0OftZ2khKnm6Si4rVaCSQTZFkzM6yokuJDu39JjtXBUCxIfVYuy3NL+EnvAXoiU3ygdhPjyVn2T3dxS+lqToQ6eWh0H/XuAnRD53igg235q+ecp1POw2suocDWQl/we0xGH6bEfSul7ndd9P+2wB8PC4L2R4Ivx4koiTidl9eS/rXm7i0riaWUeWvJ1peW0ZyXj9sy/7ntGevHn4xzU+UiZFGkPiuXI1OjbCupnjP2u6cO82hfJ7uH+vnnrTvx2RxzxiwqzufU0AROi5mD/cO8e9tKYvEUs6EYM8EYhmEQjadwOazIksh7rjl/Y3RYzXzptm3nXq+pLsUsSRzoGWI8EGE0HOLp9h5UDDbVVlJblMNMKMZoKMyfrVlPr99PbU5mGa7A4eJzqzbxwxPHyLXZiagpsiw2oimFbx8+SLA5k45e485hJhlDNkxYRTND4SD3d5/hF9vfhUmU+F77QZqy86lx++gKzWIAv+g5gSSI5NtcLM0tRDV03tuwkgp3Jma4JKcIiyiTUBTeWt3M/okharznlwf7QwFmEnGeGujhI8vWcEvDb7sunue+U6f4zuEj3NTYwCfWrePw0AjRdJpsu41V5eeThh44cYZIKkVLQR6Os21mdlbX8LUXniPX7iCmpPlF+yk+fDaT0iLJrCuowAC2FJ2PfzV6CokqKXIsDroioyS1NIquUu0sosiWzVpfE92RQWpd85eOCILAIm+mxmw6FgZBwirPnXFejFRqP8nkLsyWzSRT+3A63oFJvniZygJvLBYE7Y8Er8eOKAicPDXClk0Nv/fPd9usuG0XtxC6mJgBvLdxJaFU4lyMyiRKvKdxxbxjdTKO9YvzCnmiv4d3Lpo7G3XZLLx/22q+v+sQQ9NBQvEkOS47f/mBHYiiwK+eaqVnaJrbdiynsmTujPFFJgMRDncOk9RVDnQM8rEd63i2q5doMo1slpiNxrijbAna4DAFLie/aevg2PAYiaTC8dFx3r6shSKPmzuaWjgyNsb60jJ0w+AfXngOTYfOmVn+fsMOjk+O8bkXHuU/Ww/wZ8vX85eHHiehJNg91suW4ip6QjMktUyxtEO2oBkG15cvYjQnhNdsY3tpLVb5fDnE00M95FodhO1u/vn482wprmIiHuWh/nZuqlpEu3+KA+PDXFleRUPO+fKKvoCfH7UeY31pOTvPLqlaZBm72UTOWSPp25e1MB6KUOy9cLnvxsWN9M34ubL+/ENIts1OkcvNcDhEnt3J1vLziUAmUeILy7aQ1jX+6dTT1HvyeWvFUlb6yil2uAmkY2wraGZbQWbWXuU6H89rcJ8/zqWoz/4M8JnLGvsiujaNoYdRlHZ0PYSqDi8I2puIBUH7I2LVikqMl1a2voGYiEYAKHBeGMvKtTnInWemNR8fW7KWD7esZv/YMKsKi89tjysK07EYDtnEva1t3NjcwF1bVhCOp8hxZW7GophZUqstzyMQTuDLuvRnPry/HUXTKM5zs6qyhJpCH1+8bgs9k7OMByNsW1RNXYGPJUWZm22Ow06W3cZsLE4wkWA6GqPI48Yqm9h4NuVdFAQ+tWYdT/X1cn1dPZqu8xfPP0la0bmqtobtpXX4bA6eGOrkuvJGZFHkU4s3kW2xY5FkPr1kEwV2F7k2Bw/2nKFtZorPP/8Y/7rl+nMPBAcmhugOzqIbOmsLSllbUMZwNMTagoxzydNDvTw/3M/jfV38cOdbz/1/LZKMWZKwyedvCyuKi9k7MgRnlyMnI1HOTE1R5HFdEKutzMmiMicLwzBon5rmyMgo71i2hE+tzrSYscgX3moeGTrDTDLGHdXLSGkqyd8q0/hp/14MDL6w6IbLuSReU2z2G7HabkAQBHQ9jijO7QixwBsXwTDeuLfAcDiMx+MhFArhds8NAC/w5uIrz+0C4KtXXPmaH/tbhw8wFomwJq+Enmk/Vb4sbm6ZfxntcvGH45zoG+OKxVUEo0my3XZUTUcUhHPieDHSmoZZurAJ5eNnuhgLRnjvuuXnxEDVdT759MPkO5x8ZcO2C8bvGxvCY7ZQ6HSRbZ17Y02qKv9ydA9RJc1X11117vNmk3E++exDRNU0dy9aec5140Wi6RSf3v0o4XSSOxuXckN1I88M9PHsYD/vaFpMoy8X3TB4vLcbQTe49/Rp3rtsOZsrKvjmCwcYCgSxm0x8YO1KTKLIv+/eR22+j/FwhKii0DY1ydrSEt66pDmT9j8P/3TiWaYTUf5pzfVzkpiem2xHx2Br/qW/v87wcfqiZ9iSfzM26fIeiBZ48/FKdGBhhvYmQtE0nj7azYamCtyON59D+NrizAxBNwyeHuphdX4JXqvtZd51eWiGwUgkxFc2b2UgL0i17+Vr416ObLedrUtrePxgB2f6J1jfXMHjxzqZCkZZ01jOu7evRNV0ZEnkUPcwPredqvzMEuZLxQygfXyKiXAUVdcxnd0viyL/dfWN3H+mjV93tnNTfUZ8Hu7t4P87tpfpeIxleYX8+Jrb5hzPKst8ec3WOdtzrHY+vHg1P2lvpdqbzd8ceJrNxZVsK63msYEuXhgd4EOLV3FyZpIrSjPxK5vJhCwKyKJAb8BPQlHo9c9ycGSECk8WSwoys9BbWxbxv0eOE0+lmY0nePR0J8dGxqnyZXwX85wOrnBUsrGi9KJiBvCp5k0oujZvRu4V+Zdn+xRU/ETUECktgU1ycHL2uyQ1P6vzvnjJ983EnkA3EuQ5b76sz1ngzcOCoL2JONY1wlQwym8OnOHOK5e//BveYFxTk3FBaJ0apyswS2/Qz0eWrLno+BOzo+TbXBTYX352bpYkfHYHcUXlfw4coTIni49umP/YiaTCjx88SEt9EeuXnU9ImJ6NMDkdprmh+ILxDeV5DE74qSzKoWwki5lQjFN94xzuHOaRI+20VBRyZnwKp9XMp6/fBMBTJ7uxmmRW15QSiCUo8LoIx1K4ZNM5MYum0vzfsVZ21NfSOjGBSRLPCVqJy0Oh3Ymu61R5sgkmE/zLgb005ORyR/PiS2YkAhyZGKPY7kbRdAwDFF3n1MwkLpMZm2wi3+HifQXnkzoGQwHiqsJDXZ2ous6VlVWUerxcV1OPaugcGhkhoSjc2NjIxzaswW42I4siM9EYRR4Xd61a9orKRSySfC5785VwNHCAqeQkOwpuYE3OlazK3oIoSCh6HAEZm3xxEX2RUPIwupFaELQ/QhYE7U3E8roSZiNxNjRdXlD8jUqzL5/OwAxbSi/+/0iqCr/sP4nXbOMzi7dcsM8wDB7oO83S3CKq3NkkVIXqnCzevXgZA4Egk4koG9wXD+THk2mm/VGe2tPO7n1dfOmjOxAEgd881ko4kqS6Iheb9XxKekVBNh+6KWPt9b6dq3n39pV8/Z5n2N3aQ7bLTmG2m/xsF7nu88teB7uGMJsk2oenGPWH+eyNm6j0ZV0wc+uYmiauqDzfN8AXNmxEQGAoGOSBjjN4rFY+2LKGtulJ3BYLAgLRdJpHuztJaxrvXXrpB5p3NCyhL+RnaV4hS/MK+UHbUXYP91GX5eMv55nVlbo9jERCbCmrYP/oCPU5uaz4rRjlvSfbSCoKXrON5/oGWF1WzI76Wq6sm5uJejE0XeefTzxHpSubt9VcvLQkoaawyfMnEU0mx5lOTaIZGqIgIgqZv+cp/8+JqVOszfvky55HmfdjGGiXfd4LvHlYELQ3ESZJ4trVb34XblkUeVt9Cwcnhzg2M8I1ZXOzMq2yiZW5pVS45i4dTiWidASnGYoG+bMlG7m/q42kqiIIg4z7ozTk5VL1W0uOf//zXZhlic+/dQsAOV4Hf/7B7Xzqq/cSjiT53/v247RZ2LSujsHh2QvEbD4kSWR9cyW5Xse5+rWXcteWFZgliaGZIFazzGQoyg2LG8lynl9iXVlajMtiwWu18PiZbm5evIgfHT/OwbFhVhYX89ZFzZyenuSK0go8Vit/v3U7X3/h+XOuG+PRCFlW6wUZji+S73CS73Cee31lWRWPDnRizPHDz7ChpJwNJZnEleWFxXP2f3j1Kk5NTFLq9eC2mC9YTvz+oaOkVY2PrJ9bF/bb6BiEUkki1uTcfYaOKIgcnm3n4OwZlmfXs943139zZ8FNaIaGSbzw/1xoX0og1Y8svPwStkm6uB3aAm9uFgRtgT8Yz471Ek4n5xU0gBvLL7yhTcYj/HvrXtYUlLGpsIJ6bybl/PqqBh7u62BDcTmWMpmJSISi3woeH+sdPbfM9yKKqlFV7sPtsBIJJwmFErz1hhXUVV9oyzUxHcZiksjyOjjQ2k9X/xS3XL2ELUsvPTMpO+sq4rSa8Vit/HxPKz2Ts2xsrOADV51fCq3P8/HDg8dQdZ1jw2NsLC9nbWkp26qqkEWRsWCEHx47Rq7DQY7NzmAwyPHxcR7v7qbLP8P26ho+vmothmHMWwP4IuXuLP5m7ZXE1fRFx1yK9qkZzkxOMxaO8KnN6y/Y54/HUdSXn/GYRIl/WDu34/Ro3M+P+p5haVYly7LLcYSs5FvmF53MrGzu/7PQvpxC+5tvGX6B15YFQVvgD8adtcsIK6lzr5+d6CCUTnBz2bJ5x8uihFU2YZFkNhWdX67Mstp416Lz7yl6SSbUP7znGlRNv2BbKJJEUXWys5y85W1LL3qO/3vffhx2Cx9/zxZOdo6ya28n/mCMP3tvJiNx79FeNN1gw4qqc4JiGAa/3H2SRRX57Dndz0woRnVpDrG0gqLqcz7j6vpq2iamWFVWfIEo+eMJoskUK0uKOTkxyXAoRCCRxGE2YzPJpDSNPr+fr+99nlg6zd+dbbdzMZp9F/fQ/G32DA3wzEAftzU2M+gPsm9wiNsXNyOLIlur5y4Tf37Lppc9pqbrFxVch2zBa3bis7gosvnIMsv8avRBbiraQZ378o2K3wx0hvczEm9nY+7bsUgLJQGvNQuCtsDvhKbrHOwZZkVlMRbThZdTMJng1x0dvKVxEa55CqtLnN4LXh+e7qcnOsV1JS2YxLmXZo7Vzl+vfuUp/8d7R+kenaG6MOfcORbmuvnku7dit5oumcywrKkUpyNz7nfdvAa3w0q+LyOYvYPTfOeeF4gkUjx3qBuHw8KNW1vIyXLQNzpLMJJgTVMZncPT3LqhhYHJAK6zdlH3HzzFL4+0cce6JRweGqU6L2fODf97h48wEYoS9ylsLC/niZ5u8h0O3r54Mdsqq/jWoYNMx2KUebzE0mnCqdQlC9gvhyf6u3mytxu3yYokirgsFuwmEzl2Bx9au+rlDzAP93af5Oj0KB9tXku5e+7My2t28LG6nedeF9sLOBI4yK6pXb+zoBmGjmYoyOIfxkHnpcS1MAktjGKksLAgaK81C4K2wO/Eno5++qcDjPhD3L72Qkfzp3v7SGsazw8OcF1dPf965AV04LMrN857rDJnNk6ThafH27mmeK7J8avFYpKxmOU5mYEO26VjZQBXX3G+FspqMfH261eee62oGlWlPhRVpTDfQzSeQhAFstx2bt7cQqHPhctuZWl1MbpuYJalc0ufuqGTUlR6J2cp8rpZVDi3u/fWqkq6Z2Zpys8j22Gnxz/L25pbKHa7eaizg9FwmA+tXEW518sPTxzjay/s5uOr1lLintt65nIZCAXQBfjMug24zBbqc3xsrCh/+TdegiKHm/5wALc5U2qi6jq94RnqPLnzPkysyl7CYf9eUnrid/pcgBP+/2MqeQavpY7FWbdilf6w9azLsnawLGvHH/Qc/phZKKxe4Hcinkrzy8NtXLe0gWznhU+cKVXlwMgw60vLMEkS/3Yk4wDx6YsIWkRJ8ujoSa4vWYLjIllur4ZgNMGR7hG2Lal52YLo3yaZVAiG4hTkv3qBmI9EWuGFM/2U5WVRkuPBYXl5YX0pzw30c8+pkzhMZu5aupSEqnJobATNMJiNx/h/V1yJeImY2sUwDIOUpmE96+zRHwjwi5On2FlXy9LCwld8vPn4afcRppMx1uVX4LGYODI7wB0Va5DF83HO9vAZ4lqcFVkrL3Gkl6c/spvO0OO4zRVUONdTZF9oI/Nm45XowIKgLfBHzw+fOoyuG6yuL6PlbFbiL3ed4EzfBJ9+5xac9vnF88c/28fkVJgP370Fl+u1K2T/9cHThOJJ8jxOdi6vP7dd1XR+c+wMG+sryHM7L3GEDMfHx3iip4fbm1uoysos5f345HEe7Gqn0ZfH32+56nc+19bxcX7ZdpotVZVcWX35KfqXYjAa4LHhdt5ZvZx7hw7iT8V4Z+X6C3q8XQ7HA0+hGxorsndecpxh6ISVCTzmyzcpXuCNw4JTyAIL/BY3rFnE/vZBGkvPL+t5nFZcDgsP7j7JsvoSmqrnzj6aFxUTCiew2eamxV+M2WCMnz54iKWLSrhide28Y65cUsOTrd1sbrqwy3L72BTTkRi/OdbO+7e8fLxqWWERywrP36TDqeS5ONqZmcl57bdeKUsLC1lSUPCa9Nh7eqQL3TC4urSeDzdmMiXfUbmO0XjgnJipunbBTO1STCb60YyXz64UBHFBzP5EeOVrEgss8CbD53Zww5pFyNL5y/2qNfXcee1KJmYiHDo9NO/7QuEE2VkOnn2+47I/S9N0FFW7aBp7PJXmJ88coyjLhd1yoVA2FedTm++bt0nq5dA1O0s0ncZtttCSdz6j8Qenj/LVA7vQL3MxRjcMftJ2nG7/DMBFxez+zja+tn83inb+/zoQDqDqczM5AfZNDLBvcuCCbTbJTI0rc64TyRm+03sPT03svazzvKrgvVxd+L7LGrvAnwYLM7QF/mTxeZ289aql5Oe45t2/bEkZE5MhVi6vmHd/KqUQCMbRVJ3i4sySX16Oi8+9/+JLfeF4iolghP7JAGvrL0y2EEWBbU3VJNMq0WQKp/WVxRFXFhWT63BQ4nLPyZh8JYGF0UiY4XCYYLKb2uyLW0mFUylCqST62WLtttkJftPXToHDxfsWzY193d24hlA6ztdPPcFKXzlXFl5Yf+iU7XjMbvKtF2/p89vI4uXPnF8rJiM/wzBUCtx3/d4/e4GXZyGGtsCbilAqiSQKdAdmeaS/g9vrFlOX9fL+fa8H3/vBcxw81EtdXSEf+eBWnM7Li7PFUwo2s3zRmc//99DzBKIJ/vaO3182nKrr/NeJA1R7srmuqoGjE2PUeLPxWC8/dhhT0vyo/ShXldZQn5U775ipRJhvdexmeU4Z15cuRoB5C6VfDTOpaRRdodD2+i0vDvi/imGoVOb87ev2GQtcyEIMbYE/Kv795B7G4xH+Yc01/OPxZ7FKJrYWVpPSNKLKq3O+eC1oqC8kmVQoKsrC4bj82dRLlxpfyqKSfILxufZQr5THBjsRENhZXveyY8PpJI8NdCKKIleWVbOi4JWLgsNk5mOL183Z/uJSpygI5NncfHXZjQD805lf4TLZ+EjtXPeQV8MzU0+h6ArvLH/3a3K8+SjL+gu4iH3YAn94FgRtgTc8uVbnuSWzZb4irJKJzSWVbC55eZPm3hk/KVVlUcHcOq/flY0b6ti4Ya5Y7D/USzAU55rtF4+FPXToDLFkmrdvXjpn385lmczHMX+YXx8+zS2rmynImn9Z9FLsnxhCAHaW16HoGocmh1mdX4ppnqSLbKudDy9ew1Qiykwizn2dbbylbtG8hdCHx0eIpFNsK7+8rMf37PkxIPDjzRcu0xXbsrHLmRlgTE1gEmTM0uUtI7aFzpBjzkYzNErsGe/JJncLaf31fcARhd//MucCl8+CoC3whiampFnuK6EhO7OEdfslXNrn497WU6RVja/s3Pbyg18jWk8NEY4kLylonaPTxJKXvvm2DU+QTKucHp58VYL24eY1vLio+chAB5OJKDOJGDdVNc07/qbqTBH5M0O9xJQ0bTNT8wrakwM9JFX1sgVNM3Rg7vLqOyu3AKBqKl868V2qnUV8qn5u37eXElfjHAu0MpYYp9xexubcDRTbi2jyvHbF+Au8OVmIoS3whuY/T+xnNhHnA82rKHK+8mvg0OAI4+Ew1zU1IL+KQuNXQziSIJlUyMu9+Pkqqoaq69jMF3/iNwyDyWCUfK/zZdPmk6qCSZQu6pcYTCW4v/cUt1UvxmN5+bjYdDxGrn3+LtC9QT9xJU1L7vydBl6KomeyIOebGQJ0RUb4Ud9jOGQrX2561yWP1RcdoMCaR1voDJIgMZGc5OqCK+e47y/wx8NCYfUCfzScmpng8OQI725cfkk3+YsxHo7w7X2HKPG6+eDaVXRPzHD/oTa2Lqpibc3Fe6a9EhRF5Tv//SzXXLOY6prLMwB+LdENg8/vf4RCu4vPLb2CnvA0ESXFspySl3/zGwDDMDjkb2eRuwKX6eL+htOpWZ6c2IVDdnBz8XXntu+ZPkRHuJe3ld2A2/TyBekLvLl4JTqwUIe2wBuaFl8B72ta+arEDCDHYafY42J5cSbJ4cUEBV1/7Z7jnnj8FH29k/zoR3suOW46EKVnePoVH98wDA4OjRBJpubdLwD1Hh91Hh8jsSA/6z3Cr4dOvuLPeSXohsH3246wf2z+Gr5XgiAIrMlZdEkxA8gxZ5Fr8bE8awkpLU1bqBvDMBAFAUkQEeZZ1lzgT4uFGdoCC7yE5471MDQZ5M6dKy7LISMeT/H97z/HzTevoLT04jVU//WLPYRiST7/7isvKPJ+OTqnZni8swurLPOhdRdvoqnqOn99/GE0Xefa0mauKKiZs18UhDkmza+GUCrJ1w7tptjp4ZPL5mY2vt78enQXiq6wyF3DIs9cR35FV0jpCk55wdH+zc5C2v4CC/wOdAxOMT4TJq1qc1riTEyGePypU1x9ZTNFhV4A7HYLn/jE1S973HVLK5mcibwiMQOo9mWTM2xnU1XFJcfJosiy7BIK7R425s9N2PjyocfIszn47JItr+jz58NjsfLJZevJtr58h+jXg/W+ZRyYbaXaOf+y8c8GH2c2FeRT9e9Eeo3q3BZ447MgaAu8IdB0na/tfY4KTxbvWrz0D3oud9+whmRanSNmAH3908Tiabp7J88J2uWyrL4E6mH3iV5GZkK8c9syBEFgeDZI9+Qs2xbNnzUoiyJ3rlh60eP+evAUbYFxPtuyldsqL961ucKVRY51/kSPV0Pxq0jSea3ItWRzQ9HFM1drXGVkmd0LYvYnxoKgLfCGQdX1cxlxvw8Mw0DTjTkzJlmWcMrzZ+StX1tDQ30h2VmvXhjODE4y4Q+jajomWeI3x9qJJFMsLy/C63jlM564miaiJPlu515W+cpZlzd/fd5Hmta/6nN+s7HB98rKOxb442Ahhvb/t3f3MU3eCRzAvy0v5a1FREWRVl7EsekJOxHcvE3c2HDZbtNL1Mv8Q8xGYoKbhmQKJpNcdgnGcJkJZ9TsD2fmFr2QE2KmntzdZJvTyfkuUibbIQ0MKKhteWtL+9wf3ohMXtrS9tc+fD9J/2h5+jzfPDZ++zx9nt+Ppq1PvmlAi7EXH72Zj/BQ/323sw87MGi1QxMdAdPAEPQ/P7on7aXFnk/P0j1owf47XyFVPQvvLgrs4qo31sMwYMBG7cZRl9u3DbSj0dSMgrl5XhsOi4Iff0MjcsG8GWoM2u0eX0HpqbDQEIT9/wjw6LdXYDT348O1U7vxe06kGh8syR+ZFXoiDqcTh+98j4wZs/FS0pMXVPiaJEmQxhg+6sr9m+gbHoDR2ouEiLHHgiSaCAuNPGJ32mC0tiEx0v//IXrLG7/JmHwhH8tJ1cJw3+SVI8Q4lWtX9A067Ggx9UKSJCGFljcnb8zX18xbjZ8Hu1hm5DGeciSPXOg5CatjABma3KAuNVfYHQ6ETXGiTHcdv3MTV7s6sGvFi4iPfLKoHlgH4JQkjy/yMNuGEB0a7vejUyJ38cZq8rmn1DlQhURhtso7o234W1dfH/pskw9k29p1HxUn/o2ai41+SAXUNjWh8ptvoVGpMEMVMe6M0wea6vHXpvMeb0cTHsEyI9nhJ5o8Mks1HytnrUOYMlx0FLcNO534y4ULOHj58qTLaqIiMCMmEvPj/XOGoNnYg3/99BPmR8di9/N5UIePPS3Nslk6LJu1YMy/uep0WxP+9J9zuD80MKX1uMNi78Wlnr/D6vDfNmn6YKHRtHLH2I2egX5kzp2L7PmTz/k1Ux2F99/8HZYv0k5524M2O05cvAHTwBAu3L2HfWfq8fNDy6hlVqUmI1s7D519lnHW8shrSYvxhnbJlPLYnU4MS86RGadd8VX7j9h75TxMVs/ma/vB8j2ckhOGgTsevd9dffYhOCWnX7ZF4vGiEJo27A4Hjt26jriISHzw/At+3/7FH9owZBvGP278AI06AoO2YViHh0ctk5ukxbPzEsc91TiRmns34ISEPyzIcmn5t5IX463ksaeSGU/3QB/uWwfQP2xzadT+X8uc8Qo6BpuhjXrG7fe664G1H/v1Z5GqnoPNqf7/9yb/Y6GR7NXebYKxvx/vZmUjd74W89ViLjB64elkfKtvxYp0HSLDw7BmySL09PXD8OAhtHEzRpbzpMwA4OaDdjgluFxontiYnon1C5d6PB5kqDIMuuipHVm6KiZMBW30TKSrXZvmhoIfC41kr7m3B139FjglCW899bSwHGEhIVj9q5unj1y8AvOQFR/9/pUpr79k8ctTXgcAGIf6ADyaKXwsSoUCbX33cddsxMuJT3llm74QpgzFuwtXi45BfsRCI9kryVkJu8PhlVHmvW1Fig4PBwa9sq6YsLEvIHHXwaZH0+Dsefa1cZc52XYTfXYrfhuvdfn+NyJfY6GR7IUqlX6brdpdLyxMFh3hCctnL8Bkt6eu02XirrmbZUYBhYVGRKO8ljT5BRu6mDjoYuL8kIbIdYH5tZWIfGJw2IY/3/wSJ+9dEx2FyOtYaETTjCRJbt17RhQseMqRaBqJDA3Hh5lviI5B5BM8QqOAd/knA87dvis6BhEFOBYaBbx6/X/xXcs90TGIKMD5vNCsViuysrKgUChw/fp1X2+OZOjt57Lw9oos0TH8xumUcOLSDbR09oiOQhRUfF5oO3fuRGLi5IPAEo1nfpwGi+bO8sq6qptu4293bnllXb7SabLA0GvCPxt/FB2FKKj4tNDOnDmDc+fOobKy0pebIXLZre4u3OruEh1jQolxGry8eCH++Fym6ChEQcVnVzl2dXWhqKgINTU1iIpybTQBq9UKq9U68txsNvsqHk1Tu55/UXQElzybzLMaRO7yyRGaJEkoLCzE1q1bkZ2d7fL7KioqEBsbO/LQaqc+BxXR46LCwhAVFiY6BhH5gFuFVlpaCoVCMeFDr9ejqqoKFosFZWVlboUpKyuDyWQaeRgMBrfeT0RE05dCmmwU0scYjUb09vZOuExqaio2bNiAU6dOQfHY6OYOhwMhISHYtGkTjh496tL2zGYzYmNjYTKZoNGImcOKiIjEcacH3Co0V7W1tY36/aujowMFBQWorq5Gbm4ukpKSXFoPC43Iu6zDw9D39GBpQsKoL5xEgcqdHvDJRSE6nW7U85iYRxMFpqWluVxmROR9x27eQJ/VhmGnE8t4Ow3JDEcKIZpGXklNQ2RYKJ6ZPVt0FCKv88kpR2/hKUciounNnR7gERoREckCC42IAAD3+wdERyCaEhYaEeHLO8049F0DvvmxVXQUIo+x0IgIzyTMQYwqHAtnx4uOQuQxzlhNREiJj8P7Lz4nOgbRlPAIjYiIZIGFRkREssBCIyIiWWChERGRLLDQiIhIFlhoREQkCyw0IiKSBRYaERHJAguNiIhkgYVGRESywEIjIiJZYKEREZEssNCIiEgWWGhERCQLAT19jCRJAACz2Sw4CRERifDL//+/9MFEArrQLBYLAECr1QpOQkREIlksFsTGxk64jEJypfYEcTqd6OjogFqthkKh8Pn2zGYztFotDAYDNBqNz7cnV9yP3sH96B3cj94haj9KkgSLxYLExEQolRP/ShbQR2hKpRJJSUl+365Go+EH3wu4H72D+9E7uB+9Q8R+nOzI7Be8KISIiGSBhUZERLLAQnuMSqVCeXk5VCqV6ChBjfvRO7gfvYP70TuCYT8G9EUhREREruIRGhERyQILjYiIZIGFRkREssBCIyIiWWChERGRLLDQJmG1WpGVlQWFQoHr16+LjhNUWltb8c477yAlJQWRkZFIS0tDeXk5bDab6GgB78CBA0hOTkZERARyc3Nx+fJl0ZGCTkVFBZYvXw61Wo05c+Zg7dq1aG5uFh0rqO3duxcKhQI7duwQHWVMLLRJ7Ny5E4mJiaJjBCW9Xg+n04nDhw+jsbERH3/8MQ4dOoTdu3eLjhbQTpw4gZKSEpSXl+Pq1avIzMxEQUEBuru7RUcLKvX19SguLsalS5dQV1cHu92OV199Ff39/aKjBaWGhgYcPnwYS5cuFR1lfBKN6/Tp01JGRobU2NgoAZCuXbsmOlLQ27dvn5SSkiI6RkDLycmRiouLR547HA4pMTFRqqioEJgq+HV3d0sApPr6etFRgo7FYpHS09Oluro6adWqVdL27dtFRxoTj9DG0dXVhaKiInz22WeIiooSHUc2TCYTZs6cKTpGwLLZbLhy5Qry8/NHXlMqlcjPz8fFixcFJgt+JpMJAPj580BxcTFef/31UZ/LQBTQo+2LIkkSCgsLsXXrVmRnZ6O1tVV0JFloaWlBVVUVKisrRUcJWD09PXA4HEhISBj1ekJCAvR6vaBUwc/pdGLHjh1YuXIllixZIjpOUDl+/DiuXr2KhoYG0VEmNa2O0EpLS6FQKCZ86PV6VFVVwWKxoKysTHTkgOTqfnxce3s71qxZg/Xr16OoqEhQcpquiouLcfv2bRw/flx0lKBiMBiwfft2fP7554iIiBAdZ1LTaixHo9GI3t7eCZdJTU3Fhg0bcOrUqVGTijocDoSEhGDTpk04evSor6MGNFf3Y3h4OACgo6MDeXl5WLFiBT799NNJJ+mbzmw2G6KiolBdXY21a9eOvL5582Y8fPgQtbW14sIFqW3btqG2thZff/01UlJSRMcJKjU1NVi3bh1CQkJGXnM4HFAoFFAqlbBaraP+Jtq0KjRXtbW1wWw2jzzv6OhAQUEBqqurkZubK2TS0WDV3t6O1atXY9myZTh27FhAffgDVW5uLnJyclBVVQXg0ekynU6Hbdu2obS0VHC64CFJEt577z2cPHkS58+fR3p6uuhIQcdiseDevXujXtuyZQsyMjKwa9eugDt9y9/QxqDT6UY9j4mJAQCkpaWxzNzQ3t6OvLw8LFiwAJWVlTAajSN/mzt3rsBkga2kpASbN29GdnY2cnJysH//fvT392PLli2iowWV4uJifPHFF6itrYVarUZnZyeAR7MfR0ZGCk4XHNRq9ROlFR0djfj4+IArM4CFRj5UV1eHlpYWtLS0PPFFgCcGxrdx40YYjUbs2bMHnZ2dyMrKwtmzZ5+4UIQmdvDgQQBAXl7eqNePHDmCwsJC/wcin+MpRyIikgX+Ok9ERLLAQiMiIllgoRERkSyw0IiISBZYaEREJAssNCIikgUWGhERyQILjYiIZIGFRkREssBCIyIiWWChERGRLPwPZWuJzfu/rSQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "rng, k1 = jr.split(rng)\n", + "xi = jr.normal(k1, (n_points,))\n", + "values = gp.generate(graph, covariance, xi, jitter=1e-4)\n", + "print(values)\n", + "\n", + "plt.figure(figsize=(5, 5))\n", + "plt.scatter(*points.T, c=values, s=.1)\n", + "plt.gca().set(aspect='equal')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c05428b0", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "graphgp (3.13.3)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/demo.py b/demo.py new file mode 100644 index 0000000..d578f5b --- /dev/null +++ b/demo.py @@ -0,0 +1,31 @@ +# %% +import jax + +jax.config.update("jax_enable_x64", True) +import jax.numpy as jnp +import jax.random as jr + +import matplotlib.pyplot as plt + +import graphgp as gp + +rng = jr.key(99) + +# %% +n_points = 10_000 +rng, key = jr.split(rng) +points = jr.normal(key, (n_points, 2)) +graph = gp.build_graph(points, n0=100, k=10) +covariance = gp.extras.rbf_kernel(variance=1.0, scale=0.3, r_min=1e-4, r_max=10.0, n_bins=1000, jitter=1e-5) + +# %% +rng, key = jr.split(rng) +xi = jr.normal(key, (n_points,)) +values = gp.generate(graph, covariance, xi) +assert jnp.sum(jnp.isnan(values)) == 0, "Generated values contain NaNs" + +# %% +plt.scatter(*points.T, c=values, s=1) +plt.gca().set(aspect="equal", xlim=(-4, 4), ylim=(-4, 4)) +plt.colorbar() +plt.show() diff --git a/graphgp/__init__.py b/graphgp/__init__.py index ad84633..cb8bf75 100644 --- a/graphgp/__init__.py +++ b/graphgp/__init__.py @@ -6,9 +6,7 @@ compute_depths, order_by_depth, ) -from .covariance import compute_matern_covariance, compute_matern_covariance_discrete, compute_cov_matrix, make_cov_bins from .refine import ( - generate, generate_inv, generate_logdet, @@ -18,7 +16,9 @@ refine, refine_inv, refine_logdet, + compute_cov_matrix, ) +from . import extras __all__ = [ "build_tree", @@ -28,9 +28,7 @@ "build_graph", "compute_depths", "order_by_depth", - "compute_matern_covariance", - "compute_cov_matrix", - "make_cov_bins", + "matern_kernel", "generate", "generate_inv", "generate_logdet", @@ -40,4 +38,6 @@ "refine", "refine_inv", "refine_logdet", + "compute_cov_matrix", + "extras", ] diff --git a/graphgp/covariance.py b/graphgp/covariance.py deleted file mode 100644 index 80ea8e6..0000000 --- a/graphgp/covariance.py +++ /dev/null @@ -1,94 +0,0 @@ -from typing import Callable, Tuple, Any, Union - -import jax -import jax.numpy as jnp -from jax import Array -from jax.scipy.special import gammaln - - -def compute_matern_covariance( - r: Array, *, p: int = 0, sigma: float = 1.0, cutoff: float = 1.0, eps: float = 1e-5 -) -> Array: - """ - Matern covariance function for nu = p + 1/2. Power spectrum has -(nu + n/2) slope. Not differentiable with respect to ``p``. - """ - x = jnp.sqrt(2 * p + 1) * r / cutoff - i = jnp.arange(p + 1) - log_coeff = ( - _log_factorial(p) + _log_factorial(p + i) - _log_factorial(i) - _log_factorial(p - i) - _log_factorial(2 * p) - ) - polynomial = jnp.polyval(jnp.exp(log_coeff), 2 * x) - result = sigma**2 * jnp.exp(-x) * polynomial - result = jnp.where(r == 0.0, result * (1 + eps), result) - return result - - -def compute_matern_covariance_discrete( - *, - p: int = 0, - sigma: float = 1.0, - cutoff: float = 1.0, - eps: float = 1e-5, - r_min: float = 1e-3, - r_max: float = 1e3, - n_bins: int = 1000, -) -> Tuple[Array, Array]: - """ - Matern covariance function for nu = p + 1/2. Power spectrum has -(nu + n/2) slope. Not differentiable with respect to ``p``. - - Discretized onto `n_bins` logarithmically spaced bins between `r_min` and `r_max`, with 0.0 included as the first bin. - """ - cov_bins = make_cov_bins(r_min=r_min, r_max=r_max, n_bins=n_bins) - cov_vals = compute_matern_covariance(cov_bins, p=p, sigma=sigma, cutoff=cutoff, eps=eps) - return (cov_bins, cov_vals) - - -def compute_cov_matrix( - covariance: Tuple[Array, Array], points_a: Array, points_b: Array -) -> Array: - """ - Compute the covariance matrix between two sets of points given a covariance function. - """ - distances = jnp.expand_dims(points_a, -2) - jnp.expand_dims(points_b, -3) - distances = jnp.linalg.norm(distances, axis=-1) - if isinstance(covariance, Tuple) and isinstance(covariance[0], Array) and isinstance(covariance[1], Array): - cov_bins, cov_vals = covariance - return cov_lookup(distances, cov_bins, cov_vals) - else: - raise ValueError("Invalid covariance specification.") - - -def make_cov_bins(*, r_min: float, r_max: float, n_bins: int) -> Array: - cov_bins = jnp.logspace(jnp.log10(r_min), jnp.log10(r_max), n_bins - 1) - cov_bins = jnp.concatenate((jnp.array([0.0]), cov_bins), axis=0) - return cov_bins - - -def cov_lookup(r, cov_bins, cov_vals): - """ - Look up covariance in array of sampled `cov_vals` at radii `cov_bins` (equal-sized arrays). - If `r` is inside of bounds, a linearly interpolated value is returned. - If `r` is below the first bin, the first value is returned. But really the first bin should always be 0.0. - If `r` is above the last bin, the last value is returned. Maybe the last value should be zero. - """ - return jnp.interp(r, cov_bins, cov_vals) - - # reproduce cuda implemenation exactly - # # interpolate between bins - # idx = jnp.searchsorted(cov_bins, r) - # # return cov_vals[idx] - # r0 = cov_bins[idx - 1] - # r1 = cov_bins[idx] - # c0 = cov_vals[idx - 1] - # c1 = cov_vals[idx] - # c = c0 + (c1 - c0) * (r - r0) / (r1 - r0) - - # # handle edge cases - # c = jnp.where(idx == 0, c1, c) - # c = jnp.where(idx == len(cov_bins), c0, c) - # c = jnp.where(r0 == r1, c0, c) - # return c - - -def _log_factorial(x): - return gammaln(x + 1) diff --git a/graphgp/extras.py b/graphgp/extras.py new file mode 100644 index 0000000..d906151 --- /dev/null +++ b/graphgp/extras.py @@ -0,0 +1,68 @@ +from typing import Tuple + +import jax.numpy as jnp +from jax import Array + +try: + from jax.scipy.special import gammaln + + has_scipy = True +except ImportError: + has_scipy = False + + +def rbf_kernel( + *, + variance: float, + scale: float, + r_min: float, + r_max: float, + n_bins: int, + jitter: float = 0.0, +) -> Tuple[Array, Array]: + """ + Radial basis function (squared exponential) covariance. + + Discretized onto `n_bins` logarithmically spaced bins between `r_min` and `r_max`, with 0.0 included as the first bin. + """ + r = make_cov_bins(r_min=r_min, r_max=r_max, n_bins=n_bins) + cov = variance * jnp.exp(-1 / 2 * (r / scale) ** 2) + cov = jnp.where(r == 0.0, cov[0] * (1.0 + jitter), cov) + return (r, cov) + + +def matern_kernel( + *, + p: int, + variance: float, + cutoff: float, + r_min: float, + r_max: float, + n_bins: int, + jitter: float = 0.0, +) -> Tuple[Array, Array]: + """ + Matern covariance function for nu = p + 1/2. Power spectrum has -(nu + n/2) slope. Not differentiable with respect to ``p``. + + Discretized onto `n_bins` logarithmically spaced bins between `r_min` and `r_max`, with 0.0 included as the first bin. + """ + r = make_cov_bins(r_min=r_min, r_max=r_max, n_bins=n_bins) + x = jnp.sqrt(2 * p + 1) * r / cutoff + i = jnp.arange(p + 1) + log_coeff = ( + _log_factorial(p) + _log_factorial(p + i) - _log_factorial(i) - _log_factorial(p - i) - _log_factorial(2 * p) + ) + polynomial = jnp.polyval(jnp.exp(log_coeff), 2 * x) + cov = variance * jnp.exp(-x) * polynomial + cov = jnp.where(r == 0.0, cov[0] * (1.0 + jitter), cov) + return (r, cov) + + +def _log_factorial(x): + return gammaln(x + 1) + + +def make_cov_bins(*, r_min: float, r_max: float, n_bins: int) -> Array: + cov_bins = jnp.logspace(jnp.log10(r_min), jnp.log10(r_max), n_bins - 1) + cov_bins = jnp.concatenate((jnp.array([0.0]), cov_bins), axis=0) + return cov_bins diff --git a/graphgp/graph.py b/graphgp/graph.py index bba7ea7..c6dd83e 100644 --- a/graphgp/graph.py +++ b/graphgp/graph.py @@ -1,13 +1,11 @@ from dataclasses import dataclass, field -from typing import Callable, Tuple, Any, Union +from typing import Tuple import jax import jax.numpy as jnp from jax.tree_util import Partial, register_dataclass from jax import Array -from jax import lax -import numpy as np from .tree import build_tree, query_preceding_neighbors diff --git a/graphgp/refine.py b/graphgp/refine.py index e7dc39b..7db70b0 100644 --- a/graphgp/refine.py +++ b/graphgp/refine.py @@ -1,4 +1,4 @@ -from typing import Callable, Tuple, Union +from typing import Tuple import jax import jax.numpy as jnp @@ -8,7 +8,6 @@ import numpy as np -from .covariance import compute_cov_matrix from .graph import Graph try: @@ -26,7 +25,6 @@ def generate( *, cuda: bool = False, fast_jit: bool = True, - jitter: float = 0.0, ) -> Array: """ Generate a GP with dense Cholesky for the first layer followed by conditional refinement. @@ -38,24 +36,27 @@ def generate( xi: Unit normal distributed parameters of shape ``(N,).`` reorder: Whether to reorder parameters and values according to the original order of the points. Default is ``True``. cuda: Whether to use optional CUDA extension, if installed. Will still use CUDA GPU via JAX if available. Default is ``False`` but recommended if possible for performance. - fast_jit: Whether to use version of refinement that compiles faster, if cuda=False. Default is ``True`` but runtime performance and memory usage will suffer. + fast_jit: Whether to use version of refinement that compiles faster, if cuda=False. Default is ``True`` but runtime performance and memory usage will suffer slightly. Returns: The generated values of shape ``(N,).`` """ + if len(xi) != len(graph.points): + raise ValueError("Length of xi must match number of points in graph.") n0 = len(graph.points) - len(graph.neighbors) if graph.indices is not None: xi = xi[graph.indices] - initial_values = generate_dense(graph.points[:n0], covariance, xi[:n0], jitter=jitter) + initial_values = generate_dense(graph.points[:n0], covariance, xi[:n0]) values = refine( graph.points, graph.neighbors, graph.offsets, covariance, initial_values, xi[n0:], cuda=cuda, fast_jit=fast_jit ) if graph.indices is not None: values = jnp.empty_like(values).at[graph.indices].set(values, unique_indices=True) + values = jnp.where(jnp.any(jnp.isnan(values)), jnp.nan * values, values) return values -def generate_dense(points: Array, covariance: Tuple[Array, Array], xi: Array, jitter: float = 0.0) -> Array: +def generate_dense(points: Array, covariance: Tuple[Array, Array], xi: Array) -> Array: """ Generate a GP with a dense Cholesky decomposition. Note that to compare with the GraphGP values, the points must be provided in tree order. @@ -67,8 +68,10 @@ def generate_dense(points: Array, covariance: Tuple[Array, Array], xi: Array, ji Returns: The generated values of shape ``(N,).`` """ + if len(xi) != len(points): + raise ValueError("Length of xi must match number of points.") K = compute_cov_matrix(covariance, points, points) - L = jnp.linalg.cholesky(K + jitter * jnp.eye(K.shape[0])) + L = jnp.linalg.cholesky(K) values = L @ xi return values @@ -106,6 +109,10 @@ def refine( """ n0 = len(points) - len(neighbors) # should equal offsets[0] + if len(initial_values) != n0: + raise ValueError("Length of initial_values must match number of initial points.") + if len(xi) != len(points) - n0: + raise ValueError("Length of xi must match number of refined points.") if cuda: if not has_cuda: raise ImportError("CUDA extension not installed, cannot use cuda=True.") @@ -158,28 +165,31 @@ def generate_inv( values: Array, *, cuda: bool = False, - jitter: float = 0.0, ) -> Array: """ Inverse of ``generate``. Ensure that the choice for ``reorder`` is the same. Recommended to JIT compile. """ + if len(values) != len(graph.points): + raise ValueError("Length of values must match number of points in graph.") n0 = len(graph.points) - len(graph.neighbors) if graph.indices is not None: values = values[graph.indices] initial_values, xi = refine_inv(graph.points, graph.neighbors, graph.offsets, covariance, values, cuda=cuda) - initial_xi = generate_dense_inv(graph.points[:n0], covariance, initial_values, jitter=jitter) + initial_xi = generate_dense_inv(graph.points[:n0], covariance, initial_values) xi = jnp.concatenate([initial_xi, xi], axis=0) if graph.indices is not None: xi = jnp.empty_like(xi).at[graph.indices].set(xi, unique_indices=True) return xi -def generate_dense_inv(points: Array, covariance: Tuple[Array, Array], values: Array, jitter: float = 0.0) -> Array: +def generate_dense_inv(points: Array, covariance: Tuple[Array, Array], values: Array) -> Array: """ Inverse of ``generate_dense``. """ + if len(values) != len(points): + raise ValueError("Length of values must match number of points.") K = compute_cov_matrix(covariance, points, points) - L = jnp.linalg.cholesky(K + jitter * jnp.eye(K.shape[0])) + L = jnp.linalg.cholesky(K) xi = jnp.linalg.solve(L, values) return xi @@ -197,6 +207,8 @@ def refine_inv( Inverse of ``refine``. """ n0 = len(points) - len(neighbors) # should equal offsets[0] + if len(values) != len(points): + raise ValueError("Length of values must match number of points.") if cuda: if not has_cuda: raise ImportError("CUDA extension not installed, cannot use cuda=True.") @@ -218,7 +230,7 @@ def refine_inv( return initial_values, xi -def generate_logdet(graph: Graph, covariance: Tuple[Array, Array], *, cuda: bool = False, jitter: float = 0.0) -> Array: +def generate_logdet(graph: Graph, covariance: Tuple[Array, Array], *, cuda: bool = False) -> Array: """ Log determinant of ``generate``. """ @@ -227,12 +239,12 @@ def generate_logdet(graph: Graph, covariance: Tuple[Array, Array], *, cuda: bool return dense_logdet + refine_logdet(graph.points, graph.neighbors, graph.offsets, covariance, cuda=cuda) -def generate_dense_logdet(points: Array, covariance: Tuple[Array, Array], jitter: float = 0.0) -> Array: +def generate_dense_logdet(points: Array, covariance: Tuple[Array, Array]) -> Array: """ Log determinant of ``generate_dense``. """ K = compute_cov_matrix(covariance, points, points) - return jnp.linalg.slogdet(K + jitter * jnp.eye(K.shape[0]))[1] / 2 + return jnp.linalg.slogdet(K)[1] / 2 def refine_logdet( @@ -269,4 +281,24 @@ def _conditional_mean_std(covariance, coarse_points, coarse_values, fine_point): L = jnp.linalg.cholesky(K) mean = L[k, :k] @ jnp.linalg.solve(L[:k, :k], coarse_values) std = L[k, k] - return mean, std \ No newline at end of file + return mean, std + + +def compute_cov_matrix(covariance: Tuple[Array, Array], points_a: Array, points_b: Array) -> Array: + distances = jnp.expand_dims(points_a, -2) - jnp.expand_dims(points_b, -3) + distances = jnp.linalg.norm(distances, axis=-1) + if isinstance(covariance, Tuple) and isinstance(covariance[0], Array) and isinstance(covariance[1], Array): + cov_bins, cov_vals = covariance + return cov_lookup(distances, cov_bins, cov_vals) + else: + raise ValueError("Invalid covariance specification.") + + +def cov_lookup(r, cov_bins, cov_vals): + """ + Look up covariance in array of sampled `cov_vals` at radii `cov_bins` (equal-sized arrays). + If `r` is inside of bounds, a linearly interpolated value is returned. + If `r` is below the first bin, the first value is returned. But really the first bin should always be 0.0. + If `r` is above the last bin, the last value is returned. Maybe the last value should be zero. + """ + return jnp.interp(r, cov_bins, cov_vals) diff --git a/graphgp/tree.py b/graphgp/tree.py index fd40274..0c58850 100644 --- a/graphgp/tree.py +++ b/graphgp/tree.py @@ -1,5 +1,5 @@ from __future__ import annotations -from typing import Any, Callable, Tuple +from typing import Tuple import jax import jax.numpy as jnp @@ -9,6 +9,7 @@ try: import graphgp_cuda + has_cuda = True except ImportError: has_cuda = False @@ -37,9 +38,7 @@ def build_tree(points: Array, cuda: bool = False) -> Tuple[Array, Array, Array]: return _build_tree(points) -def query_preceding_neighbors( - points: Array, split_dims: Array, *, n0: int, k: int, cuda: bool = False -) -> Array: +def query_preceding_neighbors(points: Array, split_dims: Array, *, n0: int, k: int, cuda: bool = False) -> Array: """ Query the k-nearest neighbors of each point among the preceding points, starting from point n0. @@ -101,7 +100,7 @@ def update_func(node, state, _): points, split_dims, query_index, max_index, update_func, (neighbors, square_distances), jnp.asarray(jnp.inf) ) - distances = jnp.linalg.norm(points[neighbors] - points[query_index], axis=-1) + distances = jnp.linalg.norm(points[neighbors] - points[query_index], axis=-1) distances, neighbors = lax.sort((distances, neighbors), dimension=0, num_keys=2) return neighbors @@ -208,6 +207,7 @@ def _compute_parent(current): parent = jnp.where(current == 0, -1, parent) # root has no parent return parent + def _update_nodes(nodes, index, level): # Calculate numbers for the level n_above = (1 << level) - 1 diff --git a/pyproject.toml b/pyproject.toml index 79c44ed..5061356 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,7 +3,7 @@ name = "graphgp" dynamic = ["version"] description = "Add your description here" readme = "README.md" -requires-python = ">=3.12" +requires-python = ">=3.10" dependencies = [ "jax" ] @@ -19,6 +19,7 @@ dev = [ "pytest>=8.3.5", "ruff>=0.11.11", "tqdm>=4.67.1", + "scipy", ] [project.urls] @@ -34,6 +35,7 @@ source = "vcs" [tool.ruff] line-length = 120 exclude = ["*.ipynb"] +lint.ignore = ["E402"] [dependency-groups] dev = [ diff --git a/tests/test_cuda.py b/tests/test_cuda.py deleted file mode 100644 index de9c3ac..0000000 --- a/tests/test_cuda.py +++ /dev/null @@ -1,194 +0,0 @@ -import jax -import jax.numpy as jnp -import jax.random as jr -from jax.tree_util import Partial - -import graphgp as gp - -rng = jr.key(99) - -# We basically just want to check CUDA against the JAX implementation. -# Testing of the JAX implementation will be done separately. - -# Typically expect to match only to the 1e-4 level, while CUDA should be self-consistent to the 1e-6 level. - - -# def default_setup(rng_key): -# n_points = 1000 -# points = jr.normal(rng_key, (n_points, 2)) -# graph = gp.build_graph(points, n0=100, k=8, cuda=True) -# covariance = (gp.make_cov_bins(r_min=1e-4, r_max=10, n_bins=1000), gp.MaternCovariance(p=0)) -# return n_points, graph, covariance - - -# def test_forward(): -# k1, k2 = jr.split(rng, 2) -# n_points, graph, covariance = default_setup(k1) -# xi = jr.normal(k2, (n_points,)) - -# jax_values = gp.generate_jit(graph, covariance, xi, cuda=False) -# cuda_values = gp.generate_jit(graph, covariance, xi, cuda=True) -# assert jnp.allclose(jax_values, cuda_values, atol=1e-4), "JAX and CUDA values do not match within tolerance" - - -# def test_jvp_linear(): -# k1, k2, k3 = jr.split(rng, 3) -# n_points, graph, covariance = default_setup(k1) -# xi = jr.normal(k2, (n_points,)) -# xi_tangent = jr.normal(k3, (n_points,)) -# jax_func = Partial(gp.generate_jit, graph, covariance, cuda=False) -# cuda_func = Partial(gp.generate_jit, graph, covariance, cuda=True) - -# jax_values, jax_tangent = jax.jvp(jax_func, (xi,), (xi_tangent,)) -# cuda_values, cuda_tangent = jax.jvp(cuda_func, (xi,), (xi_tangent,)) -# assert jnp.allclose(jax_values, cuda_values, atol=1e-4), "JAX and CUDA values do not match within tolerance" -# assert jnp.allclose(jax_tangent, cuda_tangent, atol=1e-4), "JAX and CUDA tangents do not match within tolerance" - - -# def test_vjp_linear(): -# k1, k2, k3 = jr.split(rng, 3) -# n_points, graph, covariance = default_setup(k1) -# xi = jr.normal(k2, (n_points,)) -# values_tangent = jr.normal(k3, (n_points,)) -# jax_func = Partial(gp.generate_jit, graph, covariance, cuda=False) -# cuda_func = Partial(gp.generate_jit, graph, covariance, cuda=True) - -# jax_values, jax_vjp = jax.vjp(jax_func, xi) -# cuda_values, cuda_vjp = jax.vjp(cuda_func, xi) -# jax_tangent = jax_vjp(values_tangent)[0] -# cuda_tangent = cuda_vjp(values_tangent)[0] -# assert jnp.allclose(jax_values, cuda_values, atol=1e-4), "JAX and CUDA values do not match within tolerance" -# assert jnp.allclose(jax_tangent, cuda_tangent, atol=1e-4), "JAX and CUDA tangents do not match within tolerance" - - -# def test_adjoint_condition(): -# k1, k2, k3, k4 = jr.split(rng, 4) -# n_points, graph, covariance = default_setup(k1) -# xi = jr.normal(k2, (n_points,)) -# xi_tangent = jr.normal(k3, (n_points,)) -# values_tangent = jr.normal(k4, (n_points,)) -# func = Partial(gp.generate, graph, covariance, cuda=True) - -# val1 = jnp.dot(values_tangent, jax.jvp(func, (xi,), (xi_tangent,))[1]) -# val2 = jnp.dot(xi_tangent, jax.vjp(func, xi)[1](values_tangent)[0]) -# assert jnp.isclose(val1, val2, rtol=1e-6), f"Adjoint test failed: {val1:.5e} != {val2:.5e} within rtol=1e-6" - - -# def test_jit_success(): -# k1, k2, k3, k4 = jr.split(rng, 4) -# n_points, graph, covariance = default_setup(k1) -# xi = jr.normal(k2, (3, n_points)) # Batch size of 3 -# xi_tangent = jr.normal(k3, (3, n_points)) -# values_tangent = jr.normal(k4, (3, n_points)) - -# cuda_func = jax.vmap(Partial(gp.generate, graph, covariance, cuda=True)) -# _ = jax.jit(cuda_func)(xi).block_until_ready() -# _ = jax.jit(Partial(jax.jvp, cuda_func))((xi,), (xi_tangent,))[1].block_until_ready() -# _ = jax.jit(jax.vjp(cuda_func, xi)[1])(values_tangent)[0].block_until_ready() - -# def test_forward_vmap(): -# k1, k2 = jr.split(rng, 2) -# n_points, graph, covariance = default_setup(k1) -# xi = jr.normal(k2, (3, n_points)) # Batch size of 3 -# jax_func = jax.jit(jax.vmap(Partial(gp.generate, graph, covariance, cuda=False))) -# cuda_func = jax.jit(jax.vmap(Partial(gp.generate, graph, covariance, cuda=True))) - -# jax_values = jax_func(xi) -# cuda_values = cuda_func(xi) -# assert jnp.allclose(jax_values, cuda_values, atol=1e-4), "JAX and CUDA values do not match within tolerance" - - -# def test_triple_vmap(): -# k1, k2 = jr.split(rng, 2) -# n_points, graph, covariance = default_setup(k1) -# xi = jr.normal(k2, (1, 2, 3, n_points)) -# jax_func = jax.jit(jax.vmap( -# jax.vmap(jax.vmap(Partial(gp.generate, graph, covariance, cuda=False))) -# )) -# cuda_func = jax.jit(jax.vmap( -# jax.vmap(jax.vmap(Partial(gp.generate, graph, covariance, cuda=True))) -# )) - -# jax_values = jax_func(xi) -# cuda_values = cuda_func(xi) -# assert jnp.allclose(jax_values, cuda_values, atol=1e-4), "JAX and CUDA values do not match within tolerance" - - -# def test_jvp_linear_batched(rtol=1e-2, frac_outliers_allowed=0.01): -# k1, k2, k3 = jr.split(key, 3) -# n_points, graph, covariance = default_setup(k1) -# xi = jr.normal(k2, (3, n_points)) # Batch size of 3 -# xi_tangent = jr.normal(k3, (3, n_points)) -# jax_func = jax.vmap(Partial(hg.generate, graph, covariance, cuda=False)) -# cuda_func = jax.vmap(Partial(hg.generate, graph, covariance, cuda=True)) - -# jax_values, jax_tangent = jax.jvp(jax_func, (xi,), (xi_tangent,)) -# cuda_values, cuda_tangent = jax.jvp(cuda_func, (xi,), (xi_tangent,)) -# outlier_check( -# "JVP linear batched primals", jax_values, cuda_values, rtol, frac_outliers_allowed -# ) -# outlier_check( -# "JVP linear batched tangents", jax_tangent, cuda_tangent, rtol, frac_outliers_allowed -# ) - - -# def test_vjp_linear_batched(rtol=1e-2, frac_outliers_allowed=0.01): -# k1, k2, k3 = jr.split(key, 3) -# n_points, graph, covariance = default_setup(k1) -# xi = jr.normal(k2, (3, n_points)) # Batch size of 3 -# values_tangent = jr.normal(k3, (3, n_points)) -# jax_func = jax.vmap(Partial(hg.generate, graph, covariance, cuda=False)) -# cuda_func = jax.vmap(Partial(hg.generate, graph, covariance, cuda=True)) - -# jax_values, jax_vjp = jax.vjp(jax_func, xi) -# cuda_values, cuda_vjp = jax.vjp(cuda_func, xi) -# jax_tangent = jax_vjp(values_tangent)[0] -# cuda_tangent = cuda_vjp(values_tangent)[0] -# outlier_check( -# "VJP linear batched primals", jax_values, cuda_values, rtol, frac_outliers_allowed -# ) -# outlier_check( -# "VJP linear batched tangents", jax_tangent, cuda_tangent, rtol, frac_outliers_allowed -# ) - - -# def test_loss_gradient(rtol=1e-2, frac_outliers_allowed=0.001): -# k1, k2 = jr.split(key, 2) -# n_points, graph, covariance = default_setup(k1) - -# def loss_func(xi, cuda=False): -# return jnp.sum(jnp.square(hg.generate(graph, covariance, xi, cuda=cuda))) - -# xi = jr.normal(k2, (n_points,)) -# jax_grad = jax.grad(loss_func, argnums=0)(xi, cuda=False) -# cuda_grad = jax.grad(loss_func, argnums=0)(xi, cuda=True) -# outlier_check("Loss gradient", jax_grad, cuda_grad, rtol, frac_outliers_allowed) - - -# def test_fisher_metric(rtol=1e-2, frac_outliers_allowed=0.01): -# k1, k2, k3 = jr.split(key, 3) -# n_points, graph, covariance = default_setup(k1) -# xi = jr.normal(k2, (n_points,)) -# xi_tangent = jr.normal(k3, (n_points,)) -# jax_func = Partial(hg.generate, graph, covariance, cuda=False) -# cuda_func = Partial(hg.generate, graph, covariance, cuda=True) - -# jax_mvp = jax.vjp(jax_func, xi)[1](jax.jvp(jax_func, (xi,), (xi_tangent,))[1])[0] -# cuda_mvp = jax.vjp(cuda_func, xi)[1](jax.jvp(cuda_func, (xi,), (xi_tangent,))[1])[0] -# outlier_check("Fisher metric", jax_mvp, cuda_mvp, rtol, frac_outliers_allowed) - - -# def test_hessian(): -# k1, k2 = jr.split(key, 2) -# n_points = 100 -# points = jr.normal(k1, (n_points, 2)) -# graph, indices = hg.build_strict_graph(points, n_initial=7, k=4) -# covariance = hg.test_cov_discretized(0.001, 20, 1000, cutoff=0.2, slope=-1.0, scale=1.0) -# xi = jr.normal(k2, (n_points,)) - -# def loss_func(xi, cuda=False): -# return jnp.sum(jnp.square(hg.generate(graph, covariance, xi, cuda=cuda))) - -# jax_hess = jax.hessian(Partial(loss_func, cuda=False))(xi) -# cuda_hess = jax.hessian(Partial(loss_func, cuda=True))(xi) -# outlier_check("Hessian", jax_hess, cuda_hess, rtol=1e-2, frac_outliers_allowed=0.001) diff --git a/tests/test_graph.py b/tests/test_graph.py index 22d4ab7..23b7814 100644 --- a/tests/test_graph.py +++ b/tests/test_graph.py @@ -1,4 +1,5 @@ import jax + jax.config.update("jax_enable_x64", True) import jax.numpy as jnp import jax.random as jr @@ -9,6 +10,7 @@ rng = jr.key(137) + def test_graph_random(): n_points = 100000 n_dim = 3 @@ -17,12 +19,13 @@ def test_graph_random(): points = jr.normal(rng, (n_points, n_dim)) graph = gp.build_graph(points, n0=n0, k=k) - - check_equal(points[0,0], -0.61777326, rtol=1e-8, text="RNG changed, cannot run test") + + check_equal(points[0, 0], -0.61777326, rtol=1e-8, text="RNG changed, cannot run test") assert len(graph.offsets) == 61 assert graph.offsets[1] == 1115 - assert graph.neighbors[0,0] == 488 - check_equal(graph.points[0,0], -1.38417124, rtol=1e-8, text="Point does not match reference") + assert graph.neighbors[0, 0] == 488 + check_equal(graph.points[0, 0], -1.38417124, rtol=1e-8, text="Point does not match reference") + def test_graph_shapes(): points = jr.normal(rng, (5000, 6)) @@ -33,35 +36,47 @@ def test_graph_shapes(): assert graph.offsets[0] == 500, "Offsets[0] incorrect" assert graph.offsets[-1] == 5000, "Offsets[-1] incorrect" + def test_compute_depths(): - neighbors = jnp.array([ - [0, 1, 2], - [0, 1, 2], - [1, 3, 4], - [2, 4, 5], - ]) + neighbors = jnp.array( + [ + [0, 1, 2], + [0, 1, 2], + [1, 3, 4], + [2, 4, 5], + ] + ) n0 = 3 depths = gp.compute_depths(neighbors, n0=n0) expected_depths = jnp.array([0, 0, 0, 1, 1, 2, 3]) check_equal(depths, expected_depths, text="Depths do not match expected values") + def test_order_by_depth(): points = jnp.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])[:, None] indices = jnp.array([0, 1, 2, 3, 4, 5]) - neighbors = jnp.array([ - [0, 1], - [1, 2], - [2, 3], - [0, 1], - ]) + neighbors = jnp.array( + [ + [0, 1], + [1, 2], + [2, 3], + [0, 1], + ] + ) depths = jnp.array([0, 0, 1, 2, 3, 1]) new_points, new_indices, new_neighbors, new_depths = gp.order_by_depth(points, indices, neighbors, depths) check_equal(new_points, jnp.array([0.0, 1.0, 2.0, 5.0, 3.0, 4.0])[:, None], text="Points not ordered correctly") check_equal(new_indices, jnp.array([0, 1, 2, 5, 3, 4]), text="Indices not ordered correctly") - check_equal(new_neighbors, jnp.array([ - [0, 1], - [0, 1], - [1, 2], - [2, 4], - ]), text="Neighbors not ordered correctly") - check_equal(new_depths, jnp.array([0, 0, 1, 1, 2, 3]), text="Depths not ordered correctly") \ No newline at end of file + check_equal( + new_neighbors, + jnp.array( + [ + [0, 1], + [0, 1], + [1, 2], + [2, 4], + ] + ), + text="Neighbors not ordered correctly", + ) + check_equal(new_depths, jnp.array([0, 0, 1, 1, 2, 3]), text="Depths not ordered correctly") diff --git a/tests/test_refine.py b/tests/test_refine.py index 119f25b..7c2356c 100644 --- a/tests/test_refine.py +++ b/tests/test_refine.py @@ -11,6 +11,7 @@ rng = jr.key(137) + @pytest.fixture def setup_graph(): n_points = 1000 @@ -20,15 +21,27 @@ def setup_graph(): points = jr.normal(rng, (n_points, n_dim)) graph = gp.build_graph(points, n0=n0, k=k) - covariance = gp.compute_matern_covariance_discrete(p=0, r_min=1e-4, r_max=10, n_bins=1000) + covariance = gp.matern_kernel(p=0, r_min=1e-4, r_max=10, n_bins=1000) yield graph, covariance, points + def test_logdet_random(setup_graph): graph, covariance, points = setup_graph - check_equal(graph.points[0,0], -1.95624711, rtol=1e-8, text="RNG or setup changed, cannot run test") - check_equal(jax.jit(gp.generate_logdet)(graph, covariance), -600.36165088, rtol=1e-8, text="Logdet does not match reference within rtol=1e-12.") - check_equal(jax.jit(gp.generate_dense_logdet)(graph.points, covariance), -610.90538067, rtol=1e-8, text="Dense logdet does not match reference within rtol=1e-12.") + check_equal(graph.points[0, 0], -1.95624711, rtol=1e-8, text="RNG or setup changed, cannot run test") + check_equal( + jax.jit(gp.generate_logdet)(graph, covariance), + -600.36165088, + rtol=1e-8, + text="Logdet does not match reference within rtol=1e-12.", + ) + check_equal( + jax.jit(gp.generate_dense_logdet)(graph.points, covariance), + -610.90538067, + rtol=1e-8, + text="Dense logdet does not match reference within rtol=1e-12.", + ) + def test_inverse(setup_graph): graph, covariance, points = setup_graph @@ -36,7 +49,10 @@ def test_inverse(setup_graph): values = jax.jit(gp.generate)(graph, covariance, xi) xi_back = jax.jit(gp.generate_inv)(graph, covariance, values) values_back = jax.jit(gp.generate)(graph, covariance, xi_back) - check_equal(values, values_back, rtol=1e-12, text="Values from xi and from inverted xi do not match within rtol=1e-12.") + check_equal( + values, values_back, rtol=1e-12, text="Values from xi and from inverted xi do not match within rtol=1e-12." + ) + def test_fast_jit(setup_graph): graph, covariance, points = setup_graph @@ -46,11 +62,12 @@ def test_fast_jit(setup_graph): v2 = jax.jit(Partial(gp.generate, fast_jit=False))(graph, covariance, xi) check_equal(v1, v2, rtol=1e-12, text="Fast JIT does not match simple implementation.") + def test_approaches_dense(): points = jr.normal(rng, (1000, 3)) graph = gp.build_graph(points, n0=200, k=200) graph = gp.Graph(graph.points, graph.neighbors, graph.offsets) - covariance = gp.compute_matern_covariance_discrete(p=0, r_min=1e-4, r_max=10, n_bins=1000) + covariance = gp.matern_kernel(p=0, r_min=1e-4, r_max=10, n_bins=1000) xi = jr.normal(rng, (graph.points.shape[0],)) true_values = jax.jit(gp.generate_dense)(graph.points, covariance, xi) @@ -60,4 +77,4 @@ def test_approaches_dense(): J = jax.jacfwd(Partial(gp.generate, graph, covariance))(jnp.zeros(graph.points.shape[0])) K = J @ J.T dense_K = gp.compute_cov_matrix(covariance, graph.points, graph.points) - assert jnp.allclose(K, dense_K, atol=0.02), "Covariance does not match dense within atol=0.02." \ No newline at end of file + assert jnp.allclose(K, dense_K, atol=0.02), "Covariance does not match dense within atol=0.02." diff --git a/tests/test_tree.py b/tests/test_tree.py index e7e684f..cc5c733 100644 --- a/tests/test_tree.py +++ b/tests/test_tree.py @@ -1,4 +1,5 @@ import jax + jax.config.update("jax_enable_x64", True) import jax.numpy as jnp import jax.random as jr @@ -7,18 +8,21 @@ rng = jr.key(137) + def check_equal(a, b, *, text, rtol=None): if rtol is None: assert jnp.all(a == b), text else: assert jnp.allclose(a, b, rtol=rtol), text + def test_build_tree_simple(): - points = jnp.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])[:,None] + points = jnp.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])[:, None] tree = gp.build_tree(points) - check_equal(tree[0], jnp.array([6,3,9,2,8,5,10,1,7,4])[:,None], text="Points do not match") - check_equal(tree[1], jnp.array([0,0,0,0,0,0,0,0,0,0]), text="Split dims do not match") - check_equal(tree[2], jnp.array([5,2,8,1,7,4,9,0,6,3]), text="Indices do not match") + check_equal(tree[0], jnp.array([6, 3, 9, 2, 8, 5, 10, 1, 7, 4])[:, None], text="Points do not match") + check_equal(tree[1], jnp.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), text="Split dims do not match") + check_equal(tree[2], jnp.array([5, 2, 8, 1, 7, 4, 9, 0, 6, 3]), text="Indices do not match") + def test_build_tree_random(): points = jr.normal(rng, (100000, 3)) @@ -27,6 +31,7 @@ def test_build_tree_random(): check_equal(tree[1][1000:1005], jnp.array([2, 0, 0, 1, 1]), text="Split dims do not match reference") check_equal(tree[2][-1], 59735, text="Indices do not match reference") + def test_build_tree_shapes(): for n_dim in [2, 6]: points = jr.normal(rng, (1000, n_dim)) @@ -35,6 +40,7 @@ def test_build_tree_shapes(): assert tree[1].shape == (1000,), "Split dims shape incorrect" assert tree[2].shape == (1000,), "Indices shape incorrect" + def test_query_preceding(): n_points = 1000 n_dim = 3 @@ -45,9 +51,9 @@ def test_query_preceding(): points, split_dims, indices = gp.build_tree(original_points) neighbors = gp.query_preceding_neighbors(points, split_dims, n0=n0, k=k) - pairwise_distance = jnp.linalg.norm(points[:,None,:] - points[None,:, :], axis=-1) + pairwise_distance = jnp.linalg.norm(points[:, None, :] - points[None, :, :], axis=-1) i, j = jnp.indices(pairwise_distance.shape) pairwise_distance = pairwise_distance.at[i <= j].set(jnp.inf) - true_neighbors = jnp.argsort(pairwise_distance, axis=-1)[n0:,:k] + true_neighbors = jnp.argsort(pairwise_distance, axis=-1)[n0:, :k] - check_equal(neighbors, true_neighbors, text="Incorrect preceding neighbors") \ No newline at end of file + check_equal(neighbors, true_neighbors, text="Incorrect preceding neighbors") diff --git a/uv.lock b/uv.lock index 84f817c..f52e6de 100644 --- a/uv.lock +++ b/uv.lock @@ -460,6 +460,7 @@ dev = [ { name = "optax" }, { name = "pytest" }, { name = "ruff" }, + { name = "scipy" }, { name = "tqdm" }, ] @@ -481,6 +482,7 @@ requires-dist = [ { name = "optax", marker = "extra == 'dev'" }, { name = "pytest", marker = "extra == 'dev'", specifier = ">=8.3.5" }, { name = "ruff", marker = "extra == 'dev'", specifier = ">=0.11.11" }, + { name = "scipy", marker = "extra == 'dev'" }, { name = "tqdm", marker = "extra == 'dev'", specifier = ">=4.67.1" }, ] provides-extras = ["dev"]