-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
174 lines (137 loc) · 5.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import torch
import torch.nn as nn
import time
import os
import math
from typing import TypeVar, Generator, Union, Sequence, Tuple, Callable, NamedTuple
import logging
logger = logging.getLogger(__name__)
def interleave(x: torch.Tensor, bt: int):
"""Rearrange a tensor of the form [1..1;2..2;...;bt..bt] into [12..bt;12..bt;...]."""
s = list(x.shape)
return torch.reshape(torch.transpose(x.reshape([-1, bt] + s[1:]), 1, 0), [-1] + s[1:])
def de_interleave(x: torch.Tensor, bt: int):
"""The inverse of interleave()."""
s = list(x.shape)
return torch.reshape(torch.transpose(x.reshape([bt, -1] + s[1:]), 1, 0), [-1] + s[1:])
def filter_parameters(module: nn.Module, condition: Callable[[nn.Module, str], bool]):
"""A generator that yields parameters satisfying a given predicate."""
params = set()
for module_key, parent in module.named_modules():
for param_key, param in parent.named_parameters(recurse=False):
if param not in params and condition(parent, param_key):
params.add(param)
yield param
def get_mean_and_std(dataset):
"""Compute the per-channel mean and standard deviation of an image dataset."""
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=1, shuffle=False, num_workers=4)
mean = torch.zeros(3)
std = torch.zeros(3)
logger.info('==> Computing mean and std.')
for inputs, targets in dataloader:
for i in range(3):
mean[i] += inputs[:, i, :, :].mean()
std[i] += inputs[:, i, :, :].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
def urandom():
int.from_bytes(os.urandom(4), 'little')
def to_numpy(x):
return x.detach().cpu().numpy()
def ema(alpha=0.01, avg_only=True):
"""An exponential moving average generator."""
avg, vel, var, std = None, None, None, None
while True:
if avg_only:
x = yield avg
else:
x = (yield avg, vel, std)
if avg is None:
avg = x
vel = var = std = 0.
else:
delta = x - avg
vel = alpha * delta
avg += vel
var = (1 - alpha) * (var + alpha * delta**2)
std = math.sqrt(var)
# From //github.com/davidcpage/cifar10-fast/bag_of_tricks.ipynb
class Timer(object):
def __init__(self, synch=None):
self.synch = synch or (lambda: None)
self.synch()
self.times = [time.perf_counter()]
self.total_time = 0.0
def __call__(self, update_total=True):
self.synch()
self.times.append(time.perf_counter())
delta_t = self.times[-1] - self.times[-2]
if update_total:
self.total_time += delta_t
return delta_t
YieldType = TypeVar('YieldType')
ReturnType = TypeVar('ReturnType')
T = Tuple[Sequence[YieldType], ReturnType]
def expand_generator(g: Generator[YieldType, None, ReturnType], return_only: bool = False) -> Union[T, ReturnType]:
"""Given a finite generator that yields values (a_1, a_2, ..., a_T) and returns value b, returns the tuple
((a_1, ..., a_T), b), or only b if `return_only` is True."""
ret = None
def _():
nonlocal ret
ret = yield from g
vals = tuple(_())
if return_only:
return ret
return vals, ret
class Generator(object):
def __init__(self, g):
self.g = g
self.value = None
def __iter__(self):
self.value = yield from self.g
# Cosine learning rate scheduler.
#
# From https://github.com/valencebond/FixMatch_pytorch/blob/master/lr_scheduler.py
class WarmupCosineLrScheduler(torch.optim.lr_scheduler._LRScheduler):
def __init__(
self,
optimizer,
max_iter,
warmup_iter,
warmup_ratio=5e-4,
warmup='exp',
last_epoch=-1,
):
self.max_iter = max_iter
self.warmup_iter = warmup_iter
self.warmup_ratio = warmup_ratio
self.warmup = warmup
super(WarmupCosineLrScheduler, self).__init__(optimizer, last_epoch)
def get_lr(self):
ratio = self.get_lr_ratio()
lrs = [ratio * lr for lr in self.base_lrs]
return lrs
def get_lr_ratio(self):
if self.last_epoch < self.warmup_iter:
ratio = self.get_warmup_ratio()
else:
real_iter = self.last_epoch - self.warmup_iter
real_max_iter = self.max_iter - self.warmup_iter
ratio = np.cos((7 * np.pi * real_iter) / (16 * real_max_iter))
return ratio
def get_warmup_ratio(self):
assert self.warmup in ('linear', 'exp')
alpha = self.last_epoch / self.warmup_iter
if self.warmup == 'linear':
ratio = self.warmup_ratio + (1 - self.warmup_ratio) * alpha
elif self.warmup == 'exp':
ratio = self.warmup_ratio ** (1. - alpha)
return ratio
class PiecewiseLinear(NamedTuple):
knots: Sequence[float]
vals: Sequence[float]
def __call__(self, t):
return np.interp([t], self.knots, self.vals)[0]